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This paper studies how to construct confidence regions for principal
component analysis (PCA) in high dimension, a problem that has been vastly
under-explored. While computing measures of uncertainty for nonlinear/nonconvex
estimators is in general difficult in high dimension, the challenge is further
compounded by the prevalent presence of missing data and heteroskedastic
noise. We propose a novel approach to performing valid inference on the
principal subspace, on the basis of an estimator called HeteroPCA (Zhang,
Cai and Wu, 2022). We develop non-asymptotic distributional guarantees
for HeteroPCA, and demonstrate how these can be invoked to compute
both confidence regions for the principal subspace and entrywise confidence
intervals for the spiked covariance matrix. Our inference procedures are fully
data-driven and adaptive to heteroskedastic random noise, without requiring
prior knowledge about the noise levels.

1. Introduction. The applications of modern data science frequently ask for succinct
representations of high-dimensional data. At the core of this pursuit lies principal component
analysis (PCA), which serves as an effective means of dimension reduction and has been
deployed across a broad range of domains (Jolliffe, 1986; Johnstone and Paul, 2018; Vaswani,
Chi and Bouwmans, 2018; Fan et al., 2021). In reality, data collection could often be far
from ideal — for instance, the acquired data might be subject to random contamination
and contain incomplete observations — which inevitably affects the fidelity of PCA and
calls for additional care when interpreting the results. To enable informative assessment of
the influence of imperfect data acquisition, it would be desirable to accompany the PCA
estimators in use with valid measures of uncertainty or “confidence”.

1.1. Problem formulation. To allow for concrete and precise studies, the present paper
concentrates on a tractable model that captures the effects of random heteroskedastic noise
and missing data in PCA. In what follows, we start by formulating the problem, in the hope
of facilitating more precise discussions.

Model. Imagine we are interested in n independent random vectors xj = [x1,j , · · · , xd,j ]> 2

Rd drawn from the following distribution1

(1.1) xj

ind.
⇠ N (0,S?) , 1 j  n,
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1All results in this paper continue to hold if the sample vectors are generated such that xj =U?(⇤?)1/2fj ,

where {fj}nj=1 are independent sub-Gaussian random vectors in Rr satisfying E[fj ] = 0, E[fjf>
j
] = Ir and

kfjk 2
=O(1). Here, k · k 2

denotes the sub-Gaussian norm (Vershynin, 2018).
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where the unknown covariance matrix S? 2 Rd⇥d is assumed to be rank-r (r < n) with
eigen-decomposition

(1.2) S? =U?⇤?U?>
.

Here, the orthonormal columns of U?
2 Rd⇥r constitute the r leading eigenvectors of S?,

whereas ⇤? 2 Rr⇥r is a diagonal matrix whose diagonal entries are composed of the non-
zero eigenvalues of S?. In other words, these vectors {xj}1jn are randomly drawn from a
low-dimensional subspace when r is small. What we have available are partial and randomly
corrupted observations of the entries of the above vectors. Specifically, suppose that we only
get to observe

(1.3) yl,j = xl,j + ⌘l,j for all (l, j) 2⌦

over a subsampled index set ⌦✓ [d]⇥ [n] (with [n] := {1, · · · , n}), where ⌘l,j represents the
noise that contaminates the observation in this location. Throughout this paper, we focus on
the following random sampling and random noise models.

• Random sampling: each index (l, j) is contained in ⌦ independently with probability p;
• Heteroskedastic random noise with unknown variance: the noise components {⌘l,j} are

independently generated sub-Gaussian random variables obeying

E[⌘l,j ] = 0, E[⌘2
l,j
] = !

?2
l
, and k⌘l,jk 2

=O(!?
l
),

where {!
?

l
}1ld denote the standard deviations that are a priori unknown, and k · k 2

stands for the sub-Gaussian norm of a random variable (Vershynin, 2018). The noise
levels {!

?

l
}1ld are allowed to vary across locations, so as to model the so-called

heteroskedasticity of noise.

This model can be viewed as a generalization of the spiked covariance model (Johnstone,
2001; Baik, Ben Arous and Péché, 2005; Paul, 2007; Donoho, Gavish and Johnstone,
2018; Nadler, 2008; Cai et al., 2021; Bao et al., 2022a) to account for missing data and
heteroskedastic noise. With the observed data {yl,j | (l, j) 2 ⌦} in hand, can we perform
statistical inference on the orthonormal matrix U? — which embodies the ground-truth r-
dimensional principal subspace underlying the vectors {xj}1jn — and make inference
on the underlying covariance matrix S?. Mathematically, the task can often be phrased as
constructing valid confidence intervals/regions for both U? and S? based on the incomplete
and corrupted observations {yl,j | (l, j) 2 ⌦}. Noteworthily, this model is frequently studied
in econometrics and financial modeling under the name of factor models (Fan and Yao,
2017; Fan, Li and Liao, 2021; Fan et al., 2021; Bai and Wang, 2016; Gagliardini, Ossola
and Scaillet, 2019), and is closely related to the noisy matrix completion problem where
we also quantify uncertainty of missing entries (Candès and Recht, 2009; Candès and Plan,
2010; Keshavan, Montanari and Oh, 2010a; Chi, Lu and Chen, 2019).

Inadequacy of prior works. While methods for estimating principal subspace are certainly
not in shortage (e.g., Lounici (2014); Zhang, Cai and Wu (2022); Cai and Zhang (2018);
Balzano, Chi and Lu (2018); Zhu, Wang and Samworth (2022); Cai et al. (2021); Li et al.
(2021)), methods for constructing confidence regions for principal subspace remain vastly
under-explored. The fact that the estimators in use for PCA are typically nonlinear and
nonconvex presents a substantial challenge in the development of a distributional theory,
let alone uncertainty quantification. As some representative recent attempts, Xia (2021);
Bao, Ding and Wang (2021) established normal approximations of the distance between the
true subspace and its estimate for the matrix denoising setting, while Koltchinskii, Löffler
and Nickl (2020) further established asymptotic normality of some debiased estimator for
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linear functions of principal components. These distributional guarantees pave the way for
the development of statistical inference procedures for PCA. However, it is noteworthy that
these results required the noise components to either be i.i.d. Gaussian or at least exhibit
matching moments (up to the 4th order), which fell short of accommodating heteroskedastic
noise. The challenge is further compounded when statistical inference needs to be conducted
in the face of missing data, a scenario that is beyond the reach of these prior works.

1.2. Our contributions. In light of the insufficiency of prior results, this paper takes a step
towards developing data-driven inference and uncertainty quantification procedures for PCA,
in the hope of accommodating both heteroskedastic noise and missing data. Our inference
procedures are built on an estimator called HeteroPCA recently proposed by Zhang, Cai and
Wu (2022), which is an iterative algorithm in nature and will be detailed in Section 2. The
main contributions of this paper are summarized as follows.

• Distributional theory for PCA and covariance estimation. We derive, in a non-asymptotic
manner, row-wise distributional characterizations of the principal subspace estimate
returned by HeteroPCA (see Theorem 1), as well as entrywise distributional guarantees
of the estimate for the covariance matrix estimate of {xl}1ln (see Theorem 3).
These distributional characterizations take the form of tractable Gaussian approximations
centered at the ground truth.

• Fine-grained confidence regions and intervals. Our distributional theory in turns allows
for construction of row-wise confidence region for the subspace U? (see Algorithm 3 and
Theorem 2) as well as entrywise confidence intervals for the matrix S? (see Algorithm 4
and Theorem 4). The proposed inference procedures are fully data-driven and do not
require prior knowledge of the noise levels.

Along the way, we have significantly strengthened the estimation guarantees for HeteroPCA

in the presence of missing data. It is noteworthy that all of our theory allows the observed data
to be highly incomplete and covers heteroskedastic noise, which is previously unavailable.

1.3. Paper organization. The remainder of the paper is organized as follows. In
Section 2, we introduce the estimation algorithms available in prior literature. Section 3
develops a suite of distributional theory for HeteroPCA and demonstrates how to use it to
construct fine-grained confidence regions and confidence intervals for the unknowns; the
detailed proofs of our theorems are deferred to the appendices. In Section 4, we carry out a
series of numerical experiments to confirm the validity and applicability of our theoretical
findings. Section 5 gives an overview of several related works. Section 6 takes a detour to
analyze two intimately related problems, which will then be utilized to establish our main
results. We conclude the paper with a discussion of future directions in Section 7. Most of
the proof details are deferred to the appendices.

1.4. Notation. Before proceeding, we introduce several notation that will be useful
throughout. We let f(n) . g(n) or f(n) = O(g(n)) represent the condition that |f(n)| 
Cg(n) for some constant C > 0 when n is sufficiently large; we use f(n) & g(n) to
denote f(n) � C|g(n)| for some constant C > 0 when n is sufficiently large; and we let
f(n) ⇣ g(n) indicate that f(n). g(n) and f(n)& g(n) hold simultaneously. The notation
f(n)� g(n) (resp. f(n)⌧ g(n)) means that there exists some sufficiently large (resp. small)
constant c1 > 0 (resp. c2 > 0) such that f(n) � c1g(n) (resp. f(n)  c2g(n)). We also let
f(n) = o(g(n)) indicate that limn!1 f(n)/g(n) = 0. For any real number a, b 2R, we shall
define a^ b := min{a, b} and a_ b := max{a, b}.

