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A B S T R A C T

Digital pathology has transformed the traditional pathology practice of analyzing tissue under a
microscope into a computer vision workflow. Whole-slide imaging allows pathologists to view and
analyze microscopic images on a computer monitor, enabling computational pathology. By
leveraging artificial intelligence (AI) and machine learning (ML), computational pathology has
emerged as a promising field in recent years. Recently, task-specific AI/ML (eg, convolutional
neural networks) has risen to the forefront, achieving above-human performance in many image-
processing and computer vision tasks. The performance of task-specific AI/ML models depends on
the availability of many annotated training datasets, which presents a rate-limiting factor for AI/ML
development in pathology. Task-specific AI/ML models cannot benefit from multimodal data and
lack generalization, eg, the AI models often struggle to generalize to new datasets or unseen
variations in image acquisition, staining techniques, or tissue types. The 2020s are witnessing the
rise of foundation models and generative AI. A foundation model is a large AI model trained using
sizable data, which is later adapted (or fine-tuned) to perform different tasks using a modest
amount of task-specific annotated data. These AI models provide in-context learning, can self-
correct mistakes, and promptly adjust to user feedback. In this review, we provide a brief over-
view of recent advances in computational pathology enabled by task-specific AI, their challenges
and limitations, and then introduce various foundation models. We propose to create a pathology-
specific generative AI based on multimodal foundation models and present its potentially trans-
formative role in digital pathology. We describe different use cases, delineating how it could serve
as an expert companion of pathologists and help them efficiently and objectively perform routine
laboratory tasks, including quantifying image analysis, generating pathology reports, diagnosis,
and prognosis. We also outline the potential role that foundation models and generative AI can
play in standardizing the pathology laboratory workflow, education, and training.
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Introduction

Conventional pathology methods have been crucial in diag-
nosing disease, heavily relying on examining tissue samples under
a microscope. With technological advancements and a growing
emphasis on precision medicine, digital pathology (DP) has
emerged as a new approach for conducting precise quantitative
assessments. DP involves utilizing whole-slide imaging (WSI) to
digitize and analyze tissue samples using a computer. Computa-
tional pathology further builds on it and incorporates artificial
intelligence (AI) and machine learning (ML) to enable the
extraction of information that goes beyond what the human eye
can perceive. The clinical responsibilities of pathologists, such as
providing precise diagnoses and quantifying biomarkers for
diagnosis, prognosis, and predictions, may be strengthened in
terms of precision, reproducibility, and scalability by using AI-
driven analysis tools. AI can address the challenging problems in
pathology workflow, including the following: (1) increasing
workload and staff shortages leading to physician burnout, (2)
growing diagnostic complexity, including ever-expanding cancer
protocols and biomarkers, (3) case variability, often involving rare
diseases or overlapping morphologic changes, (4) issues with the
quality of slides due to artifacts introduced by tissue folding,
staining inconsistencies, and compression artifacts, and (5) lack of
standardization, which hinders interoperability between different
laboratories, platforms, image formats, and analysis tools.

AI is a broad field focused on simulating human intelligence by
creating models and algorithms to automate various tasks, such as
recognizing objects in images, understanding and generating
natural language text, or making predictions based on historical
data.1 ML is a subset of AI that involves creating statistical and
mathematical models and learning algorithms for recognizing
patterns in the data.2 Artificial neural networks that attempt to
mimic the human brain’s way of analyzing data have recently
made significant progress.3 The advancements made possible by
artificial neural networks have revolutionized computer vision (a
subfield of AI that deals with image processing) and natural lan-
guage processing (a subfield of AI that deals with text and
speech).3 Although the initial adoption of these technologies in
medicine and health care was slow, recently, medical imaging has
been transforming at an unprecedented rate. Digital and compu-
tational pathology are also rapidly evolving on the research front,
with the industry offering new AI-enabled technologies.4-8

Although task-specific traditional AI tools date back to the
1970s, the decade of 2010 saw a sharp rise in the research and
development of narrow AI methods enabled by deep learning
models, eg, convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and Transformers. These AI models
eliminated the need for feature engineering using domain
expertise, a defining characteristic of classical ML techniques
widely known as pathomics in the pathology domain.9 For a given
task, the performance of these artificial neural network-based AI
models surpassed previous AI techniques. Developing a task-
specific AI starts with selecting a particular problem, eg,
counting mitosis in a histopathology image, then curating and
annotating relevant historical data, and finally, training the model
by learning optimal parameters (or weights). Annotating (or
equivalently labeling) data requires experts (pathologists) to
carefully review each data sample and identify/define objects/
patterns that help AI learn about the task during training. The
performance of task-specific AI with supervised learning tech-
niques strongly depends on the availability of large, high-quality,
annotated training datasets. Despite boasting above-human per-
formance, task-specific AI suffers from significant limitations,
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including the requirement for a large amount of expert-annotated
datasets, the lack of performance generalization (eg, the AI may
fail if used on images generated using a staining protocol different
than the one used for generating training images), and the
inability to use relevant data from other modalities, eg, patient
demographics, laboratory data, or their prior disease history
cannot help the model improve its prediction accuracy.4,5 Analysis
of task-specific AI in pathology through qualitative interviews of
24 professionals revealed such shortcomings in the existing tools,
which hinder their broad integration in the decision-making
processes of pathologists.10 For further details, the reader is
referred to the surveys reviewing the use of AI in pathology.11,12

The 2020s are witnessing the rise of foundation models and
generative AI. Foundation models are very large task-agnostic AI
models trained using unannotated (possibly multimodal) datasets
and form the brain of generative AI.13,14 A trained foundationmodel
can be adapted to perform many different tasks using a modest
amount of task-specific annotated data.14 Training a foundation
model may not require manually annotating large amounts of data
because these models use self-, semi-, or unsupervised learning
techniques. Foundation models can consume data from various
modalities, including images (eg,WSIs), text (eg, pathology reports),
and tabular data (eg, medical records). The well-known generative
AI model, ChatGPT, is based on a foundation model called Genera-
tive Pretraining Transformer (GPT).15-20 Foundation models hold
much promise for quantitative image analysis, diagnosis and
prognosis, pathology report generation, and questioning/answering
with conversational use in pathology laboratory workflow.13,14

In this article, “AI in Digital Pathology” provides a brief over-
view of AI and ML models and advancements enabled by these
task-specific AI models in computational pathology. We introduce
various foundation models, their structure, characteristics, and
limitations in “Foundation Models and Generative AI.” “Trans-
formers, Foundation Models, and Digital Pathology” outlines the
transformative role that foundation models may play in the pa-
thology laboratory workflow in the near future. We provide use
cases delineating how a pathology generative AI based on a
foundationmodel could serve as an expert companion pathologist
that assists in efficiently and objectively performing routine lab-
oratory tasks, including image analysis, presenting and justifying
findings, quantifying the analysis, generating reports, performing
prognostics, and making predictions. In the last section, we have
outlined the potential role that foundation models and generative
AI can play in pathology education and training.
Artificial Intelligence in Digital Pathology

AI comprises computational methods, statistical and mathe-
matical models, and the implementation of various algorithms to
mimic human-style intelligence. AI-based technologies have
enabled pathologists and researchers to analyze large amounts of
data with greater accuracy and speed, making the process of
disease diagnosis faster and more precise.4,21-23 AI has made it
easier to identify patterns and biomarkers that were previously
challenging to detect, leading to more personalized and targeted
treatments.24 We have provided definitions of the key terminol-
ogies used in this article in Table 1.

