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Anyonic Fabry-Pérot and Mach-Zehnder interferometers have been proposed theoretically and
implemented experimentally as tools to probe electric charges and statistics of anyons. The ex-
perimentally observed visibility of Aharonov-Bohm oscillations is maximal at a high transmission
through an interferometer but simple theoretical expressions for the electric currents and noises are
only available at low visibility. We consider an alternative version of a Mach-Zehnder interferometer,
in which anyons tunnel between co-propagating chiral channels on the edges of quantum Hall liquids
at the filling factors n/(2n + 1). We find simple exact solutions for any transmission at a suitably
chosen ratio of the edge-channel lengths. The solutions allow a straight-forward interpretation in
terms of fractional charges and statistics. Our results also apply to the recently observed quantized
plateaus in the fractional Chern insulator MoTe2.

A key concept in the field of topological matter is frac-
tional statistics of excitations. It can be defined for ex-
tended objects [1, 2] in 3D and point anyons in two [3–6]
and sometimes three dimensions [7].

So far the evidence of topological systems with frac-
tional statistics has been limited to 2D. Anyonic statistics
were proposed in putative topological superconductors
[8] and RuCl3, Ref. 9, but the physics of those materials
remains controversial. Very recently, evidence of a frac-
tional Chern insulator state in twisted MoTe2 has been
reported [10, 11]. The bulk of research on topologically
ordered materials has focused on the fractional quantum
Hall effect [12] (FQHE).

Several experiments produced evidence of anyonic
statistics in FQHE states. Non-Abelian statistics at the
filling factor ν = 5/2 was demonstrated with the heat
conductance technique [13, 14]. Anyon colliders [15–18]
have been used to probe Abelian statistics at ν = 1/3
and 2/5. The most direct and intuitive approach to
probing statistics consists in interferometry [3, 19]. The
idea is to split a beam of anyons into two beams on two
sides of a localized anyon and measure the interference
phase which depends on the mutual statistics of traveling
and localized particles. This can be done in two ways.
The Fabry-Pérot interferometry [20] involves two con-
strictions between two contra-propagating edge modes
(Fig. 1a). In a Mach-Zehnder interferometer [21, 22],
two co-propagating modes are connected by two tunnel-
ing contacts and an Ohmic contact is placed in its center
(Fig. 1b). There are also interesting multi-terminal ver-
sions of interferometry [23–26].

Despite early promising results [27, 28], a convincing
realization of interferometry proved challenging. Evi-
dence of fractional statistics in the simplest ν = 1/3 state
from Fabry-Pérot interferometry [29] arrived only in year
2020. A Mach-Zehnder interferometer [30] in the same
FQHE state was only realized in year 2023. The difficul-
ties were in part due to Coulomb effects [31] and edge
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FIG. 1. Schematics of the (a) Fabry-Pérot and (b) Mach-
Zehnder interferometers. Quantum point contacts (QPC)
bring the edges near to facilitate tunneling. Current flows into
the device through Ohmic contact S. (a) Fabry-Pérot inter-
ferometer involves tunneling between two contra-propagating
edge modes. The current measured at drain D2 involves paths
that braid around a localized anyon (marked by ×). There-
fore, it is sensitive to anyon statistics. (b) In a Mach-Zehnder
interferometer, two co-propagating modes are connected by
the tunneling contacts. A common implementation requires
the placement of an Ohmic contact (D2) inside the interfer-
ence loop. Hence, each tunneling event changes the localized
topological charge in the device.