For any matrix M = [Mi,j ]1in1,1jn2 , we let Mi,· and M·,j stand for the i-th row
and the j-th column of M , respectively. We shall also let kMk, kMkF, kMk2,1 and
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kMk1 denote the spectral norm, the Frobenius norm, the `2,1 norm (i.e., kMk2,1 :=
maxi kMi,·k2), and the entrywise `1 norm (kMk1 := maxi,j |Mi,j |) of M , respectively.
For any index set ⌦, the notation P⌦(M) represents the Euclidean projection of a matrix
M onto the subspace of matrices supported on ⌦, and define P⌦c(M) := M � P⌦(M)
as well. In addition, we denote by Pdiag(G) the Euclidean projection of a square matrix G
onto the subspace of matrices that vanish outside the diagonal, and define Po↵-diag(G) :=
G� Pdiag(G). For a non-singular matrix H 2 Rk⇥k with SVD UH⌃HV >

H
, we denote by

sgn(H) the following orthogonal matrix

(1.4) sgn(H) :=UHV >

H .

Finally, we denote by C d the set of all convex sets in Rd. For any Lebesgue measurable set
A✓ Rd, we adopt the shorthand notation N (µ,⌃){A} := P(z 2A), where z ⇠N (µ,⌃).
Throughout this paper, we let �(·) (resp. �(·)) represent the cumulative distribution function
(resp. probability distribution function) of the standard Gaussian distribution. We also denote
by �

2
k

the chi-square distribution with k degrees of freedom.

2. Background: the estimation algorithm HeteroPCA. In order to conduct statistical
inference for PCA, the first step lies in selecting an algorithm to estimate the principal
subspace and the covariance matrix of interest, which we discuss in this section. Before
continuing, we introduce several useful matrix notation as follows

X := [x1, · · · ,xn] 2Rd⇥n
,(2.1a)

Y := P⌦(X +N) 2Rd⇥n
,(2.1b)

where P⌦ has been defined in Section 1.4, and N 2 Rd⇥n represents the noise matrix such
that the (l, j)-th entry of N is given by ⌘l,j . In other words, Y encapsulates all the observed
data {yl,j | (l, j) 2 ⌦}, with any entry outside ⌦ taken to be zero. If one has full access
to the noiseless data matrix X , then a natural strategy to estimate U? would be to return
the top-r eigenspace of the sample covariance matrix n

�1XX>, or equivalently, the top-r
left singular subspace of X . In practice, however, one needs to extract information from the
corrupted and incomplete data matrix Y .

A vanilla SVD-based approach. Given that p
�1Y = p

�1
P⌦(X + N) is an unbiased

estimate of X (conditional on X), a natural idea that comes into mind is to resort to the top-r
left singular subspace of p�1Y when estimating U?. This simple procedure is summarized
in Algorithm 1.

Algorithm 1 A vanilla SVD-based approach.
Input: data matrix Y (cf. (2.1b)), sampling rate p, rank r.
Compute the truncated rank-r SVD U⌃V > of p�1Y /

p
n, where U 2Rd⇥r , ⌃ 2Rr⇥r and V 2Rn⇥r .

Output: U as the subspace estimate, ⌃ as an estimate of (⇤?)1/2, and S = U⌃2U> as the covariance
matrix estimate of x.

An improved iterative estimator: HeteroPCA. While Algorithm 1 returns reliable estimates
of U? and S? in the regime of moderate-to-high signal-to-noise ratio (SNR), it might fail
to be effective if either the missing rate 1 � p or the noise levels are too large. To offer a
high-level explanation, we find it helpful to compute the expectation of a properly rescaled
sample covariance matrix:

(2.2)
1

p2
E
h
Y Y >

��X
i
=XX> +

✓
1

p
� 1

◆
Pdiag

⇣
XX>

⌘
+

n

p
diag

n⇥
!
?2
l

⇤
1ld

o
,
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where for any vector z = [zl]1ld we denote by diag(z) 2 Rd⇥d a diagonal matrix whose
(l, l)-th entry equals zl. Here, we rescale the sample covariance matrix by p

�2 on the left-
hand side, given that p�1Y is an unbiased estimate for X and therefore we expect p�2Y Y >

to be close to XX>. If the sampling rate p is overly small and/or if the noise is of large
size but heteroskedastic, then the second and the third terms on the right-hand side of (2.2)
might result in significant bias on the diagonal of the matrix E

⇥
Y Y >

��X
⇤
, thus hampering

the statistical accuracy of the eigenspace of p�2Y Y > (or equivalently, the left singular space
of p�1Y ) when employed to estimate U?. Viewed in this light, a more effective estimator
would include procedures that properly handle the diagonal components of p�2Y Y >.

To remedy this issue, several previous works (e.g., Florescu and Perkins (2016); Cai
et al. (2021)) adopted a spectral method with diagonal deletion, which essentially discards
any diagonal entry of p�2Y Y > before computing its top-r eigenspace. However, diagonal
deletion comes at a price: while this operation mitigates the significant bias due to
heteroskedasticity and missing data, it introduces another type of bias that might be non-
negligible if the goal is to enable efficient fine-grained inference. To address this bias issue,
Zhang, Cai and Wu (2022) proposed an iterative refinement scheme — termed HeteroPCA —
that copes with the diagonal entries in a more refined manner. Informally, HeteroPCA starts
by computing the rank-r eigenspace of the diagonal-deleted version of p�2Y Y >, and then
alternates between imputing the diagonal entries of XX> and estimating the eigenspace of
p
�2Y Y > with the aid of the imputed diagonal. A precise description of this procedure is

summarized in Algorithm 2; here, Po↵-diag and Pdiag have been defined in Section 1.4.

Algorithm 2 HeteroPCA (by Zhang, Cai and Wu (2022)).
Input: data matrix Y (cf. (2.1b)), sampling rate p, rank r, maximum number of iterations t0.
Initialization: set G0 = 1

np2
Po↵-diag(Y Y >).

Updates: for t= 0,1, . . . , t0 do
⇣
U t

,⇤t
⌘
= eigs

⇣
Gt

, r

⌘
;

Gt+1 =Po↵-diag

⇣
Gt
⌘
+Pdiag

⇣
U t⇤tU t>

⌘
=

1

np2
Po↵-diag

⇣
Y Y >

⌘
+Pdiag

⇣
U t⇤tU t>

⌘
.

Here, for any symmetric matrix G 2 Rd⇥d and 1 r  d, eigs(G, r) returns (U ,⇤), where U⇤U> is the
top-r eigen-decomposition of G.
Output: U = U t0 as the subspace estimate, ⌃ = (⇤t0)1/2 as an estimate of (⇤?)1/2, and S =

U t0⇤t0U t0> as the covariance matrix estimate.

3. Distributional theory and inference procedures. In this section, we augment the
HeteroPCA estimator introduced in Section 2 by a suite of distributional theory, and
demonstrate how to employ our distributional characterizations to perform inference on both
the principal subspace represented by U? and the covariance matrix S?.

3.1. Key quantities and assumptions. Before continuing, we introduce several additional
notation and assumptions that play a key role in our theoretical development. Recall that
the eigen-decomposition of the covariance matrix S? 2 Rd⇥d (see (1.2)) is assumed to be
U?⇤?U?>

. We assume the diagonal matrix ⇤? to be ⇤? = diag{�?1, . . . ,�
?
r}, where the

diagonal entries are given by the non-zero eigenvalues of S? obeying

�
?

1 � · · ·� �
?

r > 0.
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The condition number of S? is denoted by

(3.1)  := �
?

1/�
?

r .

We also find it helpful to introduce the square root of ⇤? as follows

(3.2) ⌃? = diag{�?1, . . . ,�
?

r}= (⇤?)1/2, where �
?

i = (�?i )
1/2

, 1 i r.

Furthermore, we introduce an incoherence parameter commonly employed in prior literature
(Candès, 2014; Chi, Lu and Chen, 2019).

DEFINITION 1 (Incoherence). The rank-r matrix S? 2Rd⇥d defined in (1.2) is said to
be µ-incoherent if the following condition holds:

kU?
k2,1 

r
µr

d
.(3.3)

Here, we recall that kU?
k2,1 denotes the largest `2 norm of all rows of the matrix U?.

REMARK 1. When µ is small (e.g., µ ⇣ 1), this condition essentially ensures that the
energy of U? is nearly evenly dispersed across all of its rows. As a worthy note, the theory
developed herein allows the incoherence parameter µ to grow with the problem dimension.

