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Abstract

A stylized feature of high-dimensional data is that many variables have heavy tails, and robust sta-
tistical inference is critical for valid large-scale statistical inference. Yet, the existing developments
such as Winsorization, Huberization and median of means require the bounded second moments
and involve variable-dependent tuning parameters, which hamper their fidelity in applications to
large-scale problems. To liberate these constraints, this paper revisits the celebrated Hodges-
Lehmann (HL) estimator for estimating location parameters in both the one- and two-sample
problems, from a non-asymptotic perspective. Our study develops Berry-Esseen inequality and
Cramér type moderate deviation for the HL: estimator based on newly developed non-asymptotic
Bahadur representation, and builds data-driven confidence intervals via a weighted bootstrap ap-
proach. These results allow us to extend the HL estimator to large-scale studies and propose
tuning-free and moment-free high-dimensional inference procedures for testing global null and
for large-scale multiple testing with false discovery proportion control. It is convincingly shown
that the resulting tuning-free and moment-free methods control false discovery proportion at a
prescribed level. The simulation studies lend further support to our developed theory.

1 Introduction

Large-scale, high-dimensional data with rich structures have been widely collected in almost all
scientific disciplines and humanities, thanks to the advancements of modern technologies. Massive
developments have been made in statistics over the past two decades on extracting valuable infor-
mation from these high dimensional data; see Bithlmann and Van De Geer (2011); Hastie et al.
(2009, 2015); Wainwright (2019); Fan et al. (2020a); Chen et al. (2021) for a detailed account and
references therein.

Despite convenience for theoretical analysis, the sub-Gaussian tails condition is not realis-
tic in many applications that involve high-dimensional variables. For instance, it is well known
that heavy-tailed distributions is a stylized feature for financial returns and macroeconomic vari-
ables (Cont, 2001; Stock and Watson, 2002; Fan and Yao, 2017; Fan et al., 2021). Therefore, tools
designed for sub-Gaussian data can lead to erroneous scientific conclusions. Asking thousands of
gene expressions to have all sub-Gaussian tails is a mathematical dream, not a reality that data sci-
entists face. For example, comparing gene expression profiles between various cell sub-populations,
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especially after treatments and therapies, is an essential statistical task (Nagalakshmi et al., 2008;
Shendure and Ji, 2008; Wang et al., 2009; Li et al., 2012; Li and Tibshirani, 2013; Gupta et al.,
2014; Finotello and Di Camillo, 2015). However, it is unrealistic to hope all thousands of gene
expressions have sub-Gaussian distributions: outliers in non-sub-Gaussian distributions can have a
significant impact on nonrobust procedures and lead to many false positives and negatives (Gupta
et al., 2014; Wang et al., 2015). The situation also arises for inferences using functional magnetic
resonance imaging (fMRI) data since the data do not conform to the assumed Gaussian distribu-
tion (Eklund et al., 2016). These practical challenges demand for developing efficient and reliable
robust inference methods.

Recently, robust statistical methods have gained popularity as a mean of resolving outliers and
heavy-tailed noises. Many preceding arts have taken a significant stride toward effective statistical
estimation under heavy-tailed distributions. For instance, aiming at dealing with the heavy-tailed
noise contamination, the Huber regression is proposed (Huber, 1973), and subsequent publications
along these lines include Yohai and Maronna (1979); Mammen (1989); He and Shao (1996, 2000),
where the asymptotic properties of the Huber estimator have been thoroughly investigated. From a
non-asymptotic perspective, the Huber-type estimator was recently revisited by Sun et al. (2020), in
which the authors propose an adaptive Huber regression method and establish its non-asymptotic
deviation bounds by only requiring finite (14 §)-th moment of the noise with any 6 > 0. Moreover,
using a similar idea for making the correspondent M-estimator insensitive to extreme values, Catoni
(2012) developed a novel approach through minimizing a robust empirical loss. It is demonstrated
that the estimator has exponential concentration around the true mean and enjoys the same sta-
tistical rate as the sample average for sub-Gaussian distributions when the population only has a
bounded second moment. Brownlees et al. (2015) further investigates empirical risk minimization
based on the robust estimator proposed in Catoni (2012). Additionally, the so-called median of
means strategy, which can be traced back to Nemirovsky and Yudin (1983), is another successful
method for handling heavy-tailed distributions. By only requiring bounded second moment, it
achieves the sub-Gaussian type of concentration around the population mean parameter. Minsker
(2015) and Hsu and Sabato (2016) further generalize this idea to multivariate cases. Moreover,
there also exists a series of works that focus on solving the issue caused by heavy-tailed noises
using quantile-based robust estimation; see Arcones (1995); Koenker and Hallock (2001); Belloni
and Chernozhukov (2011); Fan et al. (2014); Zheng et al. (2015) for more details. Furthermore,
recently, in Fan et al. (2021); Yang et al. (2017); Fan et al. (2022c), under heavy-tailed contam-
ination, they proposed a novel principle by simply truncating or shrinking the response variables
appropriately to achieve sub-Gaussian rates, and they only require bounded second moment of the
measurements. Additionally, the aforementioned methodologies can also be applied to a wide range
of problems, such as matrix sensing, matrix completion, robust PCA, factor analysis, and neural
networks. For interested readers, we refer to Minsker (2015); Hsu and Sabato (2016); Fan et al.
(2017); Loh (2017); Minsker (2018); Goldstein et al. (2018); Wang et al. (2020); Fan et al. (2022b);
Wang and Fan (2022); Fan et al. (2022a) for more details.

While many effective solutions have been developed to address the problem of heavy-tailedness,
these solutions still have some potential shortcomings. In specific, the developments call for the



second moments to be bounded and are primarily based on shrinkage data, Huber-type of loss,
median of means (Huber, 1973; Nemirovsky and Yudin, 1983; Catoni, 2012; Fan et al., 2021). More
critically, Huberization, Winsorization and sample splitting introduce additional tuning parameters
and these tuning paprameters should be variable-dependent that makes large-scale applications dif-
ficult and damages the fidelity of empirical results . Although, the quantile estimators (Koenker and
Hallock, 2001) such as the median and the Hodge-Lehmann (HL) estimator (Hodges and Lehmann,
1963) can eliminate the restriction on moment conditions and tuning parameters selection, the
empirical median is often less efficient and requires stronger distribution assumptions. In addition,
the existing literature on the HL estimator focuses mainly on low-dimensional asymptotic analysis
and can not be applied to large-scale inferences.

