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Time limits are imposed on many computer-based assessments, and it is common to observe exami-
nees who run out of time, resulting in missingness due to not-reached items. The present study proposes
an approach to account for the missing mechanisms of not-reached items via response time censoring. The
censoring mechanism is directly incorporated into the observed likelihood of item responses and response
times. A marginal maximum likelihood estimator is proposed, and its asymptotic properties are estab-
lished. The proposed method was evaluated and compared to several alternative approaches that ignore
the censoring through simulation studies. An empirical study based on the PISA 2018 Science Test was
further conducted.
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In the ability testing literature, distinctions are often made between speed tests and power
tests. In a pure speed test, it is assumed that all items can be responded correctly given enough
time, and the amount of time it takes the participant to complete the items reflects ability. A pure
power test, on the contrary, assumes that the items vary in difficulty and that the participants
have an infinite amount of time to work on the items, and the response accuracy to the test items
is used to measure ability. A large number of educational assessments, however, are a mixture
of the two, where the items vary in difficulty, and a short enough time limit is imposed on the
test so that examinees cannot take as much time as they desire (Cronbach and Warrington 1951;
Roskam 1997). Time limits are imposed on many large-scale assessments (LSAs), such as the
Trends in International Mathematics and Science Study (TIMSS), the National Assessment of
Educational Progress (NAEP) in the United States, the Programme for International Student
Assessment (PISA), and the National Educational Panel Study (NEPS) in Germany (e.g., OECD
2009; Pohl et al.2012; Rose et al.2010), as well as on high-stakes examinations, such as the
Graduate Management Admission Test (GMAT), the Law School Admission Test (LSAT), and the
United States Medical Licensure Exam (USMLE; e.g., Evans and Reilly 1972; Harik et al.2018).
The imposition of a finite time limit can be attributed to both validity reasons, for example, to set
the optimal speed level that examinees should operate under (Tijmstra and Bolsinova 2018), and
financial considerations, for example, to ensure that enough tests can be administered in a given
amount of time at a commercial testing center (Luecht and Sireci 2011).

For some timed tests, a nonnegligible proportion of students do not reach the end of the test
by the time that it terminates, and responses to these not-reached items (NRIs) are thus missing.
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For example, on the NIO Intelligence Test in the Netherlands, Glas and Pimentel (2008) reported
27% of overall missing data due to NRI; in the 2006 PISA (OECD 2009; Pohl et al.2019; Rose
et al. 2010), an average of 4% NRIs was observed across all participating countries, and for a
specific country, the percent of missing due to NRIs ranged between .1% and 13%; for the German
NEPS, Pohl et al. 2012 reported 13.46% of missing due to NRIs; for the GMAT, depending on the
region, the percentage of individuals with at least one NRI in the verbal section ranged between
4.6% and 52.1% (Talento-Miller et al. 2013). While NRIs can also occur due to other reasons,
such as early quitting (e.g., Ulitzsch et al. 2019), in the current article, we restrict our discussion
to NRIs due to reaching the time limit.

In some operational tests (e.g., NAEP, Johnson and Allen 1992), missing responses due to
NRIs are treated in the item calibration stage as if they were not administered to the participants,
and they are treated as partially correct or incorrect in the scoring stage. Item parameters are
estimated based on the observed responses only. This practice is supported by several simulation
studies (Rose et al.2010; Pohl et al.2012), which suggested that IRT item parameter estimates are
relatively robust against small-to-moderate amount of missing. An implicit assumption behind this
practice is that the missing data due to NRIs can be treated as ignorable. However, as corroborated
by extensive previous research, individuals’ tendency to miss items due to the time limit is often
related to their latent ability (e.g., Glas and Pimentel 2008; Holman and Glas 2005; Rose et al.
2010), and thus, the missingness is likely to be nonignorable.

Instead of treating the observed data as the complete data in parameter estimation, various
model-based methods were also proposed to account for possibly nonignorable missingness in
the presence of NRIs, where the missing propensity is incorporated into the measurement model.
One approach is to use multidimensional IRT (MIRT) models to jointly account for the missing
patterns and the observed responses (e.g., O’Muircheartaigh and Moustaki 1999; Moustaki and
Knott 2000; Glas and Pimentel 2008; Holman and Glas 2005). Under this approach, the usual latent
ability parameter governs the probability that a test taker gives a specific response, and a separate
person-specific latent variable for missing propensity is introduced to model the probability that
the test taker misses an item. The joint distribution of the latent ability and the missing propensity
is also modeled. Parameter estimation under this approach takes both the missing patterns and the
observed responses as input and jointly estimates the test takers’ latent ability and latent missing
propensity. Another common approach to modeling the missing patterns is via latent regressions
(e.g., Rose et al. 2010; 2017). Instead of introducing a separate latent parameter for missing
tendencies, functions of the missing data patterns, such as the percentage of NRIs or groupings
based on NRI patterns, are used as a covariate for modeling the latent ability parameter. The
conditional distribution of the latent ability, given the missing patterns, is thus taken into account
in parameter estimation.

Most recently, response time-based approaches were proposed to model nonignorable miss-
ingness due to NRIs and other causes (Pohl et al. 2019; Lu et al.2018; Ulitzsch et al. 2019).
The increased prevalence of computer-based assessments has enabled easy collection of reaction
time data on each item, that is, the amount of time an examinee spends on a test item. Response
times (RTs) provide an additional source of information on top of response accuracy and have
been used for improving the estimation accuracy of item parameters and examinees’ latent traits,
understanding individuals’ test-taking behavior and the test items’ characteristics, and differenti-
ating examinees using different test-taking strategies. To account for missingness due to NRIs, the
hierarchical framework proposed by van der Linden (2007) is used to jointly model the observed
responses and RTs on the reached items. Under this hierarchical framework, examinees’ response
accuracy to each item depends on a latent ability parameter through an IRT model, and the exam-
inee’s RT on each item follows a lognormal distribution (van der Linden 2006) that depends on
a latent speed parameter. The joint distribution of the latent speed and the latent ability is further
accounted for in the structural model. The rationale behind using a joint model for responses
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and RTs to handle NRIs is as follows: Examinees’ latent speeds affect how many items they can
complete within the time limit and hence contain information about the amount of missingness
due to NRIs. The joint modeling of responses and RTs takes into account the information on the
missingness due to NRIs in speed estimation, and because speed and ability are often correlated,
the missingness information is also incorporated into the estimation of latent ability and item
parameters.

The availability of RT data opens up new possibilities in the modeling of missingness due to
NRIs. One of the issues with modeling only the observed responses and RTs, however, is that it
ignores the censoring due to the time limit. Suppose an individual’s response to item j on a timed
test is observed. Whether the response to item j + 1 is missing due to censoring clearly depends
on whether the time that the individual would spend on item j + 1 exceeds the remaining time
on the test. The missingness due to NRIs and the unobserved RTs thus remain to be dependent
after conditioning on the observed responses and RTs. More specifically, in the presence of NRIs,
the number of observed responses and RTs for each participant depends on the (random) number
of reached items for the participant. Therefore, in addition to the observed responses and RTs on
the reached items, the likelihood also depends on the number of reached items for the participant,
which can be explained by the censoring of cumulative RTs. Ignoring this censoring mechanism
in parameter estimation can lead to biased estimates of and incorrect inferences about the RT
model item parameters and examinees’ latent speeds, and, in the case that ability and speed are
correlated, estimation and inferences of the latent ability and item response model parameters will
also be affected. The present paper addresses this issue by introducing a framework under which
the correct likelihood function can be written explicitly. Specifically, under a general class of joint
models for responses and RTs, when the missingness is completely due to reaching the time limit,
the explicit likelihood can be written without further assumptions on the missing mechanisms.

The rest of the paper is organized as follows: Section 1 introduces the proposed modeling
framework for missing data due to NRIs using RT censoring. The likelihood of the observed
data that accounts for the right censoring is given. A marginal maximum likelihood estimation
(MMLE) method is subsequently proposed, and its asymptotic properties are established. Section
2 provides the details and results of a simulation study, which evaluates and compares parameter
estimation using the proposed and other approaches. Results of an empirical study using the PISA
2018 Science data are subsequently presented in Sect. 3.

1. Modeling Missingness due to NRIs with RT Censoring

Consider a timed test administered to N examinees with a total of J items, where the items
are presented to each examinee in a sequential order, that is, the next item is presented to the
examinee when s/he submits the answer to the current question. This setup is similar to many
computer-based timed tests (e.g., Glas and Pimentel 2008). To focus on the missing mechanisms
of NRIs, let us further assume that the test does not allow other forms of missingness, such as
omission and early-stopping. For each examinee i , suppose the test has a time limit ci < ∞, and
any items that the examinee has not responded to by time ci are recorded as missing. Following
Little and Rubin (1986), denote the complete response and response time data by N × J matrices
X = (Xi j )1≤i≤N , 1≤ j≤J and T = (Ti j )1≤i≤N , 1≤ j≤J , respectively, where Xi j ∈ {0, 1} and
Ti j > 0 are the response and response time, respectively, of the i th examinee to the j th item if
there is no missingness. For examinee i , let θi and τi denote the latent ability and speed, which
are assumed to be jointly normally distributed with the following specification,
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(
θi
τi

)
∼ MV N

(
0,
(

1 ρστ

ρστ σ 2
τ

))
. (1)

For examinee i , assume that conditioning on latent traits θi and τi , the responses Xi j and
response times Ti j , j = 1, ..., J are mutually independent, i.e., the local independence holds,
with the following distributional specifications

P(Xi j = 1 | θi , τi ) = H(a jθi − b j ) = 1

1 + exp[−(a jθi − b j )] , (2)

where H(z) = 1/(1 + e−z) and a j and b j are item parameters (Birnbaum 1968), and

log Ti j | θi , τi ∼ N

(
γ j − τi ,

1

α2
j

)
, (3)

where γ j and α j are the time-intensity and time-discrimination parameters, respectively (see
van der Linden 2006; van der Linden 2007).

If examinee i had unlimited time to attempt the test, then Xi j and Ti j would have been
observed for all j . However, given a finite total time limit ci , the potential response and RT on
any item s/he cannot respond to by time ci will be censored and unobserved. In many scenarios, a
universal time limit is imposed on a test, and ci is the same for all examinees. There are, however,
situations in which the amount of time permitted differs across participants. An example is when
examinees randomly assigned to different test forms are allowed different time limits: Using
precalibrated RT model item parameters, time limit may be accordingly set on a test to control the
risk that a participant runs out of time (van der Linden 2011). As a result, time limits set in this
manner can vary across test forms consisting of different items whose RT parameters differ. In
the presence of finite time limits, the observed data for each i and j are the triplet (Ri j , X̃i j , T̃i j ),

where Ri j = I(
∑ j

l=1 Til ≤ ci ), X̃i j = Xi j Ri j and T̃i j = Ti j ∧ (ci −∑ j−1
l=1 Til)+, where, for real

numbers u and v, u+ = max{u, 0} and u ∧ v = min{u, v}. Note that X̃i j = Xi j and T̃i j = Ti j
when Ri j = 1, that is, when the item is reached. We let Ri = (Ri j )1≤ j≤J be the missing indicator
vector of examinee i and R = (Ri j )1≤i≤N ,1≤ j≤J be the missing indicator matrix of all examinees
on all items, and similarly define X̃ i , T̃i , X̃, and T̃ .

Let Si = ∑J
j=1 Ri j be the number of items examinee i has completed by time ci , and let

ci, j = ci −∑ j−1
l=1 Til be the remaining time allowed for item j . Then the following proposition

holds.

Proposition 1. Given the i th test taker’s latent traits (θi , τi ), the joint density of Ri , X̃ i , and T̃ i

is

Si∏
j=1

[
P(X̃i j | θi , τi ) f (T̃i j | θi , τi )

] [
F̄(ci,Si+1 | θi , τi )

]I(Si<J )
,

where P(X̃i j | θi , τi ) is the response probability based on Equation (2), and f (T̃i j | θi , τi ) is
the RT density based on Equation (3), with F̄(t | θi , τi ) = ∫∞

t f (s | θi , τi ) ds as its survival
function.
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The above proposition is an adaptation of the standard results on the likelihood of right-
censored survival data (see, Lawless 2011), and a proof is included in Appendix I. It should be
noted that the current framework assumes the person-specific time limit ci to be fixed instead of
random. The proposition hence does not generalize to cases where ci is random and correlated
with individual latent traits. Define item parameter vectors a = (a j )1≤ j≤J , b = (b j )1≤ j≤J ,
α = (α j )1≤ j≤J and γ = (γ j )1≤ j≤J .

From Proposition 1, by integrating out the latent trait variables, we get the following
(marginal) likelihood function:

L(a, b,α, γ , στ , ρ)

=
N∏
i=1

⎧⎨
⎩
∫∫ Si∏

j=1

[
P(X̃i j | θi , τi ) f (T̃i j | θi , τi )

] [
F̄(ci,Si+1 | θi , τi )

]I(Si<J )
g(θi , τi | σ 2

τ , ρ)dθi dτi

⎫⎬
⎭ ,

(4)

where g(θi , τi | σ 2
τ , ρ) is the joint density of θ and τ as in Eq. (1).

Remark 1. (Untimed Test) For the special case of no-time limit (i.e., ci = ∞), Ri j =
I(
∑ j

j ′=1 Ti j ′ ≤ ∞) = 1 for all j . Consequently, X̃i = Xi , T̃i = Ti , and Si = J . The joint
density in Proposition 1 becomes equivalent to the complete data density, given by

P(X i , T i | θi , τi ) =
J∏

j=1

[
P(Xi j | θi , τi ) f (Ti j | θi , τi )

]
. (5)

The additional term involving F̄(·) in Proposition 1 is due to the censoring on the first unreached
item.