reconstruction [32]. Another issue consisted in the diffi-
culty of theoretical analysis for strong tunneling between
the two edges of the device. Simple theoretical results are
only available for weak tunneling, where the visibility of
the Aharonov-Bohm oscillations is low. This is differ-
ent from the integer quantum Hall effect (IQHE), where
simple exact solutions exist for any visibility.
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Here, we focus on another interferometer geometry
that has been considered [33] in IQHE, Fig. 2. The ge-
ometry more directly parallels that of the original Mach-
Zehnder interferometers studied in optics. As shown in
Fig. 2, two tunneling contacts are created between two
co-propagating channels on the same edge. To facilitate
tunneling, an electric potential difference V is applied on
the same side of the device. In our case, the outer mode
is maintained at V through an Ohmic contact S with re-
spect to the grounded inner mode through Ohmic contact
G. A similar geometry was implemented [34, 35] for the
tunneling between the fractional edge modes separating
ν = 0 from ν = 1/3 and ν = 1/3 from ν = 2/3, 3/5,
and 1. This choice of FQHE modes results in essentially
the same physics as in the standard Fabry-Pérot setup
since the boundaries between ν = 1/3 and ν = 2/3, 3/5,
and 1 contain upstream modes. In this paper we ob-
serve that the geometry of Fig. 2 can be used to create
a true Mach-Zehnder interferometer in FQHE with the
tunneling between co-propagating modes and no Ohmic
contacts inside the interferometer.

A remarkable feature of this geometry is that it al-
lows an easy exact solution for any visibility, including
the experimentally optimal regime. Unlike most previ-
ous treatments of quantum Hall interferometers, we do
not need to resort to perturbation theory. The solution
is possible due to two key simplifications in comparison
with the standard geometries. In contrast to the Fabry-
Pérot setup, anyons cannot make multiple loops in the
device. In contrast to the standard Mach-Zehnder setup,
the localized topological charge in the interferometer re-
mains fixed during an experiment. Interestingly, the ex-
act solution has essentially the same structure as in IQHE
and contains information about the fractional charge and
statistics of anyons. Note that this interferometer is not
expected to show Coulomb-dominated behavior [31].

We consider an edge of an FQHE liquid with the filling
factor ν = n/(2n+1). The bulk FQHE liquid is a daugh-
ter state [36] of the liquid with ν = (n − 1)/(2n − 1).
Multiple representations of its edge physics are known.
It will be most convenient for us to follow the hierarchi-
cal picture [36]. In this picture, the edge can be under-
stood as a collection of co-propagating modes separating
filling factors k/(2k + 1) and (k − 1)/(2k − 1), where
k = 1, . . . , n. Fig. 2a illustrates an interferometer con-
structed from the channel separating ν = (k+1)/(2k+3)
and ν = k/(2k+1), and the adjacent channel separating
ν = k/(2k+1) and ν = (k−1)/(2k−1). The incompress-
ible region between the channels supports quasiparticles
of charge e/(2k + 1). Such quasiparticles can tunnel be-
tween the two channels at the two constrictions. The
Hamiltonian is the sum of the chiral Luttinger liquid
Hamiltonians for the two channels plus two operators
describing quasiparticle tunneling at the constrictions.
Crucially, the scaling dimension of those operators is 1
just like in an IQHE system, which allows electron tun-
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FIG. 2. Schematics of the Mach-Zehnder geometry considered
in this work. The edge of a ν = n/(2n+1) liquid contains n co-
propagating modes on either edge of a two-dimensional elec-
tron gas. On the right-moving edge, current flows into the de-
vice through Ohmic contact S to one of the edge modes. Two
adjacent co-propagating edge modes are brought near to facil-
itate quantum tunneling. The localized anyon in the shaded
region between the two constrictions is marked by ×. This ge-
ometry establishes an analogy with an optical Mach-Zehnder
interferometer (inset) where, in contrast to the magnetic flux,
the optical path length serves as a useful probe. (a) The edge
mode, separating ν = (k − 1)/(2k − 1) and ν = k/(2k + 1)
incompressible states, is maintained at the potential bias V
with respect to the edge mode separating ν = k/(2k+1) and
ν = (k + 1)/(2k + 3), where k = 1, . . . , n − 1. The tunneling
anyon carries a charge e/(2k + 1). (b) We choose a represen-
tative system of ν = 2/5 where the two co-propagating edge
modes ϕ 1

3

and ϕ 1

15

are separated by the ν = 1/3 incompress-

ible liquid, facilitating anyon tunneling of charge e/3.

neling between two chiral non-interacting Fermi gases.
This scaling dimension is responsible for the exact solu-
bility of the model via fermionization.

