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Abstract

A stylized feature of high-dimensional data is that many variables have heavy tails, and robust sta-
tistical inference is critical for valid large-scale statistical inference. Yet, the existing developments
such as Winsorization, Huberization and median of means require the bounded second moments
and involve variable-dependent tuning parameters, which hamper their fidelity in applications to
large-scale problems. To liberate these constraints, this paper revisits the celebrated Hodges-
Lehmann (HL) estimator for estimating location parameters in both the one- and two-sample
problems, from a non-asymptotic perspective. Our study develops Berry-Esseen inequality and
Cramér type moderate deviation for the HL estimator based on newly developed non-asymptotic
Bahadur representation, and builds data-driven confidence intervals via a weighted bootstrap ap-
proach. These results allow us to extend the HL estimator to large-scale studies and propose
tuning-free and moment-free high-dimensional inference procedures for testing global null and
for large-scale multiple testing with false discovery proportion control. It is convincingly shown
that the resulting tuning-free and moment-free methods control false discovery proportion at a
prescribed level. The simulation studies lend further support to our developed theory.

1 Introduction

Large-scale, high-dimensional data with rich structures have been widely collected in almost all

scientific disciplines and humanities, thanks to the advancements of modern technologies. Massive

developments have been made in statistics over the past two decades on extracting valuable infor-

mation from these high dimensional data; see Bühlmann and Van De Geer (2011); Hastie et al.

(2009, 2015); Wainwright (2019); Fan et al. (2020a); Chen et al. (2021) for a detailed account and

references therein.

Despite convenience for theoretical analysis, the sub-Gaussian tails condition is not realis-

tic in many applications that involve high-dimensional variables. For instance, it is well known

that heavy-tailed distributions is a stylized feature for financial returns and macroeconomic vari-

ables (Cont, 2001; Stock and Watson, 2002; Fan and Yao, 2017; Fan et al., 2021). Therefore, tools

designed for sub-Gaussian data can lead to erroneous scientific conclusions. Asking thousands of

gene expressions to have all sub-Gaussian tails is a mathematical dream, not a reality that data sci-

entists face. For example, comparing gene expression profiles between various cell sub-populations,
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especially after treatments and therapies, is an essential statistical task (Nagalakshmi et al., 2008;

Shendure and Ji, 2008; Wang et al., 2009; Li et al., 2012; Li and Tibshirani, 2013; Gupta et al.,

2014; Finotello and Di Camillo, 2015). However, it is unrealistic to hope all thousands of gene

expressions have sub-Gaussian distributions: outliers in non-sub-Gaussian distributions can have a

significant impact on nonrobust procedures and lead to many false positives and negatives (Gupta

et al., 2014; Wang et al., 2015). The situation also arises for inferences using functional magnetic

resonance imaging (fMRI) data since the data do not conform to the assumed Gaussian distribu-

tion (Eklund et al., 2016). These practical challenges demand for developing e�cient and reliable

robust inference methods.

Recently, robust statistical methods have gained popularity as a mean of resolving outliers and

heavy-tailed noises. Many preceding arts have taken a significant stride toward e↵ective statistical

estimation under heavy-tailed distributions. For instance, aiming at dealing with the heavy-tailed

noise contamination, the Huber regression is proposed (Huber, 1973), and subsequent publications

along these lines include Yohai and Maronna (1979); Mammen (1989); He and Shao (1996, 2000),

where the asymptotic properties of the Huber estimator have been thoroughly investigated. From a

non-asymptotic perspective, the Huber-type estimator was recently revisited by Sun et al. (2020), in

which the authors propose an adaptive Huber regression method and establish its non-asymptotic

deviation bounds by only requiring finite (1+ �)-th moment of the noise with any � > 0. Moreover,

using a similar idea for making the correspondentM -estimator insensitive to extreme values, Catoni

(2012) developed a novel approach through minimizing a robust empirical loss. It is demonstrated

that the estimator has exponential concentration around the true mean and enjoys the same sta-

tistical rate as the sample average for sub-Gaussian distributions when the population only has a

bounded second moment. Brownlees et al. (2015) further investigates empirical risk minimization

based on the robust estimator proposed in Catoni (2012). Additionally, the so-called median of

means strategy, which can be traced back to Nemirovsky and Yudin (1983), is another successful

method for handling heavy-tailed distributions. By only requiring bounded second moment, it

achieves the sub-Gaussian type of concentration around the population mean parameter. Minsker

(2015) and Hsu and Sabato (2016) further generalize this idea to multivariate cases. Moreover,

there also exists a series of works that focus on solving the issue caused by heavy-tailed noises

using quantile-based robust estimation; see Arcones (1995); Koenker and Hallock (2001); Belloni

and Chernozhukov (2011); Fan et al. (2014); Zheng et al. (2015) for more details. Furthermore,

recently, in Fan et al. (2021); Yang et al. (2017); Fan et al. (2022c), under heavy-tailed contam-

ination, they proposed a novel principle by simply truncating or shrinking the response variables

appropriately to achieve sub-Gaussian rates, and they only require bounded second moment of the

measurements. Additionally, the aforementioned methodologies can also be applied to a wide range

of problems, such as matrix sensing, matrix completion, robust PCA, factor analysis, and neural

networks. For interested readers, we refer to Minsker (2015); Hsu and Sabato (2016); Fan et al.

(2017); Loh (2017); Minsker (2018); Goldstein et al. (2018); Wang et al. (2020); Fan et al. (2022b);

Wang and Fan (2022); Fan et al. (2022a) for more details.

While many e↵ective solutions have been developed to address the problem of heavy-tailedness,

these solutions still have some potential shortcomings. In specific, the developments call for the
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second moments to be bounded and are primarily based on shrinkage data, Huber-type of loss,

median of means (Huber, 1973; Nemirovsky and Yudin, 1983; Catoni, 2012; Fan et al., 2021). More

critically, Huberization, Winsorization and sample splitting introduce additional tuning parameters

and these tuning paprameters should be variable-dependent that makes large-scale applications dif-

ficult and damages the fidelity of empirical results . Although, the quantile estimators (Koenker and

Hallock, 2001) such as the median and the Hodge-Lehmann (HL) estimator (Hodges and Lehmann,

1963) can eliminate the restriction on moment conditions and tuning parameters selection, the

empirical median is often less e�cient and requires stronger distribution assumptions. In addition,

the existing literature on the HL estimator focuses mainly on low-dimensional asymptotic analysis

and can not be applied to large-scale inferences.

In this paper, we revisit the celebrated HL estimator (Hodges and Lehmann, 1963) and conduct

non-asymptotic and large-scale theoretical studies for both one-sample and two-sample problems.

For one-sample location estimation in the univariate case, we let X1, . . . , Xn 2 R be independent

and identically distributed (i.i.d.) random variables with

Xi = ✓ + ⇠i, i = 1, . . . , n, (1.1)

where ✓ represents the location parameter of interest and ⇠1, . . . , ⇠n are i.i.d. random variables

drawn from some unknown distribution. In this scenario, the HL estimator of ✓ is defined by

b✓ = median

⇢
Xi +Xj

2
: 1  i < j  n

�
. (1.2)

By assuming the pseudomedian of ⇠1 to be zero, we derive non-asymptotic Bahadur representation of
b✓. To the best of our knowledge, this is the first study of its kind on the non-asymptotic expansion of

the HL estimator. From there, we also establish the Berry-Essen bound and moderate deviation for
b✓ in the widest range. Furthermore, as there are multiple unknowns in the asymptotic distribution

of b✓, including the density function of ⇠1 and the unknown location parameter ✓, we then propose

a weighted bootstrap approach to construct confidence intervals for ✓ based on data. These results

and methods are essential for the large-scale inference.

In addition to the study of one-sample problem, two-sample location shift problems arise fre-

quently in many scientific studies, including choosing genes that are expressed di↵erently in normal

and injured spinal cord, determining the e↵ects of treatment between treated and control groups,

finding change points, etc. To this end, we let Y1, . . . , Ym 2 R be another independent sample of

i.i.d. random variables satisfying

Yj = ✓
� + "j , j = 1, . . . ,m. (1.3)

The primary goal is to conduct statistical inference for ⇥ = ✓� ✓
�. In the sequel, following Hodges

and Lehmann (1963), the two-sample HL estimator for ⇥ is given by

b⇥ = median{Xi � Yj : i = 1, . . . , n; j = 1, . . . ,m}. (1.4)

Instead of assuming the noises are generated from the same distribution (Hodges and Lehmann,

1963), we only require median(⇠1�"1) = 0, which is more general and allows random noises to have
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di↵erent distributions. In a similar vein, we establish the non-asymptotic expansion of b⇥, investigate

its asymptotic distributions, and calculate the confidence interval via bootstrap techniques. Again,

the techniques and results developed can be applied to large-scale multiple testing problems.

There is a rich literature on large-scale multiple testing problems for location parameters (Ben-

jamini and Hochberg, 1995; Storey, 2002, 2003; Genovese and Wasserman, 2004; Ferreira and Zwin-

derman, 2006; Chi, 2007; Blanchard and Roquain, 2009). However, most of these works assume the

noise distributions sub-Gaussian. Moving away for sub-Gaussian assumptions, Fan et al. (2019)

propose estimating mean vector via minimizing the Huber type loss and perform the false discov-

ery proportion (FDP) control. However, leveraging Huber type estimators necessitates moment

limits and introduces tuning parameters, making it hard to be applied in large-scale inference, as

the tuning parameters should ideally be variable-dependent. Additionally, while the HL estimator

enjoys tuning-free and moment-free qualities in the univariate setting, its behavior in high dimen-

sions is largely unknown. To this end, in this research, we further expand the HL estimator to

high-dimensional regimes prompted by the lack of tuning free large-scale multiple testing problems

for heavy-tailed distributions.

In specific, we assume Xi = ✓ + ⇠i, i 2 [n] and Yj = ✓� + "j , j 2 [m], where ✓ = (✓1, . . . , ✓p)>

and ✓� = (✓�1, . . . , ✓
�
p)

> are p-dimensional vectors of unknown parameters and random noises ⇠i, i 2
[n], "j , j 2 [m]. Let ⇥ = ✓ � ✓�. For both one- and two-sample problems, we propose a carefully

constructed Gaussian multiplier bootstrap to test global null hypotheses

H0 : ✓` or ⇥` = 0 for all ` 2 [p] versus H1 : ✓` or ⇥` 6= 0 for some ` 2 [p], (1.5)

by extending the HL estimator to high-dimensional regimes. When the null hypothesis above is

rejected, we then perform multiple testing, allowing weakly dependent measurements, and e�ciently

control the FDP. Compared with existing literature (Liu and Shao, 2014; Fan et al., 2019), our

procedures do not involve any tuning parameters and moment conditions for testing global null and

large-scale multiple testing. These theoretical finds are further supported by exhaustive numerical

studies.

The main contributions of the paper can be summarized as follows:

• The existing studies on the HL estimator mainly focus on its asymptotic behavior, which is

too weak for high-dimensional applications. In practice, however, it is crucial to understand

the HL estimator’s performance under finite sample, especially in high-dimensional and large-

scale experiments. For this purpose, we first derive the non-asymptotic expansions of the HL

estimators for both one-sample and two-sample problems.

