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ABSTRACT Artificial intelligence and neuroscience have a long and intertwined history. Advancements in
neuroscience research have significantly influenced the development of artificial intelligence systems that
have the potential to retain knowledge akin to humans. Building upon foundational insights from
neuroscience and existing research in adversarial and continual learning fields, we introduce a novel
framework that comprises two key concepts: feature distillation and re-consolidation. The framework distills
continual learning (CL) robust features and rehearses them while learning the next task, aiming to replicate
the mammalian brain’s process of consolidating memories through rehearsing the distilled version of the
waking experiences. Furthermore, the proposed framework emulates the mammalian brain’s mechanism of
memory re-consolidation, where novel experiences influence the assimilation of previous experiences via
feature re-consolidation. This process incorporates the new understanding of the CL model after learning the
current task into the CL-robust samples of the previous task(s) to mitigate catastrophic forgetting. The
proposed framework, called Robust Rehearsal, circumvents the limitations of existing CL frameworks that
rely on the availability of pre-trained Oracle CL models to pre-distill CL-robustified datasets for training
subsequent CL models. We conducted extensive experiments on three datasets, CIFAR10, CIFAR100, and
real-world helicopter attitude datasets, demonstrating that CL models trained using Robust Rehearsal
outperform their counterparts’ baseline methods. In addition, we conducted a series of experiments to assess
the impact of changing memory sizes and the number of tasks, demonstrating that the baseline methods
employing robust rehearsal outperform other methods trained without robust rehearsal. Lastly, to shed light on
the existence of diverse features, we explore the effects of various optimization training objectives within the
realms of joint, continual, and adversarial learning on feature learning in deep neural networks. Our
findings indicate that the optimization objective dictates feature learning, which plays a vital role in model
performance. Such observation further emphasizes the importance of rehearsing the CL-robust samples in
alleviating catastrophic forgetting. In light of our experiments, closely following neuroscience insights can
contribute to developing CL approaches to mitigate the long-standing challenge of catastrophic forgetting.

INDEX TERMS Continual learning, neuroscience-inspired, brain-inspired, catastrophic forgetting, feature
distillation, feature re-consolidation, class-incremental learning, rehearsal-based learning strategies.
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I. INTRODUCTION

Continual Learning (CL), also referred to as incremental,
lifelong, or sequential learning, equips deep learning models
with the ability to accumulate and expand knowledge over
time, similar to humans [1], [2], [3]. Despite advancements
in CL methodologies, current approaches still suffer from a
phenomenon known as catastrophic forgetting or catas-
trophic interference [1], [4], which predominantly occurs
when the model trained on a sequence of tasks exhibits
degraded performance on the earlier tasks after learning a new
task [4], [5]. This challenge necessitates the development of
approaches that enable models to learn continuously without
compromising performance on previously learned tasks. Sev-
eral approaches have been proposed to mitigate catastrophic
forgetting in CL. Regularization-based approaches focus
on penalizing changes to the model’s weights or features
crucial for previous tasks. The intent is to maintain the
model’s proximity to its former states or representations,
thereby preserving existing knowledge while learning the
new task [6], [7], [8], [9], [10], [11]. Regularization
approaches face the critical challenge of maintaining an
equilibrium between the retention of acquired knowledge and
the plasticity to adapt to new tasks, a balance often resulting
in suboptimal performance in both aspects [5]. Dynamic
architecture-based approaches involve dynamically adding
or removing neurons, layers, or dedicated sub-networks,
aiming to increase the model’s capacity to learn new
tasks while preserving the existing layers or sub-networks
unchanged [12], [13], [14], [15], [16], [17], [18]. However,
such adaptability may lead to increased complexity and
challenges in maintaining architectural stability over time
[12]. Replay-based methods provide the model access to a
subset of previous data by storing them in the rehearsal or
replay memory [18]. Interleaving these previously stored
samples from the replay memory with the current mini-batch
enables the model to retain knowledge from earlier tasks
[19], [20], [21], [22], [23], [24], [25], [26]. However, a
challenge persists in determining the optimal selection and
quantity of old samples for rehearsal to achieve optimal
performance, thus complicating the effective management
of the replay memory [22]. Knowledge distillation-based
methods minimize the divergence between previous features
or representations used to solve previous tasks and the new
features or representations that emerge as the model learns
new tasks [7], [27], [28], [29], [30]. Dataset distillation-based
methods, motivated by the concept of dataset distillation as
introduced in [31], [32], [33], [34], [35], [36], and [37],
involve either pre-distilling the entire dataset or learning
retrievable memories for previous tasks, replayed while the
model learns new tasks. However, challenges emerge when
pre-distilling the entire dataset or static features from prior
tasks and then incorporating them into sequential learning
adversely affect the model’s performance. This issue arises
from the necessity to accommodate time-varying features for
prior tasks after the CL model assimilated the new task [38],
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[39]. To overcome such limitation, our previous work [39]
proposed using a pre-trained Oracle CL model for distilling a
CL-robustified dataset for each task, subsequently utilized for
training the final CL model. However, the assumptions about
the availability of a pre-trained CL model and pre-distilled
CL-robustified datasets restrict the practical feasibility of
the proposed method [39]. Robust feature distillation-based
methods aim to assess the impact of the features provided to
CL models during the training on the robustness and
catastrophic forgetting of the final trained CL model. In
our previous work, [40], we demonstrated that features hold
an equally pivotal role in both CL and adversarial
domains. Specifically, we demonstrated in [40] that the CL
models trained on adversarially-robust features exhibit a
superior ability to consistently maintain CL performance
under varying natural and adversarial noise, whereas the CL
models trained on non-robust features suffer performance
degradation [40], [41]. Furthermore, to facilitate the CL
model’s acquisition of adversarially robust features, the
authors in [42] incorporated adversarial training for each task.
The adversarial training improved the CL model’s robustness
and performance under various adversarial conditions [42],
further underscoring the vital role of available features in
influencing the CL model’s performance. Brain-inspired
methods draw inspiration from neuroscience, aiming to
emulate biological principles in computational techniques to
improve memory retention in CL models [43], [44], [45],
[46], [47]. Hybrid methods integrate diverse CL learning
strategies to capitalize on their strengths, thereby proposing
models that exhibit reduced susceptibility to catastrophic
forgetting [3].

This paper builds upon prior contributions to continual
learning and adversarial learning and incorporates a series
of crucial observations derived from neuroscience. Deep
learning models, especially neural networks, are designed
to autonomously learn features from raw input data without
differentiation, driven primarily by the objective of min-
imizing the loss function. As highlighted by the authors in
[48], input data comprises both robust and non-robust
features. Robust features encapsulate attributes specific to
individual classes, facilitating the model’s ability to make
robust classifications. In contrast, non-robust features are
distributed all across various classes and are characterized by
properties that enhance a model’s generalization capabilities,
albeit at the expense of model robustness [48]. A model
trained on a dataset comprising both robust and non-robust
features tends to prioritize learning non-robust features due
to their generalizability, which facilitates minimizing the loss
function at the expense of model robustness. In light of these
observations, the authors in [48] proposed a framework to
discern between the robustified and non-robustified versions
of the standard input dataset. The robustified version encap-
sulates robust features, while the non-robustified version
predominantly comprises non-robust features. Deep learning
models trained on the robustified version showed greater
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robustness to adversarial attacks than those trained on non-
robustified features [48]. These observations underscore
features’ pivotal influence in shaping the trained models’
overall characteristics. In a similar context, our prior work in
[40] extended such observations to the domain of CL, and
similar and consistent findings were observed [40],
illustrating that CL models trained on robust features
performed robustly under noisy and adversarial conditions,
in contrast to the CL models trained on non-robust features.

These works highlight the critical importance of the
features present in the input and extracted by the model,
impacting performance in both adversarial and continual
learning settings [40], [48]. Recently, we expanded the
adversarially-robust framework introduced in [48] to the con-
tinual learning setting by generating CL-robustified versions
of the input dataset using a pre-trained CL Oracle model.
This framework operates under a similar assumption to that
employed in [48], relying on the availability of a pre-trained
Oracle CL model for distilling the refined CL-robustified
dataset. Consistent with [48], our observations revealed that
the CL model trained on CL-robustified datasets suffered less
from catastrophic forgetting than counterparts trained on the
standard dataset. These observations in [39] underscore that
a CL model trained on a pre-distilled CL-robustified dataset
mitigates catastrophic forgetting, emphasizing the capacity of
CL-robustified features in mitigating catastrophic forgetting.

