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Abstract—Feature visualization is used to visualize learned
features for black box machine learning models. Our approach
explores an altered training process to improve interpretability of
the visualizations. We argue that by using background removal
techniques as a form of robust training, a network is forced to
learn more human recognizable features, namely, by focusing
on the main object of interest without any distractions from
the background. Four different training methods were used to
verify this hypothesis. The first used unmodified pictures. The
second used a black background. The third utilized Gaussian
noise as the background. The fourth approach employed a mix of
background removed images and unmodified images. The feature
visualization results show that the background removed images
reveal a significant improvement over the baseline model. These
new results displayed easily recognizable features from their
respective classes, unlike the model trained on unmodified data.

Index Terms—Machine Learning, Explainable AI,  Robust
Learning, Feature Visualization, Background Removal.

I . INTRODUC T I ON

Deep neural networks are an incredible emerging technol-
ogy with great potential for continued innovation and applica-
tion to various fields. In the realm of image classification,
neural networks serve as an invaluable tool, demonstrating
remarkable accuracy in classifying diverse datasets. These
models tend to be opaque, since the only parts which can be
directly interpreted by humans are the inputs and the outputs.
We say that these models are a black-box. However, through
a technique called feature visualization [1]–[3], the inside of
these networks can be explained. Feature visualization creates
a visual representation of key features that the neural network
has learned to recognize, providing key insights into how these
models learn. Through this process, an image is generated
specifically to maximize the activation of one or multiple
neurons in the model. The target class output is typically used
as the neuron to maximize, resulting in an image that captures
the salient features learned by the model for that specific class.

Feature visualization is considered to be within the field
of Explainable A I  (XAI). The field of X A I  seeks to give a
user more trust in the model by creating a visual explanation
[4]. Feature visualization and other methods within this field
have uses for medical applications, self-driving cars and other
mission-critical applications [4]–[6].

An example of a feature visualization map can be seen
in Figure 1. The left side depicts images that the model

recognizes as a bird with high certainty. The image to the right is
the feature visualization image generated for the bird class.
This explainability method incorporates key features learned
at multiple layers to create an image which highly activates
the target class neuron for bird. From this image, it can be
seen that this model recognizes the features of eyes, beaks,
and feathers as a bird.

However, this process needs refinement to create the bird
image seen in the figure. If the feature visualization is cre-
ated only to maximize a target class activation, the result
becomes unintelligible. These results often appear as high
contrast, random looking noise that contains little to no human
recognizable features. This is likely because much of the
features learned by non-robustly trained models consist of high
frequency noise [7]. An example of this problem can be seen
in Figure 2 which depicts an unregularized visualization of
three classes from an ImageNet [8] model. These images,
as opposed to the feature visualization in Figure 1, have
no regularizers and are completely unrecognizable, thereby
providing no insight into what features the model has come to
learn.

Fig. 1. Visual examples of inputs that cause the model to predict bird with a
high degree of confidence for ResNet18 [9] trained on the PASCAL  VOC
2012 dataset [10]. The left image shows high activating images for the bird
classification. The right shows the feature visualization for the same class.

In order to create recognizable feature visualization, as in
Figure 1, regularization algorithms are applied to the image
throughout the process of generating the explanation. This
approach enhances the visualizations by reducing the effect
that noise has during the generation process. The outcome is
an explanation that is focused on more recognizable features.
Very simple examples of this include shifting the image every
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few iterations, adding a small amount of Gaussian noise to
the image, and penalizing high frequency noise. However,
these regularizers are not perfect. They may create a more
recognizable image, but can also cause the final image to be
a less accurate representation of what the model recognizes
as a class. An ideal feature visualization image would be
created directly from the model with no modification as to
best represent the model’s understanding.