In this paper, we revisit the celebrated HL estimator (Hodges and Lehmann, 1963) and conduct
non-asymptotic and large-scale theoretical studies for both one-sample and two-sample problems.
For one-sample location estimation in the univariate case, we let X1,...,X,, € R be independent
and identically distributed (i.i.d.) random variables with

X, =04+¢, i=1,...,n, (11)

where 0 represents the location parameter of interest and &i,...,&, are i.i.d. random variables
drawn from some unknown distribution. In this scenario, the HL estimator of 6 is defined by

~ X X
9:median{z—;]:1<i<j<n}. (1.2)

By assuming the pseudomedian of £; to be zero, we derive non-asymptotic Bahadur representation of
8. To the best of our knowledge, this is the first study of its kind on the non-asymptotic expansion of
the HL estimator. From there, we also establish the Berry-Essen bound and moderate deviation for
0 in the widest range. Furthermore, as there are multiple unknowns in the asymptotic distribution
of 5, including the density function of £; and the unknown location parameter 6, we then propose
a weighted bootstrap approach to construct confidence intervals for 6 based on data. These results
and methods are essential for the large-scale inference.

In addition to the study of one-sample problem, two-sample location shift problems arise fre-
quently in many scientific studies, including choosing genes that are expressed differently in normal
and injured spinal cord, determining the effects of treatment between treated and control groups,
finding change points, etc. To this end, we let Y7,...,Y,, € R be another independent sample of
i.i.d. random variables satisfying

Y;=60°4¢j, j=1,...,m. (1.3)

The primary goal is to conduct statistical inference for © = § — 6°. In the sequel, following Hodges
and Lehmann (1963), the two-sample HL estimator for O is given by

@:median{Xi—Yj:izl,...,n;jzl,...,m}. (1.4)

Instead of assuming the noises are generated from the same distribution (Hodges and Lehmann,
1963), we only require median(§; —e1) = 0, which is more general and allows random noises to have



different distributions. In a similar vein, we establish the non-asymptotic expansion of (:), investigate
its asymptotic distributions, and calculate the confidence interval via bootstrap techniques. Again,
the techniques and results developed can be applied to large-scale multiple testing problems.

There is a rich literature on large-scale multiple testing problems for location parameters (Ben-
jamini and Hochberg, 1995; Storey, 2002, 2003; Genovese and Wasserman, 2004; Ferreira and Zwin-
derman, 2006; Chi, 2007; Blanchard and Roquain, 2009). However, most of these works assume the
noise distributions sub-Gaussian. Moving away for sub-Gaussian assumptions, Fan et al. (2019)
propose estimating mean vector via minimizing the Huber type loss and perform the false discov-
ery proportion (FDP) control. However, leveraging Huber type estimators necessitates moment
limits and introduces tuning parameters, making it hard to be applied in large-scale inference, as
the tuning parameters should ideally be variable-dependent. Additionally, while the HL estimator
enjoys tuning-free and moment-free qualities in the univariate setting, its behavior in high dimen-
sions is largely unknown. To this end, in this research, we further expand the HL estimator to
high-dimensional regimes prompted by the lack of tuning free large-scale multiple testing problems
for heavy-tailed distributions.

In specific, we assume X; = 0 + &;, i € [n] and Y; = 0° + €;,5 € [m], where 8 = (61,...,0,)"
and 0° = (61, ... ,Qz)T are p-dimensional vectors of unknown parameters and random noises §;,7 €
[n],€5,7 € [m]. Let ® = @ — 6°. For both one- and two-sample problems, we propose a carefully
constructed Gaussian multiplier bootstrap to test global null hypotheses

Hy: 0 0or ©p =0 for all £ € [p] versus Hj : §; or Oy # 0 for some ¢ € [p], (1.5)

by extending the HL estimator to high-dimensional regimes. When the null hypothesis above is
rejected, we then perform multiple testing, allowing weakly dependent measurements, and efficiently
control the FDP. Compared with existing literature (Liu and Shao, 2014; Fan et al., 2019), our
procedures do not involve any tuning parameters and moment conditions for testing global null and
large-scale multiple testing. These theoretical finds are further supported by exhaustive numerical
studies.

The main contributions of the paper can be summarized as follows:

e The existing studies on the HL estimator mainly focus on its asymptotic behavior, which is
too weak for high-dimensional applications. In practice, however, it is crucial to understand
the HL estimator’s performance under finite sample, especially in high-dimensional and large-
scale experiments. For this purpose, we first derive the non-asymptotic expansions of the HL
estimators for both one-sample and two-sample problems.

e With the non-asymptotic expansions of the HL estimators, for both one- and two-sample
problems, we derive its Berry-Essen type bounds and Cramér type moderate deviations, with
the widest range. To deal with unknown components in the distribution, we further develop
the weighted bootstrap to build data-driven confidence intervals. In addition, we also furnish
the non-asymptotic analysis of the bootstrap estimator.

e Existing work on large-scale testing with heavy-tail errors typically involves additional tuning
parameters and the moment conditions. In order to address these issues, we generalize the HL



estimator to large-scale studies and propose tuning-free and moment-free high-dimensional
testing procedures. Additionally, we develop bootstrap methods for calculating critical values
for large-scale applications. We show that the resulting false discovery proportion is well
controlled.

1.1 Roadmap

In §2, we first set up the model and introduce basic settings. We then derive both one-sample and
two-sample non-asymptotic expansions of the HL estimator, its Berry-Esseen bound and moderate
deviations. In addition, as the asymptotic distribution of the estimator involves unknown quantities,
in §3, we conduct multiplier bootstrap to construct valid data-driven confidence intervals. Moreover,
§4 is devoted to extending the HL estimator to large-scale multiple testing problems. §5 contains
comprehensive numerical studies to verify theoretical results. Finally we conclude the paper with
some discussions in §6. All the proofs are deferred to the appendix.