• With the non-asymptotic expansions of the HL estimators, for both one- and two-sample

problems, we derive its Berry-Essen type bounds and Cramér type moderate deviations, with

the widest range. To deal with unknown components in the distribution, we further develop

the weighted bootstrap to build data-driven confidence intervals. In addition, we also furnish

the non-asymptotic analysis of the bootstrap estimator.

• Existing work on large-scale testing with heavy-tail errors typically involves additional tuning

parameters and the moment conditions. In order to address these issues, we generalize the HL
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estimator to large-scale studies and propose tuning-free and moment-free high-dimensional

testing procedures. Additionally, we develop bootstrap methods for calculating critical values

for large-scale applications. We show that the resulting false discovery proportion is well

controlled.

1.1 Roadmap

In §2, we first set up the model and introduce basic settings. We then derive both one-sample and

two-sample non-asymptotic expansions of the HL estimator, its Berry-Esseen bound and moderate

deviations. In addition, as the asymptotic distribution of the estimator involves unknown quantities,

in §3, we conduct multiplier bootstrap to construct valid data-driven confidence intervals. Moreover,

§4 is devoted to extending the HL estimator to large-scale multiple testing problems. §5 contains

comprehensive numerical studies to verify theoretical results. Finally we conclude the paper with

some discussions in §6. All the proofs are deferred to the appendix.

1.2 Notation

For any integer m, we use [m] to denote the set [m] = {1, 2, . . . ,m}. For any function h : R ! R,
we denote khk1 = supz2R |h(z)|. Throughout this paper, we use C,C1, C2, . . . to denote universal

positive constants whose values may vary at di↵erent places. We use I{·} to denote the indicator

function. For any set A, we use |A| to denote its cardinality. For two positive sequences {an}n�1 and

{bn}n�1, we write an = O(bn) or an . bn if there exists a positive constant C such that an  C · bn
and we write an = o(bn) if an/bn ! 0. In addition, we define the pseudomedian of a distribution F

to be the median of the distribution of (Z1 + Z2)/2, where Z1 and Z2 are independent, each with

the same distribution F . Moreover, for any distribution F and constant c, we let c · F represent

the distribution of the random variable c ·X, where X is the random variable drawn from F.

2 Estimation and Inference

This section is devoted to studying the non-asymptotic expansions of the Hodges-Lehmann esti-

mator and conducting statistical estimation and inference for population location shift parameters.

For both one-sample and two-sample problems, the theoretical properties, which are needed for

large-scale inferences, are presented in the following sections.

2.1 One-sample Problem

Let Xi = ✓ + ⇠i, i 2 [n], be i.i.d. real-valued random variables, where ✓ 2 R is the unknown

location parameter of interest and ⇠1, . . . , ⇠n are i.i.d. random variables drawn from some unknown

distribution. It is assumed that ⇠1 has a pseudomedian (Høyland, 1965) of zero, throughout this

section. As a consequence, letting U(t) = P{(X1+X2)/2  t}, it holds that ✓ = inf{t 2 R : U(t) �
1/2}. The HL estimator (Hodges and Lehmann, 1963) of ✓ is given by the median of all Walsh
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averages of the observations X1, . . . , Xn, namely,

b✓ = median{(Xi +Xj)/2 : i 6= j 2 [n]}. (2.1)

Equivalently, if we define the U -process Un(t) = {n(n� 1)}�1P
i 6=j2[n] I{(Xi+Xj)/2  t}, the HL

estimator b✓ in (2.1) can also be expressed as the sample median of the process Un(t), namely,

b✓ = inf{t 2 R : Un(t) � 1/2}. (2.2)

Let F (t) = P(⇠1  t) denote the cumulative distribution function of ⇠1 and f(t) = F
0(t) be its

density function. We then present the non-asymptotic Bahadur representation of b✓ in the following

theorem.

Theorem 2.1. Assume that there exist positive constants c0 and 0 such that inf |�|c0
U

0(✓+�) �
0. Then for any z > 0, we have

P(|b✓ � ✓| > z)  2 exp{�n
2
0(z ^ c0)

2}. (2.3)

Furthermore, assume that supz2R |f(z)| < 1 and there exist positive constants c1 and 1 such that

sup|�|c1
|U 00(✓ + �)|  1. Then for any z > 0 such that z = o(n), we have

P
⇢����b✓ � ✓ � 2

nU 0(✓)

nX

i=1

⇢
1

2
� F (�⇠i)

����� >
C1(z _ 1)

n

�
 C2 exp(�z), (2.4)

where C1, C2 are positive constants depending only on c0,0, c1,1 and kfk1.

We note that existing works mainly study the asymptotic distribution of quantiles of U -statistics

instead of non-asymptotic ones (Arcones, 1996). Asymptotic theory, however, is frequently less ef-

fective for theoretical studies in high-dimensional statistics (Wainwright, 2019). To fill in the blank,

in Theorem 2.1, we present both the non-asymptotic deviation bound and linear approximation of

the HL estimator b✓. It is worth mentioning that the HL estimator b✓ has sub-Gaussian tails without

any moment constraints imposed on the noise ⇠1, whereas the Huber-type or winsorized estimator

requires the existence of the second moment. Moreover, in contrast to Huber regression (Zhou

et al., 2018; Sun et al., 2020) or truncation (Fan et al., 2021), which both require additional tuning

parameters, HL-type estimation is tuning-free and thus more scalable.

Moreover, when the distribution of ⇠1 is symmetric around zero, ✓ reduces to the median of

the distribution of X. In this scenario, the sample median b✓med = median{X1, . . . , Xn} serves as

a plausible alternative robust estimator for ✓. Under similar regularity conditions on the density

function f(t), the classical Bahadur representation for b✓med reveals that

P
⇢����b✓med � ✓ � 1

nf(0)

nX

i=1

✓
1

2
� I{⇠i  0}

◆���� >
C log n

n3/4

�
 Cn

�c (2.5)

for any constant c > 0. Compared with (2.4) (by taking z = O(log n)), the linear approximation

of HL estimator is much more accurate than that of the quantile estimator (Arcones, 1996).
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2.1.1 Asymptotic Distribution

In addition to estimation, statistical inference is also essential in real-world applications. To this

end, with the developed non-asymptotic expansion at hand, we next present the asymptotic distri-

bution of the HL estimator b✓ in this section.

Let �(·) denote the cumulative distribution function of standard normal random variable. The

following theorem establishes a Berry-Esseen theorem for b✓.

Theorem 2.2. Under the conditions of Theorem 2.1, we have

sup
z2R

����P
⇢p

n(b✓ � ✓)

�✓
 z

�
� �(z)

���� 
C log np

n
,

where C < 1 is a positive constant independent of n and

�
2
✓
=

4Var{F (�⇠1)}
{U 0(✓)}2 . (2.6)

Theorem 2.2 establishes the asymptotic normality of b✓. When the distribution of ⇠1 is symmetric

around zero, the asymptotic variance above reduces to �
2
✓
= 1/[3{U 0(✓)}2]. Consequently, in view

of (2.5) and (2.6), the asymptotic relative e�ciency (ARE) between the HL estimator b✓ and the

sample median b✓med is 3{U 0(✓)}2/4{f(0)}2 (Hodges and Lehmann, 1963). A concrete example is

given in Table 1, where we summarize the ARE between b✓ and b✓med for ⇠1 ⇠ t⌫ . In particular,

⌫ 1 2 4 8 16 1
ARE 0.75 1.04 1.25 1.37 1.43 1.50

Table 1: Asymptotic relative e�ciency between the HL estimator and the sample median

when ⌫ � 2, the HL estimator has a strictly smaller asymptotic variance than the sample median.

The above example illustrates the e↵ectiveness of the HL estimator over the quantile regression

method.

Based on the non-asymptotic linear expansion in (2.4), we further derive the Cramér-type

moderate deviation to quantify the relative error of the normal approximation for b✓ in the following

theorem, which has important applications to large-scale inference (Fan et al., 2007; Liu and Shao,

2014; Xia et al., 2018; Zhou et al., 2018).

Theorem 2.3. Let {�n}n�1 be a sequence of positive numbers satisfying
p
n�n ! 1. Then, under

the conditions of Theorem 2.1, we have
����
P{

p
n(b✓ � ✓)/�✓ > z}
1� �(z)

� 1

����  C

⇢
1 + z

3

p
n

+ (1 + z)�n + 2(z _ 1)
p
2⇡ exp

✓
z
2

2
�

p
n�n

◆�
, (2.7)

uniformly for 0 < z  o(��1
n ^ n

1/4
p
�n), where C < 1 is a positive constant independent of z and

n. In particular, when �n ⇣ n
�1/6, we have

����
P{

p
n(b✓ � ✓)/�✓ > z}
1� �(z)

� 1

���� ! 0,

uniformly for 0 < z  o(n1/6).
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It is worth mentioning that taking �n ⇣ n
�1/6 yields the wideest possible range 0 < z  o(n1/6)

for the relative error in (2.7) to vanish, which is also optimal for the Cramér-type moderate deviation

results (Petrov, 1975; Fan et al., 2007; Liu and Shao, 2014; Zhou et al., 2018; Fan et al., 2019; Chen

and Zhou, 2020; Fang et al., 2020). Next, we proceed to estimate the location shift parameter

between two distributions via the HL estimator.

2.2 Two-sample Problem

A variety of applications use two-sample location shift estimation and inference, such as testing gene

di↵erences, quantifying treatment e↵ects, and detecting change points. Accordingly, this section

examines the two-sample estimation and inference of the population location shift parameter.

Let Yj = ✓
� + "j , j 2 [m], be another sample of i.i.d. real-valued random variables independent

of {X1, . . . , Xn}, and we aim at constructing confidence interval for ⇥ = ✓ � ✓
�. Throughout this

section, it is assumed that

⇥ = inf{t 2 R : U(t) � 1/2}, U(t) = P(X1 � Y1  t). (2.8)

The existing literature on HL estimators mainly deals with the case where ⇠1 and "1 are identically

distributed (Hodges and Lehmann, 1963; Lehmann, 1963; Bauer, 1972; Rosenkranz, 2010). In

contrast, it should be noted that the assumption imposed in (2.8) is satisfied as long as median("1�
⇠1) = 0, which is much more general than the identical distribution. In the sequel, following Hodges

and Lehmann (1963), the two sample HL estimator for ⇥ is given by

b⇥ = median{Xi � Yj : i 2 [n], j 2 [m]}. (2.9)

Before proceeding, we present the following assumption on the relative sample sizes of the involved

random samples.

Assumption 2.1. There exists a positive constant ⌘̄ < 1 such that ⌘̄  (n/m)  1/⌘̄.

Assumption 2.1 is a natural condition which ensures the sample sizes to be comparable. Such

a requirement is commonly imposed for two sample estimation and inference (Bai and Saranadasa,

1996; Chen and Qin, 2010; Li and Chen, 2012; Chang et al., 2017; Zhang et al., 2020). In what

follows, we write N = nm/(n+m) for simplicity. The sub-Gaussian-type deviation inequality and

the non-asymptotic Bahadur representation of the two-sample HL estimator b⇥ are established in

the subsequent theorem.