In light of a global rotational ambiguity issue (i.e., for any r ⇥ r rotation matrix R, the
matrices U 2 Rd⇥r and UR 2 Rd⇥r share the same column space), in general we can only
hope to estimate U? up to global rotation (unless additional eigenvalue separation conditions
are imposed). Consequently, our theoretical development focuses on characterizing the error
distribution UR�U? of an estimator U when accounting for a proper rotation matrix R.
In particular, we shall pay particular attention to a specific way of rotation as follows

Usgn
⇣
U>U?

⌘
�U?

,

where we recall that for any non-singular matrix H 2 Rk⇥k with SVD UH⌃HV >

H
, the

matrix sgn(H) is defined to be the rotation matrix UHV >

H
. This particular choice aligns

U and U? in the following sense

sgn
�
U>U?

�
= arg min

R2Or⇥r
kUR�U?

kF ,

where O
r⇥r indicates the set of all r ⇥ r rotation matrices; see Ma et al. (2020, Appendix

D.2.1). This is often referred to as Whaba’s problem (Wahba, 1965) or the orthogonal
Procrustes problem (Schönemann, 1966).

The last assumption is concerned with the noise levels, which are allowed to vary across
different locations.

ASSUMPTION 1 (Noise levels). The noise levels {!?
i
}1id obey

(3.4)
!
2
max

!2
min

 ! with !max := max
1id

!
?

i and !min := min
1id

!
?

i .

3.2. Inferential procedure and theory for HeteroPCA. We are now positioned to investigate
how to assess the uncertainty of the estimator HeteroPCA. For simplicity of presentation, we
shall abuse some notation (e.g., ⌃?

U,l
and v

?

i,j
) whenever it is clear from the context.
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3.2.1. Distributional theory and inference for the principal subspace U?. In this
subsection, we shall begin by establishing a distributional theory for the subspace estimate
U returned by HeteroPCA (see Theorem 1), followed by a data-driven and provably
valid method to construct fine-grained confidence regions for U? (see Algorithm 3 and
Theorem 2). We shall also briefly discuss how our results improve upon prior estimation
guarantees for HeteroPCA in the presence of missing data.

Distributional guarantees. As it turns out, the subspace estimate returned by Algorithm 2
is approximately unbiased and Gaussian under milder conditions, as posited in the following
theorem. The general result beyond the case with , µ, r,! ⇣ 1 is postponed to Theorem 11
in Appendix B.

THEOREM 1. Assume that each column of the ground truth X (cf. (2.1a)) is independently
generated from N (0,S?), and that the sampling set ⌦ follows the random sampling model
in Section 1.1. Suppose that p < 1� � for some arbitrary constant 0< � < 1 or p= 1, and
, µ, r,! ⇣ 1. Assume that Assumption 1 holds and d& log5 n,

(3.5a)
!
2
max

p�?2r

r
d

n
. 1

log7/2 (n+ d)
,

!max

�?r

s
d

np
. 1

log3 (n+ d)
,

(3.5b) ndp
2 & log9 (n+ d) , np& log7 (n+ d) .

Suppose, in addition, that the number of iterations exceeds
(3.6)

t0 & log

2

4
 
log2 (n+ d)

p
ndp

+
!
2
max

p�?2r

r
d

n
log (n+ d) +

log (n+ d)
p
np

+
!max

�?r

s
d log (n+ d)

np

!�1
3

5 .

Let R be the r ⇥ r rotation matrix R = sgn(U>U?). Then the estimate U returned by
Algorithm 2 obeys: for all 1 l d,

sup
C2C r

���P
⇣
[UR�U?]

l,·
2 C

⌘
�N

�
0,⌃?

U,l

�
{C}

���= o (1) ,

where C r represents the set of all convex sets in Rr , and

⌃?
U,l

:=

✓
1� p

np

��U?

l,·⌃
?
��2
2
+

!
?2
l

np

◆
(⌃?)�2 +

2(1� p)

np
U?>

l,· U
?

l,·

+ (⌃?)�2U?>diag
n⇥

d
?

l,i

⇤
1id

o
U?(⌃?)�2(3.7)

with

d
?

l,i
:=

1

np2

h
!
?2
l

+ (1� p)
��U?

l,·⌃
?
��2
2

ih
!
?2
i + (1� p)

��U?

i,·⌃
?
��2
2

i
+

2(1� p)2

np2
S
?2
l,i
.

Theorem 1 asserts that each row of the estimate U returned by HeteroPCA is nearly
unbiased and admits a nearly tight Gaussian approximation, whose covariance matrix can
be determined via the closed-form expression (3.7). Given that UR and U represent the
same subspace, this theorem delivers a fine-grained row-wise distributional characterization
for the estimator HeteroPCA.
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Let us briefly mention the key error decomposition behind this theorem, which might help
illuminate how Gaussian approximation emerges. Letting E := n

�1/2(p�1Y �X) (which
captures the randomness from both the noise and random subsampling), we can decompose

(3.8) UR�U? =
h
EX> +Po↵-diag

⇣
EE>

⌘i
U? (⌃?)�2

| {z }
=:Z (first- and second-order approximation)

+[UR�U?
�Z]| {z }

=: (residual term)

.

Here, Z contains not only a linear mapping of E but also a certain quadratic mapping, the
latter of which is crucial when coping with the regime n � d. As a consequence of the
central limit theorem (which will be solidified in the proof), Z admits the following Gaussian
approximation

(3.9) Zl,·

d
⇡N

�
0,⌃?

U,l

�
, 1 l d.

At the same time, the `2 norm of the residual term  l,· is well controlled and provably
negligible compared to the corresponding component in Zl,·, thus ascertaining the tightness
of the advertised Gaussian approximation.

REMARK 2. The decomposition (3.8) also sheds light on why our current theory
assumes a finite ! (cf. (3.4)) when conducting statistical inference (which is unnecessary for
the task of estimation). Consider, for example, a simple case when (i) there is no missing data
(p = 1), and (ii) for some 1  l  d, one has !

?

l
= 0 (and hence ! =1) and kU?

l,·
k2 > 0.

In this case, Zl,· = 0 since ⌃?
U,l

= 0, although [UR � U?]l,· is in general non-zero. This
implies that our Gaussian approximation — and the inference procedure developed based on
this approximation — might fall short of efficacy when ! =1.

Construction of confidence regions for the principal subspace. With the above distributional
theory in place, we are well-equipped to construct fine-grained confidence regions for U?,
provided that the covariance matrix ⌃?

U,l
can be estimated in a faithful manner. In Algorithm

3, we propose a procedure to estimate ⌃?
U,l

, which in turn allows us to build confidence
regions. As before, our estimator for ⌃?

U,l
can be viewed as a sort of “plug-in” method in

accordance with the expression (3.7).
The following theorem confirms the validity of the proposed inference procedure when

, µ, r,! ⇣ 1. The more general case will be studied in Theorem 12 in Appendix B.

THEOREM 2. Suppose that the conditions of Theorem 1 hold. Then there exists a r ⇥

r rotation matrix R = sgn
�
U>U?

�
such that the confidence regions CR1�↵

U,l
(1  l  d)

computed in Algorithm 3 obey

sup
1ld

���P
⇣
U?

l,·R
>
2 CR1�↵

U,l

⌘
� (1� ↵)

���= o (1) .

In words, Theorem 2 uncovers that: a valid ground-truth subspace representation is
contained — in a row-wise reliable manner — within the confidence regions CR1�↵

U,l
(1 l

d) we construct. In the special case with r = 1, this result leads to valid entrywise confidence
intervals for the principal component.

Interpretations and implications. We now take a moment to interpret the conditions
required in Theorem 1 and Theorem 2, and discuss some appealing attributes of our methods.
As before, the discussion below focuses on the scenario where µ,, r,! ⇣ 1 for the sake of
simplicity.
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Algorithm 3 Confidence regions for U?

l,·
(1 l d) based on HeteroPCA.

Input: output (U ,⌃,S) of Algorithm 2, sampling rate p, coverage level 1� ↵.
Compute estimates of the noise levels

�
!
?

l

 
1ld

as follows

!
2
l
:=

P
n
j=1 y

2
l,j
1(l,j)2⌦P

n
j=1 1(l,j)2⌦

� Sl,l for all 1 l d.

Compute an estimate of ⌃?
U,l

(cf. (3.7)) as follows:

⌃U,l
:=

 
1� p

np

���Ul,·⌃
���
2

2
+

!
2
l

np

!
⌃�2 +

2(1� p)
np

U>

l,·Ul,· + (⌃)�2U>diag

⇢h
dl,i

i

1id

�
U(⌃)�2

,

where

dl,i :=
1

np2


!
2
l
+ (1� p)

���Ul,·⌃
���
2

2

�h
!
2
i + (1� p)

��Ui,·⌃
��2
2

i
+

2(1� p)2

np2
S
2
l,i
.

Compute the (1� ↵)-quantile ⌧1�↵ of �2r and construct a Euclidean ball:

B1�↵ :=
n
z 2Rr : kzk22  ⌧1�↵

o
.

Output the (1� ↵)-confidence region

CR1�↵
U,l

:=Ul,· +
�
⌃U,l

�1/2B1�↵ =
n
Ul,· +

�
⌃U,l

�1/2z : z 2 B1�↵
o
.