1.2 Notation

For any integer m, we use [m] to denote the set [m] = {1,2,...,m}. For any function h: R — R,
we denote ||h||oc = sup,cg |h(2)|. Throughout this paper, we use C,C1,Cy, ... to denote universal
positive constants whose values may vary at different places. We use I{-} to denote the indicator
function. For any set A, we use |A| to denote its cardinality. For two positive sequences {a,, },>1 and
{bn}n>1, we write a,, = O(by,) or a,, < by, if there exists a positive constant C' such that a, < C- by,
and we write a, = o(b,) if a5, /b, — 0. In addition, we define the pseudomedian of a distribution F’
to be the median of the distribution of (Z; + Z3)/2, where Z; and Zs are independent, each with
the same distribution F. Moreover, for any distribution F' and constant ¢, we let ¢ - F' represent

the distribution of the random variable ¢ - X, where X is the random variable drawn from F.

2 Estimation and Inference

This section is devoted to studying the non-asymptotic expansions of the Hodges-Lehmann esti-
mator and conducting statistical estimation and inference for population location shift parameters.
For both one-sample and two-sample problems, the theoretical properties, which are needed for
large-scale inferences, are presented in the following sections.

2.1 One-sample Problem

Let X; = 0 +¢&, i € [n], be i.i.d. real-valued random variables, where § € R is the unknown
location parameter of interest and &1, ..., &, are i.i.d. random variables drawn from some unknown
distribution. It is assumed that &; has a pseudomedian (Hgyland, 1965) of zero, throughout this
section. As a consequence, letting U(t) = P{(X1 + X2)/2 < t}, it holds that § =inf{t e R: U(t) >
1/2}. The HL estimator (Hodges and Lehmann, 1963) of 6 is given by the median of all Walsh



averages of the observations X7, ..., X, namely,
é\:median{(Xi+Xj)/2 ci#j € n]} (2.1)

Equivalently, if we define the U-process Uy, (t) = {n(n—1)}~1 Yizjern H(Xi+X;)/2 < t}, the HL

estimator 6 in (2.1) can also be expressed as the sample median of the process U, (t), namely,
0 =inf{t € R: Uy, (t) >1/2}. (2.2)

Let F(t) = P(§& < t) denote the cumulative distribution function of & and f(t) = F'(t) be its
density function. We then present the non-asymptotic Bahadur representation of € in the following
theorem.

Theorem 2.1. Assume that there exist positive constants co and g such that infj5<., U'(60 +0) >
k0. Then for any z > 0, we have

IP’(|§— 6] > z) < 2exp{—nki(z A cy)?}. (2.3)

Furthermore, assume that sup,cp | f(2)| < oo and there exist positive constants ¢; and x; such that
supisi<¢, [U"(0 + )| < k1. Then for any z > 0 such that z = o(n), we have

n

P{'é— o nU%(G) 3 {; _ F(—&-)}’ > Cl(;“)} < Chexp(—2), (2.4)

i=1

where C1, Cy are positive constants depending only on ¢y, ko, c1, k1 and || f||co-

We note that existing works mainly study the asymptotic distribution of quantiles of U-statistics
instead of non-asymptotic ones (Arcones, 1996). Asymptotic theory, however, is frequently less ef-
fective for theoretical studies in high-dimensional statistics (Wainwright, 2019). To fill in the blank,
in Theorem 2.1, we present both the non-asymptotic deviation bound and linear approximation of
the HL estimator 0. It is worth mentioning that the HL estimator f has sub-Gaussian tails without
any moment constraints imposed on the noise £;, whereas the Huber-type or winsorized estimator
requires the existence of the second moment. Moreover, in contrast to Huber regression (Zhou
et al., 2018; Sun et al., 2020) or truncation (Fan et al., 2021), which both require additional tuning
parameters, HL-type estimation is tuning-free and thus more scalable.

Moreover, when the distribution of &; is symmetric around zero, 6 reduces to the median of
the distribution of X. In this scenario, the sample median é\med = median{ X1, ..., X,,} serves as
a plausible alternative robust estimator for 6. Under similar regularity conditions on the density
function f(t), the classical Bahadur representation for émed reveals that

n

~ 1 1 Clogn e
P{‘emed_e_fﬁ@;(?_ﬂ{giso})’> — }gcn (2.5)

for any constant ¢ > 0. Compared with (2.4) (by taking z = O(logn)), the linear approximation
of HL estimator is much more accurate than that of the quantile estimator (Arcones, 1996).



2.1.1 Asymptotic Distribution

In addition to estimation, statistical inference is also essential in real-world applications. To this
end, with the developed non-asymptotic expansion at hand, we next present the asymptotic distri-
bution of the HL estimator @ in this section.

Let ®(-) denote the cumulative distribution function of standard normal random variable. The
following theorem establishes a Berry-Esseen theorem for 0.

Theorem 2.2. Under the conditions of Theorem 2.1, we have

IP’{\/M < z} —3(2)

09

Clogn
vn '

sup
z€R

<

where C' < oo is a positive constant independent of n and

o2 = 4 Var{F(=&1)}
Uy

Theorem 2.2 establishes the asymptotic normality of 6. When the distribution of &1 is symmetric

(2.6)

around zero, the asymptotic variance above reduces to o3 = 1/[3{U’(6)}?]. Consequently, in view
of (2.5) and (2.6), the asymptotic relative efficiency (ARE) between the HL estimator 6 and the
sample median Opeq is 3{U"(0)}2/4{f(0)}? (Hodges and Lehmann, 1963). A concrete example is
given in Table 1, where we summarize the ARE between 6 and 5med for & ~ t,. In particular,

v 1 2 4 8 16 o0
ARE | 0.75 1.04 125 1.37 1.43 1.50

Table 1: Asymptotic relative efficiency between the HL estimator and the sample median

when v > 2, the HL estimator has a strictly smaller asymptotic variance than the sample median.
The above example illustrates the effectiveness of the HL estimator over the quantile regression
method.