Although our prior research conducted in [39] underscores
the pivotal role of distilled CL-robustified features in CL
models, it is noteworthy that they introduced two practical
limitations: First, they assumed the availability of the
pre-trained Oracle CL model to use in the distillation of the
robustified CL features. Second, it presumed the existence of
pre-distilled CL-robust features used for training subsequent
CL models. These assumptions are impractical, as they entail
key preconditions: the use of a pre-trained Oracle model
to distill CL-robust features for subsequent CL models to
mitigate catastrophic forgetting.

To address the identified limitations, this paper intro-
duces feature distillation and re-consolidation inspired by
neuroscience to emphasize that replaying CL-distilled and
re-consolidated features is crucial for preserving previous
knowledge [43], [44], [46], [49]. The first neuroscience
inspiration relates to how the mammalian brain replays the
waking experience in the distilled and compressed form
(i.e., not in the original form and time scale) to perform
memory consolidation [50], [S1], [52], [53], [54], [55], [56].
Furthermore, It has been shown that the brain rehearses
past experiences during the post-learning, sleeping phase to
consolidate memories [57], [58], [59], [60], [61]. These
observations from neuroscience highlight the importance of
rehearsal-based strategies and replaying the distilled version
of the waking experiences [50]. Taking inspiration from
such observations, we introduce feature distillation to distill
CL-robustified features for memory samples, which are then
replayed during the learning of subsequent tasks using a
rehearsal-based strategy.
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Second, novel waking experiences have a pronounced
impact on previous experiences [49], [50], [62]. These obser-
vations emphasize the necessity to update the CL-robustified
features of previous tasks during the learning of the current
task to incorporate essential modifications and update the
relative understanding of earlier tasks. Therefore, to closely
replicate similar steps in CL, we introduce the feature re-
consolidation step to re-distill the features of the previous
tasks. In addition to drawing insights from neuroscience, fea-
ture re-consolidation has also been motivated by the cycling
method proposed in prior studies [63], [64] to enhance the
alignment of features of previous tasks after the model learns
the current task. The feature re-consolidation is performed for
prior tasks to re-distill the updated knowledge of previously
learned tasks [49], [50], [62] into the CL-robustified memory
samples.

Third, the mammalian brain does not reenact waking
experiences in their original form and instead replays them at
a significantly accelerated time scale [49], [65], [66], [67],
[68]. This observation underscores the importance of
replaying distilled or CL-robustified samples containing the
sparse CL-robustified features, see Figure 6, while learning
the following tasks.

In this paper, First, to shed light on the existence of diverse
features, we pose the research inquiry of whether various
training objectives, including multi-task learning, continual
learning, or adversarial learning, induce the model to uncover
diverse features. Second, we propose a neuroscience-inspired
framework that addresses the limitation identified in [39].
The framework approach consists of two neuroscience-
inspired modifications: First, feature distillation entails
the distillation of CL-robustified features pertinent to the
current task. Second, feature re-consolidation focuses on re-
distilling the CL-robustified features, thereby enabling the
incorporation of updated feature importance information for
previous tasks after the model learns the current task [49],
[65], [66], [67], [68]. The feature re-consolidation ensures
recalibration of CL-robust features associated with previous
tasks, thus accommodating the evolving dynamics of CL-
robust features [49], [50], [62]. The proposed framework is
based on a replay-based strategy called Robust Rehearsal.
Our experimental results demonstrate that CL models trained
using robust rehearsal outperform the CL baselines outlined
in [39] and obviate the necessity for a pre-trained Oracle CL
model and pre-distilled CL-robustified dataset. In addition,
we conducted a series of experiments across varying sizes of
the rehearsal memory to demonstrate the efficacy of the
feature distillation and re-consolidation steps in mitigating
catastrophic forgetting compared to a naive rehearsal-based
CL strategy.

The main contributions of this paper are as follows:

» Taking inspiration from the working principles of
the brain, we introduce a novel framework called
“Robust Rehearsal.” This framework initially distills
CL-robust features and then performs re-distillation and
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re-consolidation to assimilate revised interpretations of
prior task knowledge. Our extensive experiments show
that robust rehearsal is crucial in reducing catastrophic
forgetting, outperforming baseline methods trained
without robust rehearsal.

« We extended upon our prior work in [39] by introducing
three levels of distillation loss: input, feature, and
prediction space. The input component of the loss is
inspired by neuroscience findings that novel waking
experiences influence previous experiences [49], [50],
[62]. The proposed distillation aims to align the distilled
CL-robust samples visually more closely with the
original class’s feature [49], [50], [62]. Interestingly,
the resulting distilled CL-robust samples exhibit char-
acteristics reminiscent of human dream imagery. These
observations draw parallels with the phenomenon in
the biological brain, where waking experiences are
recapitulated in a distilled form and at an accelerated
timescale for memory consolidation.

« The proposed distillation loss, consisting of feature dis-
tillation and re-consolidation, mitigates the limitations
of previous frameworks that relied on pre-trained Oracle
CL models and pre-distilled robustified datasets for CL.

« The proposed approach aligns with existing rehearsal-
based CL approaches and can readily enhance their
performance on standard CL tasks.

« Lastly, we empirically demonstrated the impact of dif-
ferent training objectives, including joint, continual, and
adversarial learning, on discovering diverse features.
The findings lead to the insightful conclusion that
optimization objectives play a substantial role in gov-
erning the feature learning process within deep learning
models, underscoring the importance of optimal feature
acquisition in various learning paradigms

The remainder of this paper is organized as follows:
Section II presents a review of related work. Section III
outlines the problem setup and motivation, with compre-
hensive details on feature distillation and re-consolidation
losses. Section 111 also provides details on the proposed robust
rehearsal and the experimental setup. Section IV-B presents
results and discussion. Section IV-C highlights the limitations
of the proposed methodology and proposes potential avenues
for future research. Finally, Section V summarizes key
findings and concludes the paper.