• Missing data. Both theorems accommodate the case when a large fraction of data are
missing, namely, they cover the range

p� e⌦
⇣ 1

n^
p
nd

⌘

for both distributional characterizations and confidence region construction using HeteroPCA.
In particular, if n� d, then the sampling rate p only needs to exceed

p� e⌦
⇣ 1
p
nd

⌘
;

this range can include some sampling rate much smaller than 1/d (with d the ambient
dimension of each sample vector), and cannot be improved in general according to (Cai
et al., 2021, Theorem 3.4).

• Tolerable noise levels. The noise conditon required in both Theorem 1 and Theorem 2 is
given by

!
2
max 

eO
✓⇣

n

d
^

r
n

d

⌘
p�

?2
r

◆
.

Note that when , µ, r ⇣ 1, the variance obeys

max
(l,j)2⌦

var (xl,j) =max
l2[d]

S
?

l,l
⇣max

l2[d]

��U?

l,·

��2
2
�
?2
1 ⇣

1

d
�
?2
1 .

This implies that: when p� e⌦
�
1/(n^

p
nd)

�
, our tolerable entrywise noise level !2

max is
allowed to be significantly (i.e., e⌦(np^

p
ndp2) times) larger than the largest variance of

xl,j for all (l, j) 2⌦, thereby accommodating a wide range of noise levels.
• Adaptivity to heteroskedasticity and unknown noise levels. Our proposed inferential

procedure is fully data-driven: it is automatically adaptive to unknown heteroskedastic
noise, without requiring prior knowledge of the noise levels.
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Comparison with prior estimation theory. While the main purpose of the current paper is
to enable efficient statistical inference for the principal subspace, our theory (see Lemmas 18
and 19 in the appendix) also enables improved estimation guarantees compared to prior
works.

• Recall that the estimation algorithm HeteroPCA was originally proposed and studied by
Zhang, Cai and Wu (2022). Our results broaden the sample size range supported by their
theory. More specifically, note that Zhang, Cai and Wu (2022, Theorem 6 and Remark 10)
requires the sampling rate p to satisfy

ndp&max
n
d
1/3

n
2/3

, d

o
polylog (n,d)

in order to guarantee consistent estimation, while our theoretical guarantees only require

ndp&max
np

nd,d

o
polylog (n,d) .

When n� d, the sample size requirement in Zhang, Cai and Wu (2022) is (n/d)1/6 times
more stringent than the one imposed in our theory.

• Let us discuss the advantage of HeteroPCA compared to the diagonal-deleted spectral
method studied in Cai et al. (2021, Algorithms 1 and 3). Due to diagonal deletion, there is
an additional bias term (see the last term µcecer/d in Equation (4.16) in Cai et al. (2021)),
which turns out to negatively affect our capability of performing inference. In contrast,
HeteroPCA eliminates this bias term by means of successive refining, thus facilitating the
subsequent inference stage.

3.2.2. Distributional theory and inference for the covariance matrix S?. As it turns out,
the above distributional theory for U? further hints at how to perform statistical inference
for the covariance matrix S?. In the sequel, we shall first develop an entrywise distributional
theory for the estimate S returned by HeteroPCA (see Theorem 3), followed by a data-driven
inference procedure to conduct entrywise confidence intervals for S? (see Algorithm 4 and
Theorem 4).

Entrywise distributional guarantees. We now focus attention on characterizing the distribution
of the (i, j)-th entry of S returned by Algorithm 2, which in turn suggests how to construct
entrywise confidence intervals for S?. Before proceeding, let us define a set of variance
parameters {v

?

i,j
}1i,jd which, as we shall demonstrate momentarily, correspond to the

(approximate) variance of the entries of S.

• For any 1 i, j  d obeying i 6= j, we define

v
?

i,j
:=

2� p

np
S
?

i,iS
?

j,j +
4� 3p

np
S
?2
i,j +

1

np

�
!
?2
i S

?

j,j + !
?2
j S

?

i,i

�

+
1

np2

dX

k=1

n⇥
!
?2
i + (1� p)S?i,i

⇤ ⇥
!
?2
k

+ (1� p)S?
k,k

⇤
+ 2(1� p)2 S?2

i,k

o⇣
U?

k,·U
?>

j,·

⌘2

+
1

np2

dX

k=1

n⇥
!
?2
j + (1� p)S?j,j

⇤ ⇥
!
?2
k

+ (1� p)S?
k,k

⇤
+ 2(1� p)2 S?2

j,k

o⇣
U?

k,·U
?>

i,·

⌘2
.

(3.10)

• For any 1 i d, we set

v
?

i,i
:=

12� 9p

np
S
?2
i,i +

4

np
!
?2
i S

?

i,i
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+
4

np2

dX

k=1

n⇥
!
?2
i + (1� p)S?i,i

⇤ ⇥
!
?2
k

+ (1� p)S?
k,k

⇤
+ 2(1� p)2 S?2

i,k

o⇣
U?

k,·U
?>

i,·

⌘2
.

(3.11)

We are now positioned to present our distributional theory for the scenario where , µ, r,! ⇣

1, with the more general version deferred to Theorem 13 in Appendix B. Here and
throughout, Si,j (resp. S?

i,j
) represents the (i, j)-th entry of the matrix S (resp. S?).

THEOREM 3. Suppose that p < 1� � for some arbitrary constant 0< � < 1 or p= 1,
and , µ, r,! ⇣ 1. Consider any 1 i, j  d. Assume that U? is µ-incoherent and satisfies
the following condition
(3.12)
��U?

i,·

��
2
+
��U?

j,·

��
2
&

2

4!max

�?r

s
d log5 (n+ d)

np
+

!
2
max

p�?2r

s
d log5 (n+ d)

n
+

s
log7 (n+ d)

ndp2

3

5
r

1

d
.

In addition, suppose that Assumption 1 holds, and

d& log5 n, np& log7(n+ d), ndp
2 & log7(n+ d),

!max

�?r

s
d

np
. 1

log3 (n+ d)
,

!
2
max

p�?2r

r
d

n
. 1

log7/2 (n+ d)
.

Assume that the number of iterations satisfies (3.6). Then the matrix S computed by
Algorithm 2 obeys

sup
t2R

������
P

0

@Si,j � S
?

i,jq
v?
i,j

 t

1

A�� (t)

������
= o (1) ,

where �(·) denotes the CDF of the standard Gaussian distribution.

In words, the above theorem indicates that under the conditions in Theorem 1, if the sum
of the `2 norm of the rows U?

i,·
and U?

j,·
are not exceedingly small, then the estimation error

Si,j � S
?

i,j
of HeteroPCA is approximately a zero-mean Gaussian with variance v

?

i,j
.

REMARK 3. When it comes to inference for S?
i,j

, our theorems impose the following
condition (cf. (3.12)):

��U?

i,·

��
2
+
��U?

j,·

��
2
� e⌦

 
1p
ndp2

+
!max

�?r

s
d

np
+

!
2
max

p�?2r

r
d

n

!
·

r
1

d
kU?

kF .

Note that the typical `2 norm of a row of U? is kU?
kF/

p
d when the energy is uniformly

spread out across all rows. This means that under our sampling rate condition, our results
allow kU?

i,·
k2 + kU?

j,·
k2 to be much smaller than its typical size. As it turns out, a lower

bound on kU?

i,·
k2+ kU?

j,·
k2 might be necessary for Si,j �S

?

i,j
to be approximately Gaussian.

Consider, for example, the case when kUi,·k2 = kUj,·k2 = 0. It can be seen from our analysis
that

Si,j � S
?

i,j ⇡Zi,·⌃
?2Z>

j,· +Ai,j

where Zi,·, Zj,· and Ai,j are all (approximately) Gaussian. This means that Si,j �S
?

i,j
might

not follow the (approximate) Gaussian distribution claimed in Theorem 3 if kU?

i,·
k2+kU?

j,·
k2

is too small.
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Construction of entrywise confidence intervals. The distributional characterization in
Theorem 3 enables valid construction of entrywise confidence intervals for S?, as long
as we can obtain reliable estimate of the variance v

?

i,j
. In what follows, we come up with

an algorithm — as summarized in Algorithm 4 — that attempts to estimate v
?

i,j
and build

confidence intervals in a data-driven manner, as confirmed by the following theorem for
the scenario with , µ, r,! ⇣ 1. The more general result is postponed to Theorem 14 in
Appendix B.

Algorithm 4 Confidence intervals for S?
i,j

(1 i, j  d) based on HeteroPCA.
Input: output (U ,⌃,S) of Algorithm 2, sampling rate p, coverage level 1� ↵.
Compute estimates of the noise level !?

l
as follows

!
2
l
:=

P
n
j=1 y

2
l,j
1(l,j)2⌦P

n
j=1 1(l,j)2⌦

� Sl,l.

Compute an estimate of v?
i,j

(cf. (3.10) or (3.11))as follows: if i 6= j then

vi,j :=
2� p

np
Si,iSj,j +

4� 3p
np

S
2
i,j +

1
np

⇣
!
2
i S

?
j,j + !

