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Stability of Stochastic Functional Differential
Equations With Past-Dependent Random
Switching Involving Countably Infinite States

Dang H. Nguyen ', Nhu N. Nguyen

Abstract—This work is devoted to stochastic functional
differential equations with past-dependent random switch-
ing, in which the switching process is allowed to take val-
ues in a countable state space. Such processes are rather
versatile and arise in a wide variety of applications. A cen-
tral issue considered in this article is stability. The con-
ditions provided are more general than the existing work.
After getting the desired stability results, several appli-
cations, including linear systems, linearization of nonlin-
ear systems, multi-agent systems consentability, and net-
worked control systems are examined. Numerical resulis
are also provided to demonstrate our resulis.

Index Terms—Past-dependent switching,
stochastic functional differential equation (SFDE).

stability,

|. INTRODUCTION

HIS work develops novel stability results for systems of

functional stochastic differential equations (FSDEs) with
random switching. The systems under consideration are hybrid
switching diffusions that are modeled by stochastic functional
differential equations (SFDEs) under random environments. It
is widely understood that, intuitively, a functional differential
equation is a differential equation for which derivatives of the
solution of the equation depend not only on some functions of
the solution itself, but also depends on some functions of past
history. A SFDE is similar in spirit but has the noise perturbations
(e.g., due to the Brownian motion). In this article, our attention
is devoted to SFDEs originating from switching diffusions. A
switching diffusion has two components X (¢) and «(t), in
which X (¢) is termed a continuous component whereas a(t)
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is a discrete component. Note that by a discrete component, we
mean that o(#) takes values in a discrete set. Compared with the
existing results of switching diffusions in the literature, not only
does the switching process depend on the continuous dynamics
but also it depends on the past history of X (¢). The dependence
on the past history of the continuous process is in a most general
form. In addition, the discrete component () is allowed to take
values in a countable set.

A. Motivation

Why should we be interested in such switching diffusions?
There are numerous applications in a wide spectrum of areas
in engineering, physical, biological, ecological, social dynamic
systems, large-scale optimization, wired and wireless commu-
nications, and among others. In biology and ecology, many
systems can be formulated under a big roof of the so-called
Kolmogorov systems [31], [32]. Moreover, as studied in these
references, very often for practical concerns, one needs to look
into SFDEs that are equations with delay of the general form. In
the aforementioned references, our primary goals are to answer
a long-standing question, namely, finding the necessary and
sufficient conditions under which the populations are persistent
or extinct. It turns out that with more effort regime-switching
Kolmogorov systems can be treated as well. In fact, in [30],
we treated regime-switching systems of chemostat models with
applications to wastewater treatment and obtained the corre-
sponding optimal controls. In everyday life, practical systems
are often running for a long time. We remark that many issues,
such as permanence, extinction, and persistence, etc., of species
in population dynamics and ecology are all linked to the stability
issues.

The study of switching diffusions has been much tied-up
with recent advances in automatic control and optimization.
The quest of jump-linear systems can be found in the work of
Mariton [25] for treating linear in the continuous-component
processes. Further in-depth investigation on such systems was
done by Costa et al. [4], in which quadratic criteria, H and H
controls were treated in detail. The work of Mao and Yuan [24]
is devoted to nonlinear systems with Markov switching taking
values in a finite state space. Then, Yin and Zhu [40], [46]
treated switching diffusions, in which the switching process
allows to be dependent on the continuous component. This line
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of work was substantially extended by Nguyen and Yin [27]
with past-dependent switching with a countable state space. One
of the centerpieces of the studies is around the issue of long-
term asymptotic behavior, in particular, stability. Taking into
consideration the coexistence and interactions of discrete and
continuous states, regime-switching diffusion systems, which
are stochastic hybrid systems and have drawn resurgent and
increasing attention; see e.g., [18], [23], [35], [41], [46] and
references therein. There is a long history of studying hybrid
systems. Feedback controls were considered in [5], modeling
and analysis of networked control systems (NCSs) can be found
in [12], stability and stabilizability were considered in [14],
[15], [19], [38], [41], [42], [43], and [45], consensus formation,
control, and stability of stochastic multi-agent systems with or
without time delays were treated in [16], [47], [48], and [49];
delay tolerance for stability of stochastic systems was treated
in [50].

In light of the recent development, this article focuses on a
crucially important issue, namely, stability. It is well-recognized
that regime-switching diffusion systems have many interesting
properties, which are somewhat counterintuitive. For example,
the continuous component can be stable for each fixed regime
of the discrete component, but the hybrid system may not be
stable, and vice versa; see, [39].

B. Main Innovations of This Article

In this article, we consider the stability of stochastic delay
differential equations under past-dependent random switching
taking countably infinite states. In contrast to the existing works
in the literature, the regime-switching diffusion we considered
in this work has following distinct features:

1) not only does the continuous component depend on the
discrete component, but also it depends on its past history;

2) in addition, the discrete component depends on the past
information of the continuous component; and

3) the discrete component takes values in a countably infinite
states space.

The aforementioned setting enlarges the application of
switching processes in many perspectives. There are numerous
applications in which the switching component is not a Markov
chain, but the generator of the switching process depends on
the history of the continuous component. As mentioned in [27],
application examples may include linear quadratic control prob-
lems with random switching that depend on the past history,
queueing networks, and evolution of two interacting species,
in which the reproduction process is noninstantaneous result-
ing in past-dependent switching. The examples in Section IV
of this article provide additional examples, such as consensus
and NCSs, in which it is necessary to consider past-dependent
switching. By allowing the two components to be fully coupled,
our formulation enables us to treat many systems, in which sub-
systems and/or components are intertwined and highly coupled.
Our formulation also enables us to account for past dependence
in a most general form. It is clear that delay or past dependence
is unavoidable. Finally, because we allow the switching to take
values in an infinite state space, our formulation enlarges the

applicability of previous considerations of finite-state space
cases.

In contrast to the existing works in the literature, we highlight
our contributions and novelties of this work as follows. In
particular, we illustrate below why mode-independent Lyapunov
function and pth-moment stability with p < 2 should be a natural
choice.

1) While stochastic systems with past-dependent switching
and systems with infinite jumps have been studied in [21],
[271, [28], [29], [35], and [44], to the best of authors’
knowledge, our article is one of the first providing sta-
bility results for stochastic functional (delay) differential
equations under past-dependent random switching having
infinite states. Combining the two levels of complexity
makes the analysis more difficult, especially when the two
components are fully coupled. We introduced novel tech-
niques to overcome the difficulty arising. Moreover, if we
remove delays in the continuous component, our results
generalize the stability results of stochastic differential
equations with (infinite states) past-dependent switching
in literature, such as [28] and [35] and references therein.
If we let switching be independent of the continuous
component and have finite values, our results add to the
research of stochastic delay systems under Markovian
switching with finite states space in the literature, such
as [9], [23], [42]. [43], and [45] and references therein.

2) When studying this two-component system, we purposely
do not work with a mode-dependent Lyapunov function,
because it is very difficult in practice to find efficient
mode-dependent Lyapunov functions. Normally, the dy-
namics of the continuous component in different switch-
ing modes should not be drastically different, but they
should have something in common because it describes
the nature of one component. Based on this observation,
it is more practical to seek a mode-independent Lyapunov
function, which is seemingly less general but it is much
easier to select and use in practice.