Il. RELATED WORK

Existing CL approaches can be roughly divided into the
following categories: 1) regularization-based approaches,
2) architecture-based approaches, 3) rehearsal-based
approaches, 4) knowledge distillation-based approaches,
5) dataset distillation-based approaches, 6) feature distillation-
based approaches, 7) Brain-inspired approaches and
8) Hybrid approaches. Regularization-based approaches
deter updates to weights or parameters vital to the
performance of the already learned tasks by incorporating
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an additional regularization term into the model’s loss
function [6], [7], [8], [9], [10], [11], [69]. The regularization
term restricts the updates (or plasticity) of parameters
crucial for old tasks to ensure that the model’s weights or
features remain proximal to their former states or
representations, thereby conserving knowledge of old tasks as
the model learns new tasks [9]. Dynamic architecture-based
approaches dynamically expand the network or use masks to
activate a sub-network or selectively connect sub-networks
in the existing architecture to adapt to new tasks [12], [13],
[14], [15], [16], [17], [18]. More specifically, these methods
expand the network by incorporating task-specific sub-
networks, each with its unique set of parameters, for every
new task [14], [70], [71], [72], [73], [74], [75]. Rehearsal-
based approaches predominantly leverage a rehearsal buffer
or reply memory to preserve a subset of data samples from
previously learned tasks, either stored and replayed in their
original raw form or replayed in the pseudo-generated form
(18], [19], [20], [21], [22], [23], [24], [25], [26], [44], [64],
[76], [77], [78], [79], and [80]. The buffered or rehearsal
samples are then interleaved with the current task data,
providing the model limited access to the previous task data
while learning new tasks. The introduction of additional
distillation penalties further enhances the rehearsal-based
approaches [19], [23], [27], [81], [82], [83], resulting in
state-of-the-art performance across various benchmark
datasets [2], [84]. Knowledge distillation-based approaches
aim to minimize the divergence from representations of the
previous model while effectively adapting to new tasks [7],
[27], [28]. These approaches integrate the principles of
knowledge distillation, initially introduced in [85] and [86],
which involves the transfer of knowledge from a large model
to a smaller, deployable and more efficient model while
maintaining its performance closely aligned with that of
the large model. In the context of CL, the previous task’s
model, at # - 1, is retained and leveraged to distill essential
feature knowledge of past tasks, which is subsequently
incorporated into the current model’s learning process, at time
t, to ensure retention of previous knowledge while learning
the new task. Brain-inspired approaches draw inspiration
from neuroscience, particularly from the observation that the
biological brain rehearses only the most crucial aspects of
pre-sleep experiences in dreams to consolidate memory [49].
Additionally, the rehearsal of waking experiences occurs in
intermittent bursts, not in the original form, and on a faster
timescale than the original experience, in brain [49], [53],
[54], [56], [65], [87]. The CL approaches, inspired by
neuroscience, strive to closely translate the insights from
the understanding of the biological brain into practical
strategies to mitigate catastrophic forgetting [43], [44], [45],
[46], [47], [88], [89], [90], [91], [92], [93], [94]. The
authors in [95] introduced a universal sleep decoder to align
neural representations between wakefulness and sleep. The
authors in [96] drew inspiration from the hippocampus’s
role in the human brain, notably its function in transitioning
short-term memory to long-term memory, to implement
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Artificial Hippocampi for lifelong learning. The authors in
[97] emphasized replay-based echoing biological memory
mechanisms, while the biological brain engages in selective
memory retention of salient experiences, and introduced a
framework that combines associative memory with replay-
based strategies, thereby bringing CL closer to human
memory processes. The authors in [98] drew inspiration
from biological nervous system mechanisms, introducing
time-aware regularization to dynamically fine-tune the
generator for synthesizing pseudo-data points of previously
learned tasks, which are subsequently replayed alongside
new tasks during concurrent training. Dataset distillation-
based approaches, motivated by the concept of dataset
distillation as introduced in [31], [32], [33], [34], [35], [36],
and [37], involve the distillation of knowledge from large
datasets into a reduced number of synthesized samples, such
that the same model, trained on the original large dataset
and its distilled version, achieves comparable performance.
In the context of CL, such approaches based on dataset
distillation involve either pre-distilling the entire dataset or
learning retrievable memories for previous tasks, which are
subsequently replayed during the model’s adaptation to
new tasks [38], [39], [99]. Specifically, the approach
described in [38] involved learning a set of bases shared
across various classes, referred to as memories. These shared
memories are then combined through learned functions to
generate synthesized replay samples for previously learned
tasks while the model learns a new task. However, it has
been empirically observed that the pre-distillation of the
entire dataset or freezing of features from prior tasks,
and their incorporation into sequential learning, adversely
affect the model’s performance [38], [39]. This limitation
emerges due to the sequential nature of learning in CL
models, which necessitates the dynamic adjustment of the
relevance of previously acquired features for earlier tasks
during incremental learning. To mitigate this challenge,
our study presented in [39] employs pre-trained Oracle
CL models specific to each task to construct a CL-robust
dataset for each corresponding task. Subsequently, the
refined CL-robust dataset was employed to train future
CL models. Nonetheless, the presupposition regarding the
availability of both the pre-trained Oracle model and the
pre-distilled CL-robust dataset when training final CL
models constrains the practical applicability of the proposed
methodology [39]. Recently, Robust Feature Distillation
approaches motivated by dataset distillation aim to assess
the impact of the features provided to CL models on the
robustness and catastrophic forgetting of CL models. It has
been demonstrated that features play a pivotal role in both
the CL and adversarial domains [40], [48]. Specifically, as
shown in [40], CL models trained on adversarially-robust
features exhibit a superior ability to maintain consistent
CL performance under adversarial conditions, whereas CL
models trained on non-robust features suffer performance
degradation [40], [41]. To facilitate the CL model’s effective
acquisition of adversarially robust features, the authors
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in [42] incorporated adversarial training for each task. The
adversarial training led to a notable enhancement in the CL
model’s robustness and performance across a spectrum of
adversarial conditions [42], which emphasized the crucial
role played by the available features in influencing the
performance of the CL model. Hybrid approaches combine
and aim to leverage the strengths of different learning
strategies to propose the CL model that suffers less from
catastrophic forgetting [3], [100], [101].

11l. CONTINUAL LEARNING FORMULATION

A. CL-ROBUST FEATURES

In this paper, we focus on a rehearsal-based CL strategy
and distill CL-robust features to construct a robust rehearsal
memory, eliminating the need for reliance on an Oracle CL
model [39]. Following [48], we define a time-varying feature
to be a function mapping from the input space X; at the
time ¢ to the real numbers, with the set of all features, thus
being F; = {fi : X; = R}. Input-label pairs (x;,y:) BX;
x {+1} are sampled from a data distribution D; at time or
task ¢. For convenience, we assume that the features in

F: are zero-mean and unit-variance, i.e., E(x,y yap [ft(x¢)] =

0 and E(x, y,yap, [fi(x:)*] = 1, for all ¢.

1) p-USEFUL FEATURES
A feature at a given time or task ¢ is called p;-useful (where p;
> 0) if it correlates with the true label in expectation, that is,

B yiyep, efi(xe)] 2 pr, (1)

2) y-ROBUST FEATURES

Suppose we have a feature f; that is ps-useful at task 7. We
refer to feature f; as a CL-robust feature (formally a y;-
robustly useful feature fory; > 0)if, under continual learning
conditions, f; remains a y;-robustly useful for tasks (r - 1),
with 0 < t < ¢. Formally, if we have that

E(xl—t,yt—t)Dz—r [yt‘T 'ﬁ(xl“l')] 2 y,Bt=0,---,-1,
)

where @ denotes “for all”. Equation (2) states that the CL
model at time ¢ retains knowledge of previous tasks. The next
section provides a formal definition for distilling CL-robust
features.

B. CL-ROBUST (CLR) FEATURE DISTILLATION

The fundamental premise of our proposed framework posits
the existence of CL-robust features as useful signals for
CL without forgetting. We provide empirical evidence by
distilling the CL-robust features to substantiate this
hypothesis. Within our formal framework and a given CL
model at task ¢, our objective is to construct CL-robust

samples for each class c at task 7, denoted as xtel by solving
I, ¢

the below optimization problem. To describe ths distillation
process, let fp , represent the CL model at task 7. Let x[tc]
denote a sample of the ¢ class for which the corresponding
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FIGURE 1. Diagram illustrating the CLR feature distillation. Source x and target xlel
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samples are fed through the
h residual

block of ResNet, respectively. The distillation loss is calculated in the |nputt feature, tand prediction spaces The
L, normis calculated between source x and target x[ in the input space. The L , norm among the i it
corresponding feature tensors of x and x[C], ie., 1‘9i (x) and fai (xlc]), are calculated. The L, norm between the logit

t
vectors of x and x[C], i.e., fg (x) and fy (x[c]), is computed in the prediction space. The computed losses in the

input, feature, and prediction spaces define the total accumulated loss. The accumulated loss is minimized with
respect to x, i.e., the gradients are back-propagated only to x. Through the optimization, the x is robustified into

L
clr

CL-robust sample,x robustifie

[c]

clr (i, x =

CL-robust sample is being constructed using f We refer to
)g[c] as the target sample. We construct the CL- robust sample
as follows.

[c]

clr,t

(©)

where L is the distillation loss to be defined in the sequel.
Let xo be the initial starting point in optimization (3),
referred to as the source sample. xo is randomly sampled
from the current dataset with a class label distinct from
the target class x,[c]. Intuitively, the distillation process
(continuously) moves the source sample to the target sample
with the objective of acquiring a robust sample. This robust
sample exhibits proximity to the target sample in the feature
space, sharing the same class while retaining a seed from
the source sample, which may emanate from a historical
dataset in the memory - specifically, a preceding dataset.
Consequently, This distillation process produces a somewhat
surreal sample characterized by a seed rooted in the past yet
adeptly preserving the salient features of the current target
sample. This engendered robust sample will subsequently be
conveyed to the next stage in the memory pipeline, denoted
as the robust memory.

We provide further details on the distillation loss L, as
outlined in Eq. (3), which comprises of three terms, Li, Lt,
and Lp i.e, L = Li+ Lf+ Lp. These terms represent

x'%1 = argmin L(x; x[,c],fe,),
X

VOLUME 12, 2024

, which not only encapsulates the knowledge of fe across the input, feature, and prediction spaces, into the

c[ﬁ,]) but it also has similar features to x[¢],

the distillation losses in the input, feature, and prediction
spaces, respectively. The initial term, denoted as L;, utilizes
the L, norm to ensure proximity of the CL-robust sample to
the target x!'in the input space, adhering to the Euclidean
distance metric.