Theorem 2.4. Assume that there exist positive constants c̄0 and ̄0 such that inf |�|c̄0
U 0(⇥+�) �

̄0 > 0. Then for any z > 0, we have

P(|b⇥ � ⇥| > z)  4 exp{�2(n ^m)̄20(z ^ c̄0)
2}.

Furthermore, assume that supt2R |U 0(t)| < 1 and there exist positive constants c̄1 and ̄1 such that

sup|�|c̄1
|U 00(⇥ + �)|  ̄1. Then, under Assumption 2.1, for any 0 < z = o(N), we have

P
⇢����b⇥ � ⇥ � 1

U 0(⇥)

⇢
1

n

nX

i=1

G(⇠i)�
1

m

mX

j=1

F ("j)

����� >
C1(z _ 1)

N

�
 C2 exp(�z),
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where G(t) = P("1  t) stands for the cumulative distribution function of "1 and C1, C2 < 1 are

positive constants depending only on c̄0, ̄0, c̄1, ̄1, ⌘̄ and kU 0k1.

Theorem 2.4 presents the non-asymptotic approximation of the HL estimator b⇥, where the

approximator also enjoys sub-Gaussian tails without posing any constraints on the moments of

⇠1 and "1. Equipped with this, we establish the Berry-Esseen bound and Cramér type moderate

deviation of b⇥, respectively, in the following theorem. Before proceeding, we define the asymptotic

variance of
p
N(b⇥ � ⇥) to be

e�2
⇥ =

1

{U 0(⇥)}2

✓
n

n+m
Var{F ("1)}+

m

n+m
Var{G(⇠1)}

◆
.

Theorem 2.5. Under the conditions of Theorem 2.4, we have

sup
z2R

����P
⇢p

N(b⇥ � ⇥)

e�⇥
 z

�
� �(z)

���� 
C1 logNp

N
,

where C1 < 1 is a positive constant independent of N . Moreover, let {�N}N�1 be a sequence of

positive constants satisfying
p
N�N ! 1. Then, we further achieve

����
P{

p
N(b⇥ � ⇥)/e�⇥ � z}

1� �(z)
� 1

����  C2

⇢
1 + z

3

p
N

+ (1 + z)�N + 2(z _ 1)
p
2⇡ exp

✓
z
2

2
�
p
N�N

◆�
,

uniformly for 0 < z  o(��1
N

^ N
1/4

p
�N ), where C2 < 1 is a positive constant independent of z

and N . In particular, when �N ⇣ N
�1/6, we have

����
P{

p
N(b⇥ � ⇥)/e�⇥ � z}

1� �(z)
� 1

���� ! 0,

uniformly for 0 < z  o(N1/6).

One observes that the asymptotic distributions of b✓ and b⇥ involve many unknown quantities

such as density functions and population parameters ✓ and ⇥. In the following section, we utilize

the bootstrap method to construct confidence intervals for the parameters of interest.

3 Bootstrap Calibration

In this section, we propose a weighted bootstrap method to construct confidence intervals for ✓ and

⇥, rather than directly estimating those involved unknown terms in asymptotic variances using

the brute force methods. The reason is that the direct estimation approach always necessitates

the additional selection of tuning parameters and imposes moment conditions. Additionally, the

bootstrap calibration performs admirably with finite samples, particularly when the sample size is

modest. Therefore, in the sections that follow, we outline the bootstrap procedures for both the

one- and two-sample problems.
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3.1 Boostrap for One-sample Problem

Recall that the one-sample HL estimator is given by b✓ = argmin⌫2R
P

i 6=j2[n] |Xi + Xj � 2⌫|.
Throughout this paper, we focus on the weighted bootstrap procedure in which the bootstrap

estimate of b✓ is defined by minimizing the randomly perturbed objective function. More specifically,

let !1, . . . ,!n 2 R be i.i.d. non-negative random variables with E(!1) = 1 and Var(!1) = 1. Then

the weighted bootstrap estimate of b✓ is given by

b✓? = argmin
⌫2R

X

i 6=j2[n]

!i!j |Xi +Xj � 2⌫|.

A natural candidate of the bootstrap weight above would be !i sampled from a 2·Bernoulli(0.5)
distribution (the multiplication of 2 is to guarantee the previous normalization condition). In this

case, the bootstrap estimator b✓? has the simple closed-form expression as follows,

b✓? = median{(Xi +Xj)/2 : i 6= j 2 S}, (3.1)

which is the same as the sub-sampled HL estimator computed based on the dataset {Xi : i 2 S}
where S = {i 2 [n] : !i 6= 0}, and we concentrate on this type of bootstrap calibration procedure

in what follows.

Let Bn =
P

i 6=j2[n] !i!j denote the total number of Walsh averages in (3.1) and denote Vij =

[I{⇠i+⇠j  0}�Un(✓)]/U 0(✓) for each i 6= j 2 [n]. In the subsequent theorem, we establish the non-

asymptotic Bahadur representation of the bootstrap estimator b✓? and approximated distribution

of bootstrap samples.

Theorem 3.1. Under the conditions of Theorem 2.1, for any !, z > 0 such that (! _ z) = o(n),

with probability at least 1� C1 exp(�!), we have

P?

⇢
|b✓? � b✓| > C2

✓
! + log n

n
+
p
z/n

◆�
 C3 exp(�z),

P?

⇢����b✓
? � b✓ � 1

Bn

X

i 6=j2[n]

(!i!j � 1)Vij

���� >
C4(z + ! + log n)

n

�
 C5 exp(�z), (3.2)

where P?(·) = P(·|X1, . . . , Xn) stands for the conditional probability and C1–C7 are positive con-

stants depending only on c0,0, c1,1 and kfk1.

The non-asymptotic linear expansion in (3.2) enables us to derive the asymptotic normality of

the bootstrap estimator b✓?. Combined with the Berry-Esseen bound in Theorem 2.2, we further

establish a non-asymptotic upper bound on the Kolmogorov distance between the distribution

functions of b✓ � ✓ and b✓? � b✓. More specifically, with probability at least 1� C exp(�!), we have

sup
z2R

���P?

⇣
|b✓? � b✓|  z

⌘
� P

⇣
|b✓ � ✓|  z

⌘��� 
C

0(! + log n)p
n

, (3.3)

where C and C
0 are positive constants independent of n. Consequently, we are equipped to construct

confidence interval for ✓ in a data-driven way. For any significance level ↵ 2 (0, 1), let

q
?

1�↵ = inf
n
z 2 R : P?

⇣
|b✓? � b✓|  z

⌘
� 1� ↵

o
.

Then the (1� ↵)⇥ 100% confidence interval for ✓ is given by CI(✓, 1� ↵) = {b✓ � q
?

1�↵
, b✓ + q

?

1�↵
}.
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3.2 Bootstrap in Two-sample Problem

This section is devoted to constructing confidence intervals for ⇥ for the two-sample problem.

Let !n+1, . . . ,!n+m 2 R be i.i.d. 2·Bernoulli(0.5) random variables independent of {!1, . . . ,!n}.
Following (3.1), the bootstrap estimator for b⇥ is defined by

b⇥? = median{Xi � Yj : i 2 SX
, j 2 SY }, (3.4)

where SX = {i 2 [n] : !i 6= 0} and SY = {j 2 [m] : !j+n 6= 0}. It is worth noting that b⇥?

is equivalent to the sub-sampled HL estimator based on the two datasets {Xi : i 2 SX} and

{Yj : j 2 SY }. With these necessary tools at hands, the non-asymptotic Bahadur representation of

the bootstrap estimator b⇥? and approximated distribution of bootstrap samples are developed in

the following theorem.

Theorem 3.2. Under the conditions of Theorem 2.4, for any !, z > 0 such that (! _ z) = o(N),

with probability at least 1� C1 exp(�!), we have

P?

⇢
|b⇥? � b⇥| > C2

✓
! + logN

N
+
p
z/N

◆�
 C3 exp(�z),

P?

⇢����b⇥
? � b⇥ � 1

Bn

nX

i=1

mX

j=1

(!i!j+n � 1)Vij

���� >
C4(z + ! + logN)

N

�
 C5 exp(�z),

where P?(·) = P(·|X1, . . . , Xn, Y1, . . . , Yn+m) stands for the conditional probability, Bn =
P

n

i=1

P
m

j=1 !i!j+n

is the total number of pairwise di↵erences in (3.4) and Vij = [I{⇠i  "j}�(nm)�1Pn

i=1

P
m

j=1 I{⇠i 
"j}]/U 0(⇥) for each i 2 [n] and j 2 [m]. In addition, C1–C5 are positive constants depending only

on c0,0, c1,1, ⌘̄ and kU 0k1.

We then obtain the Berry-Esseen bound and build confidence intervals for ⇥ based on the non-

asymptotic expansion of the two-sample bootstrap estimator b⇥? using similar arguments in §3.1.

4 Large-scale Multiple Testing

With the advancement of technology, large-scale, high-dimensional data have been extensively col-

lected over the past two decades in a variety of fields such as medicine, biology, genetics, earth

science, and finance. In large-scale regimes, there are inevitably heavy-tailed noises and it is cru-

cial to develop robust statistical inference procedures. Yet, existing research that infers location

shifts via Huber-type estimates calls for variable-dependent tuning parameters and moment limi-

tations (Fan et al., 2019; Sun et al., 2020). This type of technique is hard to apply e�ciently and

faithfully to large-scale inferences due to the choices of tuning values. Moment constraints also

exclude a large number of heavy-tailed distributions. To remedy the issues, this section focuses

on extending the HL estimation to high dimensions and developing tuning-free and moment-free

high-dimensional multiple testing procedures.

11



4.1 Large-Scale Testing for One-sample Problem

In this section, we investigate high-dimensional multiple testing using the HL estimator for one-

sample data. Let Xi = ✓ + ⇠i, i 2 [n], be i.i.d. p-dimensional random vectors, where ✓ =

(✓1, . . . , ✓p)> is a p-dimensional vector of unknown parameters and ⇠1, . . . , ⇠n 2 Rp are i.i.d. random

vectors. With building blocks presented in the previous section, we first proceed to constructing

simultaneous confidence intervals for ✓ using Gaussian approximation and bootstrap calibrations.

4.1.1 Gaussian Approximation

The primary goal of this section is to construct simultaneous confidence intervals for ✓. To this end,

we develop a Gaussian approximation for the maximum deviation max`2[p] |b✓` � ✓`| following the

intuition of recently developed high dimensional distributional theory (Chernozhukov et al., 2017;

Chernozhuokov et al., 2022). More specifically, let Z = (Z1, . . . , Zp)> be a p-dimensional centered

Gaussian random vector with

Cov(Zk, Z`) =
4Cov{Fk(�⇠1k), F`(�⇠1`)}

U
0

k
(✓k)U 0

`
(✓`)

, k, ` 2 [p], (4.1)

where U`(t) = P(X1` +X2`  2t) and U
0

`
(t) stands for its derivative, and F`(t) = P(⇠1`  t). We

have the high dimensional Gaussian approximation in the following theorem.