Aside from jointly modeling (X̃ i , T̃ i , Si ), another common approach to parameter estimation
in the presence of NRIs relies on the conditional distribution of observed responses/RTs given
the number of reached items (e.g., Glas and Pimentel 2008), for instance, P(X̃ i | Si ). Below, we
present two remarks on the marginal likelihood of RT- or response-model parameters when the
missingness is due to right-censoring of response times. Although the two likelihoods are difficult
to implement in practice for parameter estimation, it is shown that the likelihood of RT model
parameters can be written based on the observed RTs and the missingness patterns, whereas the
likelihood of response model parameters cannot be written based only on the observed responses
and missingness patterns. For this reason, RT information, when available, is needed to correctly
account for the missing mechanism due to NRIs.

Remark 2. (Marginal likelihood for RT parameters) Given the number of reached items, Si , the
marginal density of the observed RTs, T̃ i , is

f (T̃ i | Si ) = f (T̃ i , Si )

P(Si )
. (6)
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Here,

f (T̃ i = t i , Si = s) = P(Ti j = ti j , j = 1, . . . , s, Si = s)

= P(Ti j = ti j , j = 1, . . . , s, TSi+1 > c −
s∑

j=1

ti j )

=
∫∫

P(Ti j = ti j , j = 1, . . . , s, TSi+1 > c −
s∑

j=1

ti j | θ, τ )g(θ, τ )dθdτ

=
∫ s∏

j=1

f (ti j | τ)F̄(c −
s∑

j=1

ti j | τ)gτ (τ )dτ, and

P(Si = s) =
∫
t1+...+ts<c

f (t, s)dt, where the integration is over t1 + . . . + ts < c,

=
∫

. . .

∫
t1+...+ts<c

∫ s∏
j=1

f (t j | τ)F̄(c −
s∑

j=1

t j | τ)gτ (τ )dτdt1 . . . dts,

where gτ (τ ) = g(τ | σ 2
τ ) is the latent speed density assuming a normal distribution with mean 0

and variance σ 2
τ .

Consequently, the marginal likelihood of RT parameters is given by:

L(α, γ , στ ) =
N∏
i=1

⎧⎪⎪⎨
⎪⎪⎩

∫ ∏si
j=1 f (t̃i j | τ)F̄(c −∑si

j=1 t̃i j | τ)gτ (τ )dτ∫
. . .
∫

t1+...+tsi <c

∫ ∏si
j=1 f (t j | τ)F̄(c −∑si

j=1 t j | τ)gτ (τ )dτdt1 . . . dts

⎫⎪⎪⎬
⎪⎪⎭

,

(7)
which does not involve the responses (X̃) and the response model parameters.

Remark 3. (Marginal likelihood for response model parameters) Similar to Remark 2, one can
also write the marginal density of X̃ i given Si ,

P(X̃ i | Si ) = P(X̃ i , Si )

P(Si )

=
∫∫

P(X̃ i , Si | θ, τ )g(θ, τ )dθdτ

P(Si )

=
∫∫ ∏Si

j=1 P(X̃i j | θ)P(Si | τ)g(θ, τ )dθdτ∫
. . .
∫

t1+...+tsi <c

∫ ∏si
j=1 f (t j | τ)F̄(c −∑si

j=1 t j | τ)gτ (τ )dτdt1 . . . dts
(8)

The numerator in Eq. (8) cannot be further reduced because θ and τ are inseparable
inside the double integral. One exception is when θ and τ are independent, in which case
g(θ, τ ) = gθ (θ)gτ (τ ). In general, when θ and τ are dependent, P(X̃ i | Si ) still involves RT
model parameters, and the marginal likelihood of response model parameters (a, b) given X̃ i | Si
cannot be explicitly written.
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The current framework is established on the hierarchical model (van der Linden 2007), which
assumes that the RTs to each item, Tit , t = 1, . . . , T are conditionally independent given (θi , τi ).
In other words, the latent speed (τi ) is assumed stationary throughout the test, and the time spent
on item j , Ti j , does not depend on the remaining time on the test, ci −∑ j−1

j ′=1 Ti j ′ . However, as
is discussed in the remark below, the proposed approach for constructing the likelihood in the
presence of RT censoring can be generalized to other joint models for responses and RTs.

Remark 4. (Extensions to other joint models for responses and RTs) Let ωi be the vector of latent
trait parameters for person i , which can include latent speed, accuracy, or other characteristics
of the individual, and let η denote the vector of model parameters. The RT censoring-induced
missingness can be incorporated into the likelihood for following three classes of models:

Case 1 Given individual latent traits, ωi , the responses and the RTs to each item are locally
independent, and the responses and RTs are conditionally independent (e.g., van der
Linden 2007; Bolsinova and Tijmstra 2018; Tijmstra and Bolsinova 2018), with

P(Xi j , Ti j | ωi ) = P(Xi j | ωi ) f (Ti j | ωi ). (9)

In this case, the marginal likelihood of the model parameters, in the presence of NRIs
due to reaching the time limit, takes the form of

L1(η) =
N∏
i=1

{∫ Si∏
j=1

[
P(X̃i j | ωi ) f (T̃i j | ωi )

] [
F̄(ci,Si+1 | ωi )

]I(Si<J )
g(ωi )dωi

}
.

(10)
Case 2 Conditioning on the individual’s latent traits, ωi , the responses and RTs across items

are locally independent, and the joint model of responses and RTs is parameterized so
that the response distribution depends on the RT on the item (e.g., Wang and Hanson
2005; Bolsinova et al.2017), i.e.,

P(Xi j , Ti j | ωi ) = P(Xi j | Ti j ,ωi ) f (Ti j | ωi ). (11)

In this case, the marginal likelihood of the model parameters incorporating NRIs takes
the form of

L2(η) =
N∏
i=1

{∫ Si∏
j=1

[
P(X̃i j | T̃i j ,ωi ) f (T̃i j | ωi )

] [
F̄(ci,Si+1 | ωi )

]I(Si<J )
g(ωi )dωi

}
. (12)

Case 3 Conditioning on latent traits, ωi , the responses and RTs are locally independent across
items, and the joint distribution of responses and RTs is parameterized so that the RT
distribution of an item depends on the item response (e.g., van der Linden and Glas
2010), i.e.,

P(Xi j , Ti j | ωi ) = P(Xi j | ωi ) f (Ti j | Xi j ,ωi ). (13)
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In this case, the marginal likelihood of η incorporating NRI takes the form of

L3(η) =
N∏
i=1

{∫ Si∏
j=1

[
P(X̃i j | ωi ) f (T̃i j | X̃i j ,ωi )

]

×
[
F̄(ci,Si+1 | Xi j = 1,ωi )P(Xi j = 1 | ωi )

+F̄(ci,Si+1 | Xi j = 0,ωi )P(Xi j = 0 | ωi )
]I(Si<J )

g(ωi )dωi

}
. (14)

1.1. Parameter Estimation

Marginal maximum likelihood (MML) estimation is used for estimating the parameters of
the proposed model. Denote the set of parameters by η = (a, b,α, γ , στ , ρ). The MML estimates
of η are obtained by maximizing the logarithm of marginal likelihood function in Eq. (4). As it
involves integration over the latent variables, θ and τ , an efficient way to estimate the parameters
is through an iterative expectation-maximization (EM) algorithm. The detailed computational
procedures employed in the EM algorithm can be found in Appendix II. For each examinee, the
expected a posteriori (EAP) estimates of θi and τi can further be computed. The details for the
EAP approximations are also given in Appendix II. Parameters of the marginal model for RTs
with censoring can be estimated similarly.

1.2. Asymptotic Properties

Applying the standard results on the consistency and asymptotic normality of marginal max-
imum likelihood estimators (see Lehmann and Romano 2006), the difference between the MML
estimates and true values of the item parameters, scaled by the root of the inverse of the Fisher
information matrix, converges to the multivariate standard normal distribution. More precisely,
denoting the item parameters of all items by ζ = (a′, b′,α′, γ ′)′, we have

IN (ζ )
1
2 (ζ̂ − ζ )

D−−−−→
N→∞ N (0,14J ) ,

where IN (ζ ) is the Fisher information matrix with true parameters ζ , and 14J is the 4J × 4J
identity matrix. The Fisher information function IN is presented in Appendix III. The Fisher
information IN (ζ ) can be consistently approximated by: IN (ζ̂ ), and it follows that

IN (ζ̂ )
1
2 (ζ̂ − ζ )

D−−−−→
N→∞ N (0,14J ) .

The standard error estimate (ŜE) of ζ̂ is subsequently given by:

ŜE(ζ̂ ) =
√

diag(IN (ζ̂ )−1). (15)
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2. Simulation Studies

2.1. Simulation Design

Simulation studies were performed to evaluate the parameter recovery of the proposed MML
estimator and to compare its performance to several alternative methods, when the missing data
mechanism can be completely explained by censoring due to time limit. The parameter estimation
accuracy using different approaches, under varying degrees of test length, sample size, missing
rate, and latent speed and ability correlation, is examined. In the presence of missingness due to
NRIs, instead of directly incorporating the censoring process into the joint model for responses and
RTs, other approaches may also be adopted for parameter estimation. In addition to the proposed
joint model with censoring and marginal RT model with censoring, two alternative approaches
were also evaluated in the current study, as described below.

Joint model for responses and RTs ignoring censoring. To handle data with NRI-induced
missingness, a recently proposed method is to jointly model the observed responses and RTs
under van der Linden’s (2007) hierarchical model (e.g., Pohl et al.2019; Ulitzsch et al. 2019; Lu
et al.2018). Adopting the notations in the current paper, the marginal likelihood given the observed
responses and RTs using this approach is given by:

L(a,b,α, γ , ρ, σ 2
τ ) =

N∏
i=1

⎧⎨
⎩
∫∫ Si∏

j=1

[
P(X̃i j | θi , τi ) f (T̃i j | θi , τi )

]
g(θi , τi | σ 2

τ , ρ) dθi dτi

⎫⎬
⎭ .

(16)
Marginal model for responses ignoring censoring. An approach adopted in many operational

tests is to calibrate the item parameters based on the observed response data only (e.g., Johnson
and Allen 1992). With this approach, the marginal likelihood of the IRT model parameters given
the observed responses is given by:

L(a,b) =
N∏
i=1

⎡
⎣∫ Si∏

j=1

P(X̃i j | θi )gθ (θi ) dθi

⎤
⎦ , (17)

where gθ is the probability density of the latent ability assuming a standard normal distribution.
This amounts to three total parameter estimation methods considered in the current study:

• Method 1, the proposed joint model of responses and RTs incorporating time censoring,
which optimizes the logarithm of the likelihood in Eq. (4).

• Method 2, the joint model of observed responses and RTs ignoring the censoring, which
optimizes the logarithm of the likelihood in Eq. (16).

• Method 3, the marginal model of observed responses only, without accounting for time
censoring, which optimizes the logarithm of the likelihood in Eq. (17).

Performance of the three approaches was evaluated under different sample size, test length,
latent trait distribution, and missingness conditions, specifically:

• Sample sizes of N = 1000, 4000, and 10000 were considered;
• Three conditions for the latent trait correlation were considered, namely ρ =-.4, 0, .8;
• Test lengths of J = 10 and 40 were considered;
• Three missingness conditions were considered: Under conditions 1 and 2 (C1 and C2), the

proportion of examinees with at least one NRI was set as r = 50%. The true RT model
time intensity (γ j s) and variance (1/α j s) parameters were set higher in C1 than in C2, so
that C1 will have higher proportion of NRIs in earlier items. Finally, under condition 3
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Table 1.
True item parameters and response rates to each item under conditions C1–C3 for J = 10. a and b were set to the
same values under the three conditions. α1 and γ 1 are the true parameters under C1 and C3, and α2 and γ 2 are the true
parameters under C2

Item Item parameters Response rate
a b α1 γ 1 α2 γ 2 C1 C2 C3

1 0.93 1.60 1.21 −0.91 1.96 −0.94 1.000 1.000 1.000
2 1.68 0.77 1.23 −0.19 1.90 −0.24 1.000 1.000 1.000
3 1.11 −1.40 0.79 1.59 1.69 −0.90 0.911 1.000 0.989
4 1.82 −1.25 0.59 0.17 1.80 −0.66 0.858 1.000 0.981
5 1.91 −0.85 0.61 −0.29 1.02 −0.57 0.824 0.999 0.976
6 0.57 0.70 0.81 0.81 1.22 −0.62 0.758 0.997 0.970
7 1.29 0.46 0.55 1.29 1.64 1.45 0.592 0.937 0.917
8 1.84 0.74 0.65 −0.24 0.82 0.88 0.556 0.810 0.910
9 1.33 0.15 0.53 −1.47 0.98 −0.18 0.538 0.770 0.906
10 1.18 −0.66 0.89 0.26 0.85 1.79 0.500 0.500 0.900
Mean 0.754 0.901 0.955

(C3), the proportion of examinees with at least one NRI was 10%, and the RT model item
parameters under C3 are the same as those in C1.

Under each simulation condition, the same set of true item and structural parameters were
used. The true structural parameters for latent ability and speed distribution were set as: �θτ =(

1 .5ρ

.5ρ .25

)
, with ρ ∈ {−.4, 0, .8} varying depending on the specific simulation condition. In other

words, the standard deviation of latent speed, στ , was set to .5.