The goal of this paper is to explore why the unregularized
output is so unclear, and how the training process can be
used to improve clarity and recognizability of visualization.
Multiple sets of training data will be used to assess the impact
that our approaches to training have on feature visualizations.
The first model will serve as a baseline and will be trained
on unmodified data. The other models will be trained on a
modified dataset with backgrounds removed, encouraging the
model to learn in a more object-focused manner. Models
typically train on a full image which includes other contex-
tual information, and can make connections to parts of the
image that are not the object of interest. This means that
models often rely on contextual information in the background,
unlike humans who can still recognize objects in various
contexts. This distinction in learning methods could explain
the unrecognizability of feature visualizations to humans. By
training the models on a background-removed dataset, we aim
to encourage more human-like object recognition and generate
more interpretable feature visualizations. We believe that this
approach enhances model explainability without distorting
features with regularizers.

Fig. 2. Unregularized feature visualization outputs for three different target
classes (cat, person, and potted plant from left to right respectively) from
ResNet [9] trained on Tiny-ImageNet [11]. It is clear that these unregularized
visualizations do not contain human recognizable features.

I I . PR I O R WO R K

Most of the research around feature visualization seeks to
improve explanations by modifying the process of generating
them [1], [2], regardless of how the model is trained. Very
little work concentrates on changing the characteristics of the
training dataset to create more robust visualizations. Robust
models are more resistant to small input perturbations (in-
cluding noise and adversarial attacks) than their non-robust
counterparts, often at the expense of a small decrease in
overall accuracy [12]. It has been shown that robust models
produce more human interpretable explanations than their non-
robust counterparts [4], [13], [14]. In [15], researchers use
adversarial robustness as a learned prior to aid the model in

defense against these examples, with minimal accuracy loss.
Another common robust model technique is to utilize input
filtering. This could consist of monitoring unusual neuron
activation patterns that could be from an adversarial example,
or utilizing saliency maps as an adversarial filter [16]. The
model classifies the input image, then applies a saliency map
to the image and classifies it again. If the classifications do
not match, the input is likely an adversarial example. The
previous research has the goal of making the outputs more
understandable to the average person. This paper shares that
goal, but approaches it differently. Our method changes the
inputs by removing potentially irrelevant information from
the background, but keeping all information within the object
of interest unchanged. We explore the effect of the training
images on the quality of the model’s ability to recognize
features.

I I I . I M PAC T S

We would like to emphasize the importance of user trust
for these models, which are used more widely every day,
especially for mission-critical tasks. Allowing the user to
visualize and explain learned features can increase that trust
significantly. Feature visualization maps have usefulness for
both developers who are trying to improve and evaluate their
models, as well as users who want to determine whether they
can trust the model outputs. This investigation has wide impact
and practical applications. For example, feature visualization
can assist a machine learning algorithm to show patterns in
genomes or bacteria in a way that a person can understand
[17]. This not only improves user trust and understandability
immediately, but also helps to understand where a model goes
wrong so that it can be fixed. For that reason, we know that
this work has the impact of safer implementations for
artificially intelligent systems. Creating a more understandable
model helps prevent confusion in any real world applications.
A  model needs to be able to accurately recognize objects in
important situations, like self-driving cars, as otherwise there
is a danger to the passengers. By improving the visualizations
used to explain these models, we are enabling more robust
testing and detection of bugs or errors that would otherwise go
undetected.

I V. T E C H N I Q U E S AND A P P ROAC H E S

For our experiments, we train four ResNet18 models on
different modified versions of the data. These models all
have the same architecture and number of layers, so that
we can make a valid comparison. We use the PA S C A L
VOC 2012 dataset [10], which contains 20 classes. Although
the resolution is not uniform across the images, there is a
maximum resolution of 500x500. This dataset was chosen over
other commonly used datasets, like ImageNet or CIFAR10,
because it includes a segmentation map for each image. This
can be seen in Figure 3. The first column shows the unmodified
image, and the second column shows the segmentation map
for that image. It provides an exact mask for isolating the
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foreground and background, which is perfect for creating a
dataset with the background accurately removed.

