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Abstract—Deep Neural Networks (DNNs) deployed to the real
world are regularly subject to out-of-distribution (OoD) data,
various types of noise, and shifting conceptual objectives. This
paper proposes a framework for adapting to data distribution
drift modeled by benchmark Continual Learning datasets. We
develop and evaluate a method of Continual Learning that
leverages uncertainty quantification from Bayesian Inference
to mitigate catastrophic forgetting. We expand on previous
approaches by removing the need for Monte Carlo sampling of
the model weights to sample the predictive distribution. We
optimize a closed-form Evidence Lower Bound (ELBO)
objective approximating the predictive distribution by prop-
agating the first two moments of a distribution, i.e. mean and
covariance, through all network layers. Catastrophic forgetting
is mitigated by using the closed-form E L B O  to approximate
the Minimum Description Length (MDL) Principle, inherently
penalizing changes in the model likelihood by minimizing the
K L  Divergence between the variational posterior for the current
task and the previous task’s variational posterior acting as the
prior. Leveraging the approximation of the MDL principle, we
aim to initially learn a sparse variational posterior and then
minimize additional model complexity learned for subsequent
tasks. Our approach is evaluated for the task incremental
learning scenario using density propagated versions of fully-
connected and convolutional neural networks across multiple
sequential benchmark datasets with varying task sequence
lengths. Ultimately, this procedure produces a minimally com-
plex network over a series of tasks mitigating catastrophic
forgetting.

Index Terms—Continual Learning, Bayesian Deep Learning,
Deep Variational Inference, Minimum Description Length Prin-
ciple, Density Propagation

I. INTRODUC T I ON

A  commonly held assumption in deep learning is a net-
work’s training and test data distributions are static and ac-
curately represent its deployed environment. However, Deep
Neural Networks (DNNs) deployed in real-world environ-
ments are regularly subject to out-of-distribution (OoD) data,
various types of noise, and shifting conceptual objectives [1].
Input patterns not generalized by the network after training
may inadvertently trigger features in the network leading to
incorrect results with high confidence during deployment.

This work was supported by the National Science Foundation Awards NSF
ECCS-1903466 and NSF OAC- 2234836. We are also grateful to UK EPSRC
support through EP/T013265/1 project NSF-EPSRC: ShiRAS. Towards Safe
and Reliable Autonomy in Sensor Driven Systems.

While adapting to data drift can be achieved by retraining a
DNN on an entire dataset comprised of the original samples
and new drifted samples, there are situations where this may
be infeasible or unreasonable due to time, cost, computing, or
retained data constraints. Additionally, simply training on
the new information from the data drift will result in a
phenomenon called catastrophic forgetting, causing rep-
resentations of newly trained information to interfere with or
overwrite previous representations, resulting in a drop in
performance on previously trained samples [2], [3].

Reasonable stand-alone performance in real-world envi-
ronments requires DNNs to indicate OoD data samples and
adapt to these anonymous samples without sacrificing perfor-
mance on previously trained information. To achieve these
requirements, the sequential nature of Bayesian inference
naturally lends itself as a mathematical framework to quantify
uncertainty and continually adapt to new data without for-
getting previous information [4]. Variational methods using
the Evidence Lower Bound (ELBO) to approximate the true
parameter posterior in Bayesian inference are asymptotically
equivalent to the Minimum Description Length principle as
the sample size grows to infinity [5]. Both approaches
regularize optimization by penalizing model complexity,
preventing the overfitting of training data. We propose to
leverage this concept for Continual Learning (CL) to mitigate
catastrophic forgetting by minimizing changes to the network
parameters over subsequent tasks.

While many deep learning variational approximations of
Bayesian Inference exist, such as Bayes-by-Backprop (BBB)
[6], Monte-Carlo Dropout (MCDrop) [7], and have been
applied to Continual Learning [8], most rely on Monte Carlo
sampling during training and testing to estimate predictive
uncertainty. Uncertainty learned by these methods is only
based on a few samples of the variational posterior requiring
the reparameterization trick [6], [9] using ”noise variables”
to decouple the network parameters from the variational
distribution for dealing with non-differentiable and/or com-
plex models. A  major limitation of these approaches is the
significant time and computational cost imposed by sampling
the variational posterior, where more samples must be drawn
to better estimate the uncertainty about a prediction.