Based on the non-asymptotic linear expansion in (2.4), we further derive the Cramér-type
moderate deviation to quantify the relative error of the normal approximation for 0 in the following
theorem, which has important applications to large-scale inference (Fan et al., 2007; Liu and Shao,
2014; Xia et al., 2018; Zhou et al., 2018).

Theorem 2.3. Let {d,}n>1 be a sequence of positive numbers satisfying v/nd,, — co. Then, under
the conditions of Theorem 2.1, we have

nA— o z 23 22
PO =022 ) < of 2k ka2 v B (5 - vim) b @)

uniformly for 0 < z < o(5;,* An'/*\/3,), where C' < oo is a positive constant independent of z and
~1/6

, we have

‘P{\/ﬁ@— 0)/o0 >z} |
1—®(2)

n. In particular, when é,, < n

’—>0,

uniformly for 0 < z < o(n!/%).



It is worth mentioning that taking &, = n~/¢ yields the wideest possible range 0 < z < o(n!/6)
for the relative error in (2.7) to vanish, which is also optimal for the Cramér-type moderate deviation
results (Petrov, 1975; Fan et al., 2007; Liu and Shao, 2014; Zhou et al., 2018; Fan et al., 2019; Chen
and Zhou, 2020; Fang et al., 2020). Next, we proceed to estimate the location shift parameter
between two distributions via the HL estimator.

2.2 Two-sample Problem

A variety of applications use two-sample location shift estimation and inference, such as testing gene
differences, quantifying treatment effects, and detecting change points. Accordingly, this section
examines the two-sample estimation and inference of the population location shift parameter.

Let Y; = 6° + €5, j € [m], be another sample of i.i.d. real-valued random variables independent
of {X1,...,X,}, and we aim at constructing confidence interval for © = 6 — 6°. Throughout this
section, it is assumed that

O =inf{t e R:Ut) >1/2},  Ult)=P(X1—Yi <) (2.8)

The existing literature on HL: estimators mainly deals with the case where & and ¢ are identically
distributed (Hodges and Lehmann, 1963; Lehmann, 1963; Bauer, 1972; Rosenkranz, 2010). In
contrast, it should be noted that the assumption imposed in (2.8) is satisfied as long as median(e; —
&1) = 0, which is much more general than the identical distribution. In the sequel, following Hodges
and Lehmann (1963), the two sample HL estimator for © is given by

© = median{X; — Y; : i € [n],j € [m]}. (2.9)

Before proceeding, we present the following assumption on the relative sample sizes of the involved
random samples.

Assumption 2.1. There exists a positive constant 77 < 1 such that 7 < (n/m) < 1/7.

Assumption 2.1 is a natural condition which ensures the sample sizes to be comparable. Such
a requirement is commonly imposed for two sample estimation and inference (Bai and Saranadasa,
1996; Chen and Qin, 2010; Li and Chen, 2012; Chang et al., 2017; Zhang et al., 2020). In what
follows, we write N = nm/(n + m) for simplicity. The sub-Gaussian-type deviation inequality and
the non-asymptotic Bahadur representation of the two-sample HL estimator O are established in
the subsequent theorem.

Theorem 2.4. Assume that there exist positive constants ¢o and Fg such that inf 5 <z, U'(©+0) >
ko > 0. Then for any z > 0, we have

P(|© — O] > 2) < dexp{—2(n Am)Ra(z A &@)?}.

Furthermore, assume that sup,cg [U'(t)| < oo and there exist positive constants ¢; and &1 such that
SUp|5/<¢, [U"(© + )| < Ri. Then, under Assumption 2.1, for any 0 < z = o(NN), we have

Bj6-0- igi{2 Do ate - 23 Fen | > CE < o),

i=1 j=1



where G(t) = P(e; < t) stands for the cumulative distribution function of €1 and C1,Csy < oo are
positive constants depending only on &, kg, ¢1, 71,7 and ||U’||so-

Theorem 2.4 presents the non-asymptotic approximation of the HL estimator (:), where the
approximator also enjoys sub-Gaussian tails without posing any constraints on the moments of
& and e1. Equipped with this, we establish the Berry-Esseen bound and Cramér type moderate
deviation of C:), respectively, in the following theorem. Before proceeding, we define the asymptotic
variance of \/N(@) — ©) to be

7% = ey (o VD) + L VGt )

Theorem 2.5. Under the conditions of Theorem 2.4, we have

P{\/N(S@_@) < z} —<I>(z)‘ < CII\/O%N,

where C < oo is a positive constant independent of N. Moreover, let {0nx}n>1 be a sequence of

sup
z€R

positive constants satisfying vV Ndy — oco. Then, we further achieve

o — o z 2 2
P{\/N((‘I)_q?()z/) o=z} 1’ < C’z{lj/—ﬁ + (14 2)0x +2(2 V 1)V2mexp (2 - \/N‘SN)}?

uniformly for 0 < z < 0(6;,1 ANY 4/6N), where Cy < oo is a positive constant independent of z
and N. In particular, when dy = N6 we have

‘P{W@ —9)/Fe =zt |

1—®(2)
uniformly for 0 < z < o(N/6).

One observes that the asymptotic distributions of 9 and © involve many unknown quantities
such as density functions and population parameters 6§ and ©. In the following section, we utilize
the bootstrap method to construct confidence intervals for the parameters of interest.

3 Bootstrap Calibration

In this section, we propose a weighted bootstrap method to construct confidence intervals for # and
O, rather than directly estimating those involved unknown terms in asymptotic variances using
the brute force methods. The reason is that the direct estimation approach always necessitates
the additional selection of tuning parameters and imposes moment conditions. Additionally, the
bootstrap calibration performs admirably with finite samples, particularly when the sample size is
modest. Therefore, in the sections that follow, we outline the bootstrap procedures for both the
one- and two-sample problems.