Digital Pathology

DP involves digitizing tissue specimens, allowing them to be
analyzed and shared electronically. DP uses complex imaging
systems to capture high-resolution images of tissue specimens,



Table 1
Definitions of key terminologies

Digital pathology (DP) A comprehensive term that includes various tools and systems to digitize pathology slides and associated metadata, as well
as their storage, review, analysis, and supporting infrastructure.

Computational pathology (CP) A branch of pathology that utilizes computational techniques to analyze methods of studying disease through patient
specimens. It may involve using AI methods to analyze data and extract meaningful information from digitized pathology
images.

Artificial intelligence (AI) The field of AI aims to simulate human intelligence in machines, allowing them to perform tasks such as learning, problem
solving, and decision making.

Machine learning (ML) It is a branch of AI that programs computers to optimize a performance criterion using sample data or past experience. It uses
the theory of statistics to build learning models.

Artificial neurons These are the fundamental building blocks of artificial neural networks. It is a mathematical function that receives one or
more inputs, applies a weighted sum, adds a bias term, and applies a nonlinear activation function to the result. The output of
the activation function is then passed on to the next layer of neurons.

Artificial neural network (ANN) A computational model inspired by the structure and function of biological neural networks in the brain. It is a network of
interconnected artificial neurons that work together to process information and make predictions or decisions.

Neural network architecture The architecture of a neural network refers to its structure, which is determined by the number and arrangement of its
layers, the number of neurons in each layer, and the connections between the neurons.

AI training The process of teaching an AI system to learn patterns from data and make accurate predictions or decisions. The training
process involves feeding large amounts of data into the AI system and adjusting its internal parameters to optimize
performance.

Supervised learning AI training technique that uses annotated data, ie, each data point is associated with a known target value. Goal is to learn a
mapping between inputs and outputs such that trained AI can make accurate predictions on new, unlabeled data. If learning
involves lesser labeled data compared with unlabeled samples, it is weakly supervised learning.

Self-supervised learning This technique of training AI does not require explicit data annotations. The AI learns to solve the given task using the
inherent structure in the data as the supervisory signal.

Unsupervised learning A learning technique for finding patterns, relationships, or structure in the data, such as clusters or groups of similar data
points, without any knowledge of the ground truth. Unlike self-supervised learning, which uses a supervisory signal implicit
in the data, unsupervised learning does not use any supervisory signal.

Computer vision (CV) A field of AI that enables computers and systems to derive meaningful information from digital images, videos, and other
visual data.

Natural language processing (NLP) An area of AI that deals with a wide range of computational methods and techniques for analyzing, understanding, and
generating natural language text.

Multimodal AI Multimodal AI refers to AI models that involve multiple data modalities, such as vision (images) and language (text) and
require AI to integrate information across data modalities.

Convolutional neural networks (CNNs) CNNs are types of artificial neural networks commonly used for image and video analysis. CNNs are designed to
automatically and adaptively learn spatial hierarchies of features from input images by using multiple convolutional layers,
followed by pooling layers and fully connected layers.

Recurrent neural networks (RNNs) RNNs are specialized for processing sequential data, such as text, speech, or time series. RNNs are designed to capture
context and dependencies between the elements of a sequence.

Graph neural networks (GNNs) GNNs are neural networks that process data with a graph structure. GNNs analyze relationships between objects (nodes) and
their mutual relationships (edges) by iteratively using message-passing algorithms to update the features, allowing the
network to capture the relationships between nodes in the graph.

Transformers Transformers are neural networks that use a self-attention mechanism (or equivalently scaled dot-product) to capture
relationships between input elements, especially in long sequences. They can process and learn from all data types,
including images, text, and speech.

Foundation models Foundation models are an emerging class of AI trained on a vast quantity of unannotated data at scale resulting in a model
that can be adapted to a wide range of downstream tasks with only a handful of annotated examples. They use transformer
architecture and are the workhorse of generative AI models.

Generative AI models These are models specialized in generating new data similar to the training data, such as images or text. Examples include
Bayesian networks, Generative Adversarial Networks (GANs), and foundation models such as ChatGPT, GPT-4, Stable
Diffusion, and Dall-E 2.
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which can then be viewed and analyzed on a computer screen.25

DP improves the accuracy and efficiency of pathology diagnoses
by allowing pathologists to access and share images remotely,
collaborate with other experts, and integrate computer-aided
analysis tools. With the advent of DP, the amount of data gener-
ated has increased exponentially, enabling the automation of
time-consuming processes, such as segmentation and mitotic
counting.26 Public data archives, such as The Cancer Genome
Atlas,27 Clinical Proteomic Tumor Analysis Consortium,28 and The
Cancer Imaging Archive,29 host pathology image data for multiple
cancer sites. This is possible only because of DP and other
advancements.

WSI is the technology that allows high-resolution digital im-
ages of entire microscope slides to be created and viewed on a
computer screen. This process involves scanning glass slides
3

containing tissue samples or other specimens using specialized
digital scanners. WSIs can capture the entire slide at very high
magnification, allowing users to zoom in and examine specific
regions of interest in great detail.30 WSIs are usually too large for
contemporary computers to analyze directly, so they are tessel-
lated into smaller tiles or patches, which serve as input for pa-
thology AI workflows.30
Computational Pathology

Computational pathology combines DP with AI, ML, and other
computational techniques to extract meaningful information.30

Often interchangeably called “histomics,” “pathomics,” or “tis-
sue phenomics,” computational pathology aims to develop
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Figure 1.
Pathology, digital pathology, and computational pathology. Definitions and tasks are presented.
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algorithms that can automatically detect and classify pathology
images, predict disease outcomes, and identify new biomarkers
for disease.31 Computational pathology involves extracting many
features from histopathology slides (called histomics) or pa-
thology slides (called pathomics) and analyzing these features to
relate to biological and clinical endpoints. Computational pa-
thology also aims to standardize pathology diagnoses and reduce
variability between pathologists.30 Notwithstanding quality is-
sues in DP,32 computational pathology methods can performwell
on tasks, such as classification, segmentation, and analysis of DP
images, at times surpassing human-level performance.33,34 The
definitions of pathology, DP, and computational pathology are
illustrated in Figure 1A, and their key tasks are illustrated in
Figure 1B.
Classical Machine Learning in Digital Pathology

Classical ML consists of manually selecting informative features
from the data by domain experts and then using these features for
prediction, classification, or regression. The manual extraction and
selection of features is also referred to as feature engineering using
computer vision techniques based on morphology and texture, for
instance. Classical ML has been extensively used in DP for image
segmentation and classification2 using Support Vector Machines,
Random Forests, k-Nearest Neighbor, Decision Trees, and others.2,35
4

A detailed review of the classical ML techniques in DP is presented
in Gurcan et al36 and Irshad et al.37 Owing to the manual selection
of usable and informative features, the applicability of classical ML
methods is limited.36,37
Task-specific Artificial Intelligence in Digital Pathology