While our results do not depend much on k, we will
focus on the simplest case of the bulk filling factor 2/5,
Fig. 2b. There are two edge channels [36], which separate
ν = 0 from ν = 1/3 and ν = 1/3 from ν = 2/5. The
charge of the tunneling anyon is e/3. This choice of filling
factors is directly relevant to the recently discovered [37–
40] fractional quantum Hall effect at zero magnetic field
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in MoTe2, where the observed plateaus are ν = 2/3 and
ν = 3/5.

The action is the sum of three contributions,

A =

∫

dxdtLe −
∫

dt(T1 + T †
1 )−

∫

dt(T2 + T †
2 ), (1)

where T1 and T2 describe anyon tunneling at the two
constrictions and Le is the edge Lagrangian density,

Le =− ℏ

4π

[

3∂tϕ1/3∂xϕ1/3 + 3v1/3(∂xϕ1/3)
2

+ 15∂tϕ1/15∂xϕ1/15 + 15v1/15(∂xϕ1/15)
2
]

, (2)

with the two Bose-fields ϕ1/3 and ϕ1/15 describing the
charge density on the outer and inner edge modes respec-
tively: ρ1/3 = e∂xϕ1/3/2π and ρ1/15 = e∂xϕ1/15/2π. The
edge-mode velocities are v1/3 and v1/15. The operators

T1 = Γ1 exp
[

iϕ1/3(0)− 5iϕ1/15(0)
]

; (3)

T2 = Γ2 exp
[

iϕ1/3(L1/3)− 5iϕ1/15(L1/15)
]

, (4)

transfer an e/3-quasiparticle from the outer to inner edge.
There are no Klein factors as explained after Eq. (6).
The amplitudes Γi contain information about the charge
and statistics of the tunneling quasiparticle. We denote
the phase of Γ1 as ϕ. The phase of Γ2 = |Γ2|eiα can be
represented as the sum α = ϕ+α0+αAB+αs of some non-
universal phase ϕ+ α0, the Aharonov-Bohm phase αAB,
and the statistical phase αs. The contribution ϕ + α0 is
determined by microscopic details and does not depend
on the magnetic field. The phase αAB is proportional to
the product of the anyon charge e/3 and the magnetic
flux through the area between the two channels, shaded
area in Fig. 2b. The statistical phase ϕs = 2πNa/3,
where Na is the number of anyons localized inside the
interferometer. This phase jumps when a new anyon en-
ters the device in response to a change of the magnetic
field. We assume that the left constriction has coordi-
nate x = 0 in both edge channels. In general, the lengths
of the two channels between the constrictions are differ-
ent. That’s why the fields ϕ1/3 and ϕ1/15 are taken at
different values of x in the definition of T2.

The electric current operator is defined as the commu-
tator of the tunneling operator T1 + T2 + h.c. with one-
half times the charge difference between the two modes.
Hence,

I = −i e
3ℏ

[T †
1 − T1 + T †

2 − T2]. (5)

We will also need the correlation functions of the tunnel-

ing operators [36],
〈

exp
[

iϕ1/3
(

t, a1/3 + b1/3
)

− 5iϕ1/15
(

t, a1/15 + b1/15
)]

× exp
[

−iϕ1/3
(

0, a1/3
)

+ 5iϕ1/15
(

0, a1/15
)]

〉

=

(πT/ℏ)2

sin
1

3

[

δ + iπT
ℏ

(

t− b1/3
v1/3

)]

sin
5

3

[

δ + iπT
ℏ

(

t− b1/15
v1/15

)] .

(6)

The exponents in the above expression add up to two.
This reflects the scaling dimension of one for T1,2. The
operators T1,2 commute as locality demands. Note a dif-
ference from the usual Mach-Zehnder setup where local-
ity requires Klein factors in tunneling operators.
The electrical potential difference between the chan-

nels is conveniently described in the interaction repre-
sentation [22] by changing Γ1,2 → Γ1,2 exp(−ieV t/3ℏ).
As a warming-up exercise, we consider the case of a

single constriction, Γ2 = 0. By rescaling the x-coordinate
for each channel we can make the edge velocities equal.
Let us rescale the coordinates so that the edge velocities
become u. Let us next introduce new Bose fields in place
of ϕ1/3 and ϕ1/15:

ϕ1 =

√
5 + 1

2
ϕ1/3 −

5−
√
5

2
ϕ1/15; (7)

ϕ2 =

√
5− 1

2
ϕ1/3 +

5 +
√
5

2
ϕ1/15. (8)

The action becomes

A =− ℏ

4π

∫

dtdx

2
∑

k=1

∂x(∂t + u∂x)ϕk

−
∫

dt [Γ1 exp (iϕ1 − iϕ2) + h.c.] . (9)

This action can be fermionized [41] in terms of Fermi op-
erators ψk = exp(iϕk), where we ignore a dimensional
normalization constant. Such a constant enters the re-
lation between the tunneling amplitudes Γi and the ob-
servable transmission probabilities. We will ignore the
normalization constant below since our primary goal con-
sists in connecting the transmission probabilities of the
two individual constrictions with the transmission of the
interferometer. We rewrite (9) as a free fermion action:

A = iℏ

∫

dtdx

2
∑

k=1

ψ†
k(∂t+u∂x)ψk−

∫

dt[Γ1ψ
†
2(0)ψ1(0)+h.c.].

(10)
This model can be interpreted as the edge of an IQHE
system at ν = 2. One just needs to remember that the
physical current (5) is three times less than the current
in the IQHE model and that the physical voltage V is
three times higher than the effective voltage in the IQHE
model. Hence, the physical current is 1/3 of the tunneling
current in the model (10) evaluated at V/3.
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We will solve the model with the equation of mo-
tion approach. To avoid a delta-function of the coor-
dinate in the equation of motion, we rewrite the tun-
neling term as an integral over a small vicinity of the
origin: ψ†

2(0)ψ1(0) → 1
ϵ

∫ ϵ

0
dxψ†

2(x)ψ1(x), where ϵ →
0. The equations of motion for the mode ψ1,2(x, t) =
ψ1,2(x) exp(−iEt/ℏ) of energy E = ukℏ are

(k + i∂x)ψ1 =
Γ∗
1

ϵuℏ
θ(x[ϵ− x])ψ2; (11)

(k + i∂x)ψ2 =
Γ1

ϵuℏ
θ(x[ϵ− x])ψ1. (12)

We find two independent solutions

a) ψ1(x) = eikx and ψ2(x) = 0 (x < 0),

ψ1(x) = t1e
ikx and ψ2(x) = r1e

ikx (x > 0); (13)

b) ψ1(x) = 0 and ψ2(x) = eikx (x < 0),

ψ1(x) = −r∗1eikx and ψ2(x) = t1e
ikx (x > 0), (14)

where the transmission and reflection amplitudes be-
tween the two co-propagating channels are t1 =
cos(|Γ1|/uℏ) and r1 = −i exp(iϕ) sin(|Γ1|/uℏ) respec-
tively. The current can be computed from the
energy-independent reflection |r1|2 into the parallel co-
propagating channel for fermions. It is temperature-
independent and equals ⟨I⟩ = e2|r1|2V/9h. The maximal
tunneling conductance of e2/9h is achieved at |r1| = 1.
Interestingly, it is greater than the conductance e2/15h
of the inner channel. This happens due to Andreev re-
flection as discussed in Ref. 42.

We now map the problem with two constrictions onto
free fermions. There is an essential difference from the
single constriction case. Indeed, in that case, the relevant
correlation functions of the tunneling operators always
have b1/3 = b1/15 = 0 in Eq. (6). As a result, the cor-
relation functions are precisely the same in our problem
and for the tunneling operator of free fermions. With two
constrictions this is not necessarily the case. Fermioniza-
tion only works if either the travel times between the
two constrictions along the two edge channels are equal,
L1/3/v1/3 = L1/15/v1/15, or if the difference of the travel
times is much less than the thermal and voltage times
∼ T−1 and ∼ (eV )−1 respectively. The latter condition
is always satisfied if the interferometer is shorter than
the thermal and voltage lengths but it can also work for
an arbitrary large interferometer. Corrections due to the
difference τ of the travel times are proportional to the
small parameter τmax(T, eV )/ℏ.
We thus focus on the regime where fermionization