3.1 Boostrap for One-sample Problem

Recall that the one-sample HL estimator is given by 0 = arg mingcg E#je[n] | X + X5 — 2v).
Throughout this paper, we focus on the weighted bootstrap procedure in which the bootstrap
estimate of 0 is defined by minimizing the randomly perturbed objective function. More specifically,
let wy,...,w, € R be i.i.d. non-negative random variables with E(w;) = 1 and Var(w;) = 1. Then
the weighted bootstrap estimate of 0 is given by

~

0* = arg min Z wiw;j| X; + X; — 2v].

vER izjeln)
A natural candidate of the bootstrap weight above would be w; sampled from a 2-Bernoulli(0.5)
distribution (the multiplication of 2 is to guarantee the previous normalization condition). In this
case, the bootstrap estimator 0* has the simple closed-form expression as follows,

0" = median{(X; + X;)/2:i # j € S}, (3.1)
which is the same as the sub-sampled HL estimator computed based on the dataset {X; : i € S}
where S = {i € [n] : w; # 0}, and we concentrate on this type of bootstrap calibration procedure
in what follows.

Let By =, ;e wiw; denote the total number of Walsh averages in (3.1) and denote Vi; =
[{&+¢& < 0}—Un(6)]/U'(0) for each i # j € [n]. In the subsequent theorem, we establish the non-
asymptotic Bahadur representation of the bootstrap estimator 0* and approximated distribution
of bootstrap samples.

Theorem 3.1. Under the conditions of Theorem 2.1, for any w,z > 0 such that (wV 2z) = o(n),
with probability at least 1 — C exp(—w), we have

P*{|§* — 0] > C; (‘*’*:g” + z/n>} < Czexp(—2),
p*{

1 - Ca(z 4+ w +logn)
where P*(-) = P(-| X1, ..., X,,) stands for the conditional probability and C1—C7 are positive con-

é\*—é\— F Z (wiwj — 1)‘/%]'

" ijeln]

} < Csexp(—2),  (32)

n

stants depending only on ¢y, ko, c1, k1 and || f]|cc-

The non-asymptotic linear expansion in (3.2) enables us to derive the asymptotic normality of
the bootstrap estimator f*. Combined with the Berry-Esseen bound in Theorem 2.2, we further
establish a non-asymptotic upper bound on the Kolmogorov distance between the distribution
functions of @ — @ and 8* — 6. More specifically, with probability at least 1 — C'exp(—w), we have

() e (50 <) < T

where C and C’ are positive constants independent of n. Consequently, we are equipped to construct

sup (3.3)

z€R

confidence interval for € in a data-driven way. For any significance level a € (0,1), let
q{,a:inf{zeR:P*Q@\*—é\]gz) Zl—a}.

Then the (1 — a)) x 100% confidence interval for # is given by CI(0,1 — «) = {5— B0 6+ Aot
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3.2 Bootstrap in Two-sample Problem

This section is devoted to constructing confidence intervals for © for the two-sample problem.
Let wpt1, .. Wntm € R be ii.d. 2-Bernoulli(0.5) random variables independent of {wi,...,wp}.
Following (3.1), the bootstrap estimator for © is defined by

0" = median{X; — Y : i € 8¥,j € 8V}, (3.4)

where SX = {i € [n] : w; # 0} and SY = {j € [m] : wj+n # 0}. It is worth noting that o~
is equivalent to the sub-sampled HL estimator based on the two datasets {X; : i € SX} and
{Y;:j€ SY}. With these necessary tools at hands, the non-asymptotic Bahadur representation of
the bootstrap estimator ©* and approximated distribution of bootstrap samples are developed in
the following theorem.

Theorem 3.2. Under the conditions of Theorem 2.4, for any w,z > 0 such that (wV z) = o(N),
with probability at least 1 — C exp(—w), we have

I log N
IP*{@* ~6|> @(‘“Ljf;g + \/zTN)} < Cyexp(—2),

- Ca(z 4+ w +1og N)
N

} < Cyexp(—2),

where P*(-) = P(:| X1, ..., Xy, Y1,..., Yoim) stands for the conditional probability, B, = > 1, Z;n:l
is the total number of pairwise differences in (3.4) and V;; = [[{& < &;} — (nm) 71 31, Z;”:l I{¢ <
g;}/U'(©) for each i € [n] and j € [m]. In addition, C1-C'5 are positive constants depending only
on co, Ko, €1, k1,7 and [[U'[| -

We then obtain the Berry-Esseen bound and build confidence intervals for © based on the non-
asymptotic expansion of the two-sample bootstrap estimator ©* using similar arguments in §3.1.

4 Large-scale Multiple Testing

With the advancement of technology, large-scale, high-dimensional data have been extensively col-
lected over the past two decades in a variety of fields such as medicine, biology, genetics, earth
science, and finance. In large-scale regimes, there are inevitably heavy-tailed noises and it is cru-
cial to develop robust statistical inference procedures. Yet, existing research that infers location
shifts via Huber-type estimates calls for variable-dependent tuning parameters and moment limi-
tations (Fan et al., 2019; Sun et al., 2020). This type of technique is hard to apply efficiently and
faithfully to large-scale inferences due to the choices of tuning values. Moment constraints also
exclude a large number of heavy-tailed distributions. To remedy the issues, this section focuses
on extending the HL estimation to high dimensions and developing tuning-free and moment-free
high-dimensional multiple testing procedures.

11
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4.1 Large-Scale Testing for One-sample Problem

In this section, we investigate high-dimensional multiple testing using the HL estimator for one-
sample data. Let X; = 0 + &, @ € [n], be i.i.d. p-dimensional random vectors, where 6 =
(01,...,0,)" is a p-dimensional vector of unknown parameters and &1, ..., &, € RP are i.i.d. random
vectors. With building blocks presented in the previous section, we first proceed to constructing
simultaneous confidence intervals for @ using Gaussian approximation and bootstrap calibrations.