2
jSi,i

⌘

+
1

np2

dX

k=1

nh
!
2
i + (1� p)Si,i

ih
!
2
k
+ (1� p)Sk,k

i
+ 2(1� p)2 S2

i,k

o⇣
Uk,·U

>
j,·

⌘2

+
1

np2

dX

k=1

nh
!
2
j + (1� p)Sj,j

ih
!
2
k
+ (1� p)Sk,k

i
+ 2(1� p)2 S2

j,k

o⇣
Uk,·U

>
i,·

⌘2
;

If i= j then

vi,i :=
12� 9p

np
S
2
i,i +

4
np

!
2
i Si,i

+
4

np2

dX

k=1

nh
!
2
i + (1� p)Si,i

ih
!
2
k
+ (1� p)Sk,k

i
+ 2(1� p)2 S2

i,k

o⇣
Uk,·U

>
i,·

⌘2
.

Output the (1� ↵)-confidence interval

CI1�↵
i,j

:=
h
Si,j ±��1 (1� ↵/2)

p
vi,j

i
.

THEOREM 4. Suppose that the conditions in Theorem 3 hold. Assume that ndp
2 &

log8(n+ d). Then the confidence interval computed in Algorithm 4 obeys

P
⇣
S
?

i,j 2 CI1�↵
i,j

⌘
= 1� ↵+ o (1) .

Compared with Cai et al. (2021, Corollary 2), we can see that when consistent estimation
is possible — namely, under the sampling rate condition p� e⌦((n^

p
nd)�1) and the noise

conditions !max  e⌦((
p

n/d ^
4
p

n/d)
p
p�

?
r ) — it is plausible to construct fine-grained

confidence interval for S?
i,j

, provided that the size of kU?

i,·
k2 + kU?

j,·
k2 is not exceedingly

small.

REMARK 4. Before concluding this subsection, we note that the sampling rate p might
be unknown a priori in practice. If this is the case, then one plausible strategy is to replace p
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in Algorithms 2, 3 and 4 with the following empirical estimate:

bp=
P

d

l=1

P
n

j=1 1{(l, j) 2⌦}

nd
.

In view of the standard concentration results bp= (1 + o(1))p, it is straightforward to verify
that all of these inference procedure and the accompanying theory remain valid. We omit the
details for the sake of brevity.

3.3. A glimpse of key technical ingredients. Let us take a moment to highlight several
technical ingredients of the current theory, which might be applicable to other high-
dimensional statistical problems beyond the analysis of HeteroPCA.

Second-order perturbation theory for principal subspace. At the core of our analysis lies
a “second-order” perturbation theory tailored to general subspace estimation problems, to
be presented in Section 6. More concretely, we establish a second-order expansion of the
subspace perturbation error (see Theorem 5) that makes explicit the following two parts: (i)
nearly tight first- and second-order terms, which can be expressed succinctly as linear and
quadratic mappings of the perturbation matrix; (ii) the remaining higher-order terms that
are provably negligible. Given that HeteroPCA is an iterative algorithm, developing such
a refined perturbation theory for HeteroPCA becomes substantially more challenging than
the vanilla SVD-based approach. Our refined perturbation theory allows us to tighten prior
estimation theory (e.g., the Davis-Kahan sin⇥ Theorem (Davis and Kahan, 1970) or recent
`2,1-type perturbation bounds (Abbe et al., 2020; Cai et al., 2021; Chen et al., 2021a)), the
latter of which focused mainly on providing orderwise estimation error bounds.

Fine-grained distributional characterizations for the principal subspace U?. As alluded to
previously, we establish the distributional characterization for the principal subspace (i.e.,
Theorem 1) based on a key error decomposition

(3.13) UR�U? =
h
EX> +Po↵-diag

⇣
EE>

⌘i
U? (⌃?)�2

| {z }
=:Z (first- and second-order approximation)

+[UR�U?
�Z]| {z }

=: (residual term)

,

where E := n
�1/2(p�1Y � X). For each l 2 [d], the multivariate Berry-Esseen Theorem

reveals the approximate Gaussianity of Zl,·, while at the same time, our second-order
perturbation theory (cf. Theorem 5) ensures that  l,· is stochastically dominated by Zl,·.
Additionally, rather than providing general `2,1 bounds (as in the prior work Cai et al.
(2021)), our proof relies crucially on more delicate row-dependent error control (so that the
size of l,· is carefully bounded in accordance with the l-th row of U? and N ).

Entrywise distributional characterizations when estimating the covariance matrix S?.
Moving one step further, we derive the following key error decomposition w.r.t. the
covariance matrix S?:

(3.14)
S �S? =U?⌃?2Z> +Z⌃?2U?

| {z }
=:W

+n
�1XX>

�S?| {z }
=:A

+[S �S? �W �A]| {z }
=:� (residual term)

,

where Z is defined in (3.13) and approximately Gaussian. Here, W serves as the main
component as induced by the subspace estimation error, A indicates the discrepancy between
the empirical covariance (using clean and fully observed data) and the true covariance,
whereas � is some higher-order term that is provably negligible in a strong entrywise sense.
This in turn allows us to pin down tight entrywise distributional characterizations for S�S?.

4. Numerical experiments.
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FIG 1. The relative estimation error of U and S returned by both SVD-based approach (cf. Algorithm 1) and
HeteroPCA (cf. Algorithm 2) over different noise level !?. (a) Relative estimation errors of UR�U? measured
by k · k, k · kF and k · k2,1 vs. the noise level !?; (b) Relative estimation errors of S � S? measured by k · k,
k · kF and k · k1 vs. the noise level !?. The results are reported over 200 independent trials for r = 3 and
p= 0.6.

Setup. This section conducts a series of numerical experiments to validate our distributional
and inference theory developed in Section 3. Throughout this section, unless otherwise
noted, we fix the dimension to be d = 100 and the number of sample vectors to be
n = 2000, and we generate the covariance matrix as S? = U?U?> with U?

2 Rn⇥r

being a random orthonormal matrix following the Haar distribution over the Grassmann
manifold Gd,r (Vershynin, 2018, Section 5.2.6). In each Monte Carlo trial, the observed
data are produced according to the model described in Section 1.1. For the purpose of
introducing heteroskedasticity, we will introduce a parameter !

? that controls the noise
level: in each independent trial, each noise level !

?

l
(1  l  d) is independently drawn

from Uniform[0.1!?,2!?]; the random noise component ⌘l,j is then drawn from N (0,!?2
l
)

independently for every l 2 [d] and j 2 [n].

Superiority of HeteroPCA to the SVD-based approach in estimation. To begin with, we
first compare the empirical estimation accuracy of the SVD approach (cf. Algorithm 1) and
HeteroPCA (cf. Algorithm 2). Figure 1 displays the relative estimation errors — including
the ones tailored to the principal subspace: kUR�U?

k/kU?
k, kUR�U?

kF/kU?
k2,1,

kUR�U?
k2,1/kU?

k2,1, and the ones tailored to the covariance matrix: kS�S?k/kS?k,
kS �S?kF/kS?kF, kS �S?k1/kS?k1 — of both algorithms as the noise level !? varies,
with r = 3 and p= 0.6. Similarly, Figure 2 shows the relative numerical estimation errors of
both algorithms vs. the sampling rate p, with r = 3 and !

? = 0.05. As we shall see from both
figures, HeteroPCA uniformly outperforms the SVD-based approach in all experiments, and
is able to achieve appealing performance for a much wider range of noise levels and sampling
rates.

Superiority of HeteroPCA to diagonal-deleted PCA in estimation. Let us also compare the
empirical estimation accuracy of the diagonal-deleted spectral method (Cai et al., 2021) and
HeteroPCA (cf. Algorithm 2). Recall from Section 3.2 that the main difference between
the estimation error bounds of these two algorithms lies in an additional bias term due
to the diagonal deletion operation (see the last term µcecer/d in Equation (4.16) in Cai
et al. (2021)). Figure 3 displays the relative estimation errors for estimating the principal
subspace kUR�U?

k/kU?
k and for estimating the covariance matrix kS � S?k/kS?k as

the dimension d varies, with r = 3, !? = 0.05 and p = 0.6. As can be seen from the plots,
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FIG 2. The relative estimation error of U and S returned by both SVD-based approach (cf. Algorithm 1) and
HeteroPCA (cf. Algorithm 2) across different missing probability p. (a) Relative estimation errors of UR�U?

measured by k · k, k · kF and k · k2,1 vs. the missing rate p; (b) Relative estimation errors of S �S? measured
by k · k, k · kF and k · k1 vs. the missing rate p. The results are reported over 200 independent trials for r = 3
and !

? = 0.05.
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FIG 3. The relative estimation error of U and S returned by both diagonal-deleted spectral method (Cai et al.,
2021) and HeteroPCA (cf. Algorithm 2). (a) Relative estimation error kUR�U?k/kU?k vs. dimension d; (b)
Relative estimation error kS � S?k/kS?k vs. the dimension d. The results are reported over 200 independent
trials for r = 3, !? = 0.05 and p= 0.6.