Instead, we propose using the general, model-agnostic
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framework, Variational Density Propagation (VDP) demon-
strated in our previous works [10], [11], to quantify the
predictive uncertainty and aid in the mitigation of catas-
trophic forgetting via model complexity regularization. This
process removes the need for Monte Carlo sampling of the
variational posterior by propagating the first two moments of
the variational distribution, i.e. mean and covariance, using a
first-order Taylor series approximation. To enhance variance
expression in the Variational Density Propagation framework,
we impose independence across all network parameters re-
sulting in each random variable parameter having a unique
mean and variance. We approximate the propagation of the
covariance matrix through each layer as a vectorized diagonal
of the full covariance matrix representing the variance of each
propagated feature to aid computational efficiency.

By modeling changes in each parameter’s variational
posteriors as a change in model complexity, changes in
parameters can be penalized via the approximation of the
Minimum Description Length Principle. This approximation
is achieved by minimizing the Kullback-Leibler (KL)  diver-
gence between the variational posterior and the network prior
inherent to the Evidence Lower Bound objective of Varia-
tional Inference. While learning additional information and
overwriting already trained representations may not strictly
increase model complexity, setting the network prior to the
variational posterior from the previously learned task will
construe any change to the previous variational posterior as
increased model complexity. In this manner, an additional
task or a data drift’s representation can be learned with min-
imal changes to the variational posterior from the previous
task, preserving representations and mitigating catastrophic
forgetting.

To demonstrate this approach, our contributions are as
follows:

• We develop a fully factorized version of the Variational
Density Propagation framework, which uses Taylor-
series approximation to propagate the first two moments
of the variational distribution, with an approximation of
the propagated covariance matrix for reduced computa-
tional requirements.

• We convert the approximation of Monte Carlo sampling
to the propagation of variational moments to approxi-
mate the Minimum Description Length Principle.

• We apply our framework to the problem of task incre-
mental learning by imposing a model complexity cost
over a series of tasks.

• We demonstrate catastrophic forgetting mitigation over
task incremental learning with multiple sequential
benchmark datasets and compare our results to Monte
Carlo sampling-based approaches and baseline perfor-
mance metrics in the Bayesian and deterministic set-
tings.

I I . B AY E S I A N DE E P L E A R N I N G

In Deep Bayesian Inference, network parameters, W,
are represented as random variables with some prior dis-
tribution W  � p(W). After observing some training set

D  =  { X ( i ) , y ( i ) } i = 1 ,  Bayes’ Rule is used to determine the
posterior distribution p(W|D). The predictive distribution,
p(y|X, D) is determined by marginalizing the parameters,
W,  within the posterior distribution. Marginalization can also
be performed previously unseen data X  with corresponding
output ỹ  to perform inference after training, as shown in
Equation 1.

Z
p(ỹ|X, D) = p(ỹ|X, W)p(W|D)     dW (1)

The mean of the predictive distribution represents the net-
work’s prediction. The predictive variance represents the
statistical uncertainty of the network attached to the same
prediction. The predictive variance is construed as confidence
in an estimation.

A. Variational Inference
Despite     having     an     analytical     formulation,     applying

Bayesian Inference to DNNs is intractable due to the required
integration of all network parameters [6]. To avoid this issue,
Variational Inference (VI) is a common technique used to
estimate the posterior distribution of a network by converting
the intractable, analytical problem of solving the posterior
distribution to an optimization problem. This approach im-
poses a distribution of variational parameters, qθ (Ω), over
the network parameters and minimizes the Kullback-Leibler
(KL)  divergence between the variational distribution and the
true posterior distribution, shown in Equation 2.