4.1.1 Gaussian Approximation

The primary goal of this section is to construct simultaneous confidence intervals for 8. To this end,
we develop a Gaussian approximation for the maximum deviation maxyciy) |§g — 0y| following the
intuition of recently developed high dimensional distributional theory (Chernozhukov et al., 2017;
Chernozhuokov et al., 2022). More specifically, let Z = (Z1,...,7Z,)" be a p-dimensional centered
Gaussian random vector with

4 Cov{Fi(—=&1k), Fo(—10) }
Cov(Zy, Zy) = o ek)lUg @ YW ke pl, (4.1)

where Uy(t) = P(X1¢ + Xo¢ < 2t) and Uj(t) stands for its derivative, and Fy(t) = P({1, < t). We
have the high dimensional Gaussian approximation in the following theorem.

Theorem 4.1. Assume that there exist positive constants ¢y, kg, ¢c1 and k1 such that

min inf U)(0, + &) > kg and max sup |U) (0, + 6)| < k1.
£€[p] [6]<co i ) £€[p] |5|§01’ el ) '

Then, we have

~ C'log”*(pn)
P Oy — 0y < —-P Zy| < < /=7 4.2
wplP (g 04 < 2) =2 (agp v = )| = 5 )
We consider testing the global null hypotheses
Hy: 6, =0 for all £ € [p] versus Hj : 6y # 0 for some ¢ € [p]. (4.3)

Based on the marginal HL estimators {@} ¢efp]> one shall reject the null hypothesis Hy in (4.3) when
maxye |y |§g\ exceeds certain threshold that depends on the distribution of maxc(, [Z,|. However,
in light of (4.1), the distribution depends on the unknown distribution functions Fy. Therefore,
to approximate the distribution of max¢,) |Zs|, we also propose to use bootstrap procedure. In
specific, in one-sample regime, recall that S = {i € [n] : w; # 0}. For each ¢ € [p], define the
bootstrap estimate of 6, as 5} = median{(X; + X;7)/2 : i # j € S}. It is worth mentioning
that these bootstrap estimators {é\;}ge[p] can be efficiently computed in practice. For a € (0,1), let

T_o = inf{z € R: P*(maxcp, |§;—§A < z) > 1—a} denote the (1—a)th quantile of the bootstrap
statistic maxyc(y) ]5; — §g|. With the help of bootstrap, we manage to estimate the quantiles of the
approximated distribution efficiently and the corresponding results are presented in the following
theorem.

12



Theorem 4.2. Under the conditions of Theorem 4.1, we have

—~ 5/4
‘P <IE%?;]<|9£ — O > Qi_a> - a’ < (W

Theorem 4.2 reveals that the proposed bootstrap procedure can efficiently estimate the quantiles
of the approximated distribution. This allows for the direct construction of simultaneous data-
driven confidence intervals for 8. In addition, when the null-hypothesis of (4.3) is rejected, it is
essential to conduct multiple testing to identify significant individuals and control false discovery
proportion (FDP). We next address this problem in the following section.

4.1.2 Multiple Testing

The goal of this section is to conduct multiple testing to identify statistically significant individuals
with controlled false discovery proportions. Specifically, we consider simultaneously testing the
hypotheses

Hop:0,=0 versus Hyy:6,#0, for £ e [p].

Let Ho = {¢ € [p] : 6, = 0} denote the set of true null hypotheses with cardinality |Ho|. For each
¢ € [p|, let Py denote the p-value for testing the individual hypothesis Hy,. For any prescribed
threshold ¢ € (0,1), we shall reject the null hypothesis Hy, whenever Py < t. Then the false
discovery proportion is defined by

FDP(t) = V(t)/ max{R(t), 1}, (4.4)

where V(t) = 3"y, {Pr < t} denotes the number of false discoveries and R(t) = Y I[{ P, < t}
is the number of total discoveries. Note that the denominator is observable but V' (¢) is not. When
|Ho| tends to infinity, V' (t) =~ t|Ho| < tp. This can be used to give an upper bound of FDP(¢). In
many applications, |Ho| = p, and Storey (2002) gives an estimator for |H| and incorporates it into
FDP(t) estimator.

It is worth noting that the p-values {P;},c, are computed by constructing inferential test
statistics, with pivotal limiting distributions, based on the normal distribution calibration (Fan
et al., 2007). As illustrated above, to construct a test statistic for each hypothesis with pivotal
asymptotic distribution, the asymptotic variance of the HL estimator always depends on the un-
known components and the traditional quantile-based approach is not scalable in the ultra-high
dimensional scenario. To remedy this issue, we leverage bootstrap to proceed the analysis. Specif-
ically, let {wis : i € [n],£ € [p]} be i.i.d. non-negative random variables generated in the same way
with those in §3.1 and denote Sy = {i € [n] : wy # 0} for each ¢ € [p]. Similar to (3.1), the
bootstrap estimate of gg is defined by

07 = median{(Xj, + X;0)/2:1 # j € S;}.

Consequently, our p-values are derived as P, = IP’(@? - 5@] > @HXL oo, Xp) and let Ppy < Pgy <
... < P, denote the ordered p-values. In order to choose ¢ properly to control the FDP, we adopt

13



the distribution-free procedure proposed by Benjamini and Hochberg (1995). Specifically, for any

significance level a € (0, 1), the data-dependent threshold is tpy = I where fpy is given by

lBH)>

(py = max{l € [p] : Py < al/p}.

Recall that an estimate of FDP(¢) is F/D\P(t) = pt/R(t), following the discussion after (4.4). Then
a natural choice of threshold is

t = sup{t F/D?’(t) < a}=sup{t:t < aR(t)/p} =tpH.

This provides a simple explanation on the choice of tgy.

In what follows, we assume that [Ho|/p — mo € (0,1]. For each k,¢ € [p], we define the
correlation measure as pgy = Corr{Fi(—&i), Fr(—£&1¢)}, and impose the assumption quantifying
dependence between measurements below.

Assumption 4.1. There exists a positive constant 0 < p < 1 such that maxy |pre| < p and

P

1
_
max Y I {|pke| > (logp)2+"‘} O(p?),

L€[p 1
for some k > 0 and ¢ € (0, (1 — p)/(1+ p)).

Assumption 4.1 requires that for every variable, the number of other variables, whose correla-
tions with the given variable exceed certain threshold, does not grow too fast. It is worth noting that
this is a commonly imposed condition in large-scale multiple testing problems (Liu and Shao, 2014).
Based on this assumption, we next summarize the theoretical results in the following Theorem 4.3.