3) When working with stochastic delay systems, most stud-
ies aim for second (or higher) moment stability. The main
reason is that functions of the form |z " Qx| are not used
as a Lyapunov function for delay systems. For nondelay
systems, they can be used because a solution not starting
at 0 will not reach 0 at any finite time (under some mild
conditions). It is not the case for delay systems. The
pth-moment stability with p < 2 may be seemingly
weaker than the second moment stability but the condi-
tions for pth-moment stability are much weaker. Because
of the technical issue mentioned above, pth-moment sta-
bility for p < 2 is a natural choice, but the results are very
scarce in the literature. This article focuses on tackling
this kind of stability with new analysis machinery.

4) While coupling techniques were used in probability the-
ory and stochastic processes, in this article, we bring it
into the picture to treat the stability of systems arising
in control and systems theory. It brings in a powerful
technique with further applications in a wide variety of
applications in systems theory and control.
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C. Outline of the Article

The rest of this article is organized as follows. Section II
provides the precise formation. Section III presents the main re-
sults of this article together with the detailed proofs. Section IV,
then, presents a number of applications. They include stability
of linearized systems, multi-agent systems and related issues,
and NCSs. Finally, Section V concludes this article.

Il. FORMULATION AND ASSUMPTIONS

Let (2, F, (Ft)e=0, P) be a complete probability space with
the filtration {F; }+>0 satisfying the usual conditions, and W ()
be a d-dimensional standard Brownian motion. We denote by
X, the segment function of X (¢). That is, X, := {X (¢ + s) :
s € [-r,0]} € C, where C :=C([-r, 0], R"). Let, b(-,-) : C x
Z, — R",0(-,-): Cx Z, — R™9 be measurable functions.
Now, we consider the SFDE under random switching given by

dX(t) =b(X;,at)) dt + 0 (X, at)) dW(t), X(t) e R
{Xuzqﬁec, a0)=21€Z,

(1
where a(t) is a switching process taking value in Z, =
{1,2,...}, depending on X; with invariant probability mea-
sure {vy : k € Z }, and generator Q = (gx(+))x ez, » Where
qij(-) : C — R, and «(t) is formulated as follows. We assume
that if a(t—) := lim,_,; a(s) = 4. then, it can switch to j at
t with intensity g;;(X¢). When qi(¢) := Y7, ;. 4i;(9) is
uniformly bounded in (¢, ) € C x Z, and g;(-) and g,;(-) are
continuous, one may view the assumption as

P{a(t+ A) = jla(t) =1, X(s), a(s), s < t}
= q;;(X¢)A +o(A)ifi # j and
Pla(t +A) = ila(t) = i, X(s), als),s < t}
=1—-q(X:)A +o(A). 2)

Note that a(t) is not a Markov chain because Q(-) depends on
¢; it is only a Markov chain for each fixed ¢.

Denote by (X?(t), a*(¢)) the solution of (1) and (2) with the
initial data X := ¢ € C and a(0) := i € Z . In what follows,
we denote the solution by (X (), a(¢)) for simplifying notation
purpose. Denote by Py ; and Ey ;, respectively, the probability
and expectation corresponding to the initial data (¢, 7).

Remark2.1: Ttis noted that depending on how functions band
o depend on the segment function X;, we have different types of
delays. For example, if b and o depend on X, through discrete
points, we have discrete delays. If these functions depend on
the whole path of X; in an integral form, we have distributed
delay. One way or another, as soon as delay comes into the
system, the solutions of the FSDEs are no longer having the
Markov property. Only the segment process is Markov. This
makes things more difficult, because we have to work with
infinite-dimensional systems.

Denote by C2(R™,R+), where R+ := [0, 00), the space of
twice continuously differentiable functions. Suppose V(z) &
C*(R™,R*),and V (z) = 0 only if z = 0. Define

(L:V)(¢)=Vz(4(0))b(9, )+ %tr (Vaz(8(0))o (¢, 1)o (¢,1))

for ¢ € C, where tr(A) denotes the trace of A. To proceed, we
make the following assumptionsonb(-, -),o(+,-), V (-),and £;V,
which will be used through out the rest of this article.
Assumption 2.1: The functions b(-,-) and o(-, -) are locally
Lipschitz continuous, which have linear growth with respect to
the first variable.
For each i, j € Z, g;;(-) is a continuous function on C and

sup D ai5(¢) < 0.
icN*,¢eC P
Assumption 2.2: There is a function V'(-) € C?(R™, R*) sat-
isfying the following conditions:
1) there exist ¢1, ca > 0, such that

cil|z|? < V(z) < ea|z)? Vz e R™

2) thereexist Ag > 0,m(z) > 0,a(i) € R, and a probability
measure p on [—r, 0], such that if ||¢|| < Ag then

0
(L:V)(9) < a())V (¢(0)) +m(i) f_ V (¢(s)) u(ds).

(3)
Assumption 3.3: There exist constants C' > 0, g € [0, 1], and
a probability measure /2 on [—r, 0], such that

b(#,7)[* + tr(o(#,i)o ' (¢,1))
— D - -
<€ (|¢(03|2 - / |<f>(0)|2‘T|a5(s)|2(“q>ﬁ(ds)) :

-

Remark 2.2: These conditions are natural. A simple and
promising candidate function satisfying Assumptions 2.1, 2.2,
and 2.3 is V(z) = |x|?. Compared with the conditions in classi-
cal results, our conditions are in a milder form. First, we allow the
coefficients (a(z), m(z)) in the Lyapunov condition depend on 7,
i.e., we do not need uniform estimates. It is often verifiable, but
also more appropriate to reflect the nature of switching systems.
Second, appearances of measures i, fi in conditions also enlarge
the applicability of our results. By choosing p. i to be Dirac
measures, it recovers classical conditions.

lll. Main RESULTS

Our main purpose is to provide conditions for stability in the
case that «(¢) depends on the past information X; of the con-
tinuous component X (). The arrangement of this section is as
follows. In Section III-A, we first establish sufficient conditions
for stability when a(t) is a Markov chain itself. That is, the @ is
independent of the continuous component and the past history.
Even in this case, our results are new because stability conditions
of stochastic delay systems under random switching were given
for the switching taking values in finite state space only so far.
Later, in Section III-B, we consider the case of past-dependent
switching with the help of coupling method to handle the past
dependence and the results developed in Section III-A.

A. Markovian Switching

In this section, we assume g ; with k, [ € Z  is a constant in-
dependent of £ and the continuous states. The resulting switching
process is a Markov chain with stationary transition probabilities
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and the switching process a(t) is independent of 1 (). Denote
by p;;(t) the transition probabilities from state i to state j at time
t. Let, 7} and F7 be the filtrations generated by W (t) and a(t),
respectively. We recall the following definitions.
Definition 3.1: The Markov chain «(t) is said to be
1) ergodic if it has an invariant probability measure v =

(v1,v2,...) (arow vector) satisfying
}E&Pﬁj(ﬂ =v; >0 Vi,jeZy
or equivalently
lim Y |pi(t) —vs| =0 VieZ,
JEly

2) strongly ergodic if

lim sup
t—oo ‘EEZ_'.

Z |pi; () — vyl ¢ =0.