More recently, task-specific AI models based on artificial neural
networks have been gaining popularity.38-41 Artificial neural net-
works use stacked layers of artificial neurons to process large
amounts of data and identify underlying patterns. The model se-
lects a set of useful and informative features based on the assigned
task without any human intervention. These models include
CNNs, variants of RNNs, graph neural networks (GNNs), and
Transformers, as illustrated in Figure 2.2 We refer to these ap-
proaches as task-specific or narrow AI because of their limited
scope. Also known as weak AI, they are incapable of general in-
telligence or human-like reasoning.42 Developing a task-specific
AI starts with selecting a particular task, followed by data collec-
tion and annotation. Finally, AI is supervised to learn patterns in
the data byminimizing its prediction error. With the availability of
digital slides and large computational power fueled by graphical-
processing units (GPUs; electronic circuits responsible for
graphics manipulation and output) and tensor-processing units
(TPUs; Google’s custom-integrated circuits used to accelerate ML
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Figure 2.
A schematic layout of various machine learning (ML) algorithms and AI models used in digital pathology. The top row (AeD) highlights classical ML algorithms. Rows 2 and 3
(EeH) present task-specific AI models. The last row (sub-figure I) refers to foundation models, the brain behind generative AI, such as ChatGPT. We argue that the role of classical
ML and task-specific AI is diminishing, being taken over by foundation models and generative AI. A set of large pathology-specific foundation models will sufficiently cover all
digital pathology tasks as outlined in “Transformers, Foundation Models, and Digital Pathology.”
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workloads), artificial neural networksebased task-specific AI
models have found a strong foothold in DP.4,34,43 In the following
discussion, we briefly introduce task-specific AI models and their
essential components. In Table 2,22,44-70 we present a non-
exhaustive list of various categories of task-specific AI models
used in DP. Interested readers are encouraged to explore the
relevant works of interest.
5

Convolutional Neural Networks

CNNs are specialized artificial neural networks for processing
image data. CNNs are designed to automatically learn and extract
features from images, such as lines, edges, corners, and textures,
through the convolution operation. Convolution involves sliding a
filter over an input image and computing dot products between



Table 2
Summary of AI models used in digital pathology

DP Task AI Model Details Ref

Diagnosis CNN MIDOG: Mitosis domain generalization challenge. 44

Gleason grading and diagnosis of prostate cancer. 45

Feature extraction to classify brain tumor grade. 46

Mitosis detection in breast cancer. 47

Segment nuclei in histology images using weakly supervised
training.

48

GAN Nuclei segmentation on histopathology images. 49

LSTM 4D medical image segmentation. 50

GNN Learn micro- and macrostructural features in HandE slides of breast
cancer.

51

Grading colorectal cancer in histology images. 52

Classify healthy tissue from dysplastic gland areas in the colorectal
cancer histology slides.

53

Classify infiltrating ductal carcinoma (IDC) and ductal carcinoma in
situ (DCIS) breast cancer and grade Gleason 3 and 4 prostate cancer.

54

Prediction CNN Disease outcome prediction in colorectal cancer. 55

LSTM Predicting sentiment, text categorization in records. 56

Medical event prediction using a multichannel fusion of EHR data. 57

GNN Stratify prostate cancer using tissue microarrays. 58

Transformers Predicting RNAseq expressions from kidney WSIs using multiple-
instance learning.

22

Predicting biomarkers from histopathology slides in colorectal
cancer.

59

Prognostics CNN Prediction of OS using Glioma multimodal data. 60

Misc CNN Correlations between true hypoxia fraction in histologic and the
approximated fraction in MRI scans.

61

GAN Similarity between virtually stained images (generated by AImodel)
& histochemically stained images.

61

LSTM Medical image denoising. 62

De-identification of medical text. 63

Transformers WSI representations using unsupervised learning. 64

Review CNN Deep learning in digital pathology for breast cancer. 65

GNN GNN-based methods in cancer pathology. 66,67

Transformers Transformers in the medical field. 66,68-70

AI, artificial intelligence; CNN, convolutional neural network; GAN, generative adversarial network; GNN, graph neural network; LSTM, Long short-term memory network.
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the filter and the image pixels. The resulting features are used to
classify or detect objects in the image. Based on the filter type,
shape, size, and arrangement, various architectures of CNNs have
been proposed.
Recurrent Neural Networks

RNNs process sequential data, such as speech, text, or time
series. RNNs are designed to capture temporal dependencies in
the data by maintaining a hidden state that is updated at each
time step. The hidden state encodes information from previous
time steps and provides context for the current time step. Long
short-termmemory networks and gated recurrent units are RNNs
that help the model better capture long-term dependencies and
avoid the vanishing gradient problem of RNNs using sequential
data processing.
Graph Neural Networks

GNNs process graph-structured data, such as social networks,
molecular data, and knowledge graphs.66 GNNs are designed to
capture local and global graph structures by aggregating infor-
mation fromneighboring nodes and edges. GNNs typically operate
on a fixed-size local neighborhood around each node, allowing
them to scale to large graphs. GNNs have shown promising results
6

in various applications, including node classification, link predic-
tion, and graph generation. GNNs have been used to analyze
complex biological networks, drug discovery models, cell classi-
fication, tumor structures, and protein structures.58,71,72
Transformers

Transformers were initially introduced for language trans-
lation.73 However, they have performed remarkably in various AI
tasks, including computer vision and time series analysis.13,74

Unlike RNNs, Transformers do not require that the sequential
data be processed in order. Instead, they are designed to process
variable-length input sequences (such as words in a sentence)
without recurrent connections. Transformers use a self-attention
mechanism that allows each piece of input (or token) to attend
to other tokens in the sequence, capturing long-range de-
pendencies.73 Transformers have achieved state-of-the-art results
in various natural language processing, computer vision, and
graph-processing tasks.73,74
Artificial Intelligence-based Algorithms Used in Pathology

Interest in AI/ML-enabled medical devices has increased in
recent years. The US Food and Drug Administration (FDA) has



Asim Waqas et al. / Lab Invest 103 (2023) 100255
cleared more than 500 healthcareerelated AI algorithms, 4 of
which are for pathology.75 Among them, 2 were introduced
earlier, and the other 2 more recently. “PAPNET Testing System”

was approved in 1995, and it was designed for rescreening
negative Pap tests or as a primary screener.76 “Pathwork Tissue of
Origin Test”was approved in 2008, and it is a molecular diagnostic
test developed to assist in diagnosing metastatic, poorly differ-
entiated, and undifferentiated cancer.76 “Tissue of Origin Test Kit
FFPE” was approved in 2012, and it is an in vitro diagnostic to
measure the degree of similarity between the RNA expression
patterns in a patient’s formalin-fixed, paraffin-embedded (FFPE)
tumor and the RNA expression patterns in a database of 15 tumor
types.76 “Paige Prostate”was recently approved in 2021, and it is a
software device to assist pathologists in the detection of foci that
are suspicious for cancer during the review of scanned WSI from
prostate needle biopsies prepared from H&E-stained FFPE tis-
sue.7,76 The PaigeAI prostate algorithm and the Pathwork digital
and AI platform are the pioneering algorithms that have signifi-
cantly impacted pathology practices by aiding in diagnosing and
characterizing various diseases.