Li(x;x[tc]) = oflx - xt[c]%, 4

where a > 0 represents the strength of the regularization.
The second term, denoted as Ly, characterizes the distillation
process within the feature space by ensuring the proximity
of all features of the CL-robust sample to the features of the
target sample, measured in the L, norm sense, i.e.,
n
L xt) = BER - 1B, )
i=1
where n is the number of the feature tensors of the CL model f3,
LS gs the i feature tensor of fp,, and B; > 0 is a scaling
factor for feature tensor i. The last term, Ly, in the distillation
loss L, performs the distillation within the prediction space
as follows:

Lp (s x i) = v, (0) - fo,xENe2, (6)

where fj, (x) represents the logit of sample x, andy > 0 is
a scaling factor. Figure 1 depicts a diagram detailing all
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FIGURE 2. Sub-figure (a) and (i) display the source x and target xlel samples for the cth
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@kh

class, i.e., c=airplane,

respectively. Sub-figures (b) to (h) illustrate the visual representation of the distillation process for the CL-robust
samples pertaining to the airplane class over 30,000 epochs. Sub-figure (h) presents the final CL-robust samples for the
airplane class, which are characterized by dream-like minimal representations of the airplane class.

three types of distillation losses. Note that the model fj, is
not a one-to-one mapping; the distillation loss identifies a
sample that transforms the source x, into a sample within
the vicinity of x,[c], differing from it but possessing analogous
features and logit (or class). Figure 2 illustrates the feature
distillation process for the airplane class over 30, 000 epochs,
while Algorithm 1 presents the pseudocodes outlining the
CL-robust feature distillation process.

CL-robust feature distillation occurs post-training, aiming
to distill resilient features tailored to each class. These
features are intended for utilization in memory during
the subsequent task-learning phase. Figure 4 depicts the
schematic of the proposed method, illustrating that robust
feature distillation is performed after the completion of each
task and prior to the learning of the next task. Algorithm 1
present the pseudocode for distilling the CL-robust
samples.

C. CL-ROBUST FEATURE RE-CONSOLIDATION

Recall that we are using a rehearsal-based CL approach.
We perform CL-robust feature distillation (post-training) for
the current samples x;. The memory of the model consistently
comprises original samples and their corresponding CL-
robust samples. On the other hand, feature re-consolidation is
performed for the samples within the memory. Feature
re-consolidation is basically feature distillation of the sam-
ples in the memory where, for each target sample x[c] the
source xo is chosen to be CL- robust sample memory xI
[c] re- consohdat$

clrt 1°

ie., xCr Xerr, . Figure 3 depicts the re-
consohdated CL-robust samples for the airplane class, while
Algorithm 1 outlines the pseudocodes for CL-robust feature
re-consolidation. Moreover, Figures 8, 9, and 10 present
CL-robust samples characterized by dream-like abstract
features [49], [56], [57], [58]. Notably, the CL-robust samples
display characteristics akin to human dream imagery. These
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Algorithm 1 Feature Distillation
Require: fo,x,x!), a,B,v,n

Inputs:
fo,: trained CL model parameterized by 6 at task .
x: source sample (initial, i.e., x,)
x: target sample of ¢ class
a, B, v : regularization coefficients.
n: learning rate for stochastic gradient descent (SGD).
Ensure: xE?l ‘ Output: CL-robust sample
1: forsteps= 1toS do S optimization steps
2: Li ¢ abr - xe} Input space
Feed the x and x,[c] through fp, to obtain their respective
features tegsors and logits.

3; Le € = BB (x) - fet(x;c])l2 @ Feature space

4: Lp €& vBf(x)- fo (x, )l2 @ Prediction space

5 L& Li+ Le+ Lp Accumulated loss

6: x & SGD(x;fs,,n) SGD step over x until s > S
(i.e,x=x+ nlyl)

7 end for i

8 X clrt é x @ x _ro_blls_tl_ﬁg xc[lcj,t

observations parallel the phenomenon wherein the biological
brain recapitulates waking experiences in a distilled form and
at an accelerated timescale for memory consolidation [49],
[56], [57], [58]. These neuroscientific insights endorse the
rehearsal of the CL-robust samples, which facilitates the
CL model’s retention of knowledge from previously learned
classes through the recollection and rehearsal of class
abstractions with minimal details.

D. ASTEP-BY-STEP BREAKDOWN OF THE PROPOSED
APPROACH

For enhanced understanding, consider a rehearsal-based CL
model that learns 9 tasks sequentially, where the initial task
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FIGURE 3. Task-wise, CL-robust memory samples are presented for airplane class. Sub-figure (a) presents the
original airplane images presented to the CL model during the first tasks at time t = 1. Sub-figures (b) to

(i) depict the CL-robust samples of the airplane class distilled after completing each subsequent task in the
nine tasks configuration.
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FIGURE 4. Schematic diagram of the proposed CL-robust rehearsal. (a) The model starts learning the first task, which encompasses two
classes (airplane and car). The robust rehearsal memory, Mg ¢ =g, is initially empty at t = 0. The initial model, fet o attime t = O, is trained
to obtain an optimal model, f' , for the first task att = 1. (b) For each class in taskt = 1, X, lc] samples are chosen, and x samples are

randomly drawn from D¢ -1 W|th class label distinct than c. Next, the feature distillation is conducted using fe to construct the CL-robust
t=

and M [c] for each class at task t = 1, form the CL-robust memory M tel .

, are interleaved with the mini-b¥ctes of
=1a'c the task t = 2. (d) Similarly, the steps
discussed in (a) are utilized to perform feature distillation for each class in tIﬁe second taskta‘tzt = 2 using the fe

samples and stored in M¢|, t=1. Collectively, M (el
(c) During the learning of the second task, samplecérffoﬂn the roblist rehearsal memory, M

the second task. After learning the second task at the t = 2, the CL model f' becomes f 't
, while feature

re-consolidation is performed for each previously learned class in memory. The feature re-consolidation of the dZfobust memory samples
] _re-consolidated _ [c]

[c] [c] [c]  _re-consolidat
results in the updating the CL-robust memory samples from time t = 1, Xcirt=1’ into x clr,t=2" i.e., X =1 cIr t=2 for each
previous class. The newly re-consolidated CL-robust samples, x [l , supersede the previous samples, X(Eh! ‘= for each cth ,inthe Mg =2

clr,t=2"
and are rehearsed during the learning of the subsequent task. (e) ‘As the CL model engages in learning the subsequent task, samples from
the robust rehearsal memory are interleaved with those of the subsequent task. Following the completion of subsequent tasks, feature
distillation and re-consolidation are similarly performed.

involves two classes and each subsequent task introduces
one additional class in a class incremental learning setting.
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Figure 4 presents the schematic diagram of the proposed
example.
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Algorithm 2 Robust Rehearsal
Require: D/, Mg, fo _,Q

o Inputs:
D;: dataset for task ¢
Mg, : CL-robust memory at task ¢
fo,, - CL model parameterized by 8 trained on previous
task £ - 1
a: learning rate
Ensure: fe Output the trained CL model jg
1: for B; &1 D, do B; is a mini-batch sampled from D 2:
Br & MemoryRetrieval(Mg,;) B Br is from Mg, 3:
8 < SGD(8; B; @ Bgr, a) SGD step over 0

4: end for B fp, , ~onversed

1) LEARNING TASK 1

The initial task encompasses two classes, i.e., airplane and
car, presented to a rehearsal-based CL model at task or time ¢
= 1. The CL model learns the first task, resulting in f t=l s
representing the trained CL model for the initial task. The
robust rehearsal memory, Mg, at ¢ = 0, is empty.

2) FEATURE DISTILLATION OF TASK 1

Before proceeding to the next task, choose a subset of
samples for each class in the current task and perform feature
distillation to generate their respective CL-robust samples.
The aggregated set of distilled CL-robust samples, collec-
tively represented as xcir,r=1, Will constitute the CL-robust
memory Mecir,s=1. The robust rehearsal memory Mg ;=1 is
the combination of M| and the classical memory, which
comprises the original samples, i.e., MR = M Mcir.
Algorithm 1 provides the pseudocode of feature distillation.

3) LEARNING TASK 2

As in a rehearsal-based CL approach, the model advances to
learn the second task using the current dataset at ¢ = 2, D2,
along with the robust memory Mg, ;=1 produced atf = 1.In
this example, D2 contains samples from the bird class. After
learning the second task, the CL model parameters update
from fy _ tof@_,.

4) FEATURE DISTILLATION OF TASK 2

At the end of training task 2, we select a subset of bird
samples and perform feature distillation to obtain CL-robust
bird samples. Before defining the robust memory at ¢ = 2,
we need to perform a re-consolidation of the car and airplane
memory samples.

5) FEATURE RE-CONSOLIDATION AT TASK 2

Feature re-consolidation is performed for the memory sam-
ples, i.e., cars and airplanes, by distilling each sample such
that each target starts with a seed equal to its corresponding
CL-robust sample. Finally, the robust memory at ¢ =
2 consists of original birds, distilled birds, original cars
and airplanes, and re-consolidated cars and airplanes, i.e.,
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_ ird ird car car airplane
MR,'t:12 - Mz‘:ZNPclr,t:ZMt:lMclr,t=2M t=1
M 5P . Algorithm 1 outlines the steps involved in the re-

consolidation process. Figures 6 and 3 display the CL-robust
samples for the airplane class throughout the nine learning
tasks.