JeZy
Let, V and A be as in Assumption 2.2. Foreach, A € (0, Ag],
define
A :=inf{t > 0: V (X (¢)) > A} @)
We also let
7= 0 inf {a(i) +m())

and

= [ " e u(ds).

r

Remark 3.1: Note that another equivalent way of stating the
ergodicity is that the system of equations

v; >0 foreach i, vQ =v, vI=1 with 1=(1,1,...)"

has a unique solution, where ; > 0 for each 7, and 1is a column
vector with all component being 1.
Assumption 3.1: Either
1) a(t) is strongly ergodic; or
2) a(t) is ergodic with an additional condition that
lim sup; o0 (a(i) + m(i)f7) < 0.
With the condition given above, we proceed to obtain the main
results of this section. It gives a stability criterion.
Theorem 3.1: Let, Assumptions 2.1, 2.2, 2.3, and 3.1
be satisfied, and assume a(z) + m(z)z bounded in ¢ € Z
and

> (a(i) + m(i)m) vi < 0. ®)

ick

Then, for any € > 0, with 74 defined in (4), there existsad > 0,
such that

Pyi{ra =00} 2 1—€if ||g]| <&

and
Py {@ < —JL} >1—cif||¢| <9 (6)

for some A > 0 independent of €, 4.

Proof of Theorem 3.1: We begin with the following auxiliary
results. Lemma 3.1 indicates the relation between the segment
function X and the solution of the FSDE X (¢), whereas Lemma
3.2 is an estimate of log-Laplace transform of a random variable.

Lemma 3.1: ([9, Lemma 5]) There exists a constant 0 <
H; < oc independent of A, such that

E(L{rasenp | Xer |1 FZ)
S H] max ]E(I{T‘Q}Q”X(S)lzl}?o) Vi Z 0.

se[t—rt+r

Lemma 3.2: ([28, Lemma 3.4]) Let, Y and 6y >0 be a
random variable and a constant, respectively. Suppose, that there
is a K7 > 0, such that

Eexp(6Y) + E(—6Y) < K.

Then, the log-Laplace transform ¢(f) = In Eexp(fY) is twice
differentiable on [0, %’1 ), and

do d?¢ ;- o
d_ﬁ(o) =EY, and 0 < d_6'2(6) < K,, foranyf € [0, ?)
for some Ky > 0. Moreover,
#(8) < OEY + 62K, forallf € [0, %”)

To proceed, we establish a moment bound for the segment
function by the following Propositions 3.1 and 3.2, in which
parts (i) and (ii) of Assumption 3.1 are assumed, respectively.

Proposition 3.1: Suppose, the Markov chain «(2) is strongly
ergodic with invariant probability measure v := (vq,1v2,...),
and (5) holds.

There exist p* > 0, C* > 0, m* > 0, such that

Egilirasy | Xel?” < C* exp{—m*t}||¢||*”
for any ¢ > 0 and ||¢|| < Aq.
Proof: Define
~ :=0A min{a(i) +m(:)} and
f-Ez-_'.

0

o 48
pi=Tha% _re pi(ds).

Then, } ez, (a(i) + m(i)E)v: < 0 yields v < 0.

Let, c(z) := a(i) + €0 + m(i)fz, where eg small enough, such
that & := ), 7 ¢(i)v; < 0and ¢(4) is bounded. For each X¢ =
¢, a(0) =1, for s € [—r,0] letting a(s) =1, for any ¢ > —r,
we consider the function

i) = {— / c(a(s))ds} EsallimgsgV (X (1)) IF2]

Let, H(t) := supge[t—r,¢) G(s)- It was proved in [9, Proposition
6], that H (-) is nonincreasing. Therefore,

e {- [ “oldtal) s} By lira>aV (X(0) 2
o { exp {— /U“ c(al(s)) ds}

< sup

EoallirasnV (X(w)) |f;11} < K||$|2 ¥t >0
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where K := coe” ™% ¢() This implies that
t
EolV X)) <K exp{ [ lale))ds)
0
Thus,

Eg,i[1{ra>olIXel*|F2] < K exp {/0 C(a(S))dS} ll#ll>

where K/ := ke

sup [V(¢)].
0]

ue[—r,

i
By virtue of Jensen’s inequality for p € (0, 1), we obtain

it
Egallirasg | XelPIF2I <K [4]% exp {p / c(a(s))ds}.
(7

Now, since «(t) is strongly ergodic, that is, lim; .o
sup,ez  {Yjez. |Pij(t) —v4|} = 0. Thus, LE; [j c(a(s))ds
= %fot > jez., c(3)pi;(s)ds converges uniformly ini € Z . to
A= ZjEer c(7)v;. As aresult, there exists a T' > 0, such that
foranyt > T and ¢ € Z, we have

g X
]E,:/ cla(s))ds < —=t < 0.
0 2

By virtue of Lemma 3.2, for fut c(a(s))ds, we have
i i
InE; exp {pf c(a(s)) ds} < pE; / c(a(s))ds + p°K
0 0

At
= Py +p°K
At
for some K > 0. We choose p € (0, 1), such that pK < T for
t > T'. As a consequence, we obtain

t i
i exp {p/ c(a(s))ds} < %‘lt,t >T
0

which means

Broxp {p [ cla(o)s| < oxp {222}
4

This implies that
2p| T2 111.4112p pAt
B i[Lira >t I Xel*PIFoc] < K'| @l exp  —— ¢, 8 2 T.

The proof is complete with m* =2

7 and C* = K'exp
{T max;ez, {e(§)} + 2L}. O

Proposition 3.2: Suppose, the Markov chain «(¢) is ergodic,
limsup,_, . (a(i) + m(z)) < 0 and (5) holds. Then, the con-
clusion of Proposition 3.1 holds.

Proof: Note that (7) in Proposition 3.1 holds for any Markov
chain a(t).

We still use c(i) := a(i) + eg + m(i)E. with ; being cho-
sen small enough, such that A =3, 5 c(j)v; <0 and
limsup,_,, ¢(j) < 0. With that choice, there exists a ko, such
that for all i > kg

c(i) < —e1 <0

for some £; > 0. Moreover, from the fact that {c(j)};cz, is
bounded, we obtain

lim vy = v ;
Jim c(7)v; Z c(fv; <0
J<k JEZL 4
Let € == sup;cz, [c(i)|,A ===} ;cz, c(i)vi > 0,andn.bea

positive integer, such that

A N T
ny >max{ — —1,— [ =+ ’
361 €1 3

Since a(t) is ergodic, there exists a 7' > 0 depending on kg,
such that forany ¢t > T and 7 < kg

t
E,;/ cla(s))ds < —%t.
D 4
Now, let
7 :=inf{s: a(s) < ke}-

Then, for any 7 > kg

(n.+1)T
]E,:/ c(a(s))ds
0
TAn,+1)T (n.+1)T
— Eg / C(a(s))ds +‘[ C(Q(S)]ds
o TA(n.+1)T
TA(m.+1)T
= E'l'-]-{’rgn,T} / C(O:(S))ds
0
(n.4+1)T
+] c(a(s))ds
TA(n+1)T
TA (1. +1)T
+ Bilpn.r<r<(n41)7) / cle(s))ds
0
(n.+1)T
+/ c(a(s))ds
TA(n.+1)T
TA(n+1)T
+ Eil{rs(no+1)1} L c(als))ds
(n.+1)T
+/ c(a(s))ds
TA(n4+1)T
T (n.+1)T
=E, f c(a(s))ds + f e(a(s))ds
0 T
n,T (n.+1)T
+E ([T daends+ [T datsds
0 nT
(n.+1)T
+E; / c(a(s))ds
0
(n.+1)T
<E —E1T+[ c(a(s))ds
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+E; (—&1(nT) +Te) + E; (—e1(n. + 1)T) Hence, for any T' > 0, one has
A A A A 2
< —gT =+ _ET & —§T < _ET' EsiV(XTara, T A7) < Ha||d|| (9)
Applying Lemma 3.2 for fuT c(o(s))ds yields for some constant H> > 0. As a consequence
3 i EpaVPXrnma TATA) _ g NI
wEiep{p [ clal)ds) <o [ clads+rK  Pufra <7y < 2O LT 00

0 0

(10)

&L for (¢,i) €C x Z 4. O
= 3

AT
for some K > 0. We choose p € (0, 1), such that pK < I
As a consequence, we obtain

2 —pAT
ln]E,-exp{p\/O c(a(s})ds}s }1);

E; exp {p/OT c(a(s))ds} < exp {%;T} .