applies. Besides the transmission and reflection ampli-
tudes t1 and r1 for the first constriction, we define the
transmission and reflection amplitudes t2 and r2 for the
second constriction. The absolute values of t1,2 and

r1,2 can be found experimentally by measuring trans-
port through a single constriction when the second con-
striction is open. Probability conservation demands that
|ti|2 + |ri|2 = 1 and the absolute values of the trans-
mission and reflection amplitudes are between 0 and 1.
The relative phase of r1 and t1 is −i exp(iϕ) as dis-
cussed above. Similarly, the relative phase of t2 and r2
is −i exp(iα) = −i exp[i(ϕ+ α0 + αAB + αs)]. The total
reflection amplitude for free fermions is r = r2t1 + r1t2.
This yields the following current between the inner and
outer edges of the interferometer in the FQHE regime:

⟨I⟩ = e2V

9h
|r2t1 + r1t2|2 (15)

=
e2V

9h

[

|r1t2|2 + |r2t1|2 + 2|r1r2t1t2| cos(α0 + αAB + αs)
]

.

A change ∆Φ of the magnetic flux between the edge chan-
nels results in the change ∆αAB = 2π∆Φ/3Φ0, where Φ0

is a flux quantum. As the magnetic flux changes, quasi-
particles or quasiholes enter the device, and αs jumps by
2π/3.
We now turn to the electric noise, for which an exact

result can also be obtained. The zero frequency noise is
defined [43] as

S =

∫ ∞

−∞

dt[⟨ID(0)ID(t) + ID(t)ID(0)⟩ − 2⟨ID⟩2], (16)

where ID is the current in drain D1 or D2 and angu-
lar brackets denote the average. Our starting point is a
general equation [44] for the noise in chiral systems with
tunneling

S = ST − 4T
∂⟨I⟩
∂V

+ 4GT, (17)

where ST =
∫∞

−∞
dt[⟨I(0)I(t) + I(t)I(0)⟩ − 2⟨I⟩2] is the

noise of the tunneling current I, Eq. (5), and G is e2/3h
or e2/15h for the outer or inner channel respectively. The
same equation applies to the noise in any of the two chan-
nels in the free electron model (10), where the tunneling
current operator is 3I(t) and G = G0 = e2/h. We also
should remember that the voltages differ by a factor of
3 in the FQHE and free fermion problems mapped onto
each other.
An exact solution [45] is available for the noise S = SF

in the free fermion problem:

SF = 2eV G0|r|2(1− |r|2)
[

coth

(

eV

2T

)

− 2T

eV

]

+ 4G0T,

(18)
where r = r2t1 + r1t2 is the total reflection amplitude.
We now use equation (17) to compute ST = STF for free
fermions:

STF(V ) = 2eV G0|r|2(1−|r|2)
[

coth

(

eV

2T

)

− 2T

eV

]

+4|r|2G0T.

(19)



5

Finally, we compute the noise S in the original model

S =
1

9
STF (V/3)− 4G0T |r|2

9
+ 4GT (20)

=
2eV

27
G0|r|2(1− |r|2)

[

coth

(

eV

6T

)

− 6T

eV

]

+ 4GT.

The flux dependence enters through the coefficient

|r|2(1− |r|2) = R0(1−R0)− 2R2
1

+ 2R1(1− 2R0) cos(α0 + αAB + αs)

− 2R2
1 cos[2(α0 + αAB + αs)], (21)

where R0 = |r1t2|2 + |r2t1|2 and R1 = |r1t1r2t2|. Thus,
there are exactly two non-zero harmonics in the flux
dependence. Only the second harmonics survives at
|t1| = |r1| = |t2| = |r2| = 1/

√
2.

In summary, we propose an anyonic Mach-Zehnder
interferometer with two co-propagating edge channels
and no Ohmic contact inside the device. The topolog-
ical charge inside the device does not change after each
tunneling event. Anyons, traveling through the device,
cannot make multiple loops around localized particles.
These properties open a way for a simple exact solution
for the electric current and noise. The magnetic-field de-
pendencies of the current and noise contain information
about fractional charge and fractional statistics.
We thank M. Heiblum for useful discussions. The re-
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