6) LEARNING THE NEXT TASKS SEQUENTIALLY

After learning each task, feature distillation of current
samples, followed by memory re-consolidation, is con-
ducted. Figure 4 provides a schematic diagram of the
proposed framework, which delineates the feature distil-
lation and re-consolidation performed after learning each
task.

IV. EXPERIMENTAL RESULTS

This section describes the experimental setup, benchmark
datasets employed, the CL protocols implemented, the base-
line approaches utilized, the training details, the evaluation
methodology, results and discussion, and concludes by
providing the limitations of the proposed robust rehearsal.
Our observations indicate that baseline approaches aug-
mented with robust rehearsal outperformed their counter-
parts not employing robust rehearsal on three benchmark
datasets.

A. EXPERIMENTAL SETUP
1) DATASETS

We employed benchmark datasets, split CIFAR10 and
split CIFAR100, in conjunction with a real-world split
Helicopter Attitude dataset provided by the Federal Aviation
Administration (FAA) [1], [38], [102], [102], [103], [104].
CIFARI10 is a complex dataset comprising ten distinct
classes, each encompassing 6,000 images, of which 5000 are
used as the training set while the remaining 1,000 are
used for the test set [102]. CIFAR100, on the other hand,
encompasses 100 classes, each consisting of 600 images, of
which 500 were reserved for training, while the remain-ing
100 were utilized for testing [102]. The Helicopter
Attitude dataset, characterized as a highly complex real-
world dataset [103], [104], consists of video frames sourced
from the camera mounted within the cockpit of a Sikorsky
S-76 helicopter. These frames capture the external view
through the windshield of the S-76 during ten different
flights, accumulating a total flight duration of approximately
seven hours. The primary objective is incremental learning
of helicopter attitude prediction, utilizing the pitch and roll
angle values. The ground truth values of pitch and roll
angles for each frame were obtained from the helicopter’s
in-flight data recorder. To adapt the attitude prediction task
into the classification framework, a predefined threshold (o)
was employed on the pitch and roll values to define nine
different bins representing mutually exclusive nine discrete
classes of helicopter attitude [103], [104]. Table 1 provides
the individual attitude classes, while Figure 5 illustrates a
representative sample of each attitude class. Each of the nine
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TABLE 1. A threshold value, denoted by a = 3, is applied to Flight Data

Recorder (FDR) metrics for pitch and roll, establishing nine mutually
exclusive discrete attitude classes. Abbreviations used: NU - nose up,
ND - nose down, RP - roll positive; RN - roll negative, and L - level or

steady-state.

Class | Description Pitch (P) Roll (R)
] NU P>« —a“<R<+a
1 ND P < —a —a <R < 4o
2 RP —a <P < 4a R>a
3 RN o <P < ta < —a
4 NU & RP P>« K>«
5 NU & RN P>« R< —a
6 ND & RP P < —a R>a
7 ND & RN P < —a R< —a
g L —a<FP<+a | —a<R< ta

FIGURE 5. Helicopter attitude dataset: Sample images for nine different
classes. Class labels (C;), as defined in Table 1, are given in the lower
right corner of each image.

TABLE 2. Datasets statistics.

Dratasct CIFARILD CIFAR100  Helicopter
Attitude

lnput size AX32%32  3x32x32  3x128x128

# Classes 10 100 9

# Training samples per class 4500 450 20, D0V

# Validation samples per class 300 20 2, 300

# Testing samples per class 1000 100 2, 300

attitude classes comprised 25,000 images, of which 20,000
images per class were dedicated to the training and 2,500
for validation, while the remaining 2,500 images per class
were designated for the testing set. Table 2 summarizes the
characteristics of all three datasets.

2) PROTOCOLS

We followed the well-established class-incremental learning
(CIL) framework to partition the datasets into multiple tasks
or steps [1], [105]. The CIL is considered one of the
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most challenging protocols in CL, as it effectively emulates
real-world scenarios, where the model learns sequentially
from streaming tasks without prior knowledge of task
identification [105], [106]. Following the CIL protocol, the
CIFAR10 was divided into nine, five, and two tasks or steps,
while the Helicopter Attitude dataset was divided into eight,
five, each with a fixed memory size of 1024 exemplars [78],
[103]. For CIFAR100, we utilized two well-established CIL
protocols: (1) BO (base 0) [19], where the model is trained
over 5, 10, and 20 steps, introducing 20, 10, and 5 new
classes at each step, respectively, while maintaining a fixed
memory size of 2,000 exemplars; and (2) B50 (base 50)
[107], in which the model is initially trained on 50 classes,
followed by sequential learning of the remaining 50 classes,
introduced in increments of 5 and 10 classes per step,
while the memory size remains fixed at 20 exemplars per
class.

3) BASELINE MODELS

Initially, we assessed the performance of the robust rehearsal
using the same baseline approaches as outlined in [39],
which included: 1) A standard replay-based strategy, which
stores and rehearses the subset of data from previous tasks
during the learning of subsequent tasks [20]; 2) Dynam-
ically Expanding Representation (DER) that increases the
network capacity to accommodate new tasks while preserving
previously acquired representations [30]; 3) Pooled Outputs
Distillation (PODNet), applying spatial distillation loss to
maintain consistent representations across sequential tasks,
thus mitigating substantial shifts in feature representa-
tion [29]; 4) A simple fine-tuning without integrating specific
techniques for retaining knowledge of the previous tasks,
serving as the lower bound performance benchmark for CL
models; and 5) a multi-task or joint learning model, which
concurrently learns all tasks to attain the highest performance
and serve as the upper-bound performance benchmark. The
proposed robust rehearsal is based on a rehearsal-based
strategy and is compatible with a range of CL approaches.
To demonstrate its practical versatility, we broadened our
baselines to incorporate additional CL approaches, partic-
ularly for CIFAR100 and the Helicopter Attitude dataset.
The additional approaches are as follows: 1) Incremental
Classifier and Representation Learning (iCaRL) retaining
class-specific sample subsets for centroid approximation and
employing nearest class mean classifiers [19]; 2) Weight
Aligning (WA) using knowledge distillation for old class
discrimination and bias adjustment in the fully connected
layer without extra parameters [108]; 3) Feature boOSTing
and comprEssion for class-incRemental learning (FOSTER)
[109], combining dynamic architecture with distillation,
similar to the DER [30], for distilling both the preceding
and current networks into a single, consolidated model; and
lastly, 4) Bias Correction (BiC) [83] utilizing a bias correction
layer in the fully connected layer to effectively address biases
and imbalances between old and new classes through a linear
model.
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4) TRAINING DETAILS

We utilized the PyTorch framework [110] in conjunction
with the publicly available PyCIL codebase [111] for our
implementation. We employed standard residual network
architectures [112] with Xavier initialization [113]. For the
CIFAR-10 and CIFAR-100 datasets, we opted for ResNet-34,
while for the Helicopter Attitude dataset, we utilized ResNet-
50 architectures [112]. Across all experiments, a consistent
batch size of 256 was employed. All models were trained
using a stochastic gradient descent optimizer with an initial
learning rate of 0.01, a momentum of 0.9, and a learning
rate decay of 0.1. For classification loss, the standard
cross-entropy loss function is employed. The training epoch
for the initial task was set to 200 epochs, whereas it was set
to 128 for the following tasks. The standard data aug-
mentation, such as random cropping, brightness, and contrast
adjustment, was applied to the current task data and original
memory samples in the rehearsal memory [114], [115], while
the CL-robust samples residing in the rehearsal memory were
interleaved without undergoing data augmentation. Feature
distillation and re-consolidation were performed employing a
stochastic gradient descent optimizer, initialized with a
learning rate of 0.001 and momentum of 0.9, for over 30,000
iterations. Cosine annealing was used to reduce the learning
rate throughout the feature distillation and re-consolidation
using Algorithm 1. The other hyper-parameters specific to
each baseline were set to their default configurations, as
specified in their respective papers [19], [29], [30], [83],
[108], [109], and implemented in PyCIL [111] to ensure the
optimal performance of each baseline and to derive maximal
benefit from the integration of the robust rehearsal memory.

5) EVALUATION
We employ the widely used metric of average classification
accuracy (ACA) to quantify the performance of the CL
models [1], [19], [21], [23], [27], [78], which is calculated
by evaluating the final trained model on all the learned tasks.
Formally, the average classification accuracy can be defined
as:
XT

Rr7,i, 7N

ACA = l
T .
i=1

where R represents the accuracy, 7 is the total number of
tasks, and 7 represents the task index.