Pathology has a branch of anatomical pathology (AP) and
clinical pathology (CP). The 4 algorithms mentioned above
exclusively pertain to AP, where the focus lies on examining tissue
samples for diagnosing diseases, such as cancer. It is worth
mentioning that listing AI/ML-related algorithms in CP, which
concentrates on the analysis of bodily fluids and laboratory tests,
is beyond the purview of this specific review. Moreover, despite
the noteworthy progress in pathology AI, to the best of our
knowledge, there has not yet been a generative AI algorithm
developed for pathology, AP, or CP. Generative algorithms can
create new data or images, potentially aiding in generating syn-
thetic samples for training and research purposes. Although such
algorithms have seen success in other domains, their application
in pathology, encompassing both anatomical and clinical aspects,
has yet to be realized. The absence of generative AI in pathology
presents a promising avenue for future research and exploration
to unlock new possibilities and enhance the field’s diagnostic and
prognostic capabilities.
Limitations of Task-Specific Artificial Intelligence

Task-specific AI models have many limitations restricting their
widespread use in DP:

1. Task specificity: task specificity refers to the fact that the
trained AI performs well on a single task only, eg, grading
cancer subtypes in an organ using H&E slides. A change in the
number of grades, organ type, or cancer type (same organ) will
render the model useless (significantly reducing its accuracy
with low reliability) and will require model retraining.39,77

2. Distribution of the input data: task-specific AI models require
the input data to have similar characteristics and follow the
same probability distribution function of the input data (the
mean, standard deviation and range of the pixel values of WSI
pixels).39,78 Adding natural or adversarial noise may signifi-
cantly reduce AI’s performance.79 AI models are known to be
fragile in the presence of noisy inputs, subtle changes in the
data, or adversarial attacks.39,40,79 These AI models cannot
generalize to changes in data resulting from various common
reasons, eg, hardware, software, firmware upgrades in scan-
ners, changes in the staining quality or the protocol, shifts in
population demographics (eg, a different geographic region),
and changes in data patterns due to new diseases, such as
7

COVID-19.41,77 New representative data must be collected and
annotated for each changing scenario to retrain (fine tune) the
AI models to be current and accurate.

3. Requirement of large annotated task-specific datasets: the task-
specific AI requires large annotated datasets for training. The
success of these models depends mainly on the availability of
large, task-specific annotated datasets. This requirement stems
from the data-driven nature of these models, which learn to
identify informative features from datawithout needing domain
experts to engineer data features.80 By leveraging vast amounts
of annotated, independent, and identically distributed data,
models can uncover hidden patterns and subvisual features that
may be difficult for humans to detect. However, obtaining a large
annotated dataset remains a critical challenge for AI models in
DP. These AI models cannot directly benefit from large amounts
of unannotateddatasets, eg,WSIs, pathology reports, and clinical
notes, and may require techniques, such as weakly supervised
learning, unsupervised learning, self-supervised learning,
transfer learning, and continual learning.81,82

4. Single data modality: the task-specific AI models are generally
restricted to processing one data modality only. Incorporating
information from other modalities, eg, the patient’s medical
data from medical records, omics data, or radiographs, into AI
decision making is generally not straightforward.66 Recently,
some research efforts have focused on creating AI models that
can process multimodal data to improve their predictive ac-
curacy with moderate success.72,83,84

5. Knowledge accumulation: the recent success of ChatGPT has
shown that creating an internal general-purpose knowledge
base is essential for successful and robust AI models.16,17

ChatGPT has a central repository of information created dur-
ingmodel training using 570 GB of data frombooks, web-based
text, Wikipedia, articles, and other online writings.15,16,18 There
is no precedence for creating such models in DP, medical im-
aging, or any area of medical data processing. Task-specific,
narrow versions of AI models are built by individual aca-
demic laboratories or industries that do not contribute to
reusable knowledge accumulation.66

6. Transparency and reproducibility: transparency and repro-
ducibility of AI models are a challenge that undermines the
enormous potential of applying such methods to complex
tasks. The lack of sufficient details regarding Methods and the
unavailability of algorithm/code in a published work by the
Google Health team on breast cancer screening85 was recently
raised.86,87 The research community is gradually transitioning
to open-access, reproducible, and transparent methodologies.

7. Explainability: the explainability of AI refers to the chal-
lenge of understanding how and why an AI makes a
particular decision or prediction.88 Although AI can make
accurate predictions or decisions, they often do so in ways
that are opaque or difficult to understand for human be-
ings. This lack of transparency can be problematic in sce-
narios where decisions made by AI have significant real-
world consequences. Interpretable or explainable narrow
AI models with attribution maps produce results humans
can easily understand and interpret. However, these ap-
proaches come at the cost of reduced accuracy or increased
model complexity.89
Foundation Models and Generative Artificial Intelligence

The 2020s are witnessing the rise of foundation modelse large
AI models pretrained using unannotated multimodal datasets



Figure 3.
The evolution of machine learning models used in digital pathology. The 2020s are witnessing the rise of generative AI based on foundation models. Soon, foundation models and
generative AI will become the preferred computational approaches in digital pathology.
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(Figs. 2 and 3).13 A trained foundation model can be adapted (or
fine-tuned) to perform different tasks using limited annotated
examples, much less than required to train task-specific AI. In the
following, we present our perspective on how foundation models
and generative AI that use these models can transform the DP
laboratory workflow. The pathology-specific foundation models
can be created and fine-tuned to serve as a pathologist’s expert
assistant by performing quantitative image analysis for diagnosis,
prognosis, disease grading, and prediction. It can then generate
pathology reports based on the presented imaging data and
converse with the pathologist to justify the findings presented in
the generated reports.
Foundation Models

The term “foundation models” was initially coined by Bom-
masani et al13 to describe recently proposed models that have led
to a paradigm shift in AI model design, development, and
deployment processes. Foundation models are huge models
trained at scale using comprehensive unannotated data (possibly
multimodal). Two relevant attributes of foundation models are
their size, which refers to the number of learnable parameters or
weights, and the number of compute operations quantified using
floating point operations at the model testing or inference stage.
Foundation models generally have billions or trillions of learnable
parameters and billions of floating point operations.16,17,90-94 The
unannotated datasets may consist of billions of words (or tokens)
and images from the Internet without any labels assigned by
human operators.92 Foundation models leverage the existing
concepts of pretraining, transfer learning, and unsupervised and
self-supervised learning. However, their essence lies in scaling
because of the following 3 factors: (1) the introduction of Trans-
former architecture73 that supports training models with the
number of learnable parameters in billions or trillions, (2) the
availability of thousands of GPUs, and (3) availability of massive
training datasets that can reach billions of tokens for natural
language processing and hundreds of millions of images for
computer vision tasks.13,73

Recently, a host of foundation models have been trained for
language, vision, and joint language-vision (multimodal) tasks
and shared via GitHub (https://github.com/trending) and Hugging
Face (https://huggingface.co). Some of the remarkable works
include BERT and RoBERTa in language processing,93,94 Vision
Transformers for image-processing tasks,95 Mask2Former, One-
Former, and ClipSeg for image segmentation,96-98 Perceiver IO for
multimodal (text, images, audio, and video) problems,99 ViperGPT
for answering visual queries using code generation,100 LLaVA for
visual instruction tuning,101 and BLIP-2 for image captioning, vi-
sual question-answering, and chat-based prompting.102
8