Fig. 3. Images from the PA S C A L  VOC 2012 dataset and the corresponding
segmentation maps were used to decide which pixels to remove and replace.
The rows are labeled with the class that each image belongs to. From left to
right, the images depicted in columns 1, 3 and 4 were used to train the
standard, background removed and noise background models respectively.

Using this dataset and its segmentation maps, we created
custom training sets for training each model. As mentioned
before, the first model is trained on clean images, as seen
in column 1 of Figure 3. The second model is trained on
background removed images. These images contain only the
object of interest, with the rest of the image set to zero, as
can be seen in column 3 of Figure 3. This training set forces
this model to only learn the information of the main object
in each image, and totally ignore any distractions from the
background. The third model is trained with the background
replaced with random Gaussian noise, as seen in column 4 of
Figure 3. This training set determines how the model reacts
when the background context is removed, but is still non-
uniform. The model will not be able to learn to associate black
with background due to the background being random. The
fourth and final model is trained on a mixed training set. Half of
the dataset is background removed and set to zero, while the
other half consists of unmodified images. This training set will
show how the model reacts with both background and no
background.

To remove the unwanted background pixels, we performed
an elementwise multiplication between the image and the
segmentation map. This resulted in all background pixels
becoming zero, and all foreground pixels remaining constant.
For the noise background, we then added Gaussian noise to
only the background pixels. All backgrounds were removed
prior to training, so the impact on performance was negligible.

The Resnet18 network was chosen for this experiment due
to its relative simplicity and effectiveness at image classifica-
tion tasks. While this model was created with ImageNet in
mind, the similar resolutions of ImageNet and PA S C A L  VOC
2012 allow the model to work well with these custom datasets.
The parameters for each model were kept the same across all
training sets, and each model was trained for 100 epochs. The
same test set and validation set was also used for each model,

containing normal images similar to those used for training
the first model.

The goal for this paper is to improve upon feature vi-
sualizations by focusing on model training rather than by
modifying the process of generating visualizations. Many
methods exist for generating feature visualizations [2] [18]
[19] [20] [21] [22], but we decided to focus on one of the
most basic methods, including activation maximization with
L2 regularization as described in [18], [2] and [1].

V. R E S U LT S

All four models were trained up to 100 epochs utilizing the
ResNet18 architecture. All hyperparameters were set the same
for all models. The final accuracy scores and losses can be
seen below in Table 1. Each model reached at least 99 percent
training accuracy, with relatively low losses. The model trained
on standard data received the lowest accuracy score, though
there are no significant differences between any of the training
accuracy scores. The validation accuracy is lower on all the
background removed models, but this is to be expected since
robust models tend to have lower validation accuracy than their
non-robust counterparts [12], but they generalize better for out
of distribution data.

TA B L E  I
T R A I N I N G A C C U R A C Y  F O R T H E  R E S N E T 1 8 M O D E L S  T R A I N E D  ON T H E

PA S C A L  VO C 2012 D AT A S E T .

Model Trained On Train Accuracy Val Accuracy Loss

Standard Dataset                  99.49%                     94.81%             0.022
Black Background                 99.62%                     83.55%             0.002

Dataset
Noise Background 99.69% 78.95% 0.008

Dataset
Mixed Dataset 99.95% 88.84% 0.003

With the models successfully trained, the results of each fea-
ture visualization could be generated. An equal L2 regularizer
[1] was applied to each output image to enhance the images
enough to make comparisons between them. The results of
this feature visualization can be seen in Figure 4.

These images show clear differences between each of the
trained models. The first model was trained on unmodified
PA S C A L  VOC 2012 images. Here, the problem that this
paper addresses can be seen clearly. In all feature visualization
results for the standard model, no obviously distinguishable
features are seen. The images consist mainly of noise and
provide little to no information about what the model has
learned for these classes. Of the standard model results, the
potted plant class shows features most expected of this label,
and only contains flecks of green.