500 sets of observed response and RT data for a time test were randomly generated. For
each replication, N subjects’ true ability and speed parameters were randomly drawn from
MVN(0, �θτ ). To generate the response and RT data with NRI, complete responses and RTs
to the J items were generated based on the 2PL (Eq. (2)) and lognormal (Eq. (3)) models, respec-
tively. The proportion of individuals with NRI (r ) was controlled by choosing an appropriate time
limit: For instance, under the r = 50% condition, where half of the examinees had at least one
NRI, a universal time limit (c) was set for all participants as the 50th percentile of examinees’ total
RTs. Then, if an examinee’s cumulative RT up to an item exceeds c, the response and RT for the
item were masked and recorded as missing. In this way, on each simulated data set, approximately
half or 10 percent of the examinees had at least one NRI. Table 1 presents the true item parameters
and the response rates to each item under the J = 10 condition.

The EM algorithm was terminated when it reached the maximal number of iterations or
when the change in log-likelihood fell below a fixed tolerance level. The estimates of η from the
last iteration were retained as the final parameter estimates. For the fixed model parameters, the
average bias, root-mean-squared error (RMSE), standard error (SE), average of standard error
estimates (SEE), and coverage probability (CP) of the 95% confidence interval of the true value
were computed across the 500 data sets. Specifically, for a parameter η, denote its estimate from
the r th replication by η̂(r), the following evaluation indices were computed:
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Bias(η̂) = 1

500

500∑
r=1

(η̂(r) − η),

RMSE(η̂) =
√√√√ 1

500

500∑
r=1

(η̂(r) − η)2,

SE(η̂) =
√√√√ 1

500

500∑
r=1

(η̂(r) − ˆ̄η)2,

SEE(η̂) = 1

500

500∑
r=1

(
ŜE(η̂(r))

)
, and

CP(η̂) = 1

500

500∑
r=1

I
(
η̂(r) − z.975ŜE(η̂(r)) ≤ η ≤ η̂(r) + z.975ŜE(η̂(r))

)
,

where ˆ̄η = 1
500

∑500
r=1 η̂(r), ŜE(η̂(r)) is the standard error estimate from the r th replication com-

puted based on Equation (15), and z.975 is the .975 quantile of the standard normal distribution.
Note that SEE(η̂) is the mean of the estimated standard error based on the asymptotic properties
of the estimator in Section 2.2, while SE(η̂) is the observed standard deviation of η̂ across the
500 replications. When the SEE provides a good approximation to the standard error of η̂, SE(η̂)

and SEE(η̂) are expected to be close. In addition to the fixed model parameters, the agreements
between the examinees’ true and estimated abilities and speeds were further examined. Because
a different set of examinee latent traits were randomly generated in each replication, the MSE of
the θ and τ estimates was computed in each replication separately, that is,

MSE(θ̂ (r)) = 1

N

N∑
i=1

(θ̂
(r)
i − θ

(r)
i )2

and similarly for τ . The RMSE across replications is then reported, where

RMSE(θ̂) =
√√√√ 1

500

500∑
r=1

MSE(θ̂ (r)),

and similarly for τ . To additionally examine how the latent trait estimates produced from the three
methods differ in the ranking of test takers, for each pair of methods (e.g., M1 & M2, M1 & M3,
and M2 & M3), the Kendall’s rank correlation (denoted COR) between the latent trait estimates
produced using the two methods was computed.

2.2. Results

2.2.1. Response model parameters The bias, RMSE, and SE of the item slope parameters
(a j s), averaged across the last four items in each condition, are reported in Table 2. The overall
difference among the three methods was small. However, a tendency for methods 2 and 3 (method
3 especially) to produce smaller estimates of item slope parameters was observed: For example,
across all N = 10000 conditions, the bias with the proposed method, method 1, remained below
.01. On the other hand, methods 2 and 3, which ignored the censoring term, displayed a consistent
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Table 2.
Recovery of a parameters, averaged across the last four items, under different conditions using methods 1–3 (abbreviated
M1–M3).

Condition ρ J N Bias RMSE SE
M1 M2 M3 M1 M2 M3 M1 M2 M3

C1 −0.4 10 1000 0.0207 0.0135 −0.0019 0.1973 0.1957 0.1937 0.1961 0.1951 0.1936
C1 −0.4 10 4000 0.0024 −0.0046 −0.0194 0.0943 0.0939 0.0950 0.0943 0.0937 0.0929
C1 −0.4 10 10000 −0.0005 −0.0073 −0.0221 0.0595 0.0597 0.0631 0.0596 0.0593 0.0590
C1 −0.4 40 1000 0.0201 0.0197 0.0004 0.1659 0.1658 0.1629 0.1648 0.1648 0.1629
C1 −0.4 40 4000 0.0030 0.0027 −0.0166 0.0821 0.0821 0.0828 0.0821 0.0821 0.0811
C1 −0.4 40 10000 0.0004 0.0000 −0.0192 0.0500 0.0500 0.0529 0.0500 0.0500 0.0493
C1 0 10 1000 0.0195 0.0194 0.0192 0.1966 0.1966 0.1965 0.1956 0.1956 0.1955
C1 0 10 4000 0.0027 0.0027 0.0026 0.0933 0.0933 0.0933 0.0933 0.0933 0.0933
C1 0 10 10000 −0.0001 −0.0001 −0.0001 0.0580 0.0580 0.0580 0.0580 0.0580 0.0580
C1 0 40 1000 0.0203 0.0203 0.0202 0.1675 0.1675 0.1674 0.1664 0.1664 0.1664
C1 0 40 4000 0.0043 0.0043 0.0043 0.0801 0.0801 0.0801 0.0801 0.0801 0.0801
C1 0 40 10000 0.0015 0.0015 0.0015 0.0502 0.0502 0.0502 0.0502 0.0502 0.0502
C1 0.8 10 1000 0.0180 −0.0146 −0.0521 0.2025 0.1973 0.2059 0.2018 0.1969 0.1992
C1 0.8 10 4000 0.0012 −0.0304 −0.0693 0.0952 0.0979 0.1164 0.0953 0.0931 0.0934
C1 0.8 10 10000 −0.0005 −0.0322 −0.0709 0.0599 0.0669 0.0923 0.0600 0.0586 0.0589
C1 0.8 40 1000 0.0132 0.0107 −0.0556 0.1777 0.1772 0.1790 0.1773 0.1770 0.1702
C1 0.8 40 4000 0.0029 0.0003 −0.0652 0.0899 0.0897 0.1081 0.0899 0.0897 0.0863
C1 0.8 40 10000 0.0013 −0.0012 −0.0663 0.0557 0.0556 0.0852 0.0556 0.0555 0.0534
C2 −0.4 10 1000 0.0171 0.0151 −0.0079 0.1677 0.1673 0.1648 0.1669 0.1666 0.1647
C2 −0.4 10 4000 0.0003 −0.0017 −0.0242 0.0819 0.0819 0.0850 0.0818 0.0817 0.0808
C2 −0.4 10 10000 −0.0012 −0.0032 −0.0254 0.0517 0.0517 0.0574 0.0517 0.0516 0.0511
C2 −0.4 40 1000 0.0180 0.0175 −0.0051 0.1553 0.1552 0.1522 0.1544 0.1543 0.1522
C2 −0.4 40 4000 0.0041 0.0036 −0.0187 0.0757 0.0756 0.0768 0.0756 0.0756 0.0745
C2 −0.4 40 10000 0.0005 0.0000 −0.0223 0.0470 0.0470 0.0514 0.0470 0.0470 0.0462
C2 0 10 1000 0.0158 0.0159 0.0156 0.1668 0.1669 0.1668 0.1661 0.1661 0.1661
C2 0 10 4000 0.0014 0.0014 0.0013 0.0791 0.0791 0.0791 0.0790 0.0790 0.0791
C2 0 10 10000 −0.0006 −0.0006 −0.0006 0.0506 0.0506 0.0506 0.0507 0.0507 0.0507
C2 0 40 1000 0.0189 0.0189 0.0187 0.1555 0.1555 0.1555 0.1545 0.1545 0.1545
C2 0 40 4000 0.0044 0.0044 0.0044 0.0739 0.0739 0.0739 0.0738 0.0738 0.0738
C2 0 40 10000 0.0002 0.0002 0.0001 0.0467 0.0467 0.0467 0.0467 0.0467 0.0467
C2 0.8 10 1000 0.0125 0.0044 −0.0605 0.1655 0.1644 0.1767 0.1652 0.1645 0.1654
C2 0.8 10 4000 −0.0010 −0.0090 −0.0762 0.0805 0.0806 0.1121 0.0806 0.0801 0.0811
C2 0.8 10 10000 −0.0011 −0.0091 −0.0766 0.0503 0.0508 0.0922 0.0503 0.0500 0.0502
C2 0.8 40 1000 0.0146 0.0113 −0.0687 0.1706 0.1699 0.1746 0.1700 0.1696 0.1605
C2 0.8 40 4000 0.0024 −0.0008 −0.0804 0.0838 0.0835 0.1130 0.0838 0.0836 0.0793
C2 0.8 40 10000 0.0000 −0.0032 −0.0821 0.0528 0.0528 0.0962 0.0527 0.0526 0.0499
C3 −0.4 10 1000 0.0149 0.0121 0.0075 0.1497 0.1492 0.1494 0.1490 0.1487 0.1493
C3 −0.4 10 4000 −0.0015 −0.0042 −0.0085 0.0714 0.0713 0.0719 0.0713 0.0712 0.0713
C3 −0.4 10 10000 −0.0015 −0.0042 −0.0084 0.0451 0.0451 0.0460 0.0451 0.0450 0.0452
C3 −0.4 40 1000 0.0098 0.0097 0.0048 0.1243 0.1243 0.1239 0.1241 0.1241 0.1239
C3 −0.4 40 4000 0.0027 0.0025 −0.0025 0.0611 0.0611 0.0608 0.0610 0.0610 0.0608
C3 −0.4 40 10000 −0.0001 −0.0002 −0.0054 0.0376 0.0376 0.0379 0.0376 0.0376 0.0375
C3 0 10 1000 0.0152 0.0152 0.0150 0.1509 0.1509 0.1508 0.1502 0.1502 0.1501
C3 0 10 4000 0.0003 0.0003 0.0003 0.0706 0.0706 0.0706 0.0705 0.0705 0.0705
C3 0 10 10000 −0.0014 −0.0014 −0.0015 0.0453 0.0453 0.0453 0.0453 0.0453 0.0453
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Table 2.
continued

Condition ρ J N Bias RMSE SE
M1 M2 M3 M1 M2 M3 M1 M2 M3

C3 0 40 1000 0.0117 0.0117 0.0117 0.1233 0.1233 0.1233 0.1228 0.1228 0.1228
C3 0 40 4000 0.0029 0.0029 0.0029 0.0602 0.0602 0.0602 0.0601 0.0601 0.0601
C3 0 40 10000 0.0000 0.0000 0.0000 0.0376 0.0376 0.0376 0.0376 0.0376 0.0376
C3 0.8 10 1000 0.0113 0.0000 −0.0081 0.1441 0.1425 0.1470 0.1438 0.1425 0.1467
C3 0.8 10 4000 0.0008 −0.0104 −0.0208 0.0702 0.0704 0.0746 0.0702 0.0696 0.0716
C3 0.8 10 10000 −0.0006 −0.0118 −0.0222 0.0437 0.0449 0.0499 0.0438 0.0434 0.0446
C3 0.8 40 1000 0.0111 0.0103 −0.0047 0.1243 0.1241 0.1238 0.1238 0.1237 0.1238
C3 0.8 40 4000 0.0025 0.0018 −0.0131 0.0614 0.0614 0.0628 0.0614 0.0614 0.0614
C3 0.8 40 10000 0.0000 −0.0008 −0.0154 0.0387 0.0387 0.0417 0.0387 0.0387 0.0388
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Figure 1.
Recovery of item discrimination parameters (i.e., a j ) under C1, J = 10, N = 4000, ρ = .8 in terms of bias, RMSE, and
95% CP, as well as the observed (SE) and estimated (SEE) standard errors, obtained from different estimation approaches.

negative average bias, especially when the proportion of missing was high (i.e., C1 and C2) and
the absolute correlation between θ and τ was nonzero (ρ = −.4 and .8).

Figure 1 further presents the bias, RMSE, SE, SEE, and 95% CP of a j estimates for each item,
under condition C1 with J = 10, ρ = .8, N = 4000. Different line types are used to depict the
results obtained using different methods. On each subfigure, the x−axis represents the indices of
the 10 items, ordered according to their serial positions in the test. Items that appeared later were
associated with lower completion rates. The gray, dashed lines in each of the subfigures provide
a reference for the comparison of different methods, representing a value of 0 for bias, MSE, SE,
and SEE and a value of 95% for CP. Method 1 produced accurate a j estimates for all 10 items.
Methods 2 and 3, however, displayed a tendency to underestimate the a j s, which is consistent
with the observations from Table 2. The magnitude of the bias increased as the completion rate
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Table 3.
Recovery of b parameters (for the last four items) under different conditions using methods 1–3 (abbreviated M1–M3).