HeteroPCA uniformly outperforms the diagonal-deleted spectral method, especially when d

is not too large. This numerical evidence corroborates the efficacy of the diagonal refinement
scheme adopted in HeteroPCA.

Confidence regions for the principal subspace U?. Next, we carry out a series of
experiments to corroborate the practical validity of the confidence regions constructed
using the SVD-based approach (Yan, Chen and Fan, 2021, Algorithm 3) and HeteroPCA

(cf. Algorithm 3). To this end, we define dCovU (i) to be the empirical probability that
the constructed confidence interval CR0.95

U,i
covers U?

i,·
sgn(U?>U) over 200 Monte Carlo

trials, where U is the estimate returned by either algorithm. We also let Mean(dCovU )
(resp. std(dCovU )) be the empirical mean (resp. standard deviation) of dCovU (i) over i 2 [d].
Table 1 gathers Mean(dCov) and std(dCov) for r = 3 and different choices of (p,!?) for
both algorithms. Encouragingly, the empirical coverage rates are all close to 95% for both
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FIG 4. (a) Q-Q (quantile-quantile) plot of T1 vs. the standard normal distribution for the SVD-based approach; (b)
Q-Q (quantile-quantile) plot of T1 vs. the standard normal distribution for HeteroPCA. The results are reported
over 2000 independent trials for r = 1, p= 0.6 and !

? = 0.05.

methods when p is not too small and !
? is not too large. When p becomes smaller or !?

grows larger, HeteroPCA is still capable of performing valid statistical inference, while the
SVD-based approach fails. This provides another empirical evidence on the advantage and
broader applicability of HeteroPCA compared to the SVD-based approach. In addition, for
the rank-1 case (r = 1), we define Ti := [U � sign(U>U?)U?]i/

p
⌃U,i. Figure 4 displays

the Q-Q (quantile-quantile) plot of T1 := [U � sign(U>U?)U?]1/
p

⌃U,1 vs. the standard
Gaussian random variable over 2000 Monte Carlo simulations for both algorithms (when
p= 0.6 and !

? = 0.05); the near-Gaussian empirical distribution of T1 also corroborates our
distributional guarantees.

Entrywise confidence intervals for S?. Finally, we provide numerical evidence that
confirms the validity of the confidence interval constructed on the basis of the SVD-

TABLE 1
Empirical coverage rates of U?sgn(U?>U) for different (p,!?)’s over 200 Monte Carlo trials

The SVD-based Approach HeteroPCA

p !
? Mean(dCov) Std(dCov) Mean(dCov) Std(dCov)

0.6 0.05 0.9270 0.0292 0.9523 0.0157
0.6 0.1 0.8989 0.0521 0.9484 0.0154
0.4 0.05 0.8849 0.0501 0.9448 0.0184
0.4 0.1 0.8458 0.0853 0.9405 0.0182
0.2 0.05 0.7370 0.1196 0.9287 0.0204
0.2 0.1 0.6856 0.1569 0.9219 0.0204

TABLE 2
Empirical coverage rates of S?

i,j
for different (!?, p)’s over 200 Monte Carlo trials

The SVD-based Approach HeteroPCA

p !
? Mean(dCov) Std(dCov) Mean(dCov) Std(dCov)

0.6 0.05 0.9380 0.0244 0.9475 0.0153
0.6 0.1 0.9243 0.0425 0.9484 0.0151
0.4 0.05 0.9200 0.0509 0.9485 0.0156
0.4 0.1 0.9027 0.0713 0.9490 0.0153
0.2 0.05 0.8657 0.1031 0.9494 0.0164
0.2 0.1 0.8488 0.1186 0.9491 0.0162
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FIG 5. (a) Q-Q (quantile-quantile) plot of Z1,1 vs. the standard normal distribution for the SVD-based approach;
(b) Q-Q (quantile-quantile) plot of Z1,2 vs. a standard Gaussian distribution for the SVD-based approach. The
results are reported over 2000 independent trials for r = 3, p= 0.6, !? = 0.05.
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FIG 6. (a) Q-Q (quantile-quantile) plot of Z1,1 vs. the standard normal distribution for HeteroPCA; (b) Q-Q
(quantile-quantile) plot of Z1,2 vs. a standard Gaussian distribution for HeteroPCA. The results are reported
over 2000 independent trials for r = 3, p= 0.6, !? = 0.05.

based approach (Yan, Chen and Fan, 2021, Algorithm 4) and HeteroPCA (cf. Algorithm
4). Define dCovS(i, j) to be the empirical probability that the 95% confidence interval
[Si,j ± 1.96

p
vi,j ] covers S

?

i,j
over 200 Monte Carlo trials, where Si,j is the (i, j)-th entry

of the estimate S returned by either algorithm. Let Mean(dCovS) (resp. std(dCovS)) be the
empirical mean (resp. standard deviation) of dCovS(i, j) over all i, j 2 [d]. Table 2 collects
Mean(dCov) and std(dCov) for r = 3 and accounts for different choices of (p,!?) for both
algorithms. Similar to previous experiments, HeteroPCA uniformly outperforms the SVD-
based approach, which again suggests that HeteroPCA is the method of choice. In addition,
we define Zi,j := (Si,j � S

?

i,j
)/
p
vi,j . For both algorithms, Figure 5 and Figure 6 depict the

Q-Q (quantile-quantile) plot of Z1,1 and Z1,2 vs. standard Gaussian distributions over 2000
Monte Carlo trials for the case with r = 3, p= 0.6 and !

? = 0.05, which again confirm the
practical validity of our distributional theory.

5. Other related works. Low-rank matrix denoising serves as a common model to study
the effectiveness of spectral methods (Chen et al., 2021a), and has been the main subject
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of many prior works including Cai and Zhang (2018); Chen, Cheng and Fan (2021); Ding
(2020); Abbe et al. (2020); Bao, Ding and Wang (2021); Montanari, Ruan and Yan (2018);
Lei (2019); Xia (2021); Cape, Tang and Priebe (2019); Agterberg, Lubberts and Priebe
(2022), among others. Several recent works began to pursue a distributional theory for the
eigenvector or singular vectors of the observed data matrix (Fan et al., 2020; Cheng, Wei
and Chen, 2021; Bao, Ding and Wang, 2021; Xia, 2021). To name a few examples, Bao
et al. (2022b) studied the limiting distribution of the inner product between an empirical
singular vector and the corresponding ground truth, assuming that the associated spectral gap
is sufficient large and that the noise components are homoskedastic; Xia (2021) established
non-asymptotic Gaussian approximation for certain projection distance in the presence of
i.i.d. Gaussian noise. Furthermore, the presence of missing data forms another source of
technical challenges, leading to a problem often dubbed as noisy low-rank matrix completion
(Candès and Plan, 2010; Negahban and Wainwright, 2012; Chen et al., 2020).

Spectral methods have been successfully applied to tackle noisy matrix completion
(Keshavan, Montanari and Oh, 2010b; Sun and Luo, 2016; Chen and Wainwright, 2015;
Zheng and Lafferty, 2016; Ma et al., 2020; Chen, Liu and Li, 2020; Cho, Kim and
Rohe, 2017), which commonly serve as an effective initialization scheme for nonconvex
optimization methods (Chi, Lu and Chen, 2019). While statistical inference for noisy
matrix completion has been investigated recently (Chen et al., 2019a; Xia and Yuan, 2021;
Chernozhukov et al., 2023), these prior works focused on performing inference based on
optimization-based estimators. How to construct fine-grained confidence intervals based on
spectral methods remains previously out of reach for noisy matrix completion. It is also
noteworthy that the inferential procedures proposed in Chen et al. (2019a); Xia and Yuan
(2021) (for noisy matrix completion) were developed for the regime where reliable estimation
of the full low-rank matrix is feasible. This, however, falls short of covering the most
challenging regime considered herein (where one might only be able to estimate the column
subspace but not the row subspace). This crucial difference in the regimes of interest leads to
substantial challenges unaddressed by these prior works.

Additionally, the recent work (Xia, 2019) tackled the confidence regions for spectral
estimators tailored to the low-rank matrix regression problem, without accommodating the
noisy matrix completion context. Most importantly, while the SVD-based vanilla spectral
method often works well for the balanced case (such that the column dimension and the
row dimension are on the same order), sub-optimality has been well recognized when
estimating the column subspace of interest in the highly unbalanced case (so that the column
dimension far exceeds the row dimension); this issue is also present when it comes to existing
optimization-based methods like nuclear norm minimization. As a result, all prior schemes
mentioned in this paragraph failed to tackle the highly balanced case in an statistically
efficient manner.