Characteristics of Foundation Models

Some distinguishing characteristics of foundation models are
summarized as follows:

� Expressivity is the ability of foundation models to learn, cap-
ture, and represent the relevant information from data.13

Foundation models are more expressive than their task-
specific AI models as they exclusively use the Transformers
architecture, which learns long-range relationships and
higher-order interactions in the data using a self-attention
mechanism.73 There exists a trade-off between the model’s
expressivity and its efficiency. Increasing the model size may
increase its expressivity at the cost of reduced efficiency.13

Recently proposed foundation models, such as Perceiver IO
and GANformer attempt to offer a balance between efficiency
and expressivity.99,103

� Scalability refers to the ability of a foundation model to
efficiently consume large amounts of data.13 With the ever-
growing availability of data from diverse sources, the founda-
tion model needs to be capable of further scaling while
overcoming the challenges of failure and catastrophic
forgetting.41,81

� Multimodality is the ability of the foundation model to learn
relations among various modalities of the data.13 Humans
perceive knowledge through processing multimodal data. GPT-
4 is a multimodal foundation model.15 Other multimodal
models include CLIP,104 ALIGN,105 SimVLM,106 Flamingo,107

CoCa,108 and CONCH.109

� Compositionality is the ability of a foundation model to gener-
alize to new tasks and contexts.13 Compositionality helps
foundation models achieve out-of-distribution generalization
and perform in-context learning.13,110

� Emergence is the characteristic introduced by scaling the
Transformer architecture with large datasets and computa-
tional resources.13,73 Emergencemeans that the behavior of the
trained AI model is implicitly induced rather than explicitly
constructed.13,110 In-context learning is an example of emer-
gence in foundation models110,111

� Homogenization is also introduced by scaling and refers to
the consolidation of methodologies for building AI models
across a wide range of applications.13 For example, almost
all language-processing tasks can be performed by a single
large language model, eg, BERT,93 GPT,15,17-19 T5,90 or many
others.112

� Transfer learning, adaptation, and fine tuning are the defining
characteristics of foundation models.13,111,113 These charac-
teristics imply that the skills that AI may learn from one
task will often transfer to new tasks. A foundation model
may adapt to the new tasks without the need for any an-
notated examples, referred to as zero-shot learning. When a

https://github.com/trending
https://huggingface.co
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few examples are used to fine tune the AI, we call this
few-shot learning.13 Generally, all foundational models are
pretrained using unannotated datasets and later adapted
using small annotated datasets for specific downstream
tasks. A recent survey reviews the various pretraining
methods used in deep learning and foundation models on
medical data.114

� In-context learning is the ability of a trained foundation model
to learn a new task or correct itself using demonstration and
without updating the model’s parameters, which is usually
done via gradient descent algorithm.17,111,115 In-context
learning is a scale-enabled emergent ability that allows foun-
dation models to generalize to new tasks without having to
retrain the AI model again. GPT-2, a relatively small model
having 1.5 billion parameters, did not permit in-context
learning.18 It was GPT-3 with its 175 billion parameters that
exhibited in-context learning.17 However, in-context learning
introduces the necessity for prompt engineering, ie, finding the
most appropriate prompt to allow AI to solve the task at
hand.111,115 A prompt is a piece of text, image, or symbols
inserted in the input of AI so that the given task can be refor-
mulated as the original task for which the model was
trained.17,110,111
Types of Foundation Models

Foundation models are an emerging area of AI that has shown
great promise, eg, ChatGPT, GPT-4, DALL-E 2, and Stable Diffusion
are foundation models that can generate impressive text and
images, provide concise summaries of large datasets, and help
analyze unstructured data efficiently.15,16,116,117 These models can
be further divided into large language models that tackle natural
language-processing tasks and vision-language models that
handle multimodal learning jointly from images, text, and other
data sources.
Large Language Artificial Intelligence Models

Large language models can handle various natural language-
processing tasks, including text generation, natural language
understating, sentiment analysis, question answering, informa-
tion retrieval, reading comprehension, commonsense reasoning,
natural language inferences, word sense disambiguation, and
others.13 With the introduction of word embeddings, where each
word in a sentence was associated with a context-independent
vector of real numbers,118 the natural language-processing field
has seen considerable progress.93 Following the success of word
embeddings, autoregressive language models were proposed to
employ self-supervised or weakly supervised learning to predict
the next word in a sentence given the previous words.93 Autore-
gressive models such as GPT, ELMo, and ULMFiT use the context of
the words in representation embeddings.19,119,120 The Transformer
architecture enabled self-supervised learning at scale resulting in
models, such as BERT, GPT, GPT-2, GPT-3, GPT-4, LLaMA, T5, and
BART15,17-19,90,93,94,121,122 Most of these industry-sponsored
models are not open-source for researchers.15,16 Recently,
BLOOM, a 176Bparameter open-access language model, was
developed with the collaboration of hundreds of researchers.91

BLOOM is a decoder-only Transformer language model trained
on the ROOTS corpus, a dataset comprising hundreds of
sources in 46 natural and 13 programming languages (59 in
9

total).91 A comprehensive review of large language models is
out of the scope of this article. For a comprehensive review of
the large language models, please refer to review papers and
blogs,112
Vision-Language Artificial Intelligence Models

Vision-language AI can learn to performvarious tasks involving
images (or videos) and corresponding natural language text.92,112

The vision-language models are one step closer to how humans
perceive the world, learn about it, and execute various tasks in
it.92,123 In the following, we describe 2 types of imaging analysis
tasks that vision-language models can perform:

� Image-text mixed tasks: These tasks reside at the intersection of
natural language processing and computer vision fields and
consist of extracting information from images and natural
language text and finding the relationships and patterns to link
text and images.92,124 Image captioning, visual question
answering, visual dialog, image or text retrieval given text or
image, visual grounding, and image generation are a few
image-text tasks undertaken by these foundation AI
models.92,125 Visual question-answering tasks typically require
a more detailed understanding of the image and complex
reasoning than a system producing image captions.125 The
recent foundation models in image-text tasks include
Contrastive Language-Image Pretraining (CLIP), A Large-scale
ImaGe and Noisy-Text Embedding (ALIGN), SimVLM, Flor-
ence, Flamingo, CoCa, Clinical-BERT, and Contrastive learning
from Captions for Histopathology (CONCH).104-109,126

� Image-processing tasks: Image classification, object detection,
and segmentation are the core visual recognition tasks in the
field of computer vision. Traditionally, these tasks were
considered pure vision problems without needing to include
language information while learning these tasks. However,
CLIP and ALIGN models showed that language supervision
could play an essential role in pretraining vision-language that
can do various visual recognition tasks with zero-shot
learning.104,105 CLIP and ALIGN use noisy image-text data
from the Internet to enable large-scale pretraining of vision
encoders. The state-of-the-art foundation models include the
following: (1) image classification e UniCL, CLIP, and
ALIGN,104,105,127; (2) object detection in a given image e ViLD,
RegionCLIP, GLIP, Detic, PromptDet, OWL-ViT, OV-DETR, and
XDERT,128-134; and (3) segmentation of different objects in a
given image e LSeg, OpenSeg, CLIPSeg, MaskCLIP, DenseCLIP,
and GroupViT.98,135-139
Training Foundation Models and Generative Artificial Intelligence