Condition ρ J N Bias RMSE SE
M1 M2 M3 M1 M2 M3 M1 M2 M3

C1 −0.4 10 1000 0.0073 0.0418 0.1036 0.1204 0.1269 0.1582 0.1201 0.1195 0.1193
C1 −0.4 10 4000 0.0033 0.0373 0.0981 0.0596 0.0703 0.1148 0.0594 0.0593 0.0594
C1 −0.4 10 10000 −0.0003 0.0337 0.0944 0.0377 0.0505 0.1016 0.0376 0.0375 0.0375
C1 −0.4 40 1000 0.0015 0.0021 0.0455 0.1209 0.1208 0.1288 0.1208 0.1207 0.1202
C1 −0.4 40 4000 0.0002 0.0009 0.0438 0.0598 0.0598 0.0739 0.0598 0.0598 0.0595
C1 −0.4 40 10000 0.0008 0.0014 0.0443 0.0371 0.0371 0.0577 0.0371 0.0371 0.0368
C1 0 10 1000 0.0086 0.0082 0.0079 0.1216 0.1212 0.1208 0.1212 0.1208 0.1204
C1 0 10 4000 0.0025 0.0025 0.0023 0.0587 0.0587 0.0588 0.0586 0.0586 0.0587
C1 0 10 10000 0.0004 0.0004 0.0003 0.0380 0.0379 0.0378 0.0379 0.0378 0.0378
C1 0 40 1000 0.0027 0.0027 0.0026 0.1194 0.1194 0.1194 0.1193 0.1193 0.1193
C1 0 40 4000 0.0004 0.0004 0.0004 0.0599 0.0599 0.0599 0.0599 0.0599 0.0599
C1 0 40 10000 0.0004 0.0004 0.0004 0.0362 0.0362 0.0361 0.0362 0.0362 0.0362
C1 0.8 10 1000 0.0093 −0.0750 −0.1902 0.1256 0.1417 0.2237 0.1252 0.1203 0.1177
C1 0.8 10 4000 0.0031 −0.0800 −0.1951 0.0620 0.0999 0.2038 0.0619 0.0598 0.0587
C1 0.8 10 10000 −0.0007 −0.0838 −0.1983 0.0398 0.0922 0.2019 0.0398 0.0384 0.0375
C1 0.8 40 1000 0.0038 0.0005 −0.0950 0.1355 0.1350 0.1610 0.1353 0.1349 0.1299
C1 0.8 40 4000 0.0000 −0.0032 −0.0983 0.0666 0.0664 0.1170 0.0666 0.0663 0.0635
C1 0.8 40 10000 0.0007 −0.0026 −0.0982 0.0410 0.0409 0.1057 0.0410 0.0408 0.0391
C2 −0.4 10 1000 0.0043 0.0087 0.0563 0.1079 0.1081 0.1216 0.1078 0.1076 0.1067
C2 −0.4 10 4000 0.0019 0.0062 0.0530 0.0525 0.0528 0.0749 0.0524 0.0524 0.0519
C2 −0.4 10 10000 −0.0007 0.0036 0.0503 0.0334 0.0336 0.0609 0.0333 0.0333 0.0330
C2 −0.4 40 1000 0.0014 0.0022 0.0468 0.1146 0.1144 0.1228 0.1144 0.1142 0.1133
C2 −0.4 40 4000 0.0020 0.0029 0.0472 0.0564 0.0563 0.0731 0.0564 0.0563 0.0558
C2 −0.4 40 10000 0.0005 0.0012 0.0454 0.0353 0.0352 0.0573 0.0353 0.0352 0.0348
C2 0 10 1000 0.0050 0.0050 0.0050 0.1079 0.1079 0.1075 0.1077 0.1077 0.1074
C2 0 10 4000 0.0022 0.0022 0.0021 0.0519 0.0519 0.0519 0.0518 0.0518 0.0519
C2 0 10 10000 −0.0002 −0.0002 −0.0002 0.0331 0.0331 0.0330 0.0330 0.0330 0.0329
C2 0 40 1000 0.0013 0.0013 0.0013 0.1123 0.1123 0.1123 0.1122 0.1122 0.1122
C2 0 40 4000 0.0015 0.0015 0.0015 0.0563 0.0563 0.0563 0.0563 0.0563 0.0563
C2 0 40 10000 0.0002 0.0002 0.0002 0.0338 0.0338 0.0337 0.0338 0.0338 0.0337
C2 0.8 10 1000 0.0057 −0.0078 −0.0976 0.1072 0.1068 0.1468 0.1071 0.1065 0.1056
C2 0.8 10 4000 0.0012 −0.0121 −0.1021 0.0517 0.0530 0.1159 0.0517 0.0515 0.0512
C2 0.8 10 10000 −0.0004 −0.0137 −0.1035 0.0329 0.0356 0.1091 0.0329 0.0326 0.0322
C2 0.8 40 1000 0.0030 −0.0008 −0.0987 0.1288 0.1282 0.1561 0.1287 0.1281 0.1209
C2 0.8 40 4000 0.0011 −0.0023 −0.1009 0.0625 0.0622 0.1167 0.0625 0.0622 0.0587
C2 0.8 40 10000 −0.0002 −0.0038 −0.1022 0.0384 0.0383 0.1085 0.0384 0.0381 0.0362
C3 −0.4 10 1000 0.0055 0.0129 0.0247 0.0957 0.0964 0.0988 0.0955 0.0955 0.0956
C3 −0.4 10 4000 0.0029 0.0101 0.0215 0.0471 0.0481 0.0518 0.0470 0.0470 0.0471

of the item decreased. For all three methods, values of the SE and SEE for each item were highly
similar, suggesting a good approximation of the estimator’s standard error using Eq. (15).

Table 3 and Figure 2 present the recovery results for the item threshold parameters (b j s) in
a similar manner. The proposed method that incorporates RT censoring (method 1) consistently
resulted in accurate item threshold parameter estimates across conditions. On the other hand,
without incorporating the RT censoring, methods 2 and 3 demonstrated consistent and significant
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Table 3.
continued

Condition ρ J N Bias RMSE SE
M1 M2 M3 M1 M2 M3 M1 M2 M3

C3 −0.4 10 10000 −0.0004 0.0068 0.0182 0.0295 0.0303 0.0347 0.0295 0.0295 0.0295
C3 −0.4 40 1000 0.0025 0.0026 0.0100 0.0941 0.0941 0.0944 0.0941 0.0941 0.0939
C3 −0.4 40 4000 0.0019 0.0022 0.0091 0.0467 0.0467 0.0473 0.0466 0.0466 0.0464
C3 −0.4 40 10000 −0.0006 −0.0005 0.0064 0.0286 0.0286 0.0291 0.0286 0.0286 0.0284
C3 0 10 1000 0.0066 0.0066 0.0066 0.0966 0.0965 0.0964 0.0963 0.0963 0.0962
C3 0 10 4000 0.0029 0.0029 0.0028 0.0469 0.0469 0.0469 0.0468 0.0469 0.0469
C3 0 10 10000 0.0002 0.0002 0.0002 0.0300 0.0300 0.0299 0.0299 0.0299 0.0299
C3 0 40 1000 0.0020 0.0020 0.0020 0.0937 0.0937 0.0937 0.0937 0.0937 0.0937
C3 0 40 4000 0.0023 0.0023 0.0023 0.0471 0.0471 0.0471 0.0470 0.0470 0.0470
C3 0 40 10000 0.0001 0.0001 0.0001 0.0286 0.0286 0.0286 0.0286 0.0286 0.0286
C3 0.8 10 1000 0.0049 −0.0128 −0.0320 0.0965 0.0968 0.1018 0.0964 0.0960 0.0967
C3 0.8 10 4000 0.0029 −0.0147 −0.0342 0.0465 0.0486 0.0576 0.0465 0.0463 0.0463
C3 0.8 10 10000 0.0000 −0.0177 −0.0370 0.0300 0.0347 0.0475 0.0300 0.0299 0.0299
C3 0.8 40 1000 0.0031 0.0023 −0.0093 0.0967 0.0966 0.0946 0.0966 0.0966 0.0941
C3 0.8 40 4000 0.0016 0.0009 −0.0109 0.0480 0.0479 0.0482 0.0480 0.0479 0.0469
C3 0.8 40 10000 0.0000 −0.0008 −0.0132 0.0295 0.0295 0.0318 0.0295 0.0295 0.0290
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Figure 2.
Recovery of item threshold parameters (i.e., b j ) under C1, J = 10, N = 4000, ρ = .8 in terms of bias, RMSE, and 95%
CP, and observed (SE) and estimated (SEE) standard errors, obtained from different estimation approaches.

bias in b estimates. The bias was larger in magnitude for method 3, which models the observed
responses alone, than for method 2, which jointly models the observed responses and RTs. The
direction of the bias depended on the sign of the correlation between θ and τ , and the magnitude of
the bias was larger for conditions with (1) higher proportion and earlier onset of missingness, (2)
fewer items, and (3) stronger association between speed and ability. Similar to a j s, the magnitude
of the bias of methods 2 and 3 was larger for later items in the test, i.e., items with lower completion
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Table 4.
Recovery of α parameters (for the last four items) under different conditions using methods 1–2 (abbreviated M1–M2).

Condition ρ J N Bias RMSE SE
M1 M2 M1 M2 M1 M2

C1 −0.4 10 1000 0.0013 0.0627 0.0213 0.0680 0.0212 0.0224
C1 −0.4 10 4000 0.0003 0.0617 0.0108 0.0632 0.0107 0.0113
C1 −0.4 10 10000 0.0002 0.0616 0.0067 0.0622 0.0067 0.0072
C1 −0.4 40 1000 0.0020 0.0391 0.0212 0.0467 0.0211 0.0218
C1 −0.4 40 4000 0.0003 0.0375 0.0103 0.0397 0.0103 0.0105
C1 −0.4 40 10000 0.0004 0.0374 0.0066 0.0384 0.0066 0.0068
C1 0 10 1000 0.0011 0.0631 0.0215 0.0684 0.0215 0.0226
C1 0 10 4000 0.0003 0.0620 0.0108 0.0634 0.0108 0.0113
C1 0 10 10000 0.0001 0.0618 0.0067 0.0624 0.0067 0.0072
C1 0 40 1000 0.0019 0.0393 0.0211 0.0470 0.0210 0.0219
C1 0 40 4000 0.0001 0.0373 0.0103 0.0395 0.0103 0.0106
C1 0 40 10000 0.0002 0.0374 0.0067 0.0383 0.0067 0.0069
C1 0.8 10 1000 0.0014 0.0622 0.0213 0.0675 0.0213 0.0224
C1 0.8 10 4000 0.0002 0.0608 0.0107 0.0623 0.0107 0.0111
C1 0.8 10 10000 0.0001 0.0607 0.0067 0.0613 0.0067 0.0071
C1 0.8 40 1000 0.0013 0.0385 0.0213 0.0463 0.0212 0.0219
C1 0.8 40 4000 −0.0002 0.0371 0.0102 0.0393 0.0102 0.0105
C1 0.8 40 10000 0.0003 0.0373 0.0065 0.0382 0.0064 0.0066
C2 −0.4 10 1000 0.0020 0.1107 0.0297 0.1173 0.0296 0.0330
C2 −0.4 10 4000 0.0004 0.1087 0.0149 0.1104 0.0149 0.0162
C2 −0.4 10 10000 0.0003 0.1087 0.0095 0.1094 0.0094 0.0104
C2 −0.4 40 1000 0.0024 0.0508 0.0316 0.0633 0.0315 0.0330
C2 −0.4 40 4000 −0.0001 0.0480 0.0158 0.0521 0.0157 0.0161
C2 −0.4 40 10000 0.0003 0.0483 0.0102 0.0500 0.0102 0.0104
C2 0 10 1000 0.0021 0.1103 0.0298 0.1168 0.0297 0.0329
C2 0 10 4000 0.0005 0.1087 0.0150 0.1104 0.0150 0.0163
C2 0 10 10000 0.0003 0.1089 0.0095 0.1096 0.0095 0.0104
C2 0 40 1000 0.0024 0.0508 0.0319 0.0633 0.0319 0.0329
C2 0 40 4000 −0.0004 0.0481 0.0157 0.0522 0.0156 0.0160
C2 0 40 10000 0.0003 0.0482 0.0103 0.0500 0.0103 0.0106
C2 0.8 10 1000 0.0017 0.1091 0.0293 0.1155 0.0292 0.0326
C2 0.8 10 4000 0.0002 0.1074 0.0148 0.1091 0.0148 0.0159
C2 0.8 10 10000 0.0002 0.1078 0.0094 0.1085 0.0094 0.0103
C2 0.8 40 1000 0.0018 0.0497 0.0315 0.0621 0.0314 0.0325
C2 0.8 40 4000 −0.0006 0.0475 0.0157 0.0516 0.0157 0.0158
C2 0.8 40 10000 0.0002 0.0482 0.0102 0.0500 0.0102 0.0105

rate. For the last few items under condition C1 with J = 10, ρ = .8, N = 4000 (Fig. 2), the 95%
CP of b j estimates using methods 2 and 3 remarkably deviated from .95. In other words, when
the RT censoring term is ignored, a lot of the times, the 95% confidence interval of item threshold
estimates did not cover the true parameter.