Theorem 4.3. Assume that logp = o(n!/?) and
wp = He € o : 6e/oel > o (210gp)/n}’ ~ o0, (4.5)

for some \g > 2, where 07 = 4Var{Fy(—&y¢)}/{U,(6¢)}? for each ¢ € [p]. Then, under Assump-
tion 4.1 and the conditions of Theorem 4.1, we have

a| 5 0. (4.6)

‘FDP(tBH)
[Hol/p

Theorem 4.3 develops theoretical guarantees for the consistency of FDP control procedure. To

further support the derived results, we make the following several remarks.

Remark 4.1. Condition (4.5) is nearly optimal for controlling the false discovery proportion.
More specifically, as shown in Proposition 2.1 in Liu and Shao (2014), if the number of alternative
hypotheses is fixed instead of tending to infinity, the B-H approach fails to control the FDP at any
level 0 < 8 < 1 even if the true p-values for Hg ¢ are known. ]
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4.2 Large-Scale Two-Sample Tests

In this section, we study the large-scale two-sample testings. In specific, let Y; = 6° 4+ ¢, j € [m],
be another sample of i.i.d. p-dimensional random vectors independent of {Xi,...,X,}, where
0° = (09, .. .,QZ)T ERP. Let @ =60 —6° = (0O4,... ,A@p)T € RP be the location shift parameter.
Following (2.9), the HL estimator for ©; is given by ©; = median{X;, — Y}, : i € [n],j € [m]}. A
detailed global test for whether 6, = 67 for all £ € [p] is given in §E.4.

We next conduct a simultaneously test on the hypotheses

Hoy:0p=0; versus Hyy: 0, #0;, for ¢ € [p],

where H§ = {¢ € [p] : 0, = 67} denote the set of true null hypotheses and |H§| = >°)_, I{f, = 67} is
its cardinality. Throughout this section, we assume that |H§|/p — mo € (0, 1]. For each £ € [p], let
P} denote the p-value for testing whether 6, = 67. For any prescribed threshold ¢ € (0, 1), we shall
reject the null hypothesis 6y = 6; whenever Py < t. The primary goal is to control the following
false discovery proposition FDP®(¢),

FDP°(t) = V°(t)/ max{R°(t), 1},

by selecting a proper ¢, where V°(t) = Zee%g I{Pp <t} and R°(t) = > _)_, I{ Py < t}.

To approximate the unknown involved asymptotic distributions, we let {w;; : i € [n+m], £ € [p]}
be i.i.d. non-negative random variables generated in the same way with those in §3.2 and denote
S ={ien:wrg#0and Sy ={j € [(n+1): (m+n)] : wjy # 0} for each £ € [p].
Following (3.4), the bootstrap estimate for Oy is defined by

(:)’g = median{X;y — Yj,: i € S),j € S }.

Then, for each ¢ € [p], the p-value is given by Py = P(\@g — @g| > |(:)5HX1,...,XH), and P(Ql) <
P&) <...< P&) are the ordered p-values. Following Benjamini and Hochberg (1995), the data-
dependent threshold ¢, = P&% ) where (%, is chosen as (%, = max{¢ € [p] : Py <ol /p}.
With these necessary tools at hand, in the paragraph that follows, we present the required
assumptions and the main theorem, respectively. In specific, Assumption 4.2 provides the for-
mal condition that quantifies the level of dependence, while Theorem 4.4 presents the theoretical

assurances for two-sample multiple testing.

Assumption 4.2. There exist positive constants 0 < p® < 1 such that maxy./|p},| < p°, where
psy = Corr(Grk, — Fk, Gue — Frng), with Gpe = n™1 Y0 Go(&) and Frpp = m™! 2311 Fy(gjg) for
each ¢ € [p]. Moreover, for some £° > 0 and 0 < ¢o < (1 — p®)/(1 + p°), we have

p

max H{’COU{Gk(flk)a Go(&10)}| V |Corr{ Fy(e1x), Fe(c1e) }| >

telpl i —

1
(log p)2++°

} = O0(p®).
Theorem 4.4. Assume that logp = o(N'/%) and

wp = {0 [p] (6 — 67)/51] = 2o/ (2Iogp) /N }| = o, (4.7)
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for some \g > 2, where oy = N[Var{Fy(c1,)}/m + Var{G,(&1,)}/n]/{U}(©¢)}* for each ¢ € [p].
Then, under Assumption 4.2 and the conditions of Theorem E.1, we have

FDP(55,) |
—=2 — | = 0. 4.8
#H31/p (4.8)

5 Numerical Studies

In this section, we use simulation experiments to verify the theoretical findings in the paper. In
specific, we validate the results on Gaussian approximation and FDP control in via experiments in
§5.1 and §5.2, respectively.

5.1 Numerical Studies for Global Tests

We let n = m = 300, p = 400 and generate the variables {X;}?_; and {Yj}?"”zl following the setting
in §4.1 and §4.2, respectively, where the involved random variables & € RP,e; € RP, (i € [n],j €
[m]) follow several distributions described below. Cases 1-3 are devoted primarily to one-sample
tests, whereas Cases 4-6 are for two-sample tests. Moreover, the notation diff(F') denotes the
distribution that is generated by the differences between two independent random variables drawn
from distribution F'.

e Case 1: Scaled t3 distribution with & ~ 0.3 - t3, (i, k) € [n] x [p].

e Case 2: Mixture of Pareto distribution with shape parameter 2 and standard Gaussian dis-
tribution, namely, &;  ~ diff(0.2 - Pareto(2) + 0.8 - N(0,1)), (i, k) € [n] x [p].

e Case 3: Mixture of Gaussian distributions, namely, £ € RP ~ 0.2-N(0,10%)40.8-N(0,X%),i €
[n], where . 4 = 0.71°=4 (¢, d) € [p] x [p].

e Case 4: Gaussian distributions but with different covariance, namely, & ~ N(0,1.5%) and
gj ~ N(0,%), (¢,7) € [n] x [m], where the covariance matrix is the same with that in case 3.

e Case 5: Mixture of Gaussian distributions with & € RP ~ 0.2 - N(0,10X) + 0.8 - N(0,X),7 €
[n], where the covariance matrix is the same with that in case 3, and mixture of Pareto
distribution with shape parameter 2 and standard Gaussian distribution, namely, €;, ~
diff(0.2 - Pareto(2) + 0.8 - N(0,1)), (7, k) € [m] x [p].

e Case 6: Scaled t3 distribution, where & j, ~ 0.3 -3, (4,k) € [n] x [p] and €, ~ 0.3 -t3,(j, k) €

[n] > [p].