Theorem 4.1. Assume that there exist positive constants c0,0, c1 and 1 such that

min
`2[p]

inf
|�|c0

U
0

`
(✓` + �) � 0 and max

`2[p]
sup
|�|c1

|U 00

`
(✓` + �)|  1.

Then, we have

sup
z>0

����P
✓
max
`2[p]

p
n|b✓` � ✓`|  z

◆
� P

✓
max
`2[p]

|Z`|  z

◆���� 
C log5/4(pn)

n1/4
. (4.2)

We consider testing the global null hypotheses

H0 : ✓` = 0 for all ` 2 [p] versus H1 : ✓` 6= 0 for some ` 2 [p]. (4.3)

Based on the marginal HL estimators {b✓`}`2[p], one shall reject the null hypothesis H0 in (4.3) when

max`2[p] |b✓`| exceeds certain threshold that depends on the distribution of max`2[p] |Z`|. However,

in light of (4.1), the distribution depends on the unknown distribution functions F`. Therefore,

to approximate the distribution of max`2[p] |Z`|, we also propose to use bootstrap procedure. In

specific, in one-sample regime, recall that S = {i 2 [n] : !i 6= 0}. For each ` 2 [p], define the

bootstrap estimate of ✓` as b✓?
`
= median{(Xi` + Xj`)/2 : i 6= j 2 S}. It is worth mentioning

that these bootstrap estimators {b✓?
`
}`2[p] can be e�ciently computed in practice. For ↵ 2 (0, 1), let

Q
?

1�↵
= inf{z 2 R : P?(max`2[p] |b✓?`�b✓`|  z) � 1�↵} denote the (1�↵)th quantile of the bootstrap

statistic max`2[p] |b✓?` � b✓`|. With the help of bootstrap, we manage to estimate the quantiles of the

approximated distribution e�ciently and the corresponding results are presented in the following

theorem.
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Theorem 4.2. Under the conditions of Theorem 4.1, we have

����P
✓
max
`2[p]

|b✓` � ✓`| > Q
?

1�↵

◆
� ↵

���� 
C log5/4(pn)

n1/4
.

Theorem 4.2 reveals that the proposed bootstrap procedure can e�ciently estimate the quantiles

of the approximated distribution. This allows for the direct construction of simultaneous data-

driven confidence intervals for ✓. In addition, when the null-hypothesis of (4.3) is rejected, it is

essential to conduct multiple testing to identify significant individuals and control false discovery

proportion (FDP). We next address this problem in the following section.

4.1.2 Multiple Testing

The goal of this section is to conduct multiple testing to identify statistically significant individuals

with controlled false discovery proportions. Specifically, we consider simultaneously testing the

hypotheses

H0,` : ✓` = 0 versus H1,` : ✓` 6= 0, for ` 2 [p].

Let H0 = {` 2 [p] : ✓` = 0} denote the set of true null hypotheses with cardinality |H0|. For each

` 2 [p], let P` denote the p-value for testing the individual hypothesis H0,`. For any prescribed

threshold t 2 (0, 1), we shall reject the null hypothesis H0,` whenever P` < t. Then the false

discovery proportion is defined by

FDP(t) = V (t)/max{R(t), 1}, (4.4)

where V (t) =
P

`2H0
I{P`  t} denotes the number of false discoveries and R(t) =

P
p

`=1 I{P`  t}
is the number of total discoveries. Note that the denominator is observable but V (t) is not. When

|H0| tends to infinity, V (t) ⇡ t|H0|  tp. This can be used to give an upper bound of FDP(t). In

many applications, |H0| ⇡ p, and Storey (2002) gives an estimator for |H0| and incorporates it into

FDP(t) estimator.

It is worth noting that the p-values {P`}`2[p] are computed by constructing inferential test

statistics, with pivotal limiting distributions, based on the normal distribution calibration (Fan

et al., 2007). As illustrated above, to construct a test statistic for each hypothesis with pivotal

asymptotic distribution, the asymptotic variance of the HL estimator always depends on the un-

known components and the traditional quantile-based approach is not scalable in the ultra-high

dimensional scenario. To remedy this issue, we leverage bootstrap to proceed the analysis. Specif-

ically, let {!i` : i 2 [n], ` 2 [p]} be i.i.d. non-negative random variables generated in the same way

with those in §3.1 and denote S` = {i 2 [n] : !i` 6= 0} for each ` 2 [p]. Similar to (3.1), the

bootstrap estimate of b✓` is defined by

b✓?
`
= median{(Xi` +Xj`)/2 : i 6= j 2 S`}.

Consequently, our p-values are derived as P` = P(|b✓?
`
� b✓`| > |b✓`||X1, . . . ,Xn) and let P(1)  P(2) 

. . .  P(p) denote the ordered p-values. In order to choose t properly to control the FDP, we adopt
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the distribution-free procedure proposed by Benjamini and Hochberg (1995). Specifically, for any

significance level ↵ 2 (0, 1), the data-dependent threshold is tBH = P(`BH), where `BH is given by

`BH = max{` 2 [p] : P(`)  ↵`/p}.

Recall that an estimate of FDP(t) is [FDP(t) = pt/R(t), following the discussion after (4.4). Then

a natural choice of threshold is

bt = sup{t : [FDP(t)  ↵} = sup{t : t  ↵R(t)/p} = tBH .

This provides a simple explanation on the choice of tBH .

In what follows, we assume that |H0|/p ! ⇡0 2 (0, 1]. For each k, ` 2 [p], we define the

correlation measure as ⇢k` = Corr{Fk(�⇠1k), F`(�⇠1`)}, and impose the assumption quantifying

dependence between measurements below.

Assumption 4.1. There exists a positive constant 0 < ⇢ < 1 such that maxk 6=` |⇢k`|  ⇢ and

max
`2[p]

pX

k=1

I
⇢
|⇢k`| >

1

(log p)2+

�
= O(p�),

for some  > 0 and � 2 (0, (1� ⇢)/(1 + ⇢)).

Assumption 4.1 requires that for every variable, the number of other variables, whose correla-

tions with the given variable exceed certain threshold, does not grow too fast. It is worth noting that

this is a commonly imposed condition in large-scale multiple testing problems (Liu and Shao, 2014).

Based on this assumption, we next summarize the theoretical results in the following Theorem 4.3.

Theorem 4.3. Assume that log p = o(n1/5) and

$p :=
���
n
` 2 [p] : |✓`/�`| � �0

p
(2 log p)/n

o��� ! 1, (4.5)

for some �0 > 2, where �
2
`
= 4Var{F`(�⇠1`)}/{U 0

`
(✓`)}2 for each ` 2 [p]. Then, under Assump-

tion 4.1 and the conditions of Theorem 4.1, we have
����
FDP(tBH)

|H0|/p
� ↵

����
P! 0. (4.6)

Theorem 4.3 develops theoretical guarantees for the consistency of FDP control procedure. To

further support the derived results, we make the following several remarks.

Remark 4.1. Condition (4.5) is nearly optimal for controlling the false discovery proportion.

More specifically, as shown in Proposition 2.1 in Liu and Shao (2014), if the number of alternative

hypotheses is fixed instead of tending to infinity, the B-H approach fails to control the FDP at any

level 0 < � < 1 even if the true p-values for H0,` are known.
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4.2 Large-Scale Two-Sample Tests

In this section, we study the large-scale two-sample testings. In specific, let Yj = ✓� + "j , j 2 [m],

be another sample of i.i.d. p-dimensional random vectors independent of {X1, . . . ,Xn}, where

✓� = (✓�1, . . . , ✓
�
p)

> 2 Rp. Let ⇥ = ✓ � ✓� = (⇥1, . . . ,⇥p)> 2 Rp be the location shift parameter.

Following (2.9), the HL estimator for ⇥` is given by b⇥` = median{Xi` � Yj` : i 2 [n], j 2 [m]}. A

detailed global test for whether ✓` = ✓
�

`
for all ` 2 [p] is given in §E.4.

We next conduct a simultaneously test on the hypotheses

H0,` : ✓` = ✓
�

`
versus H1,` : ✓` 6= ✓

�

`
, for ` 2 [p],

where H⇧

0 = {` 2 [p] : ✓` = ✓
�

`
} denote the set of true null hypotheses and |H⇧

0| =
P

p

`=1 I{✓` = ✓
�

`
} is

its cardinality. Throughout this section, we assume that |H⇧

0|/p ! ⇡0 2 (0, 1]. For each ` 2 [p], let

P
⇧

`
denote the p-value for testing whether ✓` = ✓

�

`
. For any prescribed threshold t 2 (0, 1), we shall

reject the null hypothesis ✓` = ✓
�

`
whenever P

⇧

`
< t. The primary goal is to control the following

false discovery proposition FDP⇧(t),

FDP⇧(t) = V
⇧(t)/max{R⇧(t), 1},

by selecting a proper t, where V
⇧(t) =

P
`2H

⇧
0
I{P ⇧

`
 t} and R

⇧(t) =
P

p

`=1 I{P ⇧

`
 t}.

To approximate the unknown involved asymptotic distributions, we let {!i` : i 2 [n+m], ` 2 [p]}
be i.i.d. non-negative random variables generated in the same way with those in §3.2 and denote

SX

`
= {i 2 [n] : !i` 6= 0} and SY

`
= {j 2 [(n + 1) : (m + n)] : !j` 6= 0} for each ` 2 [p].

Following (3.4), the bootstrap estimate for b⇥` is defined by

b⇥?

`
= median{Xi` � Yj` : i 2 SX

`
, j 2 SY

`
}.

Then, for each ` 2 [p], the p-value is given by P
⇧

`
= P(|b⇥?

`
� b⇥`| > |b⇥`||X1, . . . ,Xn), and P

⇧

(1) 
P

⇧

(2)  . . .  P
⇧

(p) are the ordered p-values. Following Benjamini and Hochberg (1995), the data-

dependent threshold t
⇧

BH
= P

⇧

(`⇧
BH

), where `
⇧

BH
is chosen as `⇧

BH
= max{` 2 [p] : P ⇧

(`)  ↵`/p}.
With these necessary tools at hand, in the paragraph that follows, we present the required

assumptions and the main theorem, respectively. In specific, Assumption 4.2 provides the for-

mal condition that quantifies the level of dependence, while Theorem 4.4 presents the theoretical

assurances for two-sample multiple testing.

Assumption 4.2. There exist positive constants 0 < ⇢
⇧
< 1 such that maxk 6=` |⇢⇧k`|  ⇢

⇧, where

⇢
⇧

k`
= Corr(Ḡnk � F̄mk, Ḡn` � F̄m`), with Ḡn` = n

�1Pn

i=1G`(⇠i`) and F̄m` = m
�1Pm

j=1 F`("j`) for

each ` 2 [p]. Moreover, for some 
⇧
> 0 and 0 < �⇧ < (1� ⇢

⇧)/(1 + ⇢
⇧), we have

max
`2[p]

pX

k=1

I
⇢
|Corr{Gk(⇠1k), G`(⇠1`)}| _ |Corr{Fk("1k), F`("1`)}| >

1

(log p)2+⇧

�
= O(p�⇧).