2.2.2. RT model parameters For the two methods that jointly modeled responses and RTs
(methods 1 and 2), results on item time discrimination (α j ) and time intensity (γ j ) parameter
recovery are presented in Tables 4 and 5 and Figs. 3 and 4. Method 1 produced accurate α j and γ j



J. GUO ET AL. 851

Table 4.
continued

Condition ρ J N Bias RMSE SE
M1 M2 M1 M2 M1 M2

C3 −0.4 10 1000 0.0013 0.0194 0.0165 0.0285 0.0165 0.0164
C3 −0.4 10 4000 0.0004 0.0186 0.0081 0.0219 0.0080 0.0081
C3 −0.4 10 10000 0.0001 0.0183 0.0052 0.0200 0.0052 0.0052
C3 −0.4 40 1000 0.0008 0.0148 0.0154 0.0239 0.0154 0.0156
C3 −0.4 40 4000 0.0000 0.0140 0.0078 0.0176 0.0078 0.0078
C3 −0.4 40 10000 0.0001 0.0141 0.0050 0.0159 0.0050 0.0050
C3 0 10 1000 0.0011 0.0193 0.0165 0.0285 0.0164 0.0165
C3 0 10 4000 0.0004 0.0187 0.0080 0.0219 0.0080 0.0081
C3 0 10 10000 0.0000 0.0184 0.0052 0.0200 0.0052 0.0052
C3 0 40 1000 0.0008 0.0148 0.0154 0.0240 0.0154 0.0156
C3 0 40 4000 0.0000 0.0140 0.0078 0.0176 0.0078 0.0078
C3 0 40 10000 0.0002 0.0141 0.0050 0.0159 0.0050 0.0050
C3 0.8 10 1000 0.0010 0.0190 0.0162 0.0280 0.0162 0.0162
C3 0.8 10 4000 0.0004 0.0184 0.0080 0.0216 0.0080 0.0080
C3 0.8 10 10000 0.0000 0.0181 0.0051 0.0198 0.0051 0.0052
C3 0.8 40 1000 0.0009 0.0148 0.0155 0.0240 0.0155 0.0156
C3 0.8 40 4000 0.0000 0.0140 0.0078 0.0176 0.0078 0.0078
C3 0.8 40 10000 0.0002 0.0141 0.0050 0.0159 0.0050 0.0050

estimates across all conditions, with near-zero bias and RMSE approaching 0 as N increased. On
the other hand, method 2 demonstrated a consistent trend to overestimate α j s and underestimate
γ j s across all conditions. The biases were most salient when the test was short (J = 10), and the
proportion of missingness was high (C1 or C2). The correlation between θ and τ did not affect
the magnitude of the bias. From the item-specific plots under condition C1 with J = 10, N =
4000, ρ = .8 (Figs. 3 and 4), it can be observed that the α j estimates from method 2 were affected
for all items, regardless of serial position, and the γ j estimates from method 2 were remarkably
affected for items with any degree of missingness.

2.2.3. Structural model parameters Tables 6 and 7 report the parameter recovery results of the
structural parameters,ρ andστ , using methods 1 and 2. Under the proposed approach incorporating
RT censoring (method 1), the ρs and στ s were well recovered across all conditions, with bias
and RMSE approaching 0 as sample size (N ) increased. On the other hand, although method 2
performed comparably in ρ and στ recovery under most conditions, the bias and RMSEs were
slightly larger when the proportion of missingness was higher. In particular, method 2 displayed a
tendency to underestimate στ , especially for shorter tests (J = 10) and for conditions with lower
overall completion rate (C1 followed by C2).

2.2.4. Individual latent traits The RMSEs of the latent trait estimates under each simulation
condition, as well as the Kendall’s rank correlations between latent trait estimates produced with
different methods, are presented in Table 8. In terms of latent ability (θ ) estimation, it could be
observed that the three methods barely differed when the test was long (J = 40) or when the
latent traits were uncorrelated (ρ = 0). Under these conditions, the RMSEs for θ with the three
methods were highly similar, and this was especially the case for methods 1 and 2, with Kendall’s
correlation in the estimated θs close to 1. When the test length was short and the correlation
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Table 5.
Recovery of γ parameters (for the last four items) under different conditions using methods 1–2 (abbreviated M1–M2).

Condition ρ J N Bias RMSE SE
M1 M2 M1 M2 M1 M2

C1 −0.4 10 1000 −0.0022 −0.3232 0.0689 0.3319 0.0689 0.0662
C1 −0.4 10 4000 −0.0007 −0.3231 0.0339 0.3252 0.0339 0.0322
C1 −0.4 10 10000 −0.0007 −0.3228 0.0220 0.3237 0.0220 0.0211
C1 −0.4 40 1000 −0.0013 −0.1608 0.0707 0.1827 0.0707 0.0684
C1 −0.4 40 4000 −0.0010 −0.1617 0.0348 0.1674 0.0348 0.0337
C1 −0.4 40 10000 −0.0004 −0.1604 0.0220 0.1629 0.0220 0.0212
C1 0 10 1000 −0.0016 −0.3260 0.0689 0.3345 0.0690 0.0663
C1 0 10 4000 −0.0003 −0.3256 0.0341 0.3278 0.0341 0.0327
C1 0 10 10000 −0.0005 −0.3255 0.0218 0.3264 0.0218 0.0210
C1 0 40 1000 −0.0010 −0.1615 0.0701 0.1827 0.0701 0.0673
C1 0 40 4000 −0.0011 −0.1621 0.0347 0.1677 0.0347 0.0334
C1 0 40 10000 −0.0002 −0.1605 0.0220 0.1630 0.0220 0.0213
C1 0.8 10 1000 −0.0020 −0.3124 0.0689 0.3215 0.0689 0.0662
C1 0.8 10 4000 0.0004 −0.3110 0.0335 0.3133 0.0335 0.0325
C1 0.8 10 10000 −0.0004 −0.3115 0.0219 0.3125 0.0219 0.0210
C1 0.8 40 1000 −0.0020 −0.1617 0.0705 0.1830 0.0705 0.0683
C1 0.8 40 4000 −0.0011 −0.1619 0.0349 0.1674 0.0349 0.0332
C1 0.8 40 10000 0.0003 −0.1598 0.0220 0.1623 0.0220 0.0214
C2 −0.4 10 1000 0.0002 −0.2248 0.0403 0.2302 0.0403 0.0393
C2 −0.4 10 4000 −0.0003 −0.2252 0.0199 0.2265 0.0198 0.0189
C2 −0.4 10 10000 −0.0003 −0.2253 0.0125 0.2259 0.0125 0.0121
C2 −0.4 40 1000 −0.0007 −0.1168 0.0456 0.1282 0.0456 0.0441
C2 −0.4 40 4000 −0.0008 −0.1171 0.0221 0.1201 0.0221 0.0218
C2 −0.4 40 10000 −0.0003 −0.1163 0.0141 0.1175 0.0141 0.0138
C2 0 10 1000 0.0002 −0.2250 0.0403 0.2302 0.0403 0.0388
C2 0 10 4000 −0.0004 −0.2253 0.0201 0.2266 0.0201 0.0190
C2 0 10 10000 −0.0004 −0.2257 0.0125 0.2262 0.0125 0.0124
C2 0 40 1000 −0.0008 −0.1172 0.0446 0.1284 0.0446 0.0435
C2 0 40 4000 −0.0001 −0.1168 0.0225 0.1199 0.0225 0.0221
C2 0 40 10000 −0.0002 −0.1162 0.0139 0.1174 0.0139 0.0135
C2 0.8 10 1000 −0.0003 −0.2239 0.0390 0.2291 0.0391 0.0382
C2 0.8 10 4000 −0.0002 −0.2238 0.0197 0.2251 0.0196 0.0191
C2 0.8 10 10000 −0.0002 −0.2242 0.0126 0.2248 0.0126 0.0123
C2 0.8 40 1000 −0.0024 −0.1179 0.0460 0.1293 0.0459 0.0446
C2 0.8 40 4000 0.0000 −0.1159 0.0225 0.1192 0.0225 0.0221

between θ and τ increased, however, the three approaches start to visibly differ in their ranking of
individual abilities, with the Kendall’s correlation between methods 1 and 2 dropping to .94 (and
.81 between methods 1 and 3) under condition C1 with ρ = .8. Under these scenarios, the RMSE
of θ was lowest with method 1, followed closely by method 2, suggesting a slight advantage of
the proposed method in latent ability recovery.

The difference between methods 1 and 2 was more apparent in the estimates of the latent
speeds (τ s), especially when the test was short. The Kendall’s rank correlation between the τ

estimates produced with the two methods ranged between .84 and .96 when J = 10. Across all
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Table 5.
continued

Condition ρ J N Bias RMSE SE
M1 M2 M1 M2 M1 M2

C2 0.8 40 10000 0.0002 −0.1157 0.0142 0.1171 0.0142 0.0139
C3 −0.4 10 1000 −0.0005 −0.0741 0.0553 0.0995 0.0553 0.0548
C3 −0.4 10 4000 −0.0003 −0.0743 0.0270 0.0818 0.0270 0.0266
C3 −0.4 10 10000 0.0001 −0.0740 0.0174 0.0775 0.0174 0.0172
C3 −0.4 40 1000 -0.0010 −0.0507 0.0540 0.0829 0.0540 0.0539
C3 −0.4 40 4000 -0.0011 −0.0510 0.0275 0.0629 0.0275 0.0272
C3 −0.4 40 10000 -0.0004 −0.0502 0.0173 0.0563 0.0173 0.0171
C3 0 10 1000 −0.0002 −0.0745 0.0549 0.0994 0.0550 0.0545
C3 0 10 4000 0.0000 −0.0747 0.0267 0.0820 0.0267 0.0265
C3 0 10 10000 0.0000 −0.0747 0.0174 0.0781 0.0174 0.0172
C3 0 40 1000 −0.0008 −0.0505 0.0539 0.0827 0.0539 0.0536
C3 0 40 4000 −0.0006 −0.0506 0.0276 0.0628 0.0276 0.0274
C3 0 40 10000 −0.0003 −0.0501 0.0172 0.0562 0.0172 0.0170
C3 0.8 10 1000 −0.0005 −0.0719 0.0545 0.0974 0.0545 0.0542
C3 0.8 10 4000 0.0004 −0.0715 0.0267 0.0794 0.0266 0.0264
C3 0.8 10 10000 0.0000 −0.0719 0.0174 0.0755 0.0174 0.0171
C3 0.8 40 1000 −0.0026 −0.0522 0.0552 0.0842 0.0551 0.0545
C3 0.8 40 4000 −0.0005 −0.0504 0.0280 0.0629 0.0280 0.0277
C3 0.8 40 10000 −0.0003 −0.0501 0.0176 0.0564 0.0176 0.0173
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Figure 3.
Recovery of item time discrimination parameters (i.e., α j ) under C1, J = 10, N = 4000, ρ = .8 in terms of bias,
RMSE, and 95% CP, as well as the observed (SE) and estimated (SEE) standard errors, obtained from different estimation
approaches.
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Figure 4.
Recovery of item time intensity parameters (i.e., γ j ) under C1 with J = 10, N = 4000, ρ = .8 in terms of bias, RMSE,
and 95% CP, and observed (SE) and estimated (SEE) standard errors, obtained from different estimation approaches.

conditions, method 1 produced lower, if not equal, RMSE in τ estimates compared to method 2,
suggesting better latent speed recovery in the presence of missingness due to RT censoring.

3. Application: PISA 2018 Science Exam

The three methods were applied to the data from the computer-based version of the PISA
2018 Science Test. In PISA 2018, test takers were randomly routed to different clusters of science
items, and each cluster of items was administered as two parts. Each part was expected to be
completed within 30 minutes. Instead of imposing a 30-minute time limit on each part, a total
time limit of 60 minutes was imposed for the two parts combined (OECD 2021).

For the current study, the response and RT data on items administered in the first position
of science trend form number 23 (i.e., S05 cluster in form 23) were analyzed. Following Pohl
et al. (2019), an artificial time limit of 30 minutes was imposed for items in the first part, and any
responses and RTs to the first part items that exceeded the 30-minute time limit were treated as not
reached. To ensure a certain degree of homogeneity in test-taker characteristics, the sample was
chosen to be the test takers from 16 countries whose average science scores are between 490 and
508 (Schleicher 2019). Note that NRI was not the only type of missingness that was present in the
data. For the purpose of the current study, examinees who manifested other types of missingness,
such as omissions and early quitting, were removed from further analyses. Some examinees may
also demonstrate rapid-guessing behavior by responding quickly to items without engaging in
cognitive problem-solving processes. Treating such rapid-guessing behavior as solution behavior
in modeling and scoring may jeopardize the validity of the test scores (Wise and Kingsbury 2016).
Following Wise and Ma (2012), an item-wise threshold for rapid guessing was set at 10% of its
average observed RTs, with a maximum threshold value of 10 seconds. Examinees’ responses
were classified as rapid guesses when the RTs were less than the item threshold. The examinees
with rapid guessing behavior were further removed from the data set. This resulted in a total of
N = 2335 examinees.

J = 20 items were administered in science cluster S05. For simplicity, polytomous responses
were recoded to dichotomous scores based on whether the examinee had received the highest
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Table 6.
Recovery of the correlation of θ and τ with method 1 (M1), method 2 (M2), under different conditions.