Turning to PCA or subspace estimation, there has been an enormous literature dedicated
to this topic; see Johnstone and Paul (2018); Balzano, Chi and Lu (2018) for an overview of
prior development. Noteworthily, the need to handle the diagonals of the sample covariance
matrix in the presence of heteroskedastic noise and/or missing data has been pointed out in
many prior works, e.g., Loh and Wainwright (2012); Lounici (2014); Montanari and Sun
(2018); Florescu and Perkins (2016); Cai et al. (2021). The iterative refinement scheme
proposed by Zhang, Cai and Wu (2022) turns out to be among the most effective and
adaptive schemes in handling the diagonals. Aimed at designing fine-grained estimators for
the principal components, Koltchinskii, Löffler and Nickl (2020); Li et al. (2021) proposed
statistically efficient de-biased estimators for linear functionals of principal components, and
moreover, the estimator proposed in Koltchinskii, Löffler and Nickl (2020) has also been
shown to exhibit asymptotic normality in the presence of i.i.d. Gaussian noise. Bloemendal
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et al. (2016) also pinned down the asymptotic distributions of certain principal components
under a spiked covariance model. However, these papers fell short of presenting valid and
data-driven uncertainty quantification methods for the proposed estimators, and their results
operates under the assumptions of homoskedastic noise without any missing data, a scenario
that is remarkably more restricted than ours. Under the spiked covariance model, Bao et al.
(2022b) studied the limiting distribution of the angle between the eigenvectors of the sample
covariance matrix and any fixed vector, under the “balanced” scenario where the aspect ratio
n/d is a constant. In addition, recent years have witnessed much activity in high-dimensional
PCA in the face of missing data (Zhang, Cai and Wu, 2022; Zhu, Wang and Samworth,
2022; Cai et al., 2021; Pavez and Ortega, 2020); these works, however, focused primarily
on developing estimation guarantees, which did not provide either distributional guarantees
for the estimators or concrete procedures that allow for confidence region construction.
Additionally, the HeteroPCA algorithm has been further extended by two follow-up works
Zhou and Chen (2023a,b) to accommodate the scenario with large condition numbers as well
as tensor clustering in the presence of heteroskedastic noise

From a technical viewpoint, it is worth mentioning that the `1 and `2,1 perturbation
theory has been an active research direction in recent years (Fan, Wang and Zhong, 2018;
Cape, Tang and Priebe, 2019; Chen, Cheng and Fan, 2021; Eldridge, Belkin and Wang,
2018; Agterberg, Lubberts and Priebe, 2022; Xie, 2021). Among multiple existing technical
frameworks, the leave-one-out analysis idea — which has been applied to a variety of
statistical estimation problems (El Karoui et al., 2013; El Karoui, 2015; Zhong and Boumal,
2018; Chen et al., 2019b, 2021b; Cai et al., 2022; Ling, 2022; Cai, Poor and Chen, 2022;
Chen, Gao and Zhang, 2022) — provides a powerful and flexible framework that enables `1
and `2,1 statistical guarantees for spectral methods (Chen et al., 2019c; Abbe et al., 2020;
Cai et al., 2021); see (Chen et al., 2021a, Chapter 4) for an accessible introduction of this
powerful framework. Our analysis for the HeteroPCA approach is influenced by the one in
Cai et al. (2021). Note, however, that Cai et al. (2021) didn’t come with any distributional
guarantees for spectral methods, which we seek to accomplish in this paper.

It is important to note that although the current version of this paper focuses primarily on
the HeteroPCA method, a preliminary version available on arXiv (Yan, Chen and Fan, 2021)
includes a discussion on distributional theory and inferential procedures for PCA using the
SVD-based approach (cf. Algorithm 1). This content was subsequently omitted during the
revision phase based on editiorial suggestions. Interested readers are referred to Yan, Chen
and Fan (2021) for a set of inferential results developed for the SVD-based approach, in
parallel to Theorems 1 to 4 in this paper.

Finally, we note in passing that constructing confidence intervals for sparse regression
(based on, say, the Lasso estimator or other sparsity-promoting estimator), has attracted a
flurry of research activity in the past few years (Celentano, Montanari and Wei, 2023; Zhang
and Zhang, 2014; van de Geer et al., 2014; Javanmard and Montanari, 2014; Cai and Guo,
2017; Ning and Liu, 2017; Ren et al., 2015). The methods derived therein, however, are not
directly applicable to perform statistical inference for PCA and/or other low-rank models.

6. A detour: subspace estimation. We now take a detour to look at an intimately related
problem, which we shall refer to as subspace estimation and will play a crucial role in
understanding the HeteroPCA approach. We will set out to develop a fine-grained statistical
theory for HeteroPCA when applied to this subspace estimation setting. The resulting theory
will be invoked in Appendix D to analyze the PCA context.

6.1. Model and algorithm.
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Model and assumptions. Suppose that we are interested in a rank-r matrix M \
2 Rn1⇥n2 ,

whose SVD is given by

(6.1) M \ =
rX

i=1

�
\

i
u\
i
v\>
i

=U \⌃\V \>
2Rn1⇥n2

Here, U \ = [u\1, . . . ,u
\
r] (resp. V \ = [v\1, . . . ,v

\
r]) consists of orthonormal columns that

correspond to the left (resp. right) singular vectors of M \, and ⌃\ = diag{�\1, . . . ,�
\
r} is

a diagonal matrix consisting of the singular values of M \. Without loss of generality, we
assume that

n=max{n1, n2}.

It is assumed that the singular values are sorted (in magnitude) in descending order, namely,

(6.2) �
\

1 � · · ·� �
\

r � 0,

with the condition number denoted by

(6.3) 
\ := �

\

1/�
\

r.

What we have observed is a noisy copy of M \, namely,

(6.4) M =M \ +E,

where E = [Ei,j ]1i,jn stands for a noise matrix. We focus on estimating the column
subspace represented by U \ and the singular values encapsulated in ⌃\, but not the row
space V \. An important special scenario one should bear in mind is the highly unbalanced
case where the column dimension n2 far exceeds the row dimension n1; in this case, it is
common to encounter situations where reliable estimation of M \ and V \ is infeasible but
that of U \ shows promise. For this reason, we refer to this setting as subspace estimation
in order to differentiate it from matrix denoising, emphasizing that we are only interested in
column subspace estimation.

With the new aim in mind, we shall modify our incoherence and noise assumptions
accordingly. Here, we abuse the notation with the understanding that the following set of
assumptions will be used only when analyzing the approach based on HeteroPCA. We shall
also denote n := max{n1, n2}.

ASSUMPTION 2 (Incoherence). The rank-r matrix M \
2 Rn1⇥n2 defined in (6.1) is

said to be µ
\-incoherent if the following holds:

���U \

���
2,1



s
µ\r

n1
,

���V \

���
2,1



s
µ\r

n2
, and

���M \

���
1



s
µ\

n1n2

���M \

���
F
.

ASSUMPTION 3 (Heteroskedastic random noise). Assume that the Ei,j’s are independently
generated, and suppose that there exist non-negative quantities {�i}

n1

i=1, {Bi}
n1

i=1, � and B

obeying

8(i, j) 2 [n1]⇥ [n2] : E [Ei,j ] = 0, var
�
E

2
i,j

�
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i,j  �
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i  �

2
, |Ei,j |Bi B,

where for all i 2 [n1]

(6.5) Bi .
�imin

�p
n2,

4
p
n1n2

 
p
logn

, and B . �min
�p

n2,
4
p
n1n2

 
p
logn

.
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Algorithm: HeteroPCA for subspace estimation. The paradigm HeteroPCA can naturally be
applied to tackle the above subspace estimation task. Let us introduce the ground-truth gram
matrix as follows

(6.6) G\ :=M \M \>
.

Given that M = M \ + E is an unbiased estimate of M \, one might naturally attempt to
estimate the column space of M by looking at the eigenspace of the sample Gram matrix
MM>. It can be easily seen that

(6.7) E
h
MM>

i
=M \M \> + diag

8
<

:

2

4
n2X

j=1

�
2
i,j

3

5

1in1

9
=

; ,

where the diagonal term on the right-hand side of (6.7) might incur significant bias in the
most challenging regime. The HeteroPCA algorithm seeks to handle the diagonal part in an
iterative manner, alternating between imputing the values of the diagonal entries and eigen-
decomposition of MM> with the diagonal replaced by the imputed values. The procedure
is summarized in Algorithm 5.

Algorithm 5 HeteroPCA for general subspace estimation (HeteroPCA).
Initialization: set G0 =Po↵-diag

⇣
MM>

⌘
.

Updates: for t= 0,1, . . . , t0 do
⇣
U t

,⇤t
⌘
= eigs

⇣
Gt

, r

⌘
;(6.8a)

Gt+1 =Po↵-diag

⇣
MM>

⌘
+Pdiag

⇣
U t⇤tU t>

⌘
.(6.8b)

Here, eigs(G, r) returns (U ,⇤) where U⇤U> is the top-r eigen-decomposition of G.
Output: U =U t0 , ⇤=⇤t0 , ⌃= (⇤t0)1/2, S =U t0⇤t0U t0>.