Z
min KL[qθ (Ω)||p(Ω|D] =  min qθ (Ω) ln 

p(Ω|D)
dΩ

(2)
min KL[qθ (Ω)||p(Ω|D)] =  min Eq θ (Ω )       ln 

p(Ω|D)

However, directly minimizing the K L  divergence between
the variational parameters and the true posterior is also
intractable as determining the true posterior from Bayes’ rule
still requires the evidence derived from the integration over
the product of the likelihood function and the prior distribu-
tion p(D)  = p(D | Ω)p(Ω)dΩ .  Instead, V I  maximizes
an equivalent quantity called the Evidence Lower Bound
(ELBO) which can be derived from Equation 2 using Bayes’
Rule to rewrite the true posterior, as shown in Equation 3.
The log marginal likelihood of the data, ln p(D), is fixed
and does not depend on the variational distribution and can
be grouped with the K L  divergence between the variational
posterior and the true posterior becoming the lower bound
on the evidence.

KL[qθ (Ω)||p(Ω|D)] =  Eqθ (Ω ) [ ln qθ (Ω )  −  ln p(Ω|D)]

KL[qθ (Ω)||p(Ω|D)] =  E q θ (Ω )      ln qθ (Ω) −  ln 
p

(
y |X,

Ω )
p

( Ω )

KL[qθ (Ω)||p(Ω|D)] =  E q θ (Ω )  ln 
qθ ( Ω )

 
−  ln p(y|X, Ω)

 
+  ln p(D)

− E L B O  =  − Eqθ (Ω ) [ ln p(y |X, Ω ) ]  +  KLqθ (Ω ) [qθ (Ω)||p(Ω)]
(3)

The optimization objective for Variational Inference is the
maximization of the ELBO as shown in Equation (4). Max-
imizing this quantity ultimately results in the maximization
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of the log-likelihood of data given the network parameters
and the minimization of the K L  divergence between the
variational posterior and the prior distribution.

ϕ� =  argmax Eqθ (Ω) [ln p(y|X, Ω)] −  KLqθ (Ω ) [qθ (Ω)||p(Ω)]
 
(4)

B. Moments Propagation

The goal for moments propagation is to produce the mean
and the covariance of the predictive distribution from which
the network’s success or failure can be gauged by relating
the predictive distribution’s mean to the label weighted by the
predictive distribution’s variance. To achieve moments prop-
agation, all network operations are replaced by operations of
random variables. Each algebraic operation in a deterministic
network is replaced by the multiplication of a random vari-
able with a constant, multiplication of two random variables,
or approximating the non-linear transformation over random
variables using a first-order Taylor-series approximation [10].
As a result, the first and second moments of the variational
distribution, mean and covariance, can be propagated layer
by layer through the entire network.

For simplicity of notation and without loss of generality,
we consider a fully connected model. Let x  � R n  be the
input to a layer with mean µ      and covariance matrix Σ x .
We assume that the j t h  model parameter w j  follows a
Normal distribution wj       � N(µ     , σ2 ). The model
parameters are assumed to be independent from each other
and independent from the input. The first-order Taylor series is
used to approximate the first two moments after a non-linear
activation function. In the following, we present the
derivations pertaining to the various model layers.

1) Propagation through the kth linear layer: To streamline
notation, we will exclude the reference to k in our representa-
tion. Let z  =  W T  x + b ,  where, for the kth layer, W  � R n × m

is a random matrix of weights, b � R m  is a random vector
of biases, and z  � R m  is the resulting random vector. Let
W  =  [w1, · · · , wm], where wi is the ith column of W ,
with the mean and covariance of wi represented as µ and
Σ w  . It follows that the mean and variance elements, µ
and σ2 , contained within the resulting random vector z  can
be derived for elements i  =  1 · · · m with the matrix-vector
multiplication as shown in Equation (5).