Applying Markov’s property of a:(t), we can easily imply

or

T r
E; exp {p\/0 c(a(s))ds} < exp{ pl};fiT

Since {¢(z),7 € Z 4} is bounded, for each ¢ > 0, we deduce
from (8) that

E; exp {pﬁ-c(a(s))ds} < Kexp {%;t}

with K = ePT s"Psez, (€D} Apolying this to (7) (which holds
even if a(¢) is not strongly ergodic) yields

},fe Zi. (8)

Bollin ool XPIF2) < KK exp {2
The proof is complete. O
Now, we have the following estimation for T4 that will help
us to show 7o = oo with large probability later.
Lemma 3.3: Under the hypotheses of Theorem 3.1, for suffi-
ciently small p > 0 and any T" > 0, there exists a constant Hy
depending on p and T, such that

lll|%®
Ap '’

Proof: Let ¢ = sup{|a;| + b;,i € Z }. Define

Pyi{ta <T} < Hy (¢,3) €C x Zy.

G(t) = e By V (Xiar, )and H(t) = sup G(s).

se[t—rt]

Similar with the proof of Proposition 3.1 we obtain that H () is
a nonincreasing function. Therefore,

€ Ry iV (Xinra) < sup

ue[0,r]

{B_Eu}E¢,§V(XtATA)} <H|¢|*

Now, with the estimates in Proposition 3.1 (or Proposition
3.2) and Lemma 3.3, by the arguments as in the proof of
[9, Theorem 8], we obtain

Pyi{ra = oo} =1 —e€if||¢]| <6

which yields the stability result (6). O

B. Past-Dependent Switching

Now, by combining the results in the previous section and a
coupling argument, we are in a position to provide conditions
for stability when «(¢) is past-dependent.

In this section, we generalize the results obtained thus far by
allowing the switching process «(t) to be past dependent. That
is, the generator of a(t) is Q(X;) = {qi;(X;)} depending on
X £y i.e.,

P{a(t+ A) = jla(t) =1, X,, a(s),s < t}
= qij(X¢)A +o(A) if i # j and
P{a(t+ A) =i|la(t) =i, X, a(s),s < t}

=1—qi(X)A +o(A). (11)
Assumption 3.2: q;j(¢) is bounded uniformly in i, j, ¢ satis-
fying

Y laki(4) — aks (0)] < colldl*, ke Zy

_sz_'.,j-?ék

for some constant ¢p > 0 and A € (0, 1). Suppose further that
a Markov chain a(¢) with generator Q)(0) is ergodic with the
invariant measure (v, v2,...).

Consider, X (t) a hybrid diffusion satisfies an equation similar
to X (¢) but with a(#) replaced by the Markov chain a(¢). Now,
consider the joint process (X (¢), X (&), a(t), &(t)) with the ba-
sic coupling method (see e.g., [2, p. 111), that is (X (¢), X (£))
satisfies

dX (t) = b(Xy, a(t), t)dt + o(Xy, a(t), t)dW (t)
{d}?(t) = b(Xy, a(t), t)dt + o( Xy, a(t), t)dW (t)
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and the coupled pair («(t), @(¢)) has the generator Q(Xt) =
{@ex1)(i5)(X¢)}, which is defined by

q(x)(i5) (@)
qri(@) A qii(0) ifi =35&(i,5) # (k1)
lgki(®) — @i (0)]" ifiAk&l=j

= < [@;(0) — g; (&) F ifl#£j&i=k

0 ifk#£i&l#j
= E(i’,j’);&(k,l) gy i (k1) = (2, 5)

(13)

where [gki(¢) — @:(0)] " = max{|qxi(¢) — @::(0)], 0}, [q15(0)
— gk (¢)]" = max{|qi;(0) — qx;(¢),0}.
Assume that a(0) = a(0) = i, Xp = Xp = ¢ and define
E=inf{t > 0:at) # al(t)}. (14)
Lemma 3.4: Assume Assumptions 2.1, 2.2, and 2.3. Let
3.2 and inequality (5) be satisfied with (1,13,...) as in As-
sumption 3.2. Assume further that a(¢) is strongly ergodic or

limsup;_,., (i) < 0. There is an H4 > 0, independent of i, ¢,
and A, such that

H4 2pt
Py {€ < o0} < FH‘@"” .

Proof: Pick any T* > 0 (which can be 1 for instance). Be-
cause a(t) is an ergodic Markov chain, we can apply Proposition
3.2, Lemma 3.3, and Theorem 3.1 to the process (X (t), a(t)).
In particular, there is a p* € (0, A/2), such that

Eg,ilis > | Xel* < C* exp{—m*t}||¢]|*"" (15)

and

2p*
P¢1¢{?ﬁ < T*} < Hz%, (QB, E) el x Z+ (16)
where 7o := inf{t > 0: ||X;|| > A} and H, depending only
on p* and 7. To obtain the desired result for (X (¢), a(t)), we
show that

Py i{a(t) =a(t),t >0} >1—¢

if ||@|| is sufficiently small. This property is usually true only for
a finite time interval. But, using the exponentially convergence
of X (t) to 0, we can get a bound for [0, co).

Since a(t) and a(t) are the same up to £, we have X, = X,
for t < £. We also have that

Eps (IX(t) - XOP} < Klz -3 (7)

sup
0<t<TATANE

Let };(k, 1) = 1{x11), where 14 is the indicator of the set A. By
the definition of the function f and (13), we have

Q(z)f(k, k) = Z lgxj () — ai;(0)]*
JEL 4 jFk
+ Z [qx;(0) — gqxj(x)] ™
JEL 4 JFk
= Z lak;(z) — ars(0)] =: p(z, k). (18)

JEL L JFk

Applying the generalized It6 formula to (12) and noting that
X(t) =X (t), a(t) = a(t) for t < £, we obtain that

Pw{g ATA < T}
=Eyif (T ATA AE),G(T* ATA AE))

T*ATANE _ o B
—E,, / Q(X., X,) Flalt), a(t))dt
0
TATA M -
—E,, /D p(X (1), X (), o) dt
TanT*AE T* _
Hys / X[ dt < By [ 1ase | Kol dt
0 1]
T’ o +
< qu,c/ 1{FA>t}||Xt”2p dt
0

T¥
< C*18l1* fu exp(—m"t)dt (due to (15))

C‘ *
e - (19)
m
As a consequence of (19) and (16),
— " C* H2 2p* H3 a9t
Poslena <T7) < (o + 52 ) 1617 < 1ol
(20)

for 0 < A < 1 and some Hs = H3(T™, p*) that is independent
of ¢ and A. We have the estimate

Py {kT* < € AT < (k+ 1)T")
=Eyi [Lignra>kr1Eo.i [Lignra<(esyre [For]]

=Eq; [1{&'\% >kT*}EfkT,.a(kT*)1{£A?a ST‘}]
Hy - A
<Eg [1{£A?A}kT‘}A_px”XkT*”2p:|

H- ~ s
< B g, [Lpasirs 1 Ker 7]

Hy|| 6|

=Tar (.