Foundation models employ 2 key techniques in training: self-
supervised learning and generative training. The true potential
of the enormous quantity of unannotated data is only possible
with supervised learning, without the need to create annotations
or labels using human effort. Examples of such data include the
following: (1) text, images, and videos available online or (2)
medical records, diagnostic imaging, molecular data, and histo-
pathology WSIs available in hospital databases. During the
training of foundation models, the supervision signal is deter-
mined by the context of the input data, eg, the BERT language
model is trained to predict randomly removed words from
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sentences or fill in the blanks.93 Sometimes, themodels are shown
plausible and implausible pairs of images and corresponding
texts. Thus, themodel learns to associate image features with their
correct text description.104 This perspective generalizes the
traditional close-set classification AI models to recognize unseen
concepts in real-world applications, such as open-vocabulary
object detection.92

The generative training methods help foundation models learn
the joint or conditional probability distributions over training
input data.13 That is, the trained foundation model will be able to
accurately generate the input data pattern similar to the ones used
for training it. Generative training is performed using 1 of the 2
techniques: (1) denoising or (2) autoregressive. During the
training of the denoising models, the input is corrupted with
noise, and the model is expected to produce noise-free input
patterns.90 The autoregressive models, after training, can generate
the input data piece by piece, iteratively predicting the next
element in a sequence given the previous elements.140
Challenges and Limitations of Foundation Models

Developing foundation models requires massive datasets,
computational resources, and technical expertise.13 Owing to their
massive size, it may not be possible to fit the parameters of a
foundation model in the memory of the largest GPU or a single
computer. For example, a recent large language model shared by
Meta AI, LLaMA, has 65 billion parameters and was trained using
1.4 trillion tokens.121. The enormous computational operations
inside foundationmodels can result in unrealistically long training
and inference times. Foundation models require specialized soft-
ware, hardware, and inference algorithms to train and use.141

“Hallucination” is a known limitation of generative AI, which
refers to mistakes in the generated text or images that are
semantically, syntactically, or visually plausible but are, in fact,
incorrect, nonsensical, and do not refer to any real-world con-
cepts.15,142,143 The accuracy and integrity of the generated text and
images may be challenging to establish using factual data from
verified sources.143 One possible solution is to use an engineered
system, such as Bing Chat, which also generates links to the actual
websites, articles, and reference material (https://www.bing.com/).
In some cases, the generative AI models can identify their own
mistakes.142 Furthermore, the generative models are sensitive to
the form and choice of words, referred to as the “prompt.”A prompt
may consist of text, image(s), or symbol(s) inserted in the input of
generative AI so that the given task can be reformulated as the
original task for which the model was trained.115,142 The future
generative AI models may be less sensitive to the precise prompt.
However, the current models need “prompt engineering” to pro-
duce the best results115,142 Therefore, effectively using a generative
AI may require engineering an appropriate prompt by the human
user. Foundation models and generative AI also face other chal-
lenges similar to task-specific AI models, including explainability,
robustness, and trustworthiness.13,39,41,78,79,88,143-145
Transformers, Foundation Models, and Digital Pathology

This section presents recent work from the literature focused
on using Transformers (the core component of foundation
models) in DP. We focus on the work where a single AI model
based on Transformer architecture is trained using large, diverse
datasets to perform multiple tasks. Later, we present our
perspective on the potentially transformative role of foundation
10
model-based AI in DP. Because of foundation models’ strong
adaptation and scalability properties, they can be effectively
trained once and modified infinite times to suit various DP tasks.
We also present our perspective on the trustworthiness and
acceptability of generative AI and foundation models by pathol-
ogists. Figure 4 presents a prospective framework for utilizing
foundation models and generative AI for various pathology tasks.

Transformers architecture has recently been modified to
consume high-resolution gigapixel WSI data.146 The authors used
a self-supervised hierarchical learning mechanism on 33 cancer
site data having approximately 105 million pathology images to
predict 9 slide-level tasks, including cancer subtyping, survival,
and unique morphologic phenotypes.146 Although molecular
procedures and analyses have led to remarkable discoveries, they
are usually time consuming, expensive, and require multiple
tissue samples. Transformer-based foundation models can
address these challenges by predicting the bulk RNA-seq directly
from the whole-slide images.22 Transformers-based foundation
model, CONCH, has shown state-of-the-art performance on
multiple tasks including histology image classification, segmen-
tation, captioning, and text-to-image and image-to-text retrieval
using task-agnostic pretraining on 1.17 million image-caption
pairs.109 Similarly, attention-based multiple-instance learning
has accurately predicted biomarkers from cancer pathology
slides in a self-supervised learning setting.59 The authors showed
the performance of an attention-based multiple-instance
learning framework for predicting microsatellite instability and
mutations in BRAF, KRAS, NRAS, and PIK3CA in colorectal cancer
pathology slides.59 To address the interpretability challenge of
the AI model’s decisions, a probabilistic perspective on attention-
based multiple-instance learning on WSI data has outperformed
previous methods in matching the pathologists’ annotations.147

Such prefoundation models can be scaled to predict biomarkers
directly from the histopathology slides belonging to pan-cancer
sites.148 The Transformer model pretrained on a large publicly
available pathology dataset can be fine-tuned under a weakly
supervised contrastive learning scheme on smaller datasets.
Wang et al149 have shown that such a training framework can
outperform the state-of-the-art WSI classification on 3 different
tasks. For the multimodal medical data analysis, modality coat-
tention Transformers have been shown to outperform other
methods in survival predictions by fused learning on WSI data
and genomic sequences.150 Moreover, Transformers are far
more robust to adversarial attacks and perturbations in DP
than CNNs because of the more robust latent representation of
clinically relevant information.79 The performance and
robustness of Transformer-based models in various tasks and
modality settings have shown the prospective utilization of a
single foundation model for large-scale rollout involving
multiple tasks.

Given the strong support for compositionality and multi-
modality and the modular nature of the foundation models, image
and language models can be combined to share their learned rep-
resentations as a larger foundation model. Thus, a Transformer
trained to interpretWSIs can be combined with a trained language-
generationmodel (eg, GPT) to create a vision-language model. Such
a model will interpret and analyze WSIs and generate text reports
based on the analysis. The same model can be augmented to
annotate relevant areas on the input image to support its findings in
the generated report. Finally, a conversational component can be
added to allow themodel to interact with the pathologist to answer
their question about the model’s output.