µz i  =  µ T
i  µ x  +  µbi

σ2
i =  t r (Σw i  Σ x )  +  µ x  Σ w i  µ x  +  µw i  Σ x µ w i  +  σ2

The input data for the first layer of the network k =  0 is
treated as deterministic where, in Equation (5), Σ x  =  0. The
resulting covariance for σ2

i only depends on µ x
T  Σ w i  µ x .

For computational efficiency, moment propagation is re-
formulated to only propagate the diagonal variance elements
of the covariance information through the network. As a
result of this further approximation, Equation (5) can be
reformulated as Equation (6) below, where µw i , h      and σw i , h

are the hth element of µ and the hth diagonal element of
Σ w i  , respectively.

µz i  =  µ T
i  µ x  +  µ b i

σ z i  =  
n      

(σ x h  
σw i , h  

+  µx h  
σw i , h  

+  σ x h  
µw i , h  

)  +  σbi

(6)

h = 1

It is important to note that as Equation (6) is a further
approximation, there is a loss in the fidelity of the propagated
variances due to subsequent network layers’ reliance on the
covariance elements of previous layers to compute the true
covariance values. Convolution operations are treated in the
same manner where kernels and underlying image patches
are vectorized prior to moment propagation.

2) Propagation through a non-linear activation: Let g =
Ψ(z )  represent some non-linear activation function (e.g.
ReLU, Hyperbolic Tangent, Softmax) of a random vector
input z  � R m  with mean µ  and covariance Σ z .  The mean
and covariance for the resulting random vector g can be
approximated using the first-order Taylor series approxima-
tion [10]–[12] in Equation (7) where � is the element-wise
product of the incoming covariance matrix, Σ z ,  and the
squared gradient, �, of non-linear function with respect to the
incoming mean, µz .

µg ≈  Ψ(µz )
Σ g  ≈  Σ z  � �Ψ(µz )�Ψ(µz )T

Similarly, to reduce computational complexity, the diag-
onal variance elements are vectorized, and the covariance
elements are ignored. The vectorized form of Equation (7) is
shown in Equation (8), where σ 2  represents the vectorized
form of the diagonal variance elements. In the vectorized
form, the outer product used for constructing the correlation
matrix in Equation (7) can be replaced by the squared
gradient of the non-linear activation function with respect to
the input mean due to the off-diagonal elements are no longer
required for the Hadamard product with the input covariance
matrix.

µg ≈  Ψ (µ z )

σ2     ≈  σ2 �
∂Ψ

(µ )  
2 (8)

i

For the Softmax classification layer at the output of the
network µ and σ2     are representative of the variational
distribution that can be used to infer the ELBO objective
function.

C. Closed Form ELBO
Recalling the objective function for Variational Inference,

presented in Equation (4), using the propagated values µ ŷ

and σ 2  of the variational distribution q (Ω)  the ELBO can
be written in closed form, as shown in Equation (9). The
weighting variable τ  is added to control the level of com-
pression toward the prior induced by the K L  divergence term
in the ELBO. The vectorized form of the closed-form ELBO
changes the log determinant of the covariance matrix Σ ŷ  to
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2 

n = 1  

ln (σ ŷ n
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n = 1  
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n

 

σ 
µ ŷ n  )

2  

−  
2 

i = 1         

−1  +  
(µq w

σ
−  µp i  )

2  

−  ln     
σ 2

w i  

!  

−  
σ 2

i      

!           

(10)

the log sum of all the variational distributions, effectively
producing the log product of the diagonal variance values
from the covariance matrix, equivalent to the determinant
when the off-diagonal elements are zero. The same is true
for Σ ŷ

− 1  where the inverse of a diagonal matrix is simply the
inverse of each diagonal element. The vectorized closed-form
expression of the ELBO is shown in Equation (10) where
|Ω| denotes the cardinality of the set Ω ,  i.e., the number of
weight parameters and N  denotes the number of classes or
output nodes of the final layer.