Theorem 4.4. Assume that log p = o(N1/5) and

$
⇧

p :=
���
n
` 2 [p] : |(✓` � ✓

�

`
)/e�`| � �0

p
(2 log p)/N

o��� ! 1, (4.7)
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for some �0 > 2, where e�` = N [Var{F`("1`)}/m + Var{G`(⇠1`)}/n]/{U 0

`
(⇥`)}2 for each ` 2 [p].

Then, under Assumption 4.2 and the conditions of Theorem E.1, we have
����
FDP⇧(t⇧

BH
)

|H⇧

0|/p
� ↵

����
P! 0. (4.8)

5 Numerical Studies

In this section, we use simulation experiments to verify the theoretical findings in the paper. In

specific, we validate the results on Gaussian approximation and FDP control in via experiments in

§5.1 and §5.2, respectively.

5.1 Numerical Studies for Global Tests

We let n = m = 300, p = 400 and generate the variables {Xi}ni=1 and {Yj}mj=1 following the setting

in §4.1 and §4.2, respectively, where the involved random variables ⇠i 2 Rp
, "j 2 Rp

, (i 2 [n], j 2
[m]) follow several distributions described below. Cases 1-3 are devoted primarily to one-sample

tests, whereas Cases 4-6 are for two-sample tests. Moreover, the notation di↵(F ) denotes the

distribution that is generated by the di↵erences between two independent random variables drawn

from distribution F .

• Case 1: Scaled t3 distribution with ⇠i,k ⇠ 0.3 · t3, (i, k) 2 [n]⇥ [p].

• Case 2: Mixture of Pareto distribution with shape parameter 2 and standard Gaussian dis-

tribution, namely, ⇠i,k ⇠ di↵(0.2 · Pareto(2) + 0.8 ·N(0, 1)), (i, k) 2 [n]⇥ [p].

• Case 3: Mixture of Gaussian distributions, namely, ⇠i 2 Rp ⇠ 0.2·N(0, 10⌃)+0.8·N(0,⌃), i 2
[n], where ⌃c,d = 0.7|c�d|

, (c, d) 2 [p]⇥ [p].

• Case 4: Gaussian distributions but with di↵erent covariance, namely, ⇠i ⇠ N(0, 1.5⌃) and

"j ⇠ N(0,⌃), (i, j) 2 [n]⇥ [m], where the covariance matrix is the same with that in case 3.

• Case 5: Mixture of Gaussian distributions with ⇠i 2 Rp ⇠ 0.2 ·N(0, 10⌃) + 0.8 ·N(0,⌃), i 2
[n], where the covariance matrix is the same with that in case 3, and mixture of Pareto

distribution with shape parameter 2 and standard Gaussian distribution, namely, "j,k ⇠
di↵(0.2 · Pareto(2) + 0.8 ·N(0, 1)), (j, k) 2 [m]⇥ [p].

• Case 6: Scaled t3 distribution, where ⇠i,k ⇠ 0.3 · t3, (i, k) 2 [n]⇥ [p] and "j,k ⇠ 0.3 · t3, (j, k) 2
[n]⇥ [p].

As a first step, we validate the results of Gaussian approximation of HL estimator by conducting

the tests in (4.3) and (E.3) with threshold ↵ = 0.05, respectively. We set the first 50 entries of

✓ 2 Rp (or ⇥ = ✓ � ✓0 2 Rp) given in §4.1 and §4.2 as µ, and the other entries as 0, where µ

increases from 0 to 0.25. When µ = 0, the null-hypothesis test holds; otherwise, the alternative

holds. The size or power of the tests in (4.3) and (E.3) are computed via averaged outcomes from
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500 replications of the methods in §4.1.1 and §E.4, respectively. In addition, for every replication,

we conduct the weighted bootstrap method 300 times to compute the critical value of the test.

In addition, under the same experimental settings given above, we also compare the perfor-

mance of HL estimator with the sample mean estimator ( 1
p
n

P
n

i=1Xi in one-sample case and
p
nm/(n+m)( 1

n

P
n

i=1Xi � 1
m

P
m

j=1 Yj) in two-sample test). In this scenario, the critical val-

ues for tests (4.3) and (E.3) via sample mean estimators are computed via 300 bootstrap sam-

ples from joint Gaussian distribution N(0, b⌃), where b⌃ is the sample covariance matrix (b⌃ =
1

n�1

P
n

i=1(Xi � X̄)(Xi � X̄)> in one-sample test and b⌃ = n�1
n+m�2

P
n

i=1(Xi � X̄)(Xi � X̄)> +
m�1

m+n�2

P
m

j=1(Yj � Ȳ )(Yj � Ȳ )> in two-sample test). The results are then summarized in Table 2.

Estimator µ
One-sample Two-sample

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

HL

µ = 0 0.054 0.048 0.052 0.040 0.046 0.045

µ = 0.05 0.880 0.062 0.060 0.080 0.084 0.282

µ = 0.10 1.000 0.480 0.464 0.164 0.140 1.000

µ = 0.15 1.000 0.982 0.942 0.322 0.320 1.000

µ = 0.20 1.000 1.000 1.000 0.728 0.688 1.000

µ = 0.25 1.000 1.000 1.000 0.944 1.000 1.000

Mean

µ = 0 0.004 0.000 0.044 0.052 0.000 0.000

µ = 0.05 0.042 0.000 0.046 0.122 0.000 0.000

µ = 0.10 0.540 0.000 0.478 0.200 0.000 0.166

µ = 0.15 0.818 0.002 0.940 0.384 0.002 0.718

µ = 0.20 1.000 0.006 1.000 0.742 0.008 0.858

µ = 0.25 1.000 0.010 1.000 0.968 0.020 0.900

Table 2: Sizes and powers for testing the global null using Gaussian approximation via HL estimator

and sample mean estimator, respectively.

We conclude from Table 2 that, in terms of the HL estimator, for all scenarios, the sizes of the

test are roughly 0.05 when the null hypothesis is true (µ = 0). Therefore, this validates the results

of the Gaussian approximation. On the other hand, when the alternative holds, the power of the

tests via HL estimator rises quickly to 1 as µ increases. This demonstrates the e↵ectiveness of the

HL test statistics. However, in terms of sample mean estimator, one observes that when the null

holds, the size of the test is approximately 0 for most scenarios, whereas, when alternative holds,

the power is much less than that of HL estimator. Thus, this further confirms the e�ciency and

robustness of HL estimator.

5.2 Numerical Studies for FDP Control

We validate the theoretical findings for FDP control under multiple regimes and also compare the

performance of HL estimator with student’s t-statistics given in Liu and Shao (2014). In specific,

we maintain most of the settings mentioned in §5.1. The only di↵erence is that we let the first 50
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entries of ✓ and ⇥ be µ, where µ 2 {0.5, 0.3}, and the rest ones being 0. The target false discover

proportion ↵ is varied uniformly from 0.05 to 0.25 and the empirical FDP are computed via the

procedures in §4.1.2 and §4.2, respectively. Meanwhile, for both of these two statistics, besides the

FDP, the true positive proportion (TPP) of the test TPP(tBH) =
P

`2H1
I{P`  tBH}/|H1| is also

computed. The numerical outcomes are summarized in Table 3 and Table 4 (corresponds to cases

with µ = 0.5 and µ = 0.3, respectively).

Estimator ↵ 0.05 0.10 0.15 0.20 0.25

HL

Case 1 0.068 (1.000) 0.110 (1.000) 0.152 (1.000) 0.212 (1.000) 0.256 (1.000)

Case 2 0.062 (1.000) 0.116 (1.000) 0.154 (1.000) 0.198 (1.000) 0.254 (1.000)

Case 3 0.052 (1.000) 0.102 (1.000) 0.150 (1.000) 0.188 (1.000) 0.248 (1.000)

Case 4 0.058 (1.000) 0.122 (1.000) 0.170 (1.000) 0.238 (1.000) 0.273 (1.000)

Case 5 0.064 (1.000) 0.103 (1.000) 0.142 (1.000) 0.187 (1.000) 0.234 (1.000)

Case 6 0.062 (1.000) 0.092 (1.000) 0.151 (1.000) 0.193 (1.000) 0.232 (1.000)

Student’s t

Case 1 0.071 (1.000) 0.109 (1.000) 0.168 (1.000) 0.228 (1.000) 0.276 (1.000)

Case 2 0.033 (0.976) 0.075 (0.976) 0.118 (0.990) 0.161 (0.996) 0.217 (1.000)

Case 3 0.042 (1.000) 0.087 (1.000) 0.131 (1.000) 0.206 (1.000) 0.255 (1.000)

Case 4 0.063 (1.000) 0.127 (1.000) 0.181 (1.000) 0.246 (1.000) 0.299 (1.000)

Case 5 0.026 (0.962) 0.064 (0.962) 0.110 (0.988) 0.159 (0.994) 0.195 (1.000)

Case 6 0.048 (1.000) 0.106 (1.000) 0.168 (1.000) 0.196 (1.000) 0.272 (1.000)

Table 3: Empirical FDP and TPP versus the nominal level ↵ of the test via HL estimator and

student’s t-statistics when µ = 0.5. The numbers outside and inside the brackets are averaged

empirical false discovery proportions (FDP) and averaged true positive proportions (TPP), respec-

tively, from 50 replications of the experiments in §4.1.2 and §4.2. For every replication, we conduct

bootstrap 300 times for every dimension to compute the corresponding empirical p-values for HL

estimator using the method in §4.1.2 and §4.2. In addition, the p-values for student’s t-statistics

are computed via quantiles of the standard Gaussian distribution.

Compared with the student’s t-statistics, the empirical FDPs of HL estimator are closer to

the theoretical thresholds in most cases and outcomes based on HL estimator have larger true

positive proportion (TPP). This validates the theory of FDP control and confirms the benefit and

e↵ectiveness of using HL estimator when heavy-tailed error exists. In addition, we also further

compare the performance of HL estimator with the student’s t-statistics in both one-sample and

two-sample tests when the noises follow t1 distribution, where the HL estimator also performs much

better. Interested readers are referred to §A.1 for more details.