B. RESULTS AND DISCUSSION

Table 3 provides a comparative analysis of the performance
of baseline approaches utilizing robust rehearsal and their
counterparts not employing robust rehearsal across nine, five,
and two tasks on the CIFAR10 dataset. The approaches are
categorized into three categories: 1) the standard baseline
approaches, denoted without any suffix, were trained using
their respective proposed methodologies [19], [29], [30],
[83], [108], [109]; 2) the baseline approaches, denoted
with the CLR suffix, trained on the pre-distilled robustified
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TABLE 3. The comparative performance of CL approaches on the CIFAR10
dataset. The approaches are categorized into three categories:

(1) standard baselines (no suffix), representing methods trained using
their respective proposed strategies; (2) baselines with suffix CLR,
indicating approaches trained on the pre-distilled robustified version of
the dataset as per [39]; and (3) approaches with RR suffix, utilizing the
proposed robust rehearsal strategy. The robust rehearsal strategy, which
involves rehearsing the CL-robust sample during each task, consistently
improved accuracy across all three class incremental learning steps (9, 5,
and 2 steps) on the CIFAR10 dataset.

CL Method Split-CIFAR10
9 steps 5 steps 2 steps

Joint 94.8+0.61

Finc-lunc 11.11+0.68 18.54+0.71 453.314+1.6
Replay [20] 55.06 £1.90 62,18 £1.30 639 1097
Replay-CLR [39] 75.86 +1.20 78.29 +0.93 80,77 £1.09
Replay-RR 77.34 +1.43 8012 +1.39 84.11 +1.66
DER [30] 52.42 £1.50 65.65 £0.72 71.60 £0.94
DER-CIL.R [39] 70013 £1.10 81.74 £0.65 87.32 £0.90
DER-RR 72.3% +1.78 74.16 +0.97 83,92 +0.84
PODNet [29] 53,14 £1.20 50.62 £0.74 8009 £1.16
PODNci-CLR [39] 7271 £1.52 76,94 +£0.63 85,82 +£1.23
PODNci-RR 74,23 £0.76 77.88 +£0.89 84.54 £1.25

CIFAR10 [39]; and 3) robust rehearsal approaches, denoted
with the RR suffix, were trained utilizing the proposed robust
rehearsal strategy. As can be seen in Table 3, approaches
employing robust rehearsal surpassed the performance of
the standard baseline approaches, denoted without a suffix,
across nine, five, and two task configurations. Similarly, the
approaches based on robust rehearsal also exceeded the per-
formance of the CLR counterparts, which were trained on a
pre-distilled (using pre-trained Oracle model) CL-robustified
CIFAR10, as elaborated in [39]. The suboptimal performance

of the CLR approaches underscores the limitation in the trans-

ferability of pre-distilled features in the context of sequential
learning. On the other hand, the robust rehearsal approach
rectified this limitation inherent to the CLR approaches and
accommodated the time-varying nature of the CL-robust
features through feature re-consolidation [39]. Moreover,
as shown in Table 3, the robust rehearsal-based (i.e., Replay-
RR) leveraged feature distillation and re-consolidation to a
greater extent compared to approaches based on dynamic
architecture (e.g., DER-RR) or spatial distillation approaches
(e.g., PODNet-RR). A plausible explanation for this observa-
tion is that freezing the network architecture or the imposition

of additional regularizing terms may hinder the CL model’s
capacity to adapt to the time-varying CL-robust feature as
the model sequentially learns new tasks. In contrast, with
robust rehearsal, the re-distillation for CL-robust samples
accommodated for such time-varying features. Subsequently,
rehearsing the re-consolidated CL-robust samples reinforced
the CL model in maintaining focus on the CL-robust features
of previously learned classes, thereby preventing catastrophic

forgetting. Figures 6 and 3 present the CL-robust features.
We deduced that the imposition of any form of regularization,

either in the form of distillation or penalizing the model
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a) Specialized feature of the joint model

b) Specialized features of the CL model c) Specialized features of the adversarial model
FIGURE 6. Comparative visualization of the features of three models for the airplane class from the CIFAR10 dataset, trained via three
distinct training protocols: joint or multi-task learning fgy y CL model fg_, and adversarial training model f3 _ are presented in sub-figures
a), b) and c) respectively. For the continual learning mod’t\enl in sub-figure b), the first row presents airplane samples as they appear in the
initial task. The subsequent rows illustrate memory CL-robust samples for the airplane class obtained through feature re-consolidation as
the CL model learns each subsequent task. Conversely, in both joint and adversarial robust training protocols, the models learn the dataset
in one step (i.e., without sequential learning). Therefore, a random batch of images is utilized to conduct feature distillation for both joint
and adversarial robust models. Notably, the models trained under different training protocols learned distinct features for the same class.
This highlights that the training protocol and optimization objective highly guide learning the diverse features. Notably, the CL model, fy ,
features demonstrate the time-varying nature or change over the course of sequential learning. t

TABLE 4. The comparative performance of the CL approaches on the CIFAR100 dataset was evaluated using BO and B50 protocols. Under BO protocol, the
model undergoes training in 5 steps (with 20 new classes per step), 10 steps (with 10 new classes per step), and 20 steps (with five new classes per step)
with a consistent memory size of 2,000 exemplars. Conversely, the B50 involves initial training on 50 classes, followed by continual learning on the
remaining 50 classes in increments of 5 and 10 classes per step, maintaining a memory size of 20 exemplars per class. The approaches are divided

into (1) Standard Baselines (no suffix), using their respective proposed strategies, and (2) Approaches with RR suffix, employing the robust rehearsal
strategy.The approaches augmented with CL-robust sample rehearsal consistently improved the performance of the corresponding baseline models

trained without the integration of robust rehearsal.

CL Method Split-CIFAR100 B0 Split-CIFAR100 BS(
5 steps 10 steps 20 steps 5 steps L0 steps

Joint 84.45 £2.36

Fine-tunc 27.8 £2.29 22,4 +£1.91 195 +2.13 13.49 £1.98 11,34 £2.71
iCaR1. [19] 68.12 +£2.25 06.74 +£2.79 64.01+1.92 50,29 +2.32 50.82 +£1.82
iCaRL-RR 72.87 +1.34 73.66 +1.24 7091 +1.53 66.24 +£1.09 59.31 +1.37
PodNET [29] 69.54 +1.01 62.22 +1.27 57.65 +1.87 6739 +2.74 66.23 +1.59
POUNET-RR 77.51 £1.56 7204 +1.75 66.65 +2.22 75.87 +£2.056 74.89 +1.85
DER [30] 7256 £2.68 71.44 £1.89 70.22 £2.34 68.61 £2.11 69.02 +£1.88
DER-RR 76.39 +2.25 79.09 +2.31 81.74 +1.96 77.63 +1.94 82.89 +2.15H
WA [108] 70,23 £1.81 67.34 +2.22 63.77 +£2.72 65.33 +1.82 60.11 +1.84
WA-RR 74.65 +1.93 72.25 +£1.95 68.56 +1.87 7392 +1.74 67.17 £2.15
FOSTER [109] 7097 £1.83 69.19 +2.01 64.37 £2.51 68.58 +£1.91 67.17 £1.71
FOSTER-RR 75.10 +1.66 7409 +1.85 7139 +2.47 74.61 +1.78 7149 +1.91
BiC [83] 67.35 £1.75 65.78 +£1.99 62.41 +2.14 61.20 +2.21 5598 +2.84
BiC-RR 70.51 £1.81 7201 +£2.11 68.63 +£1.79 67.91 £1.93 64.71 £2.30

parameters, which attempts to preserve the old representation
or closely align them with the previous solution, adversely
impacts the performance of the CL model in future tasks.
Table 4 presents a comparative analysis of the performance
of baseline approaches utilizing robust rehearsal and their
counterparts not employing robust rehearsal on the split-
CIFARI100 dataset under two protocols, BO and B50. The
standard baseline approaches, denoted without any suffix,
were trained in accordance with their respective prescribed
methodologies as outlined in [19], [29], [30], [83], [108], and
[109]. Conversely, the baseline approaches that incorporated
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the proposed robust rehearsal strategy are denoted with the
RR suffix. Notably, across both protocols, i.e., BO and B50,
all six baseline approaches that employ the robust rehearsal
strategy consistently demonstrate superior performance com-
pared to the standard baseline approaches. Moreover, it was
noted that robust rehearsal demonstrates comparatively
greater effectiveness in larger task sequences, such as those
with 20 splits, as compared to shorter sequences, i.e., 5 splits.
Additionally, pre-training the base model on 50 classes using
the Base 50 protocol, followed by subsequent learning in 5-
splits and 10-splits, resulted in a noticeable improvement
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TABLE 5. The comparative performance of CL approaches across nine,
five, and two tasks on the Helicopter Attitude dataset is illustrated. The
approaches are categorized into (1) Standard Baselines, following their
respective proposed strategies, and (2) Approaches with the RR suffix,
utilizing the robust rehearsal strategy. The first column lists the names of
the approaches, while the second, third, and fourth columns display the
comparative average accuracy of the CL approaches in eight, five, and
three task configurations of class incremental learning, respectively. The
approaches augmented with CL-robust sample rehearsal consistently
demonstrated improved performance compared to baseline models that
underwent training without robust rehearsal. These enhanced
performances of the robust rehearsal-based approaches underscore the
effectiveness of incorporating CL-robust rehearsal as a methodological
enhancement to bolster the performance of CL models.