I I I . C O N T I N UA L L E A R N I N G ME T HODO L OGY

A. Continual Learning
Continual Learning aims to retain performance over multi-

ple training periods. Many approaches have been developed
to combat the problem of catastrophic forgetting, separat-
ing into three main categories: Regularization, Replay, and
Dynamic Architectures [13]. The Dynamic Architectures
approach focuses on adding additional neural resources to a
network to account for information in new tasks. Replay
focuses on preserving certain data samples from previous
tasks and ”replaying” them during the training of subsequent
tasks. Regularization-based approaches constrain the opti-
mization problem to prevent representations of previous data
from adapting exclusively to the new data in the network.
The method outlined in this paper aligns with Regularization
based Continual Learning, where the K L  Divergence regu-
larizes the optimization to restrict parameters to remain close
to the previous task.

B. Prior Compression
Continually learning with Variational Density Propagation

leverages the K L  Divergence between the variational pos-
terior and the prior in the ELBO objective function. This
regulates learning to prevent network parameters from drift-
ing far from the prior. The model parameters are treated as
independent random variables to obtain a simplified version
of the K L  divergence between the variational posterior and
the prior, as shown in Equation 10. This formulation allows
each parameter to receive independent gradient updates from
the K L  term so the new posterior remains close to the
previous posterior while receiving updates from the model
likelihood. This is an ancillary benefit of assuming all ex-
plicitly parameterized random variables are independent.

When learning over multiple tasks, the prior pt (Ω)  itera-
tively becomes the posterior of the previous task q (Ω t − 1 )  for
task t. The updated prior, q (Ω t − 1 ) ,  contains all information
from all previously trained task representations, such that
pt (Ω)  =  q t (Ω t − 1 ) .  For the first task, t =  0, the prior

is chosen as standard normal Gaussian for every network
parameter. Using a standard normal prior is known to be
parameter sparsity-inducing [9]. Using the K L  divergence
term to constrain network parameters near zero will effec-
tively remove unneeded model parameters from contributing
to a model’s prediction.This process aligns with the idea of
the Minimum Description Length principle [14] in which
the best model for a given dataset is the one that results in
the minimum total description length of the dataset together
with the model, satisfying Occam’s Razor principle [4]. By
converging to the minimal model complexity on the first task,
all subsequent tasks will retain the goal of minimal model
complexity via updating the prior distribution to the varia-
tion posterior. Thus, a sparsity-inducing prior is effectively
applied across all tasks. This process is shown in Algorithm
1.

Algorithm 1 Continual Learning via Prior Compression
Require: D  =  (X , y ) ;

The predictive distribution ŷ      � N(µ , σ2     );
The variational distribution qθ (Ω)  �      N(µ w  , σ 2      );
The prior distribution p0 (Ω0 ) � N(0, 1);
K L  divergence weighting factor τ ;
τ =  τ0
qθ� (Ω0 ) ← argmax [Eq ( Ω  ) [ ln p(y|X , Ω0 )]−

τ KL q  ( Ω  ) [qθ (Ω0)||p0(Ω0)]]
τ =  τ1

for Task t >  0 do
pt (Ω t )  ← qθ�        (Ω t −1 )
qθ� (Ω t )  ← argmax [Eq ( Ω  ) [ ln p(y |X , Ω t )]−

τ KL q  ( Ω  ) [qθ (Ωt )||pt(Ωt )]]
end for

C. Experimental Setup
Our Continual Learning framework is evaluated for task

incremental learning in which task information is given at
test time and the network has separate output layers per
task, referred to as a multi-headed network [8]. In this
multi-headed architecture, all parameters in layers before
the classification layer are shared amongst all tasks. Multi-
headed networks promote feature sharing by encouraging the
slight differences required between tasks to be captured in
the bespoke classification layer [15]. We evaluate task in-
cremental learning on the MNIST and CIFAR10 benchmark
datasets with two versions of task groupings: 5-Split, where
there are five different tasks of differentiating between two
classes, and 2-Split, where there are two different tasks of
differentiating between five classes. Our methodology is also
evaluated on Permuted MNIST, in which the MNIST dataset
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digit’s pixels are permuted with ten different functions, one
for each task. The network is then tasked with classifying
the permuted digits 0-10. For the Split and Permuted MNIST
datasets, a fully connected network with a single 1200-node
hidden layer is used. For the sequential CIFAR10 datasets,
a six-layer convolutional network with three linear layers is
used.