The results from the model trained on background removed
images show vast improvement. For all the classes seen in
Figure 4, the background removed model clearly shows the
features it has learned to associate with each class. For the cat
label, it can be seen that the model learned to recognize cats
through the ears and eyes. For the potted plant label, the model
has learned to recognize an orange pot and green leaves. From
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Fig. 4. Feature visualization results for four image classes for each of the
trained ResNet models. Each row depicts visualizations generated by the
models trained on standard data and on different sets of background removed
data. The columns are labeled with the class that each image belongs to.

these observations, it is clear that training the model without
the background has led to more human recognizable features
being present in the explanations.

The third model trained used random noise as its back-
ground instead of zeros. This has led to significant changes in
the results. As seen in Figure 4, this model has not been as
successful as the background removed model. For the
background removed model, the input is the object surrounded
by all zeros. The edges are easy to define, and the object is
always clear. However, with the background set to random
values, the edges become harder for the network to differen-
tiate and the network has a more difficult time determining
what is important to look at. This model shows only a small
improvement over the standard model and creates less human
recognizable features. For the cats label, the noise model
shows sharper defined edges than the standard model, but none
of the images are recognizable as cats. Other classes result
in only high frequency noise, similar to the noise used for
the backgrounds of the training images, as is seen in the T V
monitor label.

Finally, the mixed dataset model also shows improvement
over the standard model. This dataset was trained half on
background removed images and half on standard images.
Through the feature visualization figures, this training method
reveals that the images still clearly show the main focus,
but also include some details that were not found within the
background removed model. In the cats label for example,
the background removed model contains features specifically
pertaining to the cat alone. In contrast, the mixed model
depicts some of the same features, but also includes extra
details that surround the cats (perhaps relating to what they are
sitting on). This issue can be seen again for the potted plants
class as well. The background removed model shows only the
pots and plants. However, the mixed background model shows

not only the potted plant, but also parts of a table or platform
the plant rests on, thereby adding some context to the image.

V I . DI S C US S I O N AND F U T U R E WO R K

This paper covers a proof of concept that removing the
background of the training set does significantly increase the
feature visualization quality. However, this method requires
accurately separating the foreground from the background of
each training image. The PA S C A L  VOC 2012 dataset already
had segmentation maps for each image, which is why it
was used for this experiment. However, in other applications,
previously generated segmentation masks may not be readily
available.

In the future, state-of-the-art segmentation networks could
be used to remove the background without any need for human
generated segmentation maps. Currently, we have not been
able to find a model which efficiently and reliably selects
only background pixels from images across all the datasets
we tested. Automatic removal could become achievable with a
more accurate model for the segmentation of background
pixels. One challenge will be that the models must be trained
on manually segmented data that may not generalize to all
other datasets.

V I I .  CO NC L U S I O N

We argue that in order to improve model explanations, we
should work on improving how the model learns, rather than
only focusing on improving the methods used to create the
visualizations. We see how effective this can be in our results.
In this work, we showed that by selectively choosing what
the network sees during training, we can create models which
learn more human recognizable and interpretable features. We
found that the black background and mixed datasets produced
the most interpretable visualizations. The noise background
dataset also produced much more interpretable explanations
than the standard data, but not nearly as well as the other
two datasets. Our training approaches also improved overall
accuracy of each model, with the mixed dataset performing
the best. These results were achieved in an ideal scenario
using the PA S C A L  VOC 2012 dataset, where we were able
to remove the background at the exact edge of the object of
interest before training. We discuss our attempt to remove
the background using attribution, but this approach did not
accurately segment the images. However, this approach can
be scaled up by using a state-of-the-art segmentation network
to remove the background. We show that our results are more
interpretable to humans than the vanilla model. We also believe
that these approaches should be evaluated with quantitative
metrics to confirm our conclusions. This is beyond the scope of
this paper, as there is no current consensus on how best to
perform quantitative evaluations of feature visualizations.
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