In (21), the second equality is due to the strong Markov property

of the coupled process (X (t), X(t), a(t), a(t)); the first and

third inequalities are because of (20) and (15) respectively.
Hence,

qu.,i{f < OO} < P{p:i{f N F’F& < OO}

C* exp{—m*kT"}.

=3 Py (KT < £ATs < (k+1)T)

k=0
Hs|8]1"" < - o
< %ZC exp{—m*kT*}
k=0

A

S —Ar
for any 0 < A < 1 with Hy = Hg ) 5., C* exp{—m*kT"*},
the lemma is proved. O
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With the preparation above, we obtain the following result. It
bridges the result of Theorem 3.1 under Markovian switching to
the past-dependent case.

Theorem 3.2: Let Assumptions 2.1, 2.2, 2.3, and 3.2 be
satisfied, and inequality (5) hold with (v1,v2,...) as in
Assumption 3.2. Assume further that a(#) is strongly ergodic
or limsup,_, . ¢(z) < 0. Then, for any € > 0, with 74 defined
in (4), there exists a 6 > 0, such that

Pyi{ra = oo} 21 —e€if g <6

and
P¢1i{ﬂ<—l} >1—eif|l¢| <6 (22)

for some A > 0 independent of €, §.

Proof: The proof follows directly from the fact that the con-
clusion holds for (X (¢)) due to Theorem 3.1 and Lemma 3.4,
which shows that X (¢) = X (#)¥¢ with a probability no less that
1— Hy g2 0

IV. APPLICATIONS

A. Linear Systems and Linearization

By linear systems and linearization we are referring to linear
w.r.t. the continuous variable x. Such linear systems or switching
linear systems and/or jump linear systems and the corresponding
controlled systems have been the central focus for a long period
of time; see [4] and [25] among others. In this section, we
assume that W (t) = (Wy(t),...,Wa(t))" is a d-dimensional
Brownian motion; a(t) is a switching process taking values
in Z ; and having the generator Q(X (1)) = (qk1(X (?)) )k 1ez.,
satisfying Assumption 3.2.

1) Linear Stochastic Differential-Difference Equations
With Random Switching: Example 4.1: Consider a linear
stochastic delay differential equation with regime-switching of
the form

d
dX () = A(a(t))X (t)dt + Y Cj(e(t) X (t — r)dW; (1)
j=1
(23)
where X (¢) € R™; A(:) : Z, — R™™; Cy(-) : Zy — R™*7,
and j =1,...,d. Let, %(i) := Y7, C(4)C (i). For a sym-
metric matrix U € R™*"_ Jet

AM(T) s=gop{eT Uz sz € RS, o] = 1)
and
a(i) == AM(AT(i) + A(i)), m(i) = AM(2(0)).
Define V() = |z|?. Then, we have
(L:iV)(9)
= ((0))" (A" (i) + A(i))(0) + (¢(-1)) " B(i) ()
< (AM(AT (D) + A(2)) [$(0)* + m()|¢(—r) .

If we assume «(t), a Markov chain with generator Q(0), is
strongly ergodic and Assumption 3.2 is satisfied, by Theorem
3.2 with condition (5) with a(z), m(z) defined above and g, /i

02

[ uw o an 4 50 “a 0 = an 0 0

Fig. 1. Sample paths of z(t) (left) and 22L& (right) in Case I.

being measures concentrating on {—r}, (23) is exponentially
stable in probability.

Similarly, if a(t) is ergodic and lim sup,_,  ¢(z) < 0 where
¢(i) := a(i) + m(i)f. Then, by Theorem 3.2, (23) is exponen-
tially stable in probability.

Example 4.2: Consider a general linear stochastic delay dif-
ferential equation with regime-switching of the form
dX (t) = [A(a(t)) X (t) + B(a(t) X (t —r)] dt

d
+ 2 [Ci(a®)X (¢) + Dj(a(8))X (¢ — )] dW;(2)
=1

i
(24)

where X (t) € R"; A(-),B(-) : Z4 = R™", C;(-), D;(-):
Zy — R™" j=1,...,d. Moreover, we assume that for each
1 € Z, B(%) is positive definite. It is clear that

22" B(i)y<z'B(i)z+y B(i)yforallz,y € R" andi € Z .

Hence, similar to Example 4.1, let

d
a(i) = AM | (AT (i)+A(®)) + B(i)+ Y _ C;(i)C] (i) | and

7=1

d
m(i) = AM | B(i)+ )  D;(i)D] (i)

=1

and assume that a(7) and m(z) are bounded in 7 and satisfy

condition (5) with p, fi being the Dirac measure whose mass is on

{—r}.If &(t), a Markov chain with generator Q(0), is strongly

ergodic and Assumption 3.2 is satisfied, then (24) is exponen-

tially stable in probability. Likewise, the (24) is exponentially

stable in probability if c(#) is ergodic and lim sup; ., ¢(z) < 0.
Next, we run simulation for a scalar equation

dx(t) = ag(e)x(t) + boyx(t — 7) + o X (t)dW (1)

where a; = 1,51 = 0.5., s = —2., bg = {}.3, and d12 = 421 =
5.Wehave a(l) = 2.5,a(2) = —3.7; m(1) = 0.5, and m(2) =
0.3, so it is easy to check that the equation is stable when T
is small. We consider two cases. Case I, when 7 = 0.5, the
Lyapunov exponent is negative and the trivial solution decays
exponentially fast.

SeeFig. 1. CaseIl, when 7 = 10, the moment Lyapunov expo-
nent is positive leading to trivial solution being not exponentially
stable; see Fig. 2.
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o ; 1‘0 IIS 2ID 2‘5 3In 3‘5 40
Fig. 3. Sample paths of z(t) — za(t), =1(t) — za(t), and =z (t) —
x3(t).

2) Linearization for Nonlinear SFDEs With Random
Switching: This section is devoted to the stability of linearized
systems. In the study of dynamic systems, nonlinear systems and
associated linearization have long been regarded as important,
which goes back to the celebrated Hartman—Grobman theorem.
For the related study, we refer the reader to [17] for systems
given by stochastic differential equations, and [18] for switching
diffusions. In this section, we consider a nonlinear functional
system of equations of the form

dX(t) = b(C(t, Xe), a(t))dt + o (((t, Xe), a(t))dW (E) (25)
where X (t) e R™, X;:={X(t +s) : s € [-r,0]} € C([-r, 0],
R™), b(y,i) :R" x Z, — R", o(y,i) : R" x Z, — R™¥C,
W () is a d-dimensional Brownian motion. {(¢,¢) : R x C —

R™ is an M -grid “approximation operator” (for some fixed M),
i.e., for each fixed ¢, ((¢, ¢) is defined as follows:

M

=S ckdlrs) Voec

k=1

(¢, )

for some “M-grid” points ry,...,7y € [—7,0] and weights
¢1,...,cpr € R (depending on t). The “approximation oper-
ator” acting on segment function is in a remedy from a com-
putational point of view. Mainly, one cannot store an infinite-
dimensional vector in a computer. Thus, a finite dimensional
approximation is used.