The authors believe that a multimodal pathology foundation
model capable of processing WSIs and natural language can be

https://www.bing.com/


Figure 4.
A prospective schematic layout of using foundation models and generative AI for various digital pathology tasks is presented. In our view, other data modalities, eg, diagnostic
radiology or molecular data, if available, can be combined with pathology data in the future to improve model performance.
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created using data available in the public domain, such as the
National Cancer Institute’s The Cancer Genome Atlas for genetic
data, Clinical Proteomic Tumor Analysis Consortium for prote-
omics data, and The Cancer Imaging Archive for imaging data.27-29

The base model can be trained with pan-cancer datasets and later
fine-tuned for various organs, cancer types, and use cases with
only a few task-specific annotated examples. The base pathology
foundation model can be shared with the community, eliminating
the need to collect data, annotate, and train AI models from
scratch for each use case. A recent synopsis explores AI techniques
for multimodal data fusion and disease association discovery in
oncology data.151 Quantifying patterns across 17,355 H&E-stained
slides from 28 cancer types through deep learning accurately
classified cancer types and correlated learned features with
numerous recurrent genetic aberrations across considered cancer
types.152 In the following, we build on the idea of training and
sharing a base pathology foundation model that can be adapted
for research, clinical, laboratory, and educational use cases in DP.
Qualitative Image Analysis

A trained foundation AI model can be adapted for various pa-
thology image analysis tasks. The adaptation may not require any
annotated data (zero-shot learning) or may require only a handful
of samples (few-shot learning). Examples include the following:
(1) separating the different types of cells in an image and identi-
fying the regions of interest, (2) identifying and counting the
number of cells in a given image, (3) categorizing cells into
11
different types based on their appearance and features, (4) iden-
tifying the presence and extent of cancerous tissue in an image, (5)
assessing the severity and extent of a disease by grading and
staging tissue samples, (6) measuring the number of specific
proteins or molecules in a tissue sample to determine their po-
tential as biomarkers for disease, (7) predicting the likelihood of
disease progression or patient outcome based on the analysis of
tissue samples, or (8) immunohistochemistry scoring.

Apart from adapting the base pathology foundation model to
various imaging tasks, we can use the same model for analyzing
different types of stains, images from different scanners, and noisy
slides containing different artifacts. Foundation models can
leverage the multisite cytology data (cervix, kidney, breast, lung,
thyroid, bladder, bone marrow, skin, and others) to perform
various downstream tasks such as malignant cell classification,
slide-level stratification, cell location in cytologic smears, and cell
component identification.153

Going one step further, the image analysis performed by the AI
can be internally fed to the generative AI, allowing pathology
report generation directly from the image.154,155 Some sample
pathology reports generated using ChatGPT (March 14 update) are
presented in Figure 5AeC. These reports were generated by text
prompt only without providing any image to ChatGPT as it cannot
process image data.

AI supported by large models can reduce pathologists’ work-
load and interrater variability while improving the quality and
consistency of pathology reports.148 The image analysis and report
generation pipeline can serve as the “first pair of eyes” and
potentially help pathology laboratories with workload and



Figure 5.
Three different pathology biopsy reports generated by ChatGPT are presented in (AeC). The AI was prompted using the following text: “Generate a sample pathology report for
[organ name].” The right bottom image (D) represents a lay-person description of the pathology report generated by ChatGPT using the pathology report presented in (C).
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staffing shortages. AI model adaptation and fine tuning allow it to
learn from its mistakes and update itself under the guidance of the
pathologist(s). Thus, promoting the AI from just a data processing
pipeline to an assistant whowill, over time, learn to help the users
perform their tasks efficiently.
Image Synthesis, Denoising, and Virtual Staining

Publicly available generative AI has yet to show plausible pa-
thology image-generation capabilities. It has been recently shown
that, despite being state of the art at the time of assessment, the
12
text-guided diffusionmodel (GUIDE) lacked a good depiction of the
style and contents of medical images.156 However, we argue that
there is enough pathology image data in the public domain to train
pathology image-generation models using GUIDE, Stable Diffusion,
or Dall-E 2, as the starting point. A well-trained pathology image-
generation AI can address various research and clinical challenges
including the following: (1) denoising digitized slides to remove
noise and artifacts and normalize the image to a standard color and
tone, effectivelymaking the task of image analysis pipeline easy and
less prone to error; (2) virtual staining e generating images with
different staining techniques without requiring additional physical
samples, helping pathologists compare and contrast the effects of
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various stains and facilitate more accurate diagnoses32; (3) super-
resolution imaging e using AI synthesis techniques to generate
super-resolution images from low-quality and noisy digital slides,
aiding pathologists in examining fine details and structures that
may not be visible in the original images due to noisy or erroneous
digitization process5; (4) simulating disease progression e gener-
ating images simulating the progression or regression of pathologic
conditions, thus providing pathologistswith a better understanding
of disease evolution and enabling more informed treatment plan-
ning; (5) education and training e creating diverse and realistic
examples for educational purposes, thus helping trainee patholo-
gists gain experience in diagnosing a wide range of conditions and
improving their diagnostic skills without relying on actual patient
samples157; and (6) synthesizing images to study the effects of
various factors on disease presentation, such as genetic mutations,
environmental factors, or treatment options, thus contributing to a
better understanding of disease mechanisms and the development
of more effective therapies.
Detecting Zebras (New Disease Identification)

Foundation models can be adapted to identify deviations from
the norm, which may indicate potential anomalies, such as
abnormal cell structures, lesions, or other abnormalities. Anomaly
detection of finding zebras goes beyond regular tasks of identi-
fying disease subtypes or grading. This use case aims to identify
and report patterns never seen in the training data to improve the
accuracy and efficiency of identifying unusual or unexpected
events. Transformer-basedmodels can learn to directly predict the
bulk RNA-seq from WSI and simultaneously output the WSI rep-
resentation.22 Such models can augment pathologists’ expertise
and provide more accurate and timely diagnoses.
Patient Engagement

Generative AI can help pathologists, who are the “doctor’s
doctor,” engage directly with the patients by bringing them to the
front line without additional time or resource commitment. Lan-
guage models can generate more approachable and accurate de-
scriptions and explanations of the pathologist’s findings for the
patients. Image-generation models can create annotated images to
depict the disease visually. In Figure 5D, we present the description
of a biopsy report generated by GPT-4. The text is aimed to explain
the pathology biopsy report (presented in Fig. 5C) to a nonmedical
person. In addition, they can educate the patient about the disease
entity just diagnosed by the pathologist and possible treatment
options.
Education and Training

Pathology education is currently powered and driven by virtual
and digital transformations and is swiftly adapting to the ad-
vancements offered by AI.157 Generative AI can retrieve and
integrate knowledge from various sources, such as textbooks, and
scientific articles, providing a comprehensive view of the state of
knowledge. Pathology-focused ChatGPT-like models can answer
pedagogic questions quickly, such as the definition of terms or
recent advancements reported in the literature.

Conversational AI, such as ChatGPT and its variants, can
solve higher-order reasoning questions. ChatGPT has the
comparative relational level of accuracy in pathology, as noted
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by the responses shown in Figure 5. Hence, students and ac-
ademicians have the opportunity to adapt to this emerging
technology and use it for solving reasoning-type questions.
Further evolution of such conversational tools needs to be
critically analyzed by specialists, such as pathologists, for their
efficacy and acceptability.
Artificial Intelligence-Driven Standardization in Digital Pathology
Workflow

Foundation models and generative AI can help standardize DP
by addressing various aspects of the diagnostic process, such as
image acquisition, analysis, interpretation, and reporting.