6 Conclusion

In large-scale data analysis, conventional methods are ine↵ective since outliers and variables with

heavy tails can easily corrupt the data. To resolve heavy-tailed contamination, existing tech-
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Estimator ↵ 0.05 0.10 0.15 0.20 0.25

HL

Case 1 0.048 (1.000) 0.112 (1.000) 0.154 (1.000) 0.202 (1.000) 0.256 (1.000)

Case 2 0.074 (1.000) 0.133 (1.000) 0.178 (1.000) 0.222 (1.000) 0.260 (1.000)

Case 3 0.054 (1.000) 0.104 (1.000) 0.153 (1.000) 0.210 (1.000) 0.254 (1.000)

Case 4 0.006 (0.984) 0.048 (0.998) 0.108 (1.000) 0.176 (1.000) 0.232 (1.000)

Case 5 0.000 (0.992) 0.024 (0.992) 0.092 (0.992) 0.166 (0.992) 0.200 (0.992)

Case 6 0.055 (1.000) 0.095 (1.000) 0.138 (1.000) 0.184 (1.000) 0.254 (1.000)

Student’s t

Case 1 0.044 (1.000) 0.098 (1.000) 0.166 (1.000) 0.204 (1.000) 0.263 (1.000)

Case 2 0.011 (0.910) 0.056 (0.910) 0.106 (0.930) 0.161 (0.968) 0.205 (0.984)

Case 3 0.052 (1.000) 0.106 (1.000) 0.150 (1.000) 0.198 (1.000) 0.259 (1.000)

Case 4 0.004 (1.000) 0.046 (1.000) 0.110 (1.000) 0.158 (1.000) 0.210 (1.000)

Case 5 0.000 (0.870) 0.000 (0.952) 0.056 (0.984) 0.100 (0.990) 0.170 (1.000)

Case 6 0.046 (1.000) 0.106 (1.000) 0.140 (1.000) 0.180 (1.000) 0.262 (1.000)

Table 4: Empirical FDP and TPP versus the nominal level ↵ of the test via HL estimator and

student’s t-statistics when µ = 0.3. The remain captions are the same with those in Table 3.

niques, such as Huberized mean, truncation, and median of means, always require additional tun-

ing parameters and moment restrictions. Consequently, they cannot e↵ectively be scaled to the

high-dimensional applications with fidelity. Using the well-known Hodge-Lehmann estimator, the

constraint on moment and tuning parameters can be removed. However, its non-asymptotic and

large-scale properties have never been investigated. This paper fills this important gap by con-

tributing a finite-sample analysis of the HL estimator, generalizing it to large-scale studies, and

proposing tuning-free and moment-free high-dimensional testing methods.

There are various potential future directions that merit further studies. First, we permit mild

measurement dependence while controlling the FDP in both the one- and two-sample regimes.

However, in reality, high-dimensional data can exhibit strong dependency such as those collected

in the field of economics, finance, genomics, and meteorology. To solve such strong dependence

problems, factor-adjusted multiple testing via Huber-type estimation has been proposed (Fan et al.,

2019). However, using Huber-type loss will result in extra tuning parameters and moment con-

straints. As a result, factor adjustments can be incorporated into the large-scale HL estimation

and testing procedures in order to develop tuning-free procedures that can be adapted to a strong

dependence scenario. Second, in terms of computation, we need to compute the median of O(n2)

pairs. However, in the one sample estimation regime, if we use the sub-sampling idea, one may

compute the median of n/2 non-overlapping pair averages:

✓
⌧ = median

✓
X⌧(2i�1) +X⌧(2i)

2
, i 2 [n/2]

◆

with a random permutation ⌧ on [n]. By taking 5 or more permutations and the averages of these

estimates, numerically, the averaged one approximates well the Hodge-Lehmann estimator and only
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requires O(n) samples (Fan et al., 2020b). Therefore, it is also interesting to derive non-asymptotic

analysis for this estimator based on sub-sampling.
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A Appendix

In the following sections, we present additional simulation results as well as the proofs of all the

theoretical results in the main paper.

A.1 Additional Simulation

In this section, we conduct additional simulations for FDP control using HL estimator and student’s

t-statistics, respectively. We keep all settings as in §5.2, except that the noises are generated from

the following case 7 and case 8, where we change the distribution in case 1 and case 6 from t3 to

t1. The numerical outcomes are summarized in Table 5 and Table 6.

• Case 7: Scaled t1 distribution with ⇠i,k ⇠ 0.3 · t1, (i, k) 2 [n]⇥ [p].

• Case 8: Scaled t1 distribution, where ⇠i,k ⇠ 0.3 · t1, (i, k) 2 [n]⇥ [p] and "j,k ⇠ 0.3 · t1, (j, k) 2
[n]⇥ [p].

Estimator ↵ 0.05 0.10 0.15 0.20 0.25

HL
Case 7 0.036 (1.000) 0.082 (1.000) 0.132 (1.000) 0.180 (1.000) 0.222 (1.000)

Case 8 0.069 (1.000) 0.105 (1.000) 0.168 (1.000) 0.225 (1.000) 0.272 (1.000)

Student’s t
Case 7 0.000 (0.282) 0.000 (0.284) 0.000 (0.320) 0.000 (0.320) 0.000 (0.320)

Case 8 0.000 (0.274) 0.000 (0.274) 0.000 (0.274) 0.000 (0.322) 0.000 (0.322)

Table 5: Empirical FDP and TPP versus the nominal level ↵ of the test via HL estimator and

student’s t-statistics when µ = 0.5. The remain captions are the same with those in Table 3.

Estimator ↵ 0.05 0.10 0.15 0.20 0.25

HL
Case 7 0.036 (1.000) 0.82 (1.000) 0.122 (1.000) 0.179 (1.000) 0.224 (1.000)

Case 8 0.058 (1.000) 0.105 (1.000) 0.157 (1.000) 0.214 (1.000) 0.252 (1.000)

Student’s t
Case 7 0.000 (0.282) 0.000 (0.282) 0.000 (0.282) 0.000 (0.284) 0.000 (0.284)

Case 8 0.000 (0.134) 0.000 (0.134) 0.000 (0.134) 0.000 (0.134) 0.000 (0.134)

Table 6: Empirical FDP and TPP versus the nominal level ↵ of the test via HL estimator and

student’s t-statistics when µ = 0.3. The other captions are the same with those in Table 3.

We conclude from Table 5 and Table 6, the HL estimator outperforms the student’s t-statistics

when the noise follows t1 distribution in terms of the FDP and TPP. Therefore, this further confirms

the robustness of HL estimator.
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B Lemmas

Lemma B.1. Let Sn =
P

n

i=1 Yi, where Y1, . . . , Yn 2 R are independent random variables such

that ai  Yi  bi for each i 2 [n]. Then, for any z > 0, we have

P(|Sn � ESn| > z)  2 exp

⇢
� 2z2P

n

i=1(bi � ai)2

�
.

Lemma B.2. Let Y1, . . . , Yn 2 R be i.i.d. random variables andHn = {n(n�1)}�1P
i 6=j2[n] h(Xi, Xj),

where h(x, y) is a symmetric function with a  h(x, y)  b for some a  b 2 R. Then, for any

z > 0, we have

P(Hn � EHn > z)  exp

⇢
� nz

2

(b� a)2

�
.

Let V1, . . . , Vm 2 R be another sample of i.i.d. random variables independent of {Y1, . . . , Yn} and

let Hn,m = (nm)�1Pn

i=1

P
m

j=1 h̄(Yi, Vj), where h̄(x, y) is bounded such that a  h̄(x, y)  b for

some a  b 2 R. Then, for any z > 0, we have

P(Hn,m � EHn,m > z)  exp

⇢
�2(n ^m)z2

(b� a)2

�
.

C Proof of Theoretical Results in §2

C.1 Proof of Theorem 2.1

For simplicity of notation, we write Wn(t) = Un(✓ + t)� U(✓ + t) for t 2 R. Define R(Xi, Xj , t) =

I{✓ < (Xi +Xj)/2  ✓ + t} and

R̄(Xi, Xj , t) = R(Xi, Xj , t)� E{R(Xi, Xj , t)|Xi}� E{R(Xi, Xj , t)|Xj}+ E{R(Xi, Xj , t)}.

With this notation, we have Wn(t)�Wn(0) = R̄
⇧
n(t) + R̄

�
n(t), where

R̄
⇧

n(t) =
2

n

nX

i=1

[E{R(Xi, Xj , t)|Xi}� E{R(Xi, Xj , t)}] and R̄
�

n(t) =
1

n(n� 1)

X

i 6=j2[n]

R̄(Xi, Xj , t).

Lemma C.1. For any 0 < t  1/(2kfk1), there exists a universal positive constant C such that

P(|R̄�

n(t)| > z)  C exp


� 1

C
min

⇢
n
2
z
2

tkfk1
,

✓
n
3
z
2

tkfk1

◆1/3

,
nzp
tkfk1

, nz
1/2

��
. (C.1)

Proof of Lemma C.1. Observe that R̄(Xi, Xj , t) is a bounded canonical kernel of Xi and Xj for

any t 2 R. Hence it is straightforward to derive (C.1) by Theorem 3.3 in Giné et al. (2000).

Lemma C.2. For any 0 < ⇤  1/(2kfk1), with probability at least 1� C exp(�z), we have

sup
|t|⇤

|Wn(t)�Wn(0)|  C1

⇢✓
K + z

n

◆2

+ ⇤kfk1
✓
z + C2

n

◆1/2

+
K + z

n
(⇤kfk1)1/2

�
, (C.2)

where K = min{k 2 N : 2k � n}.
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Proof of Lemma C.2. For any h 2 [2K ] and t 2 (⇤(h� 1)2�K
,⇤h2�K ], we have

Wn(t)�Wn(0)  Un

✓
✓ +

⇤h

2K

◆
� U

✓
✓ +

⇤(h� 1)

2K

◆
�Wn(0)

 Wn

✓
⇤h

2K

◆
�Wn(0) + U

✓
✓ +

⇤h

2K

◆
� U

✓
✓ +

⇤(h� 1)

2K

◆

 Wn

✓
⇤h

2K

◆
�Wn(0) +

⇤kU 0k1
2K

.

Similarly, we have

Wn(t)�Wn(0) � Wn

✓
⇤(h� 1)

2K

◆
�Wn(0)�

⇤kU 0k1
2K

.

Consequently, we obtain

sup
0<t⇤

|Wn(t)�Wn(0)|  max
h2[2K ]

����Wn

✓
⇤h

2K

◆
�Wn(0)

����+
⇤kU 0k1

2K

 max
h2[2K ]

����R̄
�

n

✓
⇤h

2K

◆����
| {z }

��
K

+ max
h2[2K ]

����R̄
⇧

n

✓
⇤h

2K

◆����
| {z }

�⇧
K

+
⇤kU 0k1

2K
.

For each h 2 [2K ], by (C.1), with probability at least 1� C exp(�z),

��

K  C

⇢✓
K + z

n

◆2

+
K + z

n

p
⇤kU 0k1

�
,

where C > 0 is a universal constant.

�⇧

K 
KX

k=1

max
h2[2k]

����R̄
⇧

n

✓
⇤h

2k

◆
� R̄

⇧

n

✓
⇤(h� 1)

2k

◆����+max
h2[2]

����R̄
⇧

n

✓
⇤h

2

◆���� =: �⇧

K,1 + �⇧

K,2.

For each k 2 [K], by Lemma B.1, with probability at least 1� exp(�z), we have

max
h2[2k]

����R̄
⇧

n

✓
⇤h

2k

◆
� R̄

⇧

n

✓
⇤(h� 1)

2k

◆����  C⇤kfk12�k

r
k + z

n
.

Hence with the same probability, we have

�⇧

K,1 
KX

k=1

✓
C⇤kfk12�k

r
2k + z

n

◆
 C1⇤kfk1

r
z + C2

n
.

Similarly, it follows that

P
⇣

�⇧

K,2 > C3⇤kfk1
p
(2z)/n

⌘
 C4 exp(�z).

Putting all these pieces together, we obtain (C.2).
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Proof of Theorem 2.1. For any z � 0, since U(t) is a cumulative distribution function, we have

1

2
> Un(✓ + z) = U(✓ + z)� {U(✓ + z)� Un(✓ + z)}

� U(✓) +

Z
z^c0

0
U

0(✓ + ⌫)d⌫ � {U(✓ + z)� Un(✓ + z)}

� 1

2
+ 0(z ^ c0)� {U(✓ + z)� Un(✓ + z)}.