CL Method 5-76 Helicopter Attitude Dataset
8 steps 5 steps 3 steps

Joint 88.6+0.61

Fine-lune 12.940.83 21.6510.68 30.77+£1.12
iCaRI. [19] 44,98 +£0.73 5275 +£1.15 61.28 +0.93
iCaRL-RR 48.32 £0.82 60.45 £1.45 68.21 £1.41
PODNet [29] 51.27 £1.76 62.33 £2.06 7912 £0.87
PODNctr-RR 58.96 +1.71 69.15 £2.21 83.25 +1.37
DER [30] 5083 £1.24 6588 +£1.71 77.20 £0.82
DER-RR 60.97 £1.13 72.52 +0.99 85,51 £1.39
WA [108] 43.61 £1.61 57.83 +£0.89 64.87 +£1.29
WA-RR 45.72 £1.36 58.89 +1.02 65.60 £1.10
FOSTER [109] 48.69 £1.28 58.77 £1.66 65.73 .86
FOSTER-RR 54.59 +0.94 60.55 £1.29 6Y.64 £0.91
BiC [83] 37.51 £0.94 48,30 £1.71 65.23 £0.82
BiC-RR 41.63 +£1.08 5093 +£1.78 66.35 £1.19

in the model’s average accuracy compared to training under
the BO protocol. Such improvement can be attributed to the
fact that the B50 protocol, where the CL model is pre-trained
on an initial set of 50 classes, possesses more refined initial
features than the BO protocol, where the learning begins from
Xavier initialization [113].

Table 5 presents a comparative analysis of the performance
of baseline approaches utilizing robust rehearsal and their
counterparts not employing robust rehearsal on the split
Helicopter Attitude dataset across eight tasks, five tasks
configurations [103], [104]. A consistent observation indi-
cated that the CL baseline approaches trained with the robust
rehearsal strategy outperformed their standard counterparts.
In other words, the robust rehearsal strategy maximally
utilizes the feature distillation and re-consolidation strategies,
corroborated by its maintenance of the highest average
accuracy compared to its counterparts. These findings
underscore the pivotal role of combining rehearsal strategy
to distill and then rehearse the CL-robust samples, thereby
validating the efficacy of incorporating CL-robust rehearsal.

1) EFFECT OF THE REHEARSAL BUFFER SIZE

We assessed the impact of rehearsing the CL-robust samples
within varying rehearsal memory sizes. The results of
the experiments are presented in Table 6, illustrating that
robust rehearsal achieved higher accuracy compared to
naive rehearsal methods across ten rehearsal memory sizes.
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Recall that the sole difference between robust rehearsal
and naive rehearsal-based training was the addition or no
addition of CL-robust samples in the rehearsal memory,
respectively. An additional noteworthy observation from our
analysis is that robust rehearsal achieves higher accuracy in
comparatively smaller memory sizes and consistently
maintains higher average accuracy over ten memory sizes.
Figure 7 displays the average accuracy of all ten experiments
across ten memory sizes for nine, five, and two task
configurations.

2) EFFECT OF THE NUMBER OF TASKS

We conducted experiments utilizing the CIFAR 10, Helicopter
Attitude, and CIFAR100 to assess the effectiveness of the
robust rehearsal across varying numbers of sequential tasks.
Tables 3, 5, and 4 present results for robust rehearsal across
nine, five, and two tasks for CIFAR10, eight, five, and
three for Helicopter Attitude, and five, ten, and twenty
tasks for the CIFAR100 datasets, respectively. The methods
employing robust rehearsal, denoted with the suffix RR,
surpassed the performance of the baseline methods that did
not employ the robust rehearsal, denoted without any suffix,
across a range of task numbers on CIFAR10, Helicopter
Attitude, and CIFAR100 datasets. The methods augmented
with robust rehearsal consistently improved the performance
of the baseline without the integration of robust rehearsal.
This consistent advantage of robust rehearsal across varying
task numbers offers valuable insights into its scalability and
adaptability, underscoring its suitability for developing CL
methods capable of effectively learning a large sequence of
tasks.

3) DIVERSE FEATURE SPECIALIZATION

We empirically demonstrate that deep learning models
acquire diverse features when trained with distinct training
protocols to solve respective optimization objectives. To this
end, we first trained a joint or multi-task model, denoted
as fs,;,, following the standard joint learning protocol.
Subsequently, we trained the CL oracle model, as detailed
in [39], employing the robust rehearsal strategy. For the
adversarially robust model, we leveraged a state-of-the-art
publicly available model and publically accessible,' as
described in [116]. Figure 6 presents the learned or special-
ized features of the three trained models, as obtained using
Algorithm 1, which presents a novel perspective, revealing
that diverse features were acquired by fs,,, fo,, and fo,;,
each employing distinct optimization objectives during their
training phase. For instance, the primary objective of joint or
multi-task models is to maximize validation accuracy by
leveraging any available features with high generalizability
from the training dataset without differentiating between
the robust and non-robust quality of the features, which
resulted in models that achieve higher validation accuracy,
albeit at the expense of robustness [48]. On the other

Thtps://github.com/RobustBench/robustbench
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TABLE 6. The average accuracy for ten CL models trained using the naive re

hearsal and robust rehearsal strategies on the CIFAR-10 dataset. The first

column displays the names of the CL methods. The naive rehearsal employed a standard rehearsal-based strategy for training, while the robust rehearsal

was trained using the proposed robust rehearsal strategy. The second colum

n indicates the rehearsal memory size. Subsequent columns provide the

average accuracy for nine, five, and two tasks in class incremental settings, respectively. Each experiment is repeated five times with different
initializations to obtain meaningful estimates of the performance of experiments across varying memory sizes.

CL Method Memory Split-CIFAR1O
Nine Tasks Five Tasks Two Tasks
Multi-Task nol applicable 94.843.11
Fine-tune not applicable 11.41+£2.68 18.5441.71 4531£1.9
Naive Rehearsal 32 14.81£3.10 25111268 47.62+2.33
Robust Rehearsal 20.78+2.87 33.1-£3.97 48.69+1.51
Naive Rchearsal 64 2092+3.96 29.11+3.67 48.47+£2.19
Robust Rehearsal 29.12+2.55 37.814+2.10 51.59+2.27
Naive Rchearsal 128 28.91+3.3 36.61+£3.33 52.924+3.87
Robust Rehearsal 42.77+£3.44 42.78+4.57 57.86+3.18
Naive Rchearsal 256 31.5344+4.01 45.824+4.15 56.724+2.98
Robust Rehearsal 47.01+£2.59 53.92+2.64 61.76+2.53
Nuive Rehearsal 512 41.91+4.56 53.924+4.36 60.24+3.86
Robust Rehearsal 59.20+4.56 63.59+35.77 68.13£2.83
Naive Rehearsal 1024 55.77+£3.92 59.38+£2.85 65.48+£3.91
Robust Rehearsal 76.42+3.23 76.461+1.11 75.55+3.21
Naive Rchearsal 2048 65.94+4.350 67.67+£3.71 72.374+2.85
Robust Rehearsal 80.56+2.32 77.34+3.91 79.22+2.48
Naive Rchearsal 4096 73.26+3.44 74.214+2.94 76.514+3.45
Robust Rehearsal 85.06+3.22 83.53+5 03 82.19+2.59
Naive Rchearsal 8192 79.59+£2.85 75.33%+1.94 79.124+2.97
Robust Rehearsal 87.42+3.45 85.19+2.91 8§7.21+1.89
Naive Rchearsal 16382 82.48+1.53 80.45+2.26 82.2242.84
Robust Rehearsal 88.19£1.85 8§8.941+1.90 89.04£1.97
1.0 1.0 1.0
0.9 - Joint 3 0.9 i 0.9
e Fine-tune
081 . Naive Rehearsal 08 08
0.7 Robust Rehearsal 0.7 0.7
Sos 0.6 0.6
g\ 0 0.5 0.5
5 . 8
g e Joint
<>( 0.4 0.4 ...e- Fine-tune 0.4 |
= —e— Naive Rehearsal 03 = Joint
0.3 0:3 Robust Rehearsal ' - Fineztupe
) —e— Naive Rehearsal
0.2 02 g Robust Rehearsal
01 0.1 0.1
I K s ng‘b & o & PP & @“% s & N@“’W e P S & ,Lob‘% S @“y‘b’»
Memory ¥ Memory Memory

a) Nine tasks result on CIFAR10 b) Five tasks result on CIFAR10 c) Two tasks result on CIFAR10