Condition ρ J N Bias RMSE SE
M1 M2 M1 M2 M1 M2

C1 −0.4 10 1000 0.0000 −0.0187 0.0443 0.0518 0.0443 0.0484
C1 −0.4 10 4000 0.0018 −0.0167 0.0246 0.0315 0.0246 0.0268
C1 −0.4 10 10000 0.0007 −0.0177 0.0156 0.0246 0.0156 0.0171
C1 −0.4 40 1000 0.0005 0.0004 0.0295 0.0294 0.0295 0.0295
C1 −0.4 40 4000 0.0005 0.0005 0.0150 0.0150 0.0150 0.0150
C1 −0.4 40 10000 0.0004 0.0003 0.0095 0.0095 0.0095 0.0096
C1 0 10 1000 0.0024 0.0020 0.0511 0.0551 0.0511 0.0551
C1 0 10 4000 0.0008 0.0017 0.0260 0.0279 0.0261 0.0279
C1 0 10 10000 0.0004 0.0005 0.0169 0.0181 0.0170 0.0181
C1 0 40 1000 0.0008 0.0009 0.0344 0.0344 0.0344 0.0345
C1 0 40 4000 0.0005 0.0005 0.0178 0.0178 0.0178 0.0178
C1 0 40 10000 −0.0002 −0.0002 0.0111 0.0111 0.0112 0.0111
C1 0.8 10 1000 0.0017 0.0378 0.0357 0.0546 0.0357 0.0394
C1 0.8 10 4000 −0.0011 0.0353 0.0163 0.0397 0.0163 0.0182
C1 0.8 10 10000 −0.0005 0.0354 0.0108 0.0373 0.0108 0.0120
C1 0.8 40 1000 −0.0001 0.0001 0.0145 0.0145 0.0145 0.0145
C1 0.8 40 4000 −0.0002 0.0001 0.0074 0.0074 0.0074 0.0074
C1 0.8 40 10000 −0.0007 −0.0004 0.0048 0.0048 0.0048 0.0048
C2 −0.4 10 1000 −0.0002 −0.0016 0.0345 0.0349 0.0345 0.0349
C2 −0.4 10 4000 0.0011 −0.0004 0.0187 0.0188 0.0186 0.0188
C2 −0.4 10 10000 0.0007 −0.0008 0.0118 0.0119 0.0118 0.0118
C2 −0.4 40 1000 0.0002 0.0002 0.0293 0.0293 0.0294 0.0294
C2 −0.4 40 4000 0.0007 0.0007 0.0150 0.0151 0.0150 0.0151
C2 −0.4 40 10000 0.0005 0.0005 0.0096 0.0096 0.0096 0.0096
C2 0 10 1000 0.0005 0.0007 0.0406 0.0412 0.0407 0.0413
C2 0 10 4000 0.0012 0.0012 0.0204 0.0207 0.0204 0.0207
C2 0 10 10000 0.0001 0.0000 0.0134 0.0135 0.0134 0.0135
C2 0 40 1000 0.0008 0.0009 0.0345 0.0345 0.0346 0.0346
C2 0 40 4000 0.0005 0.0006 0.0179 0.0179 0.0179 0.0179
C2 0 40 10000 −0.0002 −0.0002 0.0113 0.0113 0.0113 0.0113
C2 0.8 10 1000 −0.0002 0.0035 0.0221 0.0225 0.0221 0.0222
C2 0.8 10 4000 −0.0002 0.0036 0.0101 0.0109 0.0101 0.0103
C2 0.8 10 10000 −0.0004 0.0033 0.0070 0.0077 0.0070 0.0070
C2 0.8 40 1000 −0.0001 0.0001 0.0144 0.0144 0.0144 0.0144
C2 0.8 40 4000 −0.0004 −0.0001 0.0074 0.0074 0.0074 0.0074
C2 0.8 40 10000 −0.0009 −0.0007 0.0048 0.0048 0.0047 0.0047
C3 −0.4 10 1000 −0.0010 −0.0024 0.0402 0.0407 0.0403 0.0406
C3 −0.4 10 4000 0.0018 0.0004 0.0223 0.0224 0.0223 0.0225
C3 −0.4 10 10000 0.0008 −0.0008 0.0137 0.0138 0.0136 0.0138
C3 −0.4 40 1000 0.0006 0.0006 0.0287 0.0287 0.0287 0.0287
C3 −0.4 40 4000 0.0005 0.0005 0.0148 0.0148 0.0148 0.0148
C3 −0.4 40 10000 0.0003 0.0003 0.0092 0.0092 0.0092 0.0092
C3 0 10 1000 0.0000 0.0000 0.0460 0.0464 0.0460 0.0465
C3 0 10 4000 0.0020 0.0020 0.0238 0.0240 0.0238 0.0240
C3 0 10 10000 0.0003 0.0001 0.0153 0.0155 0.0153 0.0155
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Table 6.
continued

Condition ρ J N Bias RMSE SE
M1 M2 M1 M2 M1 M2

C3 0 40 1000 0.0011 0.0010 0.0339 0.0339 0.0339 0.0339
C3 0 40 4000 0.0007 0.0007 0.0173 0.0173 0.0173 0.0173
C3 0 40 10000 −0.0002 −0.0002 0.0109 0.0109 0.0109 0.0109
C3 0.8 10 1000 −0.0004 0.0036 0.0318 0.0324 0.0318 0.0322
C3 0.8 10 4000 −0.0005 0.0035 0.0146 0.0152 0.0146 0.0148
C3 0.8 10 10000 −0.0003 0.0036 0.0093 0.0101 0.0093 0.0095
C3 0.8 40 1000 0.0001 0.0001 0.0141 0.0141 0.0141 0.0141
C3 0.8 40 4000 −0.0002 −0.0001 0.0072 0.0072 0.0072 0.0072
C3 0.8 40 10000 −0.0006 −0.0006 0.0046 0.0046 0.0046 0.0046

possible score on the item. Table 9 presents summary statistics of the items calculated based on
the 2335 examinees’ observed responses and RTs. Approximately 43.7% of examinees completed
all 20 items within 30 minutes, and the earliest onset of NRI due to the 30-minute time limit was
at the 4th item.

3.1. Results

Both method 1 and method 2 identified a slight negative overall correlation between latent
speed and ability, with ρ̂ = −.169 using the joint model with censoring (method 1), and ρ̂ =
−.175 using the joint model without censoring (method 2). The estimated standard deviations
of τ , σ̂τ , using methods 1 and 2, were .245 and .236, respectively. Consistent with the results
from the simulation studies, when the two latent traits are negatively correlated, the joint model
without censoring appeared to produce slightly lower ρ̂ and σ̂τ compared to the joint model with
censoring.

The estimated item parameters using different methods, together with the standard error
estimates (in the parentheses), are shown in Table 10. In addition, the differences in the estimated
item parameters using the three methods are given in Table 11. Because the estimated correlation
between θ and τ was relatively weak, one would expect the differences in the item parameter and
latent ability estimates produced with the three approaches to be small. On the estimation of the
a parameters, the difference between any two methods was relatively small. For b parameters,
especially for items at the end of the test, one can observe a slight but consistent tendency for
method 3 (without incorporating RTs) to produce larger point estimates compared to method 1
and method 2. However, the difference across these methods was below 1 ŜE for all items. As
for the RT model item parameters, comparing methods 1 and 2, the α j estimate produced by
method 2 was more than 1 ŜE lower than that from method 1 for item 15, and the γ j estimates
from method 2 were more than 1 ŜE lower than those from method 1 for items 14–20. This was
consistent with the simulation results, where the joint model without censoring resulted in lower
time intensity estimates compared to the joint model with censoring, particularly for items at the
end of the test.

The examinees’ latent trait estimates produced from different methods are plotted in Fig. 5.
On each subplot, the gray dots represent individuals who have completed all 20 items within the
first 30 minutes, and the black dots represent individuals with at least 1 not-reached item up to 30
minutes. Comparing the latent ability estimates produced by methods 1 and 2, it is observed that
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Table 7.
Recovery of standard deviation of τ with method 1 (M1), method 2 (M2), under different conditions.

Condition ρ J N Bias RMSE SE
M1 M2 M1 M2 M1 M2

C1 −0.4 10 1000 −0.0008 -0.0976 0.0205 0.1000 0.0205 0.0216
C1 −0.4 10 4000 −0.0008 -0.0978 0.0103 0.0984 0.0103 0.0108
C1 −0.4 10 10000 −0.0006 -0.0973 0.0060 0.0975 0.0060 0.0063
C1 −0.4 40 1000 −0.0008 -0.0091 0.0120 0.0150 0.0120 0.0119
C1 −0.4 40 4000 −0.0005 -0.0089 0.0059 0.0107 0.0059 0.0058
C1 −0.4 40 10000 −0.0001 -0.0085 0.0040 0.0094 0.0040 0.0040
C1 0 10 1000 −0.0009 −0.0988 0.0207 0.1011 0.0207 0.0216
C1 0 10 4000 −0.0006 −0.0985 0.0101 0.0991 0.0101 0.0107
C1 0 10 10000 −0.0006 −0.0983 0.0062 0.0986 0.0062 0.0067
C1 0 40 1000 −0.0005 −0.0089 0.0118 0.0147 0.0118 0.0117
C1 0 40 4000 −0.0003 −0.0087 0.0060 0.0106 0.0060 0.0059
C1 0 40 10000 0.0000 −0.0085 0.0040 0.0093 0.0040 0.0040
C1 0.8 10 1000 −0.0010 −0.0938 0.0209 0.0962 0.0209 0.0213
C1 0.8 10 4000 0.0001 −0.0932 0.0101 0.0938 0.0101 0.0106
C1 0.8 10 10000 −0.0005 −0.0934 0.0067 0.0937 0.0067 0.0070
C1 0.8 40 1000 −0.0001 −0.0084 0.0121 0.0146 0.0122 0.0120
C1 0.8 40 4000 −0.0001 −0.0084 0.0062 0.0104 0.0062 0.0062
C1 0.8 40 10000 −0.0002 −0.0085 0.0040 0.0094 0.0040 0.0039
C2 −0.4 10 1000 −0.0004 −0.0269 0.0138 0.0302 0.0138 0.0138
C2 −0.4 10 4000 −0.0008 −0.0274 0.0068 0.0282 0.0067 0.0067
C2 −0.4 10 10000 −0.0003 −0.0269 0.0042 0.0272 0.0042 0.0042
C2 −0.4 40 1000 −0.0006 −0.0106 0.0119 0.0159 0.0119 0.0118
C2 −0.4 40 4000 −0.0005 −0.0105 0.0059 0.0120 0.0059 0.0058
C2 −0.4 40 10000 0.0000 −0.0101 0.0040 0.0108 0.0040 0.0040
C2 0 10 1000 −0.0006 −0.0271 0.0138 0.0304 0.0138 0.0138
C2 0 10 4000 −0.0006 −0.0272 0.0067 0.0280 0.0067 0.0068
C2 0 10 10000 −0.0003 −0.0269 0.0042 0.0273 0.0042 0.0042
C2 0 40 1000 −0.0004 −0.0105 0.0119 0.0158 0.0119 0.0118
C2 0 40 4000 −0.0002 −0.0103 0.0060 0.0119 0.0060 0.0059
C2 0 40 10000 0.0001 −0.0100 0.0040 0.0108 0.0040 0.0040
C2 0.8 10 1000 −0.0004 −0.0266 0.0135 0.0299 0.0136 0.0136
C2 0.8 10 4000 −0.0002 −0.0265 0.0069 0.0274 0.0069 0.0070
C2 0.8 10 10000 −0.0004 −0.0268 0.0045 0.0272 0.0045 0.0045
C2 0.8 40 1000 0.0001 −0.0099 0.0123 0.0157 0.0123 0.0122
C2 0.8 40 4000 0.0001 −0.0098 0.0062 0.0116 0.0063 0.0062
C2 0.8 40 10000 −0.0001 −0.0100 0.0039 0.0107 0.0039 0.0039
C3 −0.4 10 1000 −0.0002 −0.0236 0.0189 0.0302 0.0189 0.0188
C3 −0.4 10 4000 −0.0008 −0.0242 0.0093 0.0259 0.0092 0.0092
C3 −0.4 10 10000 −0.0004 −0.0239 0.0055 0.0245 0.0054 0.0054
C3 −0.4 40 1000 −0.0007 −0.0026 0.0119 0.0121 0.0119 0.0118
C3 −0.4 40 4000 −0.0005 −0.0023 0.0058 0.0062 0.0058 0.0058
C3 −0.4 40 10000 −0.0001 −0.0020 0.0040 0.0044 0.0040 0.0040
C3 0 10 1000 −0.0004 −0.0241 0.0187 0.0305 0.0188 0.0187
C3 0 10 4000 −0.0003 −0.0239 0.0093 0.0256 0.0093 0.0091
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Table 7.
continued

Condition ρ J N Bias RMSE SE
M1 M2 M1 M2 M1 M2

C3 0 10 10000 −0.0005 −0.0241 0.0056 0.0248 0.0056 0.0056
C3 0 40 1000 −0.0006 −0.0025 0.0118 0.0120 0.0118 0.0118
C3 0 40 4000 −0.0003 −0.0022 0.0060 0.0063 0.0060 0.0060
C3 0 40 10000 −0.0001 −0.0020 0.0040 0.0044 0.0040 0.0040
C3 0.8 10 1000 −0.0006 −0.0233 0.0191 0.0299 0.0191 0.0188
C3 0.8 10 4000 0.0004 −0.0223 0.0093 0.0242 0.0093 0.0092
C3 0.8 10 10000 −0.0004 −0.0231 0.0061 0.0239 0.0061 0.0060
C3 0.8 40 1000 0.0001 −0.0018 0.0121 0.0122 0.0121 0.0121
C3 0.8 40 4000 −0.0001 −0.0019 0.0061 0.0064 0.0061 0.0061
C3 0.8 40 10000 −0.0002 −0.0021 0.0039 0.0044 0.0039 0.0039

Table 8.
Recovery of the examinee latent traits under different conditions using methods 1–3 (abbreviated M1–M3). COR represents
the Kendall’s rank correlation coefficient of the estimates of latent parameters with different methods