By the definition of b✓ in (C.4), it follows that P(b✓ > ✓ + z)  P{1/2 > Un(✓ + z)}. Therefore

P(b✓ > ✓ + z)  P{U(✓ + z)� Un(✓ + z) > 0(z ^ c0)}  exp{�n
2
0(z ^ c0)

2},

where the last inequality follows from the Hoe↵ding inequality in Lemma B.2.

Recall that Wn(t) = Un(✓ + t) � U(✓ + t) for t 2 R. Taking ⇤ =
p
z/(n20) yields P(|b✓ � ✓| >

⇤)  2 exp(�z). By Lemma C.2, with probability at least 1� C exp(�z), we have

sup
|�|⇤

|Wn(�)�Wn(0)| 
C1kfk1(z + c)

n0
.

We then obtain
����b✓ � ✓ � Un(b✓)� Un(✓)

U 0(✓)

���� 
|Wn(b✓ � ✓)�Wn(0)|

0
+

1|b✓ � ✓|2
0

 C1kfk1(z + c)

n
2
0

+
1z

n
3
0

.

Finally, denote

�✓ : =
1/2� Un(✓)

U 0(✓)
� 2

nU 0(✓)

nX

i=1

⇢
1

2
� F (�⇠i)

�

=
1

n(n� 1)U 0(✓)

X

i 6=j2[n]

✓
F (�⇠i) + F (�⇠j)� I{⇠i + ⇠j  0}� 1

2

◆
.

Observe that |F (�⇠i) + F (�⇠j) � I{⇠i + ⇠j  0} � 1/2|  2 uniformly for i 6= j 2 [n]. Then (2.4)

follows from Theorem 3.3 in Giné et al. (2000).

C.2 Proof of Theorem 2.2

Proof of Theorem 2.2. For simplicity of notation, denote

Tn =

p
n(b✓ � ✓)

�✓
and T

]

n =
1p

nVar{F (�⇠1)}

nX

i=1

⇢
1

2
� F (�⇠i)

�
. (C.3)

Note that maxi2[n] |1/2 � F (�⇠i)|  1/2. Hence supz2R |P(T ]
n  z) � �(z)|  Cn

�1/2. Let C < 1
be a su�ciently large positive constant. Then it follows from (2.4) that

P
✓
|Tn � T

]

n| >
C log np

n

◆
 C1p

n
.

Consequently, we obtain

sup
z2R

|P(Tn  z)� �(z)|  sup
z2R

|P(T ]

n  z)� �(z)|+ sup
z2R

|P(Tn  z)� P(T ]

n  z)|  C(log n)/
p
n.
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C.3 Proof of Theorem 2.3

Proof of Theorem 2.3. Recall the definitions of Tn and T
]
n in (C.3). Since maxi2[n] |1/2�F (�⇠i)| 

1/2, it follows that

�����
P(T ]

n > z)

1� �(z)
� 1

����� 
C(1 + z

3)p
n

for 0  z  C0n
1/6

,

where C0 > 0 is any fixed constant and C is a positive constant depending only on C0. Denote

�̄(·) = 1� �(·). By (2.4), we have

P(Tn > z)  P(T ]

n > z � �n) + C1 exp(�
p
n�n)


⇢
1 +

C(1 + z
3)p

n

�
�̄(z � �n) + C1 exp(�

p
n�n)


⇢
1 +

C(1 + z
3)p

n

�
{1 + (1 + z)�n exp(z�n)}�̄(z) + C1 exp(�

p
n�n).

By Mill’s inequality, for any z > 0,

z

p
2⇡ exp

✓
z
2

2

◆
 1

�̄(z)
 2(z _ 1)

p
2⇡ exp

✓
z
2

2

◆
.

Consequently, it follows that

P(Tn > z)

1� �(z)
� 1  C(1 + z

3)p
n

+ C2(1 + z)�n + 2C1(z _ 1)
p
2⇡ exp

✓
z
2

2
�
p
n�n

◆
.

Similarly, we have

1� P(Tn > z)

1� �(z)
 C(1 + z

3)p
n

+ C2(1 + z)�n + C1z
p
2⇡ exp

✓
z
2

2
�
p
n�n

◆
.

Putting all these pieces together, we obtain (2.7).

C.4 Proof of Theorem 2.4

Define the two-sample U -process Un,m(t) = (nm)�1Pn

i=1

P
m

j=1 I{Xi � Yj  t}. Then the HL

estimator b⇥ in (2.9) can be equivalently expressed as the sample median of the U -process Un,m(t),

namely,

b⇥ = inf{t 2 R : Un,m(t) � 1/2}. (C.4)

The remaining steps for proving Theorem 2.4 can be derived by following similar steps as in the

proof of Lemma C.2 and proof of Theorem 2.1.
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C.5 Proof of Theorem 2.5

For simplicity of notation, we write TN =
p
N(b⇥ � ⇥)/e⇥ and

T ]

N
=

Ḡn � F̄mp
Var(Ḡn � F̄m)

,

where Ḡn = n
�1Pn

i=1G(⇠i) and F̄m = m
�1Pm

j=1 F ("j). Then, similar to proof of Theorem 2.2, it

follows that

sup
z2R

|P(TN  z)� �(z)|  sup
z2R

|P(TN  z)� P(T ]

N
 z)|+ sup

z2R
|P(T ]

N
 z)� �(z)| . logNp

N
.

The proof of the Cramér-type moderate deviation for b⇥ can be derived by following similar proof

procedures of Theorem 2.3. Therefore, we decide to omit the details.

D Proof of Results in §3

Define

b�2
✓
=

4

n{U 0(✓)}2
nX

i=1

✓
1

n� 1

X

j 6=i

I{⇠i + ⇠j  0}� Un(✓)

◆2

.

Lemma D.1. Under the conditions of Theorem 2.1, we have

P
✓����

b�✓
�✓

� 1

���� > z

◆
. exp(�CUn) + exp(�CUnz) + exp(�CUnz

2), (D.1)

where CU is a positive constant depending only on U .

Proof of Lemma D.1. For each i 2 [n], denote

Wi =
1

n� 1

X

j 6=i

I{⇠i + ⇠j  0}� F (�⇠i).

Recall that Un(✓) = {n(n� 1)}�1P
i 6=j2[n] I{⇠i + ⇠j  0}. Hence

b�2
✓
� 4

n{U 0(✓)}2
nX

i=1

⇢
F (�⇠i)�

1

2

�2

| {z }
e�2
✓

=
4

n{U 0(✓)}2
nX

i=1

W
2
i � 4|Un(✓)� 1/2|2

{U 0(✓)}2

+
8

n{U 0(✓)}2
nX

i=1

Wi

⇢
F (�⇠i)�

1

2

�
=: ��,1 � ��,2 + ��,3.

Since E(e�2
✓
) = �

2
✓
and maxi2[n] |F (�⇠i)� 1/2|  1/2, it follows from Lemma B.1 that

P(|e�2
✓
� �

2
✓
| > z)  2 exp(�CUnz

2),
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where CU is a positive constant depending only on the density function U
0. Note that {I{⇠i + ⇠j 

0}� F (�⇠i)}j 6=i is a sequence of independent centered random variables conditional on ⇠i for each

i 2 [n]. Hence, by Hoe↵ding’s inequality, we have P(maxi2[n]W
2
i
> z)  2n exp(�Cnz). Therefore

P(��,1 > z)  P
✓

4

{U 0(✓)}2 max
i2[n]

W
2
i > z

◆
 2n exp(�CUnz).

Consequently, by the Cauchy-Schwarz inequality, we have |��,3|2  4e�2
✓
��,1 and

P(|��,4| > z)  2 exp(�CUn) + 2n exp(�CUnz
2).

By Lemma B.2, we have P(|Un(✓) � 1/2| > z)  2 exp(�nz
2) and P(��,3 > z)  2 exp(�CUnz).

Putting all these pieces together, we obtain (D.1).

D.1 Proof of Theorem 3.1

Define the bootstrap U -process

U
?

n(t) =
1

Bn

X

i 6=j2[n]

!i!jI
⇢
Xi +Xj

2
 t

�
, where Bn =

X

i 6=j2[n]

!i!j .

Define W ?
n(t) = U

?
n(✓+ t)�U(✓+ t) and W

⇧
n(t) = U

?
n(✓+ t)�Un(✓+ t) for t 2 R. We first introduce

some notation. Let K = min
�
k 2 N : 2k � n

 
. For each i 6= j 2 [n] and h 2 [2K ], denote

R
✓
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◆
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◆
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◆
� 1
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X
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Xi, Xj ,

⇤h

2K

◆
.

Lemma D.2. Let 0 < ⇤  1/(2kfk1). Under EK = {�n  �⇧}, for any z  Cn, we have

P?

⇢
sup
|t|⇤
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�

 C exp(�z) + exp
⇣
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16

⌘
.

(D.2)

Proof of Lemma D.2. For any h 2 [2K ] and t 2 (⇤(h� 1)2�K
,⇤h2�K ], we have

W
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Similarly, we have
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Consequently, we have
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.

Recall that Bn =
P

i 6=j2[n] !i!j , where !1, . . . ,!n are i.i.d. random variables such that 0  !i  2

and E(!i) = 1 for each i 2 [n]. Hence, it follows from Lemma B.2 that P(Bn > 2n(n � 1)) 
exp(�n/16). We first upper bound maxh2[2K ] |�

\

W,h
|. Observe that �\

W,h
is a degenerate second

order U -statistic with
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i 6=j2[n]
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����R
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Hence, by Theorem 3.3 in Giné et al. (2000),
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We now upper bound maxh2[2K ] |�
]

W,h
|. For simplicity of notation, denoteRij,h = R(Xi, Xj ,⇤h/2K)

and R̄n,h = {n(n� 1)}�1P
i 6=j2[n]Rij,h. Define
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nX
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����
X

i 6=j

R
✓
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◆����
2

. (D.3)

Hence, under EK , by Theorem 1.1 in Bentkus and Dzindzalieta (2015), it follows that

P?

⇢
max
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|�]
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| >
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p
�⇧(z +K)

2n2

�
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⇣
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⌘
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Putting all these pieces together, we obtain (D.2).
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Lemma D.3. Let �n be defined in (D.3). Assume that ⇤  1/(2kfk1) and log n  n⇤kfk1.

Then we have

P(�n  Cn
3⇤2kfk21) � 1� C1 exp(�n⇤kfk1). (D.4)

Proof of Lemma D.3. By the triangle inequality,
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Recall that Wn(t) = {n(n � 1)}�1P
i 6=j2[n]R(Xi, Xj , t). Hence R̄n,h � E(R̄n,h) = Wn(⇤h/2K) �

Wn(0) for each h 2 [2K ]. Therefore, by Lemma C.2, with probability at least 1 � C exp(�z), we
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Putting all these pieces together, we obtain (D.4).