Now, we assume that the drift and diffusion terms b(y, 7) and
o(y, 1) can be linearized as follows:

by, i) = bi, t)y + o(|y|)

o(y,i) = (01(3, 1)y, - .., 04(, t)y) + o(|y])

where o(|y|) represents a (vector or matrix)-valued function
h(y,1) satisfying limy_,o h(lgl’i) = O uniformly in z. We examine
the stability of the linearized approximation system of (25) using
the linear system

d
dX (t)=b(a(t), t)C(t, Xt)dtﬁ—z o;(a(t), t)C(t, X )dW;(t).

j=1
(26)

Assume that E(i,t) and o;(i,t) ( =1,...,d) are uniformly
bounded in (7, %), and that there exist m(i) > 0, a(i) € R, such
that (%), a(¢) are bounded in ¢ and that for all ¢

26(0) (4, t)¢(t, )

d
%Z (Vaa($(0)) 356, D1, DI5 G, DL D)
<a(@)|s(O)? + 2 Z 6(re)? @7)
and
3 (a(i) +m(i)p)vi < 0 (28)

icd

where {r;}2L, depending on ¢ are determined as in defi-
nition of ((t,¢), v := 0 Amin;cz, {a(i) +m(i)},and fi:=
maxs>o} a7 S M. €™ Hence, Assumption 2.2 is satisfied, i.e.,

0
(L:V)(8,1) < a(i)|$(0)* + m(i) /_ [V (¢(0))] 1+(ds)

(29)
with V(x) = |z|?, u. is a probability measure concentrated on
{ri}, pe(ry) = 45,k =1,..., M. Moreover, it is easily seen
that Assumption 2.1 and 2.3 also hold. Using Theorem 3.2,
we have that system (26) is exponentially stable in probability
if either the Markov chain with generator ()(0) is strongly
ergodic or it is ergodic and lim sup, . ¢(7) < 0. Next, we show
that under these conditions, the nonlinear system (25) is also
exponentially stable in probability.

Indeed, because of (28), there is a sufficiently small € > 0,
such that (28) still holds with a(z) and m(i) being replaced
by a(7) := a(i) 4 e and m(i) := m(z) + €, respectively. On the
other hand, since |o(|((%, ®)|)|/|C(t, ¢)| — 0 as |((¢,¢)] = 0
uniformly in 7, in a small neighbor of the origin, we have that

26(0)" [B(G, 1)C(t,6) + o(IC(t, #))]
d
53 b0 (Ve ($(0) 55 6,61, )
i=1
+o(I¢(t, )] 53, 12, @) + o(IC(t S

: M
< (a() + O + DT 3™ g2

k=1
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which leads to that Assumption 2.2 is also satisfied for system
(25). As a consequence, the nonlinear system is also exponen-
tially stable if either the Markov chain with generator Q(0) is
strongly ergodic or it is ergodic and lim sup,_,, ¢(¢) < 0.

3) Linearization for Stochastic Differential-Difference
Equations With Random Switching: This section is special-
ized to stochastic differential-difference systems. We carry out
the linearization for such equations. Because of its structure, we
do not need to use pull back mapping ¢(-). Assume that W () =
(Wi(t),...,Wy(t))" isad-dimensional Brownian motion; a(t)
is a switching process taking values in Z , and having the gen-
erator Q(X (1)) = (qr, (X (1)) k,1ez, » and lime o0 pi; () = v;
foranyi,j € Z4.

Consider a nonlinear stochastic differential-difference system
as follows:

dX (1) =b(X (), X(t—71),a(t))dt
+o(X(t), X(t —r),at))dW(t) (30)
where X () e R™, b(-,-,-) :R* xR" xZ; =+ R", 0 : R™ x
R® x Z, — R™ 4 W(t) = (Wi(t),...,Wa(t)) is a d-

dimensional Brownian motion, and its associated linearized
system

dX (t) = [A(a(t))X (t) + B(a(t)) X (t —r)] dt

d
+ ) [Ci(a(®) X (#) + Dj(a(t)) X (¢ — )] dW;(¢)
=1
J (31)
where A(-), B(:),C;(-),D;(-) e R™™ (j =1,...,d). In the

above, we assume b(y1, y2,7) and o(y1,y2, t) can be linearized
by
b(y1,y2,1) = A(i)y1 + B(i)y2 + o(|y1]) + o(|y2])

and

o(y1,92,1) = (C1(Dy1, - - -, Cal)y1)
+ (D1(8)yz, - - -, Dal2)ya) + o([y1]) + o(ly2])-

As in Example 4.2, recall system (31) is exponentially stable
under the condition a(z), m(z) are bounded in ¢ and

> (a@) +m(i)e ) v <0
icZ
where

d
a(i) = AM | (AT (i) +A(i))+B(i) + Y _ C;(i)C] (i) | and

Jj=1

d
m(i) = AM | B(i)+ ) D;(i)D] (i)

j=1

and y := 0 Ainf;cz, {a(i) +m(i)}. Then, if a(t) is strongly
ergodic, system (30) is stable. In case a(f) is just er-
godic, we need one more condition for stability of (30) that
lim sup;_,(a(z) + m(i)e ") < 0.

B. Application to Multiagent Systems

Starting in the early 2000, multi-agent systems have attracted
considerable attention. It stems from the study of consensus
in physics, computer graphics to mimic animal behaviors, and
cooperative control systems, among others, which provided in-
sights and benefited the designing, and implementing distributed
controllers. Along with the intensive study, the concept of con-
sentability comes into being. It is concerned with conditions on
system parameters, which enables the existence of consensus
protocol. It is proven to be import, both theoretically and prac-
tically, for cooperative control protocol development, such as
flocking behavior, agent rendezvous, and robot coordination,
among others. In this section, we consider consentability of
nonlinear multi-agent systems consisting of N agents. Each of
the agents is described by a dynamic system

= N
(32)
where y;(t) € R™ is the state of the kth agent, =y is a delay,
and u = [uy,...,un]" (u; € R™,i=1,...,N) is the control
to be designed, a(t) is a Markov switching with countable
state space Z,, f:Zy x R" x R™ x Ry — R"™ is a nonlin-
ear function. Now, we model the information flow structure
among different agents as follows. Let, G = {V,E, A} be a
connected undirected graph, where V = {1, ..., N } denotes the
set of nodes with k representing the kth agent, £ is the set of
undirected edges, A = [az;] € RV*V is the adjacency matrix
of G with the element az; = 1 or 0 indicating whether or not
there is a directed information flow between agent [ and agent
k. Also, denote by N} the set of the node &’s neighbors, i.e.,
Nk = {I = {1,.. . ,N} Lap = 1}, anddegk = Z;\;I ay; the
degree of K th agent. The Laplacian matrix of G is defined
as H =D — A, where D = diag(deg,,...,degy). It is clear
that H is a symmetric matrix with N eigenvalues denoted by
0=Xxi <Xp <...<Ay:seee.g,[47].
Consider the control

ug(t) =P ) zik(t)

leN;.