Condition ρ J N RMSE COR
θ τ θ τ

M1 M2 M3 M1 M2 M1&M2 M1&M3 M2&M3 M1&M2

C1 −0.4 10 1000 0.5747 0.5763 0.5888 0.3155 0.3412 0.9719 0.9095 0.9223 0.8408
C1 −0.4 10 4000 0.5734 0.5748 0.5870 0.3153 0.3411 0.9721 0.9105 0.9232 0.8408
C1 −0.4 10 10000 0.5723 0.5738 0.5862 0.3152 0.3411 0.9721 0.9103 0.9231 0.8411
C1 −0.4 40 1000 0.3245 0.3245 0.3294 0.1150 0.1157 0.9993 0.9690 0.9691 0.9893
C1 −0.4 40 4000 0.3226 0.3226 0.3276 0.1137 0.1146 0.9993 0.9690 0.9691 0.9893
C1 −0.4 40 10000 0.3217 0.3217 0.3267 0.1136 0.1145 0.9993 0.9689 0.9691 0.9893
C1 0 10 1000 0.5871 0.5871 0.5869 0.3229 0.3495 0.9948 0.9878 0.9889 0.8351
C1 0 10 4000 0.5848 0.5848 0.5848 0.3225 0.3493 0.9969 0.9922 0.9927 0.8353
C1 0 10 10000 0.5842 0.5842 0.5842 0.3226 0.3494 0.9974 0.9937 0.9940 0.8356
C1 0 40 1000 0.3269 0.3269 0.3269 0.1153 0.1161 0.9999 0.9980 0.9980 0.9892
C1 0 40 4000 0.3248 0.3248 0.3248 0.1142 0.1151 1.0000 0.9990 0.9990 0.9892
C1 0 40 10000 0.3242 0.3242 0.3242 0.1141 0.1149 1.0000 0.9994 0.9994 0.9892
C1 0.8 10 1000 0.5348 0.5430 0.6024 0.2849 0.3078 0.9386 0.8098 0.8324 0.8667
C1 0.8 10 4000 0.5319 0.5402 0.6010 0.2838 0.3067 0.9389 0.8106 0.8331 0.8662
C1 0.8 10 10000 0.5321 0.5403 0.6006 0.2839 0.3069 0.9389 0.8112 0.8335 0.8667
C1 0.8 40 1000 0.3009 0.3009 0.3319 0.1118 0.1125 0.9978 0.9222 0.9225 0.9899
C1 0.8 40 4000 0.2986 0.2987 0.3298 0.1107 0.1114 0.9978 0.9223 0.9226 0.9899
C1 0.8 40 10000 0.2981 0.2981 0.3295 0.1105 0.1112 0.9978 0.9224 0.9227 0.9899
C2 −0.4 10 1000 0.5152 0.5154 0.5285 0.2005 0.2057 0.9935 0.9235 0.9248 0.9522
C2 −0.4 10 4000 0.5137 0.5138 0.5270 0.2001 0.2055 0.9935 0.9241 0.9254 0.9522
C2 −0.4 10 10000 0.5129 0.5130 0.5263 0.2000 0.2054 0.9935 0.9240 0.9253 0.9522
C2 −0.4 40 1000 0.3282 0.3282 0.3337 0.1117 0.1127 0.9991 0.9664 0.9667 0.9890
C2 −0.4 40 4000 0.3262 0.3262 0.3319 0.1102 0.1114 0.9991 0.9665 0.9667 0.9890
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Table 8.
continued

Condition ρ J N RMSE COR
θ τ θ τ

M1 M2 M3 M1 M2 M1&M2 M1&M3 M2&M3 M1&M2

C2 −0.4 40 10000 0.3254 0.3254 0.3312 0.1100 0.1112 0.9991 0.9664 0.9666 0.9891
C2 0 10 1000 0.5254 0.5254 0.5253 0.2026 0.2079 0.9989 0.9928 0.9928 0.9513
C2 0 10 4000 0.5234 0.5234 0.5233 0.2023 0.2077 0.9993 0.9956 0.9956 0.9512
C2 0 10 10000 0.5229 0.5229 0.5229 0.2021 0.2076 0.9994 0.9964 0.9965 0.9512
C2 0 40 1000 0.3301 0.3301 0.3300 0.1120 0.1130 0.9999 0.9978 0.9979 0.9889
C2 0 40 4000 0.3281 0.3281 0.3281 0.1106 0.1118 1.0000 0.9989 0.9989 0.9889
C2 0 40 10000 0.3276 0.3276 0.3276 0.1104 0.1116 1.0000 0.9993 0.9993 0.9890
C2 0.8 10 1000 0.4543 0.4553 0.5289 0.1897 0.1945 0.9825 0.8262 0.8291 0.9576
C2 0.8 10 4000 0.4522 0.4532 0.5274 0.1891 0.1939 0.9825 0.8263 0.8292 0.9576
C2 0.8 10 10000 0.4520 0.4530 0.5269 0.1890 0.1939 0.9825 0.8266 0.8296 0.9575
C2 0.8 40 1000 0.3030 0.3029 0.3369 0.1091 0.1100 0.9974 0.9181 0.9186 0.9896
C2 0.8 40 4000 0.3003 0.3003 0.3349 0.1075 0.1084 0.9974 0.9182 0.9187 0.9896
C2 0.8 40 10000 0.2996 0.2998 0.3345 0.1072 0.1082 0.9974 0.9183 0.9188 0.9896
C3 −0.4 10 1000 0.5098 0.5103 0.5188 0.3009 0.3056 0.9917 0.9386 0.9418 0.9523
C3 −0.4 10 4000 0.5084 0.5088 0.5174 0.3006 0.3054 0.9919 0.9393 0.9424 0.9526
C3 −0.4 10 10000 0.5076 0.5081 0.5167 0.3005 0.3054 0.9919 0.9392 0.9423 0.9525
C3 −0.4 40 1000 0.3043 0.3044 0.3072 0.1117 0.1118 0.9998 0.9766 0.9766 0.9965
C3 −0.4 40 4000 0.3022 0.3022 0.3052 0.1104 0.1105 0.9998 0.9766 0.9766 0.9965
C3 −0.4 40 10000 0.3014 0.3014 0.3044 0.1103 0.1104 0.9998 0.9766 0.9766 0.9965
C3 0 10 1000 0.5179 0.5179 0.5178 0.3083 0.3132 0.9985 0.9917 0.9920 0.9498
C3 0 10 4000 0.5158 0.5158 0.5158 0.3080 0.3130 0.9989 0.9942 0.9943 0.9499
C3 0 10 10000 0.5155 0.5155 0.5155 0.3079 0.3130 0.9991 0.9951 0.9952 0.9499
C3 0 40 1000 0.3068 0.3068 0.3068 0.1120 0.1121 1.0000 0.9986 0.9986 0.9964
C3 0 40 4000 0.3047 0.3047 0.3047 0.1108 0.1109 1.0000 0.9993 0.9993 0.9965
C3 0 40 10000 0.3041 0.3041 0.3041 0.1107 0.1108 1.0000 0.9995 0.9995 0.9965
C3 0.8 10 1000 0.4760 0.4786 0.5228 0.2674 0.2714 0.9822 0.8652 0.8706 0.9622
C3 0.8 10 4000 0.4739 0.4765 0.5211 0.2666 0.2705 0.9824 0.8652 0.8706 0.9625
C3 0.8 10 10000 0.4737 0.4762 0.5206 0.2666 0.2706 0.9824 0.8655 0.8709 0.9625
C3 0.8 40 1000 0.2860 0.2860 0.3076 0.1088 0.1089 0.9993 0.9361 0.9361 0.9967
C3 0.8 40 4000 0.2834 0.2834 0.3054 0.1075 0.1076 0.9993 0.9362 0.9362 0.9967
C3 0.8 40 10000 0.2827 0.2827 0.3050 0.1074 0.1075 0.9993 0.9363 0.9363 0.9967

for some individuals with NRIs (black dots), their ability rankings appeared to be slightly lower
when the censoring was not explicitly modeled. This tendency was more apparent comparing
methods 1 and 3. For the latent speeds produced by methods 1 and 2, it could be seen that for
individuals without NRI (gray dots), the estimates produced by the two methods almost lie on a
straight line. However, for individuals with NRIs (black dots), their speed estimates were relatively
higher when the censoring was not explicitly modeled.

Model fit of methods 1 and 2 was further evaluated by comparing the empirical cumulative
distribution functions (ECDFs) of cumulative observed RTs (i.e.,

∑J
j=1 T̃i j , i = 1, . . . , N ) with

the model-implied ones. Figure 6 presents the P–P plot (empirical vs. theoretical CDF) and the Q–
Q plot (empirical vs. theoretical quantile functions), where the solid line represents method 1 and
the dashed line represents method 2. For the most part, the two methods performed comparably
and showed very high agreement with the observed cumulative RTs except at the low end of the
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Table 9.
Descriptive statistics of items in PISA 2018 science cluster S05 in form 23.

Item ID N(Reached) P(correct) Mean Log RT SD Log RT
Correct Incorrect Correct Incorrect

CS498Q02S 2335 (1.000) 0.406 0.260 0.321 0.398 0.420
CS498Q03S 2335 (1.000) 0.487 −0.071 0.061 0.465 0.482
DS498Q04C 2334 (1.000) 0.689 0.907 0.586 0.448 0.580
DS514Q02C 2331 (0.998) 0.921 0.633 0.737 0.469 0.509
DS514Q03C 2327 (0.997) 0.484 0.757 0.774 0.481 0.524
DS514Q04C 2320 (0.994) 0.651 0.691 0.775 0.350 0.424
CS605Q01S 2309 (0.989) 0.604 0.529 0.494 0.419 0.493
CS605Q02S 2303 (0.986) 0.472 0.234 0.008 0.447 0.553
CS605Q03S 2281 (0.977) 0.637 0.340 0.237 0.486 0.619
DS605Q04C 2245 (0.961) 0.609 0.638 0.273 0.424 0.579
CS646Q01S 2210 (0.946) 0.912 0.060 0.206 0.354 0.553
CS646Q02S 2153 (0.922) 0.616 0.296 0.133 0.337 0.434
CS646Q03S 2089 (0.895) 0.799 0.197 −0.035 0.364 0.469
DS646Q04C 1883 (0.806) 0.363 0.943 0.521 0.338 0.508
DS646Q05C 1691 (0.724) 0.175 0.626 0.203 0.336 0.468
CS620Q01S 1606 (0.688) 0.894 −0.433 −0.416 0.357 0.487
CS620Q02S 1444 (0.618) 0.497 0.188 0.076 0.288 0.416
CS645Q01S 1304 (0.558) 0.527 −0.000 −0.132 0.411 0.480
CS645Q03S 1216 (0.521) 0.638 −0.758 −0.812 0.474 0.638
DS645Q04C 1020 (0.437) 0.661 0.189 0.080 0.357 0.491
Mean 1987 (0.851) 0.605 0.311 0.205 0.400 0.506

Notes. N(Reached) denotes the number and percentage of examinees (in the parentheses) who have reached
a particular item. P(correct) denotes the proportion of responded examinees who have answered a question
correctly. Mean log RT and SD log RT denote the mean and standard deviation of the natural logarithm of
the observed response time on the item, grouped by examinees’ response accuracy (i.e., correct or incorrect)

cumulative RTs (those with RT≤ 15 minutes). However, the points produced under method 1
were slightly closer to the 45◦ line than those under method 2, providing evidence that method 1
fitted the data slightly better.

Moreover, Fig. 7 plots the densities of cumulative observed RTs (i.e.,
∑J

j=1 T̃i j , i = 1, . . . , N )
and model-implied ones based on kernel density estimation method. On this figure, the black solid
line represents the density from observed RTs, and the red dashed line and blue long dash line,
respectively, represent the density predicted by methods 1 and 2. On the left part of this figure,
methods 1 and 2 perform similarly, and they have little difference with the observed one. However,
on the right part of this figure, the densities obtained by method 1 and the observed one are almost
coincident, and they have obvious difference with that produced by method 2, suggesting that
method 1 fitted the data better.

4. Discussions

4.1. Summary of Findings

The present study proposes a way to model missingness due to not-reached items in computer-
based tests using RT censoring. The time censoring mechanism was directly incorporated into the
joint likelihood given the observed responses and RTs. Simulation results showed that the proposed
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Table 10.
Estimated item parameters and standard error estimates (in the parentheses) of the PISA 2018 Science items, using different
approaches.

Item ID a α

M1 M2 M3 M1 M2

CS498Q02S 0.7556 (0.0612) 0.7549 (0.0611) 0.7677 (0.0614) 2.8739 (0.0451) 2.8759 (0.0452)
CS498Q03S 0.1798 (0.0485) 0.1798 (0.0485) 0.1876 (0.0486) 2.4106 (0.0371) 2.4057 (0.0370)
DS498Q04C 1.1003 (0.0741) 1.1020 (0.0742) 1.0855 (0.0737) 2.3701 (0.0365) 2.3645 (0.0364)
DS514Q02C 1.0125 (0.1040) 1.0123 (0.1040) 1.0384 (0.1060) 2.5935 (0.0405) 2.5987 (0.0405)
DS514Q03C 0.8229 (0.0624) 0.8228 (0.0624) 0.8349 (0.0627) 2.4033 (0.0371) 2.4077 (0.0372)
DS514Q04C 1.4247 (0.0885) 1.4239 (0.0885) 1.4478 (0.0897) 3.1050 (0.0495) 3.1008 (0.0494)
CS605Q01S 0.7084 (0.0591) 0.7085 (0.0591) 0.7066 (0.0592) 2.6121 (0.0407) 2.6099 (0.0406)
CS605Q02S 1.4711 (0.0910) 1.4693 (0.0909) 1.4660 (0.0906) 2.2272 (0.0342) 2.2428 (0.0344)
CS605Q03S 1.0544 (0.0714) 1.0539 (0.0714) 1.0635 (0.0719) 2.1355 (0.0328) 2.1315 (0.0327)
DS605Q04C 1.5606 (0.0956) 1.5612 (0.0956) 1.5615 (0.0958) 2.2107 (0.0344) 2.2066 (0.0343)
CS646Q01S 1.6558 (0.1367) 1.6541 (0.1365) 1.6904 (0.1411) 2.6925 (0.0429) 2.7045 (0.0431)
CS646Q02S 1.1099 (0.0747) 1.1098 (0.0747) 1.1081 (0.0748) 2.8149 (0.0456) 2.8327 (0.0460)
CS646Q03S 1.1524 (0.0863) 1.1520 (0.0863) 1.1571 (0.0870) 2.7632 (0.0453) 2.7748 (0.0455)
DS646Q04C 1.2392 (0.0885) 1.2393 (0.0885) 1.2284 (0.0878) 2.2151 (0.0374) 2.2349 (0.0378)
DS646Q05C 1.1760 (0.1073) 1.1766 (0.1073) 1.1554 (0.1056) 2.2537 (0.0401) 2.3056 (0.0413)
CS620Q01S 0.9229 (0.1047) 0.9222 (0.1047) 0.9326 (0.1060) 2.9307 (0.0550) 2.9417 (0.0553)
CS620Q02S 0.7000 (0.0702) 0.6999 (0.0702) 0.6999 (0.0702) 3.1221 (0.0620) 3.1355 (0.0626)
CS645Q01S 1.0283 (0.0871) 1.0286 (0.0872) 1.0214 (0.0868) 2.4280 (0.0493) 2.4383 (0.0498)
CS645Q03S 0.9556 (0.0877) 0.9554 (0.0876) 0.9569 (0.0879) 1.9649 (0.0408) 1.9695 (0.0410)
DS645Q04C 1.3153 (0.1162) 1.3148 (0.1161) 1.3171 (0.1166) 2.5370 (0.0584) 2.5864 (0.0600)