Proof of Theorem 3.1. By Theorem 2.1, for any ! > 0 such that !  n
2
0c

2
0, we have

P
✓
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◆
 2 exp(�!).
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Combined with Lemma C.2, for any z > 0 such that z  1/(4kfk1), with probability at least

1� C1 exp(�!), we have
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Similar to the proof of Theorem 2.1, for any z � 0 such that b✓? > b✓ + z, we have
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✓
K + !

n

p
kfk1z +

K + !

n0
kfk1

◆

� 1

2
+

0z

2
� |U?

n(b✓ + z)� Un(b✓ + z)|� 2C2(K + !)

n0
kfk1.

Then it follows from Lemma B.1 that

P?

⇢
|b✓? � b✓| > 2

0

r
z

n
+

4C2kfk1(K + !)

n
2
0

�
 2 exp(�C3z) + exp

⇣
� n

16

⌘
.

By Lemma D.2 and Lemma D.3, with probability at least 1� C exp(�!), we have

P?

⇢
|U?

n(b✓?)� U(b✓?)� {U?

n(✓)� U(✓)}| > C(K + z + !)

n

�
 C exp(�z) + exp

⇣
� n

16

⌘
,

where C is a positive constant depending only on 0, kfk1 and c0. Therefore, combined with the

fact that sup|�|c1
|U 00(✓ + �)|  1, we obtain

����b✓
? � ✓ � 1

BnU
0(✓)

X

i 6=j2[n]

!i!j

✓
I{⇠i + ⇠j  0}� 1

2

◆ ���� 
C(K + z + !)

n
.

Combining these with Theorem 2.1, we obtain (3.2).

Proof of (3.3). For each i 2 [n], denote

Di =
2

U 0(✓)

✓
1

n� 1

X

j 6=i

I{⇠i + ⇠j  0}� Un(✓)

◆
.

Then if follows from (3.2) that with probability at least 1� C exp(�!), we have

P?

⇢����b✓
? � b✓ � 1

n

nX

i=1

Di(!i � 1)

���� >
C(! + log n)

n

�
 Cn

�c
. (D.5)
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By Lemma D.1, we have P(b�✓ � �✓/2) � 1� C exp(�n). Consequently, by Berry-Esseen theorem,

with probability at least 1� C exp(�n), we have

sup
z2R

����P
?

✓
1p
nb�✓

nX

i=1

Di(!i � 1)  z

◆
� �(z)

���� 
Cp
n
.

Combining this with (D.5) yields (3.3).

D.2 Proof of Theorem 3.2

Based on Theorem 2.4, the proof of Theorem 3.2 can be derived by following the proof of Theo-

rem 3.1. Thus we omit the details.

E Proof of Results in §4

E.1 Proof of Theorem 4.1

Proof of Theorem 4.1. For each i 2 [n] and ` 2 [p], denote Di` = {1 � 2F`(�⇠i`)}/U 0

`
(✓`). Define

D̄n = (D̄n1, . . . , D̄np)> 2 Rp, where D̄n` = n
�1Pn

i=1Di` for each ` 2 [p]. Note that |Di`|  1/0
uniformly for i 2 [n] and ` 2 [p]. Hence, it follows from Theorem 2.1 in Chernozhuokov et al. (2022)

that

sup
z2R

|P(
p
nkD̄nk1  z)� P(kZk1  z)|  C log5/4(pn)

n1/4
.

Let �] = C log(pn)/
p
n. By Theorem 2.1, it follows that

sup
z2R

|P(
p
nkb✓ � ✓k1  z)� P(

p
nkD̄nk1  z)|

 P(
p
nkb✓ � ✓ � D̄nk1 > �

]) + sup
z2R

P(z <
p
nkD̄nk1  z + �

])

. n
�c + �

]
p
log p+

log5/4(pn)

n1/4
 C log5/4(pn)

n1/4
.

Putting all these pieces together, we obtain (4.2).

E.2 Proof of Theorem 4.2

Proof of Theorem 4.2. For each ` 2 [p] and i 2 [n], denote

Di` =
2

�`U
0

`
(✓`)

✓
1

n� 1

X

j 6=i

I{⇠i` + ⇠j`  0}� Un`(✓`)

◆
.
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Let D̄n = (D̄n1, . . . , D̄np)>, where D̄n` = n
�1Pn

i=1Di` for each ` 2 [p]. By the triangle inequality,

max
`2[p]

nX

i=1

(Di` �Di`)
2 . max

`2[p]

nX

i=1

✓
1

n� 1

X

j 6=i

I{⇠i` + ⇠j`  0}� F`(�⇠i`)

◆2

+ nmax
`2[p]

����Un`(✓`)�
1

2

����
2

 nmax
`2[p]

max
i2[n]

����
1

n� 1

X

j 6=i

I{⇠i` + ⇠j`  0}� F`(�⇠i`)

����
2

+ nmax
`2[p]

����Un`(✓`)�
1

2

����
2

=: �⇧

D + ��

D.

By Lemma B.1, it follows that P{�⇧

D
> C log(np)} . (np)�c. Recall that

U`(✓`) =
1

n(n� 1)

X

i 6=j2[n]

I{⇠i` + ⇠j`  0}, ` 2 [p].

Hence, it follows from Lemma B.2 that P{��

D
> C log(np)} . (np)�c. Consequently, for any � > 0,

by Theorem 1.1 in Bentkus and Dzindzalieta (2015), with probability at least 1�C(np)�c, we have

P?

✓
max
`2[p]

����
nX

i=1

(Di` �Di`)(!i � 1)

���� > �

◆
. p exp

✓
� C�

2

log(np)

◆
.

Combined with Lemma, with probability at least 1� C(np)�c, we have

sup
z2R

����P
?

✓
max
`2[p]

����
nX

i=1

Di`(!i � 1)

����  z

◆
� P?

✓
max
`2[p]

����
nX

i=1

Di`(!i � 1)

����  z

◆����

. p exp{�C log(np)}+ log(np)
p
log pp

n
 log(np)

p
log pp

n
.

E.3 Proof of Theorem 4.3

Proof of Theorem 4.3. Following the proof of Theorem 2.3, it follows from Theorem 3.1 that with

probability at least 1� Cn
�c, we have

P?{
p
n(b✓?

`
� b✓`) > z}

2{1� �(z/�`)}
= 1 + o(1), (E.1)

uniformly for 0 < z  o(n1/6) and ` 2 [p]. By Lemma 1 in Storey et al. (2004), it follows that

tS =

⇢
t 2 [0, 1] : t 

↵max(
P

p

`=1 I{P`  t}, 1)
p

�
.

By the definition of tS , we have

tS =
↵max(

P
p

`=1 I{P`  tS}, 1)
p

. (E.2)

37



Observe that tS � ↵/p. Hence, it follows from (E.1) that P{tS > max`2[p] G?

`
(�`(2 log p)1/2)} ! 1.

Combining this with (E.2) yields

tS � ↵

p

pX

`=1

I{P`  tS} � ↵

p

pX

`=1

I
n
G?

`
(
p
n|b✓`|)  G?

`
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�`

p
2 log p

⌘o

� ↵

p

pX

`=1

I
np

n|b✓`| � �`

p
2 log p

o
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p

pX

`=1

I
⇢
|✓`|
�`

�
p
2 log p+max

`2[p]

p
n(b✓` � ✓`)

�`

�
.

For some � > 0, define

E� =

⇢p
nmax

`2[p]

|b✓` � ✓`|
�`

 (1 + �)
p
2 log p

�
.

Under E�, it is straightforward to verify that

tS � ↵

p

pX

`=1

I
⇢
|✓`|
�`

� (2 + �)
p
2 log p

�

By theorem 2.3, it follows that P(Ec

�
)  Cp exp{�(1 + �)2 log p}  Cp

��
2
�2�. Then, following the

proof of Theorem 3.3 in Zhou et al. (2018), for any sequence 1  bp ! 1, it is straightforward to

derive that

sup
bp/pt1

����

P
`2H0

I{P`  t}
|H0|t

� 1

����
P! 0.

Putting all these pieces together, we obtain (4.6).

E.4 Large-scale Two-sample Simultaneous Testing

We consider the following high dimensional two-sample global test,

H0 : ✓` = ✓
�

`
for all ` 2 [p] versus H1 : ✓` 6= ✓

�

`
for some ` 2 [p]. (E.3)

Given the HL estimators b⇥` = median{Xi`�Yj` : i 2 [n], j 2 [m]}, ` 2 [p], for ⇥` = ✓`�✓
�

`
, we shall

the null hypothesis H0 in (E.3) whenever max`2[p] |b⇥`| exceeds some threshold. To this end, we

develop a Gaussian approximation for max`2[p] |b⇥` � ⇥`|. More specifically, let Z = (Z1, . . . ,Zp)>

be a p-dimensional centered Gaussian random vector with

Cov(Zk,Z`) =
N Cov(Ḡnk � F̄mk, Ḡn` � F̄m`)

U 0

k
(⇥k)U 0

`
(⇥`)

, k, ` 2 [p].

In the following theorem, we establish a non-asymptotic upper bound for the Kolmogorov distance

between the distribution functions of max`2[p] |b⇥` � ⇥`| and its Gaussian analogue max`2[p] |Z`|.
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Theorem E.1. Let U`(t) = P(X1` � Y1`  t) for each ` 2 [p]. Assume that there exist positive

constants c̄0, ̄0, c̄1 and ̄1 such that

min
`2[p]

inf
|⇤|c̄0

U 0

`
(⇥` + ⇤) � ̄0 > 0 and max

`2[p]
sup

|⇤|c̄1

|U 00

`
(⇥` + ⇤)|  ̄1.

Then, under Assumption 2.1, we have

sup
z2R

����P
✓
max
`2[p]

p
N |b⇥` � ⇥`|  z

◆
� P

✓
max
`2[p]

|Z`|  z

◆���� 
C log5/4(Np)

N1/4
.

Proof of Theorem E.1. We are able to prove Theorem E.1 by using similar arguments as in The-

orem 4.1. The major di↵erences only lies in changing the one-sample to two-sample estimators.

Thus, we decided to omit the corresponding details.

Motivated by Theorem E.1, an asymptotic ↵-level test for (E.3) is given by I{max`2[p] |b⇥`| >
Q

⇧

1�↵
}, where Q

⇧

1�↵
stands for the (1� ↵)th quantile of the bootstrap statistic max`2[p] |b⇥?

`
� b⇥`|,

namely,

Q
⇧

1�↵ = inf

⇢
z 2 R : P?

✓
max
`2[p]

|b⇥?

`
� b⇥`|  z

◆
� 1� ↵

�
, ↵ 2 (0, 1).

The validity of the proposed test is justified via the following theorem.

Theorem E.2. Under the conditions of Theorem E.1, we have

����P
✓
max
`2[p]

|b⇥` � ⇥`| > Q
⇧

1�↵

◆
� ↵

���� 
C log5/4(pN)

N1/4
.

Proof of Theorem E.2. The proof of Theorem E.2 can be derived similarly by following the proof

procedure of Theorem 4.2 by replacing the one-sample estimator with the two-sample version.

Therefore, we omit the details.

E.5 Proof of Theorem 4.4

The proof of Theorem 4.4 can be derived similarly by following the proof procedure of Theorem 4.3

by changing the one-sample estimator to the two-sample version. Therefore, we omit the details.
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