6.2. Fine-grained statistical guarantees for HeteroPCA . We now move on to present our
theoretical guarantees for Algorithm 5. In order to account for the potential global rotational
ambiguity, we introduce the following rotation matrix as before

(6.9) RU := arg min
O2Or⇥r

���UO�U \

���
2

F
,

where we recall that Or⇥r represents the set of r⇥ r orthonormal matrices. It is also helpful
to define the following quantities: for all m 2 [n1],

⇣op := �
2p

n1n2 logn+ ��
\

1

p
n1 logn,(6.10a)

⇣op,m := ��m
p
n1n2 logn+ �m�

\

1

p
n1 logn,(6.10b)

Our result is as follows, with the proof postponed to Appendix C.

THEOREM 5. Suppose that Assumptions 2-3 hold. Assume that

(6.11) n1 & 
\4
µ
\
r+ µ

\2
r log2 n, n2 & r log4 n, and ⇣op ⌧

�
\2
r

\2
,
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and that the algorithm is run for t0 � log
⇣
�

?2
1

⇣op

⌘
iterations. With probability exceeding 1�

O(n�10), there exist two matrices Z and  such that the estimates returned by HeteroPCA

obey

URU �U \ =Z + ,(6.12)

where

Z :=EV \

⇣
⌃\

⌘�1
+Po↵-diag

⇣
EE>
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In fact, for each m 2 [n1], we further have
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REMARK 5. The interested reader might wonder why Theorem 5 is not valid for small
n1 (e.g., (6.11) does not hold when n1 = 2), and we provide some intuition here. Recall
from (6.7) that the diagonal of the sample Gram matrix can be significantly biased, and the
HeteroPCA algorithm uses the off-diagonal information to iteratively estimate and refine the
diagonal. When n1 is small, the (untrustworthy) diagonal entries account for a non-negligible
fraction of all entries of the entire sample Gram matrix, and as a result, we cannot hope to
debias the diagonal reliably by HeteroPCA using only off-diagonal observations.

The expressions (6.12) and (6.13) make apparent a key decomposition of the estimation
error. As we shall see, the term Z is often the dominant term, which captures both the first-
order and second-order approximation (w.r.t. the noise matrix E) of the estimation error.
Unless the noise level � is very small, we cannot simply ignore the second-order term
Po↵-diag

�
EE>

�
U \

�
⌃\

��2, as it is not necessarily dominated in size by the linear mapping
term EV \

�
⌃\

��1. The simple and closed-form expression of Z — in conjunction with
the fact that  is well-controlled — plays a crucial role when developing a non-asymptotic
distributional theory.

While Theorem 5 is established mainly to help derive distributional characterizations
for PCA, we remark that our analysis also delivers `2,1 statistical guarantees in terms of
estimating U \ (see Lemma 6 in the appendix). More specifically, our analysis asserts that

���URU �U \

���
2,1

. ⇣op

�
\2
r

s
µ\r

n1
(6.14)

with high probability, under the conditions of Theorem 5. It is perhaps helpful to compare
(6.14) with prior `2,1 theory concerning estimation of U \.

• We first compare Theorem 5 with the recent work (Agterberg, Lubberts and Priebe, 2022,
Theorem 2), which focused on the regime n2 & n1 and showed that

inf
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under the noise condition �
p
n2 ⌧ �

\
r/(\

p
r logn) (in addition to a few other conditions

omitted here). Note that when 
\
, µ

\
, r ⇣ 1, their `2,1 error bound resembles (6.14), but the

condition �
p
n2 ⌧ �

\
r/
p
logn required therein is much stronger than the noise condition

⇣op ⌧ �
\2
r — which is equivalent to � 4

p
n1n2 ⌧ �

\
r/
p
logn when n2 & n1 — imposed by

our theory (see (6.11)). It is also worth emphasizing that the theory of Agterberg, Lubberts
and Priebe (2022) is capable of accommodating dependent data (i.e. they only require the
rows of E to be independent and allow dependence within rows), which is beyond the
scope of the present paper.

• Compared with the `2,1 estimation error guarantees for the diagonal-deleted spectral
method in Cai et al. (2021, Theorem 1), our bound (6.14) is able to get rid of the bias
term incurred by diagonal deletion (see Cai et al. (2021, Equation (17))), thus improving
upon this prior result.

It should be noted that fine-grained perturbation results akin to Theorem 5 were also
developed for the SVD algorithm in an earlier version of this paper on arXiv, as detailed in
Yan, Chen and Fan (2021, Section 6.1). Subsequently, Yan and Wainwright (2024) presented
more refined results for cases where the entries of the noise matrix E follow a sub-Gaussian
distribution, with further information available in Appendix F therein.

Before concluding this section, it is natural to ask whether Theorem 5 can be used to
conduct subspace inference when every entry of E is allowed to have completely difference
variance. To begin with, for a broad class of E with independent and heteroskedastic
components, we can readily apply Theorem 5 to obtain a distributional theory for HeteroPCA

when estimating U \. Caution needs to be exercised, however, when it comes to confidence
interval construction. On closer inspection, evaluating Z (i.e., the first- and second-order
approximation of the subspace estimation error) in Theorem 5 requires knowledge about the
right singular subspace V \ of M \, which might sometimes be difficult or even infeasible to
estimate in the unbalanced regime where n2 � n1. As a result, our theory is not guaranteed
to deliver useful inferential methods for such cases, unless additional information about V \

is available.

7. Discussion. In this paper, we have developed a suite of statistical inference procedures
to construct confidence regions for PCA in the presence of missing data and heterogeneous
corruption, which should be easy-to-use in practice due to their data-driven nature. Compared
to other prior algorithms like the SVD-based approach and the diagonal-deleted spectral
method, the solution developed based on HeteroPCA enjoys a broadened applicability range
without compromising statistical efficiency. The fine-grained distributional characterizations
we have developed are non-asymptotic, which naturally lend themselves to high-dimensional
settings.

Moving forward, there are a variety of directions that are worthy of further investigation.

• Improved dependency on , µ, r and ! . In our general theorems (see Theorems 11-
14 in the appendix), we allow , µ, r and ! to grow. However, our theoretical results
scale suboptimally with these problem parameters. It remains unclear how to sharpen the
dependency on these parameters, which might require developing more refined analysis
techniques.

• Approximate low-rank structure. Our results assume exact low-rank structure of the spiked
component S? of the covariance matrix. In reality, there is no shortage of applications
where S? is at best approximately low-rank. How to develop trustworthy inference
procedures in the presence of approximate low-rank structure? Unfortunately, our current
leave-one-out analysis framework relies heavily on the exact rank-r structure (unless �?

r+1
is extremely small); new analysis ideas are needed in order to tackle approximate low-rank
structure.
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• General missing pattern. Uncertainty quantification in the face of heterogeneous missing
patterns is another important topic of practical value. Consider, for example, the case where
the entries in the same row of X are sampled with the same rate (i.e., the (l, j)-th entry
of X is observed with probability pl). Then by constructing the following data matrix via
inverse probability weighting

h
diag

�
p1, p2, · · · , pd

�i�1
Y ,

we obtain an unbiased estimate of X , and the theory developed can be readily extended to
perform valid inference. Note that we can also replace {pl} via their empirical estimates
in the inference procedures. Nevertheless, in the more general case where the sampling
rates are allowed to vary across all locations, it is unclear how to construct an unbiased
estimate of X without knowing the per-entry sampling rates in advance; hence, our theory
fails to accommodate this general scenario. Extending our current results to such general
sampling patterns might call for new analysis tools.

• Inference for individual principal components. Moving beyond inference and uncertainty
quantification for the principal subspace and the spiked covariance matrix, it is interesting
to investigate how to conduct valid inference on individual principal components,
particularly when the associated eigengap is vanishingly small (Li et al., 2021).

• Extension to unknown mean, dependent or adversarial noise. If the observed data are
inherently biased with a priori unknown means, how to properly compensate for the bias?
What if the noise components are inter-dependent, and what if the observed data samples
are further corrupted by a non-negligible fraction of adversarial outliers?

• Minimax-optimal estimation and inference. As recognized in the matrix completion
literature (Keshavan, Montanari and Oh, 2010b; Ma et al., 2020; Chen, Liu and Li,
2020), spectral methods alone are in general unable to yield minimax-optimal statistical
accuracy in the presence of missing data, given that spectral methods inherently treat the
missingness effect as some sort of “noise”. The same message — namely, sub-optimality of
HeteroPCA in the face of missing data — carries over to the PCA setting considered herein.
We conjecture that a subsequent refinement procedure (e.g., gradient descent tailored to
compute the maximum likelihood estimate) is needed in order to reach minimax optimality,
and we leave this for future investigation.

• Applications in financial econometrics. In addition to applications to the uncertainty
quantification in the matrix completion problems in recommender system, the inferential
procedure and analysis tools we have developed in this paper have applications in finance
and econometrics. For example, our analysis and results for principal subspace are useful
in testing factor structures in famous Fama-French factor models, and can also be used
in sector/industry clustering using stock returns (Porter et al., 1998); our results on
uncertainty quantification for the spiked covariance matrix could also shed light on how to
better quantify the risk in portfolio optimization that takes into account on the uncertainty
in the risk estimation.
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