b γ

CS498Q02S 0.4339 (0.0479) 0.4332 (0.0479) 0.4336 (0.0481) 0.2963 (0.0088) 0.2964 (0.0087)
CS498Q03S 0.0513 (0.0417) 0.0511 (0.0417) 0.0510 (0.0418) −0.0035 (0.0100) −0.0034 (0.0099)
DS498Q04C −0.9789 (0.0585) −0.9801 (0.0586) −0.9774 (0.0583) 0.8081 (0.0101) 0.8073 (0.0100)
DS514Q02C −2.8613 (0.1129) −2.8618 (0.1130) −2.8802 (0.1149) 0.6442 (0.0095) 0.6419 (0.0093)
DS514Q03C 0.0788 (0.0477) 0.0777 (0.0477) 0.0773 (0.0478) 0.7691 (0.0100) 0.7669 (0.0099)
DS514Q04C −0.8505 (0.0632) −0.8508 (0.0632) −0.8586 (0.0638) 0.7244 (0.0084) 0.7231 (0.0083)
CS605Q01S −0.4656 (0.0477) −0.4659 (0.0477) −0.4648 (0.0477) 0.5231 (0.0094) 0.5211 (0.0094)
CS605Q02S 0.1739 (0.0587) 0.1707 (0.0586) 0.1709 (0.0586) 0.1241 (0.0106) 0.1216 (0.0105)
CS605Q03S −0.6855 (0.0548) −0.6859 (0.0548) −0.6849 (0.0550) 0.3177 (0.0110) 0.3141 (0.0110)
DS605Q04C −0.6236 (0.0639) −0.6244 (0.0639) −0.6187 (0.0639) 0.5196 (0.0108) 0.5130 (0.0107)
CS646Q01S −3.2734 (0.1586) −3.2727 (0.1585) −3.2932 (0.1621) 0.1008 (0.0094) 0.0976 (0.0093)
CS646Q02S −0.5807 (0.0562) −0.5813 (0.0562) −0.5718 (0.0560) 0.2729 (0.0092) 0.2667 (0.0091)
CS646Q03S −1.7230 (0.0783) −1.7236 (0.0783) −1.7124 (0.0780) 0.1989 (0.0094) 0.1923 (0.0093)
DS646Q04C 0.7145 (0.0638) 0.7136 (0.0638) 0.7307 (0.0639) 0.7706 (0.0114) 0.7423 (0.0115)
DS646Q05C 1.8926 (0.0940) 1.8919 (0.0940) 1.9070 (0.0943) 0.3988 (0.0118) 0.3687 (0.0117)
CS620Q01S −2.5137 (0.1146) −2.5142 (0.1146) −2.4984 (0.1139) −0.3169 (0.0100) −0.3283 (0.0099)
CS620Q02S −0.0378 (0.0580) −0.0385 (0.0580) −0.0193 (0.0579) 0.2735 (0.0099) 0.2559 (0.0098)
CS645Q01S −0.2157 (0.0667) −0.2168 (0.0667) −0.1856 (0.0663) 0.1034 (0.0125) 0.0801 (0.0125)
CS645Q03S −0.7810 (0.0739) −0.7820 (0.0739) −0.7519 (0.0731) −0.5991 (0.0154) −0.6226 (0.0155)
DS645Q04C −1.0977 (0.0969) −1.0992 (0.0969) −1.0538 (0.0952) 0.3746 (0.0132) 0.3344 (0.0132)
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Table 11.
The differences in estimated item parameters between different approaches based on the PISA 2018 Science items. M2–M1
means the item parameters estimated with method 2 minus that of method 1.

Item ID a b α γ

M2-M1 M3-M1 M3-M2 M2-M1 M3-M1 M3-M2 M2-M1 M2-M1

CS498Q02S −0.0007 0.0121 0.0127 −0.0007 −0.0003 0.0004 0.0020 0.0001
CS498Q03S −0.0000 0.0077 0.0077 −0.0001 −0.0003 −0.0001 −0.0050 0.0001
DS498Q04C 0.0017 −0.0148 −0.0165 −0.0013 0.0015 0.0027 −0.0056 −0.0008
DS514Q02C −0.0002 0.0259 0.0261 −0.0006 −0.0189 −0.0184 0.0052 −0.0023
DS514Q03C −0.0000 0.0121 0.0121 −0.0011 −0.0015 −0.0005 0.0044 −0.0021
DS514Q04C −0.0008 0.0231 0.0239 −0.0004 −0.0082 −0.0078 −0.0042 −0.0013
CS605Q01S 0.0001 −0.0018 −0.0018 −0.0003 0.0008 0.0011 −0.0022 −0.0020
CS605Q02S −0.0018 −0.0050 −0.0033 −0.0032 −0.0029 0.0003 0.0156 −0.0025
CS605Q03S −0.0005 0.0091 0.0096 −0.0004 0.0005 0.0009 −0.0040 −0.0035
DS605Q04C 0.0006 0.0009 0.0003 −0.0008 0.0049 0.0057 −0.0041 −0.0065
CS646Q01S −0.0017 0.0346 0.0363 0.0007 −0.0199 −0.0205 0.0121 −0.0033
CS646Q02S −0.0002 −0.0018 −0.0017 −0.0006 0.0088 0.0095 0.0178 −0.0063
CS646Q03S −0.0004 0.0047 0.0051 −0.0006 0.0106 0.0112 0.0116 −0.0066
DS646Q04C 0.0001 −0.0108 −0.0109 −0.0009 0.0162 0.0171 0.0198 −0.0282
DS646Q05C 0.0006 −0.0206 −0.0212 −0.0007 0.0145 0.0151 0.0519 −0.0301
CS620Q01S −0.0007 0.0097 0.0104 −0.0005 0.0153 0.0158 0.0110 −0.0113
CS620Q02S −0.0001 −0.0001 0.0000 −0.0007 0.0184 0.0192 0.0134 −0.0176
CS645Q01S 0.0004 −0.0068 −0.0072 −0.0012 0.0301 0.0312 0.0102 −0.0232
CS645Q03S −0.0002 0.0013 0.0015 −0.0010 0.0290 0.0301 0.0047 −0.0235
DS645Q04C −0.0004 0.0018 0.0022 −0.0014 0.0439 0.0453 0.0494 −0.0402

method incorporating censoring was able to generate accurate estimates of the model parameters
and the associated standard errors under all conditions, suggesting robustness of method against
RT censoring-induced missingness.

One of the main interests of the current study was to evaluate the consequences of ignoring the
RT censoring in the presence of NRIs. Across simulation studies, it was observed that ignoring the
censoring in the joint model or the marginal model led to consistent biases in parameter estimates.
The bias tended to be larger in magnitude (1) for RT model item parameters than response model
item parameters, (2) for item thresholds than slopes, (3) when the correlation between speed and
ability was strong, (4) when the test was short, and (5) when the proportion of NRIs was high.
Jointly modeling the responses and RTs was able to mitigate the bias in response model parameter
estimates to some extent, but not completely. These findings were consistent with expectations:
Because the additional censoring term only involves the RT on the first unreached item for each
individual, RT model parameters are directly impacted, whereas response model parameters are
only indirectly affected through the correlation between speed and ability. Further, as the number
of completed items increased, the relative contribution of the additional censoring term to the
likelihood decreases, resulting in less severe biases from ignoring the censoring. In addition to the
results reported in the present article, the performance of the proposed method and its alternatives
was also evaluated under other distributions of true item parameters, for example, when the
item threshold and slope were correlated, when the correlation between time intensity and item
threshold was lower, and when the time discrimination parameters were larger. The results were
consistent with the findings of the current study.
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Figure 5.
Comparison of person parameter estimates for the PISA 2018 science data produced by different approaches. Black dots
on the scatter plots represent the individuals with NRIs, and the gray dots represent individuals who have completed all
part 1 items within 30 minutes.

The different approaches were further applied to the data collected from the PISA 2018
Science Test. Methods that do not explicitly model the censoring showed a consistent tendency to
produce higher item threshold and lower time intensity parameter estimates. The difference in RT
model item parameter estimates was larger in magnitude for the later items on the test, which had
higher proportion of NRIs. Finally, comparing the two joint models (with or without censoring)
on examinee latent trait estimates, ignoring the censoring was associated with lower estimates of
latent abilities and higher estimates of latent speeds for individuals with at least one NRI.

4.2. Implications for Practice

When the missingness is due to reaching the time limit, for each examinee with at least one
NRI, the conditional density of the observed data given the model parameters involves a censoring
term. Ignoring the censoring mechanism in the likelihood function can lead to inaccurate parameter
estimates and inferences. This was especially the case for the RT model parameters, which may be
used for test assembly (2017) and for setting the optimal time limit of tests (van der Linden 2011).
The proposed method, which explicitly includes the RT censoring term in the likelihood, has the
advantage of producing unbiased and consistent estimates of item and structural parameters in the
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P–P plot and Q–Q plot based on cumulative observed RTs.
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Figure 7.
The densities of cumulative RTs produced by the observed RTs and model-implied ones.

presence of missingness due to NRI. Because the missing mechanism is directly explained by the
RT censoring, no additional parameters were introduced on top of the joint model of responses
and RTs, and thus, estimation precision can be improved without increasing model complexity.

The proposed method can also improve estimates of examinees’ latent abilities and latent
speeds. The improvement was generally larger in magnitude for the measurement of speed than
ability, as the RT censoring is directly related to the examinees’ latent speeds. This is particularly
useful when test developers are interested in the latent speeds of the examinees, for example,
when the fluency of applying known skills is of interest to educators (e.g., 2019), or when test
takers are scored or evaluated based on a composite of their latent speeds and abilities. During
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a test, an examinee may balance his/her own speed and accuracy by choosing to operate at a
particular speed, which implies a level of accuracy. The hierarchical model of responses and RTs
(van der Linden 2007) measures the effective speed and effective ability of test takers, that is, the
particular level of speed and ability they choose to operate on. Compared to focusing solely on
the latent ability, assessing performance simultaneously based on effective ability and speed can
provide a more complete profile of the examinees (e.g., 2018; Pohl et al. 2019). Another potential
application lies in the scoring of incomplete tests in computerized adaptive testing (CAT). In CAT,
subsequent items are selected on-the-fly based on provisional latent trait estimates. For examinees
who do not reach the end of the test by the time limit, subsequent items have not been selected,
and how to score their responses remains a practical issue. Instead of post-administration score
adjustments using proportional scoring or regression-based approaches (e.g., 1996; 2001), test
developers may alternatively consider scoring their performance based on a combination of speed
and ability estimated from their censored responses. In such a scenario, the likelihood function
with the censoring term is expected to generate more accurate speed and ability estimates.

4.3. Extensions and Further Developments

The current study has its limitations. To start with, in addition to the methods evaluated in the
current study, other well-established methods for handling missing data due to NRIs, including
regression-based (e.g., Rose et al. 2010; 2017) and latent variable-based (e.g., Moustaki and Knott
2000; Glas and Pimentel 2008) methods, also exist. How the proposed approach compares to these
methods remains to be studied.

The proposed approach for handling NRIs can also be extended to allow for missingness due
to other causes. Besides reaching the time limit, other kinds of missingness, including omissions
and early quitting, have also been spotted in operational tests. Many existing studies (e.g., 2014;
2017; Lu et al. 2018; 2020) have looked into methods for handling the combination of different
types of missing responses, some of which also take advantage of the RT information to explain the
underlying mechanisms. In future research, the current RT censoring-induced missingness can be
modeled in conjunction with other types of missing patterns, which would allow its applications
in broader contexts.

Another potential extension is to permit non-stationary speed and alternative test-taking
strategies within-person: The hierarchical model adopted in the current study assumes that all
test takers work at a constant speed and adopt a solution strategy throughout the test. This might
not be the case in practice, especially for tests with time limits. For instance, as the time limit of
the examination approaches, an examinee might speed up at the cost of accuracy (e.g., 2016) or
switch from a solution strategy to a rapid-guessing strategy (e.g., 2015). It is also possible that the
solution processes underlying a correct response and an incorrect response differ (e.g., 2015) in a
timed test. Although Remark 4 extended the current results on modeling NRI due to RT censoring
to more general models for responses and RTs, the MML parameter estimator and the numerical
results in the current study were based only on the hierarchical response and RT model in van der
Linden (2007). Should the proposed approach be applied to other models for responses and RTs
(e.g., Bolsinova et al.2017; van der Linden and Glas 2010; Wang and Hanson 2005), parameter
and standard error estimators need to be derived separately based on the specific model. We leave
the adaptation of the proposed approach to other joint response and RT models, as well as the
evaluation of different parameter estimation methods in the presence of NRIs, to future studies.
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