1. Image preprocessing and normalization: AI models can correct
for inconsistencies in image acquisition, such as variations in
lighting, staining, and scanning parameters. By automatically
adjusting for these factors, AI can ensure that images are more
consistent and comparable across laboratories and scanners.

2. Automated feature extraction and quantification: AI-based
tools can extract and quantify relevant features in images in
a standardized and reproducible manner. This can include cell
counting, morphologic measurements, and biomarker quanti-
fication, reducing the variability that may arise frommanual or
semiautomated methods. A human operator will need to
approve AI-generated features.

3. Computer-aided diagnosis: AI-driven algorithms can provide a
second reader opinion or decision support for pathologists,
reducing diagnostic variability and errors. By learning from
large datasets and incorporating best practices, AI can help
standardize the diagnostic process and improve the overall
quality of diagnoses.

4. Quality control: AI can help identify inconsistencies in staining
techniques, equipment, and reporting protocols, enabling
better standardization and quality assurance across labora-
tories. By monitoring and benchmarking these factors, AI can
improve the overall quality of DP services.

5. Patient timeline and synoptic reporting: AI models can process
and summarize the patient visits and interventions spread
over multiple time points in the form of patient timeline and
EMR summary of care. These models may also generate syn-
optic reports culled from the nonstructured data in the pa-
thology reports.

6. Reporting and data integration: AI-driven languagemodels can
assist in the standardized extraction of information from pa-
thology reports and facilitate the integration of this informa-
tion with other clinical and research data. The AI model can
also provide a degree of certainty to the diagnostic information
extracted from pathology reports.158 This can help improve the
consistency, certainty, and comprehensiveness of data avail-
able for decision making and research purposes.

7. Education and training: AI can create standardized training
materials and assessment tools for pathologists, ensuring that
they are educated and evaluated based on best practices and
the latest advancements in the field.

8. Interoperability and data sharing: AI can facilitate better
communication and collaboration among laboratories and
healthcare providers by providing a common platform for data
analysis, visualization, and decision support. The AI language
models can provide the translation of a pathology report be-
tween English and other languages for communication and
collaboration among pathologists in different regions of the
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world. This can contribute to standardizing workflows and
practices across the DP ecosystem.
Trustworthiness and Acceptability of Artificial Intelligence by
Pathologists

AI will not replace Pathologists but will help them in aug-
menting their tasks. Pathologists’ trust in AI-based technologies is
pivotal for successfully incorporating these tools into laboratory
practice. The main ingredients for developing such trust are the
validation of AI models before deployment in pathology labora-
tory workflow, performance monitoring after deployment, and
continuous interaction between pathologists and the developers
of the AI systems. The question of whether pathologists should
trust AI is complex. We have demonstrated AI’s potential to
revolutionize pathology in the near future through innovative
tools for helping in diagnosis, prognosis, and making accurate
predictions swiftly. Nevertheless, concerns persist about the reli-
ability and trustworthiness of AI, in part owing to the biases and
missingness in training datasets and the inability of algorithms to
tackle such limitations.

Additionally, AI models are vulnerable to adversarial examples
that can deceive the AI model to drastically change its output with
only a subtle change in the input.79,159 Groups, such as Trustworthy
Software Foundation160 in the United Kingdom and Coalition for
Health AI161 in the United States are addressing trust issues by
advocating for credible, fair, and transparent AI systems in health-
care. Trustworthy Software Foundation defined 5 facets of software
trustworthiness: safety, reliability, availability, resilience, and se-
curity.160 Coalition for Health AI has recently published a blueprint
for trustworthy AI implementation in healthcare and defined 7 key
elements of trustworthy AI in health care: useful, safe, accountable
and transparent, explainable and interpretable, fair, secure and
resilient, and privacy enhanced.162 Furthermore, Dorr et al163 pro-
posed to create a “Code of Conduct for AI in Health Care” that aims
to harmonize standards and ensure responsible AI usage. The po-
tential benefits, limitations, and risks of generative AI systems and
foundation models, such as GPT-4, have recently been highlighted,
emphasizing their cautious use in clinical settings.142 Rajpurkar and
Lungren164 presented the generalization checks for AI systems as
transparency, clinician-AI collaboration, and post-deployment
monitoring. Nakagawa et al165 introduced various challenges in
digitizing medical workflows, including data biases, privacy con-
cerns, and algorithm fragility, while emphasizing the need to
carefully consider AI’s impact onpathologists. AImodel cards are an
important documentation framework for understanding, sharing,
and improving ML models.166,167 We summarize the strategies that
may contribute to building the trust of pathologists in AI systems as
follows:

1. Developing transparent and explainable AI models: users, such
as practicing pathologists, should understand the basic func-
tionality of AI models and their reasoning or logic for a certain
decision, just like radiologists understand the core principles
that are used by CT scanners, MRI machines, or X-rays to
generate a certain type of images. Therefore, AI developers
need to prioritize the use of transparent and explainable
models that provide insights into their functionality and
decision-making process.

2. Fostering a collaborative AI development approach: equally
important is the engagement of pathologists in AI model
development and validation processes, encouraging valuable
feedback from both pathology and AI domain experts in AI
14
development and deployment. Collaborative efforts and
continuous feedback allow for performance improvement,
ensuring the long-term utility of the models.

3. Education and training: there is value in educating and training
medical professionals (practicing pathologists in this case) on
the topics related to AI model development and the potential
use of these technologies for solving various problems in
health care. We have developed a hands-on ML course for
medical professionals that aims to provide specialists such as
pathologists with a practical acquaintance of AI concepts.168

4. Validating AI models in clinical settings: before deploying AI
models in a clinical workflow, it is essential to perform rigorous
evaluation and validation in the clinical settings where the
model is intended to be used in a sandbox environment. This
rigorous assessment will help identify and fix modeling issues,
software bugs, and data and algorithm interoperability chal-
lenges. Such validation and evaluation processes will instill
users’ trust in AI models, assuring their suitability for real-
world implementation and sustained use.

5. Incorporating ethical considerations: during AI model devel-
opment, validation, and deployment, it is crucial to address
ethical considerations to ensure fairness and reduce bias in the
models’ decisions. Validating and reporting the model’s output
for various groups based on age, race, and gender should be
considered an essential part of model development and
deployment.166

Foundation models and generative AI have the potential to
transform DP, leading to faster and more accurate diagnoses,
improved patient outcomes, and a better understanding of disease
mechanisms, along with reducing workload for pathologists,
helping standardize laboratory workflow, and contributing to the
education and training. These powerful technologies will not
replace pathologists but augment and streamline their skill sets.
This review presented an overview of generative AI and founda-
tion models and their potential role in DP. We demonstrated how
AI as a field has grown from a narrow problem-solving technique
to a comprehensive tool for language understanding, image
analysis, data generation, question-answering, and conversation.
Finally, we presented our perspective on the future role of
generative AI and foundation models in DP and future use cases
where generative and conversational AI and foundation models
can have a transformative impact in DP. Adapting and integrating
generative foundation models in traditional diagnostic methods
can provide a more comprehensive and accurate assessment of
pathology specimens while enabling the development of
personalized treatments for patients. However, generative AI and
foundation models have associated challenges and limitations.
Further research and development efforts are needed to fully
realize the current AI wave’s potential to ensure their safe and
effective implementation in clinical practice.
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