FIGURE 7. Average accuracies from ten distinct experiments for both robust rehearsal and naive rehearsal strategies, compared across
various memory sizes for nine, five, and two tasks on the CIFAR10 dataset, are presented. Sub-figures (a), (b), and (c) present average
accuracies of the joint, fine-tuned, naive rehearsal, and robust rehearsal across varying buffer sizes for nine, five, and two tasks. The upper
and lower dotted lines represent the average accuracies of the joint (i.e., upper bound) and fine-tune (i.e., lower bound) models,
respectively. The robust rehearsal strategy’s consistent outperforming of the naive rehearsal across varying memory sizes underscores its
effectiveness in rehearsing CL-robust samples distilled via feature distillation and re-consolidation.

hand, adversarially robust models prioritize a formidable
defense against adversaries, necessitating a balance between
training accuracy and model robustness [48]. These models
predominantly learn adversarially robust features, which are
resistant to adversarial attacks, and exhibit little or no reliance
on non-robust features to obtain a model with enhanced

adversarial robustness. Conversely, CL models, which learn
sequentially, must balance plasticity and stability by learning
specialized features, such as CL-robust features, to mitigate
catastrophic forgetting while simultaneously facilitating the
sequential acquisition of new tasks. Figure 6 displays the
specialized features of models trained under three distinct

VOLUME 12, 2024 34067



IEEE Access

H. Khan et al.: Brain-Inspired Continual Learning

c) CL robust bird samples

d) CL robust cat samples

FIGURE 8. Sub-figures (a), (b), (c), and (d) visualize the CL-robustified features for the airplane, car, bird,
and cat classes of the CIFAR-10 dataset, distilled through feature distillation. These CL-robustified
features are rendered in a dream-like aesthetic that abstracts non-essential details while emphasizing
each class’s fundamental and distinctive attributes. The CL-robustified features contain only abstract
dream-like minimum features of the class. The rehearsal of the minimum CL-robustified helps the CL
model not to forget the previously learned classes. The CL-robustified features are characterized by
dream-like minimal representations of each class. The rehearsal of CL-robustified features aids the CL
model in retaining knowledge of previously learned classes.

training protocols: joint or multi-task learning, continual
learning, and adversarial learning, and emphasizes that fea-
tures optimized for a specific objective may not necessarily
be suitable for other optimization goals. Furthermore, it has
been shown that the available features in the dataset played a
vital role in determining the model’s overall robustness,
generalizability, and performance [40], [48]. These insights
further emphasize the importance of rehearsing CL-robust
samples using robust rehearsal to mitigate catastrophic
forgetting as the model undergoes sequential learning effec-
tively. Figures 8, 9, and 10 display the CL-robust samples for
various classes within the CIFAR10 dataset.

4) VISUALIZING THE SPECIALIZED FEATURES
UNDERSCORED THE VULNERABILITIES OF

CL APPROACHES AGAINST ADVERSARIAL ATTACKS

A large body of literature underscores the vulnerability of
existing CL approaches to various forms of attacks, such

34068

as backdoor attacks, adversarial attacks, and false memory
formation [117], [118]. As Figure 6 illustrated, the training
objectives influence the feature specialization of the under-
lying multi-task, continual, and adversarially robust model.
Intriguingly, the visual resemblance of the CL-robust samples
to the adversarially compromised images [48], as depicted in
Figures 6, 2 and 3 suggest that CL-robust features and adver-
sarially non-robust features can coexist, which underscores
the vulnerability of CL to various adversarial attacks [40],
[41]. These observations align with a large body of literature
that already underscored the vulnerability of existing CL
approaches to various forms of attacks, such as backdoor
attacks, adversarial attacks, and false memory formation [41],
[117], [118], [119]. Our previous work revealed that a CL
model trained on adversarially robust features outperforms a
CL model trained on standard datasets when subjected to
different types of natural image distortions and adversarial
attacks [40]. These findings emphasize the pivotal role played
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c) CL robust frog samples

d) CL robust horse samples

FIGURE 9. Sub-figures (a), (b), (c), and (d) visualize the CL-robustified features for the deer, dog, frog, and horse
classes of the CIFAR-10 dataset, distilled through feature distillation. These CL-robustified features are rendered in
a dream-like aesthetic that abstracts non-essential details while emphasizing each class’s fundamental and
distinctive attributes. The CL-robustified features contain only abstract dream-like minimum features of the class.
The rehearsal of the minimum CL-robustified helps the CL model not to forget the previously learned classes. The
CL-robustified features are characterized by dream-like minimal representations of each class. The rehearsal of
CL-robustified features aids the CL model in retaining knowledge of previously learned classes.

by the features in CL, which not only mitigate catastrophic
forgetting but also define the vulnerability of CL models [40].

Reflecting on our results, we believe that our research not
only underscores the neuroscience-inspired approaches for
CL but also reveals promising avenues for future exploration,
which include equipping CL models to continuously learn
adversarially and CL-robust features, thereby mitigating
catastrophic forgetting and securing all learned tasks against
attacks.

C. LIMITATIONS AND FUTURE WORK

A notable limitation is the requirement of additional com-
putational time for feature distillation and re-consolidation
to distill and re-distill the CL-robust samples, which must
be performed before the model begins learning the next

VOLUME 12, 2024

task. This limitation could be mitigated by incorporating
self-attention in the model architecture, enabling robust
feature distillation and re-consolidation during the learning
phase itself [120]. The second limitation concerns using the
Euclidean norm as the metric, which is a rudimentary distance
metric that could be replaced with more sophisticated
metrics, as indicated in the dataset distillation literature [34],
[36]. Future research aims to expand the proposed solution
and apply it to other varied tasks, including continual
object segmentation. Moreover, the feature specialization
underscored the vulnerability of CL to a range of attacks, such
as backdoor, adversarial, and false memory formation attacks.
These findings suggest promising future research directions,
including the potential for equipping CL models to con-
tinuously learn adversarially, thereby reducing catastrophic
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a) CL robust ship samples

b) CL robust truck samples

FIGURE 10. Sub-figures (a) and (b) visualize the CL-robustified features for the ship and truck classes of
the CIFAR-10 dataset, distilled through feature distillation. These CL-robustified features are rendered in
a dream-like aesthetic that abstracts non-essential details while emphasizing each class’s fundamental
and distinctive attributes. The CL-robustified features contain only abstract dream-like minimum
features of the class. The rehearsal of the minimum CL-robustified helps the CL model not to forget the
previously learned classes. The CL-robustified features are characterized by dream-like minimal
representations of each class. The rehearsal of CL-robustified features aids the CL model in retaining

knowledge of previously learned classes.

forgetting and enhancing the security of all learned tasks
against such attacks.

V. CONCLUSION

In this paper, we draw inspiration from neuroscience
insights into memory consolidation and existing research in
adversarial and continual learning, highlighting the crucial
role of available features in shaping the model’s overall
performance. We developed a novel framework, Robust
Rehearsal, which creates CL-robust memory samples that
replicate the mammalian brain’s memory consolidation and
re-consolidation processes, i.e., rehearsing the distilled wak-
ing experiences to facilitate memory consolidation. Similarly,
the proposed framework effectively distills and rehearses
CL-robust samples while learning new tasks to retain the
previously learned knowledge. We conducted extensive
experiments on three datasets -CIFAR10, CIFAR100, and
the real-world Helicopter Attitude datasets provided by the
FAA- to demonstrate that CL models trained with robust
rehearsal surpass standard baseline counterparts employing a
traditional rehearsal-based strategy. The framework’s supe-
riority is further affirmed in scenarios with varying memory
sizes and numbers of tasks, where it consistently outperforms
counterpart approaches that do not utilize robust rehearsal.
Additionally, our investigation into the impact of various
optimization training objectives within joint, continual,
and adversarial learning highlighted that the optimization
objective in deep neural networks essentially dictates feature
learning. Our findings suggest that closely adhering to neuro-
science principles can substantially contribute to addressing
the long-standing challenge of catastrophic forgetting in
artificial intelligence systems.
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