1) Hyperparameters: A  hyper-prior was used to initialize
the variational posterior where values of mean and variance
of the weights were randomly selected from N(0, 0.05)
and N(π, 0.05), respectively. To ensure the positivity in the
variance of network parameters, parameter variance values
are passed through the soft-plus activation function before
actual network operations, shown in Equation 13. For the first
task only, the variational prior was set to a sparsity-inducing,
the standard normal prior for every parameter, N(1, 0).

σ2 =  log(1 +  exp(σ2 )) (13)

A  grid search is performed to determine the most appro-
priate initialization scheme for the variance of the weights
and K L  divergence weighting. The sweep for the mean of
the initialization distribution for the variance, π, considered
integer values from -6 to -18. Network layer biases were
initialized with the same scheme. The K L  divergence term
between the variational posterior and the prior manages the
trade-off between updates from error embedded in the model
likelihood and the divergence from the prior. A  weighting
term τ  is applied and varied to ensure sufficient representa-
tion of each task was learned and retained over multiple tasks.
Similar approaches to approximating Bayesian inference in
deep learning using Autoencoders [16] use values of τ  >  1
to promote sparsity in the learned latent representation of
the data. Using τ  >  0.001 would not allow the network to
learn a sufficiently complex network to represent the data
when learning the first task with a sparsity-inducing prior.
The sweep for the hyperparameter τ  considered values 1e-3
to 1e-6 for the first task and values between 1e-1 and 1e-4
for all subsequent tasks, with increments of powers of ten.
Larger values of τ  provide more compression toward the
previous tasks posterior. All model variations are trained with
the Adam optimizer with an initial learning rate of 1e-3. The
learning rate is reduced by a factor of 10 when the loss of
each task plateaus. Random seeds are held constant
throughout hyperparameter sweeps.

D. Performance Measurement

After learning all test sets for t tasks, models are evaluated
to demonstrate performance and catastrophic forgetting miti-
gation over multiple tasks. Performance is gauged through the
Average Test Classification Accuracy (ACC) and Backward
Transfer (BWT). Average Test Classification Accuracy is an
average of all test accuracies on individual tasks after training
all tasks. Backward Transfer indicates how much learning
new information has affected performance on previous tasks.
Backward Transfer values less than zero indicate catastrophic
forgetting, while values greater than zero indicate improved

performance on previous tasks after training on new in-
formation [17]. If Backward Transfer is greater than zero,
then training subsequent tasks improved the generalization of
previously trained tasks with information from subsequently
trained tasks. These metrics are shown mathematically in
Equation 14.

BWT =  
1 X

R i , t  −  R i , i
i = 1 (14)

AC C  =  
1

R i , t  i = 1

I V. R E S U LT S  AND DI SCU SS IO N

Continual Learning performance with our Variational Den-
sity Propagation framework (VDP PC) is compared to
Variational Continual Learning (VCL)  [8], which utilizes
sampling-based deep variational inference to mitigate catas-
trophic forgetting via the approximation of Bayesian Infer-
ence. Additionally, both approaches are compared to four
baselines in which deterministic and VDP frameworks are
trained sequentially: a Single-Head deterministic architecture
(DET-SH); Fine Tuning (*-FT), where no efforts are made to
mitigate catastrophic forgetting; Feature Extraction (*-FE),
where shared network parameters are frozen, but bespoke
output layers are trained; and Joint Training (*-JT), where
later tasks are supplemented with all data from previous
tasks. The Average Test Classification Accuracy (ACC) and
Backward Transfer (BWT) metrics across both frameworks
and all datasets are presented in Table I.