9k (t) = f (alt), ye(t), ye(t — 1), 1) +ux(t),

(33)

where a symmetric matrix P € R™*" is the control gain to be
designed,

zik () =w(t) —yx(t) + gix(a(t), yi(t—72) —yr(t — 72)) & (t)

is the measurement of the agent k from its neighbor agent [,
77 is the delay, & (f) is a scalar independent Gaussian white
noise, and g, : Z x R™ — R™ is the noise intensity function.
Denote by

U = {u(t) = (ui(t),- .., un(t))|u(t) is given by (33)
t>0,and :=1,...,N}
the collection of all admissible distributed protocols. We refer
the reader to [47], [48], and [49] and the references therein

for the detailed motivation of the above protocol. The following
Assumption states some usual conditions for this problem.
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Assumption 4.1: 'We assume that

1) For each i € Z, f(2,0,0,¢) = gix(2,0) = 0 and there
exist C; and oy, such that

|f{i:$:y: t) - f(i,:f, g:t)l < Ci (|‘I: - ‘TI =+ |y = §|)
and
|9k (3, £) — 9(3, )| < ouk |z — Z
for all z,zZ,y,g€R™ We
SuPiEZ_HI,kE{l,...,N}{Ol?: oik} < oo.

2) The noise processes & (i) € R satisfy fot Ek(s)ds =
w;k(t)., it 20, k= § P ,N., and I € N, where w;k(t)
are independent standard Brownian motions defined on
the complete probability space (2, F, F¢, P).

3) The Markov switching «(¢) is independent of wy ()
and strongly ergodic with a unique invariant measure
{Vi}w'ez+-

Definition 4.1: System (32) is said to be exponentially con-
sentable in probability with respect to U{ if there exists a protocol
u € U, so that for any e > 0, there exists § > 0, such that for all
i#jeV,

P {|y:(t) — y;(t)| converges exponentially fast to 0} > 1 — ¢

assume that

whenever the initial values ¢ = (¢1,...,¢n) EC([1 V
72, 0]; R™V) of (32) satisfying that

N 1 N 3
> fo- g e <s
k=1 j=1
Assumption 4.2: Assume the Laplacian matrix H satisfies

-1
N

A2y @) [c™+3> Cwi | >0

icl

where &; := supy, jcqy
CM = sup,{C;}.

We proceed to present our result in this section.

Theorem 4.1: Under Assumptions 4.1 and 4.2, the multi-
agent system (32) is exponentially consentable in probability
with respect to I{. In particular, the consensus problem can be
solved by the protocol (33) with P = pI,,, where p is a positive
number satisfying

N} o—ﬁjk’ fOl'z c Z_;'_., &M = Supi{a'i},

(V —1)8?

—2pAs + Z 3Cv; + CM + 2p°Ay N

ieZ

< 0.

Under Assumption 4.2, such p exists.

Proof: For simplicity of notation, denote by 1y the N-
dimensional column vector with all ones; Jy = 1N1y1L:
7w,k the N-dimension column vector with the kth element being
1 and others being 0, I, the n-dimensional identity matrix. Let

y(®) == [v1 ()., un(®)]
Fy(t), a(t),t) == [T (a(t),y1(t),y1(t — 1), 1)

oo f T (@®), yn (@), yn (E —71),0)]

Also, let
() = [(In — In) ® Laly(), 8(t) =: [8] (), .. -,
Hence, we have

dy(t) = — [p(H ® In)y(t) + F(y(t), a(t), 1)] dt + dM; (t)

where

SN

N t
My(t):=p ) an /0 [ &

k=1
@ (Gix(c(s), 0(s — 72)))] dwik(s)
and
Gik(a(s), (s —12)) == gk (a(s),81(s — m2) — 6k(s —132)) -

Let §(t) = 4 j—; ;(t). Then, 6x(t) = yx(t) —§(t) and
6; (t) in §k(t) = yg(f) = y_:c(t). ThUS,

dé(t) = —p(H® I,) é(t)dt + F(y(t), a(t), t)dt + dMs(t)
where
Fy(t),a(t),t) = [[{ (w(0), a(t),t),..., R (u(t),a(t), )]
= [(In — Jn) ® In] F(y(t), a(t), 1)

i.e.,

fe(y(®),a(t),t) = £ (a(t), yx(t), yx(t — 71), )

N
_ % Zf (ce(t), y;(t), y;(t —71), 1)
i=1

and
N t
My(t)=p ) / art {[(Inv — In ) k]
k=10
®(guk(a(s), 6(s — 72))) } dwir(s)-
Define the unitary matrix
B ETS B NP
o=t =[5

where v; is the unit eigenvector of H corresponding to the eigen-
value A; fori =2,..., N and A = diag(As,...,An). Denote
by

5 =T =T ]’ -1

5 = 511, 3% 0] = (@ eLk)s®

ngRn

50) = [5),...5%0)]

it is easy to verify that 4, () = 0. By the definition of Q, we
obtain

d3(t) = (Q ® In)F(y(t), a(t), t)dt

— p(A ® I,) 3(t)dt + dMs(t) (34)
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where

N -
Ma(t)=p ) aszo {[Q"(UIn — In)nn.x]

k=1

® (Gix(a(s), 6(s — 72))) tdwyk(s)

N t
=p)y aM/O Gri(a(s), 6(s — 72))dwik(s).

kl=1

The definition of §(¢) implies that the consensus of (32) is
equivalent to the stability of (34). Now, we verify Assumptions
2.1, 2.2, and 2.3 under Assumptions 4.1 and 4.2. It is clear that
Assumption 2.1 is satisfied. Let, 2 be a probability measure con-
centrated on [—r, 0] satisfying p(—7) = p(—m1) = p(—12) =
%, itis easy to confirm that Assumption 2.3 holds. Therefore, it is
sufficient to verify Assumption 2.2. Consider V (¢) := |#(0)|%.
Hence, by directed calculation, we obtain

(L:V)(8:) = —2pd " (t) (A®I,,)d(t)

+ 287 (2) (QT ® In) F(y(t),1,1)

N
+0° ) aGul(i, 8(t — 12))G (i, 6(t — 72))

k=1
= I (1, 53) + I (i, St) + I5(i, gc)-

By noting that QQ = Iy — Jy, nyxIn —Jn) = 2,
(Iny — Jx)? = Iy — Jy; the Lipschitz properties of g and the

identity

(35

Ar
> awt|di(t —72) — bkt — )|
k=1
= 5T (t—75) [(A+AT) ® I,] 8(t — )
we obtain

—1)62_ =
L0, 5) SPZ%JT& — 1) [(A+AT) ® ] 8(t — 7).

As a consequence, we have

— 1V52
I(3,8,) < QpQAN% 5t—m)>.  36)
On the other hand, we have
I1(3,8:) < —2pra |5(t)|° - (37)

Moreover, by definition of 4, § and the orthogonality of @Q, it is
easily seen that |4(#)|? = |6(#)|2. This together with Assumption
4.1 of F imply that

(i, 5,) = 267 (2) (ééT ® In) [(In—Jn) ® I Fy(t),i, 1)

< 3C; [6t)|* + C: |8t —70)|* (38)
Thus, combining (36), (37), and (38) yields that
(LV)(6) < — 2pha |8(2)|* 4 3C; |5(t)|°
+ G |5t — )|
N —1)62 -
+ zpﬂxN% 5t —m)|*. (39

Under condition
N -1
ke —QAN% (&Mf cM+3 Z Civ; | >0
iEZ+
there exists a p > 0, such that
N —1)52
~2pha+ 3 3Cw +CM 4 QpQAN% <o.

icd

For such a p, Assumption 2.2 is satisfied with a(i) = —2pis +
5 M

3C;, m(i) == CM + 22y B0 and 41 being the prob-

ability measure concentrated on [ty V 12, 0] satisfying

CM
p({ri}) = —+— and
CM 4 2p2) I 13\(3 )?
M2
2P2AN(N_1)(G )
p({r}) = =

o sMYy2 *
cM +2P21N%

Then we obtain the stability of (34).
Example 4.3: Consider a system with four agents satisfying
(32) under control (33) with: 73 = 10,732 = 5, gix (¢, ) = 0.1z,
0.1y + 0.3y

and
. ifi=1 I
f(l’y’y)_{—o..?)y—i—[}.?y; ifi=2 ° Qa = ( 1 1)

Suppose, the information flow structure has a star graph £ =
{(1,2); (1, 3);(1,4)}. Then, we can obtain the eigenvalues of H,
thatare {0,1, 1, 4}. In thisexample, CM = 0.3,1; =1/3,1, =
2/3,and (6M)2 =0.1withp=1,

(N-1)é7

=—-02<0.
N <

—2pha+ Z 3Civ; + CM + 2P21N

icd

O

C. Application to NCSs

In the new era, control systems have become increasingly
more complex. Isolated systems, single machines or systems are
often replaced by NCSs with many components and subsystems.
In this section, we consider applications of our results to the
NCSs. Here, the NCSs we consider consist of a number of
components, which interact with each other as follows.

1) The controlled plant P: its state zp € R™» is controlled
by an updated control @ € R™+, which is constructed
by updating the control u € R"™+ of the controller by a
scheduling protocol, and samples output y € R™ to send
to the controller.

2) The controller C its state z~ € R™« is established by the
updated output 7 € R™v, which is obtained by updating
the output v of the plant by a scheduling protocol; and
sends a control u to the plant.

3) A stochastic protocol: it is designed as a Markov
switching process «a(t), whose state space is M =
{ =(t1,12) 111 € {1,...,ny}, 32 € {1,...,n,}}, and
admits an invariant measure {v;,7 = (i1,12) € M}. At
the time ¢, if a(t) = (41,72), only components of y;,
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of y and u;, of u are updated whereas the others are
unchanged.

4) In above, sending and receiving the information of y
and u are delayed in delay times 71 and 75, respectively.
Moreover, in the literature, the noises are not often used.
In our setting, we allow the system to be observed under
noises.

The NCS we consider is shown as the following system of
stochastic differential equation

el = (Aprsll) - Bl @4 wlen A)dWile)
y(t) = Cpzp(t)

dy(t) = (Up(a(t))y(t—r1)+[ — Up(a(t))] 4(t — 1)) dt
dzc(t) = (Aczc(t) + Bey(t)) dt + go(zo, §)dWa(t)
u(t) = Ccxc(t) + Dci(t)

(di(t) = (Uc(a(t))u(t—72)+[I — Uc(a(t))] it — Tz))(f{f)}

where Ap € R"*", Bp € R"* " (Cp € R " A- €
Rncxncj BC = ]R'ncxny, CC = Rnuxnc, and DC c Rn-uxny;
Wi(t) and W5(¢) are independent d-dimensional Brownian
motions, gp(-,+) : R™ x R™ — R™* go(.,.) : R™ x
R™ — R"™*?  and Up((i1,i2)) := diag(81i,,---,0n,1 ),
Uc{(il,ig)) = diag(éhz, oy :5““%2) where d; ik = =] if
3 =k and 0 =0 1f3 # k. By setting = := (:rp,.r:c)

=YY, €y i=U—U, €= (eT e P T)-r
(I;,IE’BE,BI)T, and W(t) (Wl (t)':WZ (t))—r" (40} is
written as

dz(t) = Do (t)dt + 1 (o(t))E(t — 71)dt

+ Do(a(t))z(t — m2)dt + G(z(t))dW (t) (41)
where
T
Ap+BpDcCp BpCc BpDe Bp
BeCp Aec Be 0
—Cp(Ap+BpDcCp) —CpBpCe —CpBpDe —CpB
—CeB:Cp —CcAc —CecBe 0
[ 0 0 0 0
0 0 0 0
Tde@)=| . 0o TI-Uslets)) o
|_DcCp 0 —Do(I—Up(a(t)) 0
[0 0 0 0
0 0 0 0
Dle®= ¢ o o 0
_Dccp Cc,' _DC I — Uc(a'(t))
gp(zp, i) 0
0 To, Y
0 0

In the above, I denotes the identity matrix with suitable
dimension, and 0 denotes matrix whose entries are 0 with com-
patible dimension. In what follows, we sometimes do not specify
the dimension of matrices and vectors. However, it is understood
that they have compatible dimensions. In the literature, many

of the NCSs were presented as discrete-time systems, whereas
our formulation examines the continuous-time counterpart; see
e.g., [13] and [33] for similar formulations.

Definition 4.2: System (41) is exponentially

stable in probability if for any e > 0, there is § > 0, such that
P{|z(t)| converges exponentially fast to 0} > 1 — e, whenever
IZoll < 6. o

For amatrix A € R™", where i := np + ny + 1. + Ny, We
define

Ap = (A + AT)FQ,
Ald) =
Al o=

(A+ AT1(3),
(A+AT)T2(d),

Ac(z) = —trace [(G(Js)) (A+AT)G(.E)}
A(A) == sup{z"(A+ ANz : ||z|| = 1}.

Assumption 4.3: Assume that there exists a matrix A €
R™ ™ satisfying that there exists positive real numbers
C{].,Cl(i),él(i),(:g(i),fg(i), such that —oo < )\.(AQ) < —2eq:
and for any z,y € R", x"A;(i)y < e1(i)|z|? + & (i)|y|%
£ Ay(i)y < ca(i)[z? + & (0)lyl% Ac(z) < cglzl? and co >
Yiez, (1(i) + e2(i) + 2max{es (i), 22(:) v

Theorem 4.2: Assume that Assumption 4.3 holds. Then, sys-
tem (41) is exponentially stable in probability.

Proof: Let V(Z(t)) = (z(t)) " Az(t). By directed calcula-
tions, we obtain

(L) (& (1))
= (2(t)) " Ao () + ((t)" A1 (i)Z(t — 1)
+ (2(t)T A2 (8)2(t — 72) + Ac(2(2))
< (—co +e1(i) + ea(i) + ) [ZO)]? + & (D)E(t —71)
+ E2(d)Z(t — 72).

Our assumptions in the main results are satisfied if welet a(i) =
—co + ¢1(i) + a(i) + g, m(i) = 2max{¢; (i), & (i)}, and p
be the probability measure on [—73 V —73,0], such that
({-m1}) = u({-m}) = . O
Remark4.1: Forthe NCSs with different settings, we refer the
readerto [6], [7],[8].[10], [12], [20], and [38]. Some differences
can be emphasized as follows. To begin, under our formulation,
the systems are observed under noises. In addition, we allow
the transmissions to take place in continuous time instead of
assuming that they happen only at specific times epoch.

V. CONCLUSION

This article has been devoted to stability of SFDEs with
past-dependent random switching. In contrast to the work in the
literature, models presented in this article are most general. New
methods of analysis are presented using coupling techniques. A
number of application examples are also presented. We hope that
not only are the models of interest, but also the techniques are
useful to the control and systems community. Further study on
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systems with additional Poisson-type jumps (see [3] for related
references) can be considered in future study and investigation.
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