Despite benchmark datasets’ simplistic nature, tasks
learned sequentially in a single-headed network (DET-SH)
result in a complete loss in performance on previous tasks.
Multi-headed networks trained sequentially to fine-tune (*-
FT) each new task fare significantly better, retaining the
majority of performance after training a sequence of tasks.
The bespoke output layer, however, carries the majority of
the performance improvement, as demonstrated by freez-
ing all shared parameters (*-FE) before training subsequent
tasks and only learning the bespoke output layer. Restricting
changes in model complexity with our VDP Prior Compres-
sion (VDP PC) approach improves Average Test Classifica-
tion Accuracy and Backward Transfer performance over all
tested sequences of tasks. Performance with the VDP Prior
Compression approach closely follows the joint training (*-
JT) performance for both the deterministic and VDP frame-
works and is considered the upper bound on performance for
the tested model architecture on each experiment.

Conversely, we show that Variational Continual Learning
(VCL), not trained with a core set, does not improve over
existing deterministic baseline approaches. Results collected
for V C L  are slightly improved over what is reported for Split
and Permuted MNIST datasets in the original publication.
This improvement is expected to result from reducing the
depth of the fully-connected network. Less shared parameters
results in less interference from one task to the next. Split
Cifar10 results were not collected in the original V C L  paper
and are demonstrated to follow the same general trend as the
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TA B L E  I
T A S K  I N C R E M E N TA L  L E A R N I N G  R E S U L T S

Approach

DET-SH

2-Split MNIST
A C C            BWT

50.72%      -48.42%

5-Split MNIST
A C C            BWT

20.00%      -79.80%

Permuted MNIST
A C C            BWT

72.81%      -25.63%

2-Split C IFAR1 0
A C C            BWT

46.50%      -42.89%

5-Split C IFAR1 0
A C C            BWT

19.03%      -74.45%
DET-FT        98.64%       -0.60%
VDP-FT        98.55%       -0.35%
DET-FE        98.96%        0.00%
VDP-FE        97.90%        0.00%

V C L            98.04%       -0.86%
VDP PC       99.24%       -0.01%
DET-JT         99.38%       -0.01%
VDP-JT        99.34%       +0.18%

99.34%       -0.49%
98.32%       -1.46%
99.33%        0.00%
99.40%        0.00%
99.08%       -0.50%
99.80%       -0.06%
99.87%        0.00%
99.73%       -0.08%

96.47%       -1.67%
95.91%       -2.47%
96.41%        0.00%
96.72%        0.00%
88.80%       -7.90%
97.71%       -0.14%
98.33%       -0.10%
98.15%       -0.17%

81.96% -18.04%
78.82%       -8.53%
72.78%       -4.24%
79.49%        0.02%
64.39% -10.93%
88.81%       -1.08%
86.51%       +0.63%
87.81%       +1.84%

77.68%      -15.59%
73.42%      -19.92%
78.43%       -0.79%
80.63%       -0.13%
76.82%       -8.96%
83.23%       -0.62%
93.11%       +0.16%
94.04%       +0.19%

MNIST results, performing slightly under fine-tuning perfor-
mance, demonstrating no additional benefit to catastrophic
forgetting mitigation.

V. CO N C L US I O N

In this work, the Variational Continual Learning frame-
work is improved by removing the requirement for Monte
Carlo sampling of the variational posterior of the model
parameters. Network operations are replaced with operations
of random variables providing a quicker and less noisy esti-
mate of model parameters utilizing a completely closed-form
Evidence Lower Bound objective. The inherent compression
within the ELBO approximates the Minimum Description
Length Principle by penalizing additional model complexity
over multiple tasks. Our approach demonstrates catastrophic
forgetting mitigation in the task incremental learning setting
for a multi-headed network on common Continual Learn-
ing benchmark datasets and demonstrates improvement over
sampling-based approaches. We leverage the K L  regulariza-
tion weighting term to control the amount of change in model
complexity induced by each task. Overall, improved Average
Test Classification Accuracy and Backward Transfer metrics
are achieved.
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