As a first step, we validate the results of Gaussian approximation of HL estimator by conducting
the tests in (4.3) and (E.3) with threshold o = 0.05, respectively. We set the first 50 entries of
0 € RP (or ® =60 — 60y € RP) given in §4.1 and §4.2 as p, and the other entries as 0, where pu
increases from 0 to 0.25. When p = 0, the null-hypothesis test holds; otherwise, the alternative
holds. The size or power of the tests in (4.3) and (E.3) are computed via averaged outcomes from
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500 replications of the methods in §4.1.1 and §E.4, respectively. In addition, for every replication,
we conduct the weighted bootstrap method 300 times to compute the critical value of the test.

In addition, under the same experimental settings given above, we also compare the perfor-
mance of HL estimator with the sample mean estimator (ﬁ >, X, in one-sample case and

nm/(n+m)(1¥Y", X, — L m 2ie1 Yj) in two-sample test). In this scenario, the critical val-
ues for tests (4.3) and (E.3) via sample mean estimators are computed via 300 bootstrap sam-
ples from joint Gaussian distribution N(0,3), where ¥ is the sample covariance matrix (& =
L ZZ 1(X X)(X; — X)T in one-sample test and & = mnimlfz X - X)X -X)T

mm+n1 5> (Y= Y)(Y; - Y)T in two-sample test). The results are then summarized in Table 2.

One-sample Two-sample
Case 1 Case2 Case 3| Case4 Caseb Case 6
uw=0 0.054 0.048 0.052 0.040 0.046 0.045
p=0.05| 0880 0.062 0.060 0.080 0.084 0.282
@4 =0.10| 1.000 0.480 0.464 0.164 0.140  1.000

Estimator o

HL pw=0.15| 1.000 0.982 0.942 0.322 0.320 1.000
pw=20.20 | 1.000 1.000 1.000 0.728  0.688  1.000
pw=20.25| 1.000 1.000 1.000 0.944 1.000  1.000

w=20 0.004 0.000 0.044 0.052  0.000  0.000
w=0.05| 0.042 0.000 0.046 0.122  0.000  0.000
w=0.10 || 0.540 0.000 0.478 0.200 0.000 0.166
Mean

pw=0.15| 0818 0.002 0.940 || 0.384 0.002 0.718
@w=020| 1.000 0.006 1.000 || 0.742 0.008 0.858
pw=025| 1.000 0.010 1.000 [| 0.968 0.020 0.900

Table 2: Sizes and powers for testing the global null using Gaussian approximation via HL estimator
and sample mean estimator, respectively.

We conclude from Table 2 that, in terms of the HL estimator, for all scenarios, the sizes of the
test are roughly 0.05 when the null hypothesis is true (4 = 0). Therefore, this validates the results
of the Gaussian approximation. On the other hand, when the alternative holds, the power of the
tests via HL estimator rises quickly to 1 as p increases. This demonstrates the effectiveness of the
HL test statistics. However, in terms of sample mean estimator, one observes that when the null
holds, the size of the test is approximately 0 for most scenarios, whereas, when alternative holds,
the power is much less than that of HL estimator. Thus, this further confirms the efficiency and
robustness of HL, estimator.

5.2 Numerical Studies for FDP Control

We validate the theoretical findings for FDP control under multiple regimes and also compare the
performance of HL estimator with student’s ¢-statistics given in Liu and Shao (2014). In specific,
we maintain most of the settings mentioned in §5.1. The only difference is that we let the first 50
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entries of @ and © be u, where p € {0.5,0.3}, and the rest ones being 0. The target false discover
proportion « is varied uniformly from 0.05 to 0.25 and the empirical FDP are computed via the
procedures in §4.1.2 and §4.2, respectively. Meanwhile, for both of these two statistics, besides the
FDP, the true positive proportion (TPP) of the test TPP(tpu) = > ycqy, { P < tpu}/|Ha| is also
computed. The numerical outcomes are summarized in Table 3 and Table 4 (corresponds to cases
with ¢ = 0.5 and p = 0.3, respectively).

Estimator o 0.05 0.10 0.15 0.20 0.25
Case 1 | 0.068 (1.000) 0.110 (1.000) 0.152 (1.000) 0.212 (1.000) 0.256 (1.000)
Case 2 | 0.062 (1.000) 0.116 (1.000) 0.154 (1.000) 0.198 (1.000) 0.254 (1.000)
HL Case 3 | 0.052 (1.000) 0.102 (1.000) 0.150 (1.000) 0.188 (1.000) 0.248 (1.000)
Case 4 | 0.058 (1.000) 0.122 (1.000) 0.170 (1.000) 0.238 (1.000) 0.273 (1.000)
Case 5 | 0.064 (1.000) 0.103 (1.000) 0.142 (1.000) 0.187 (1.000) 0.234 (1.000)
Case 6 | 0.062 (1.000) 0.092 (1.000) 0.151 (1.000) 0.193 (1.000) 0.232 (1.000)
Case 1 | 0.071 (1.000) 0.109 (1.000) 0.168 (1.000) 0.228 (1.000) 0.276 (1.000)
Case 2 | 0.033 (0.976) 0.075 (0.976) 0.118 (0.990) 0.161 (0.996) 0.217 (1.000)
Student’s ¢ Case 3 | 0.042 (1.000) 0.087 (1.000) 0.131 (1.000) 0.206 (1.000) 0.255 (1.000)
Case 4 | 0.063 (1.000) 0.127 (1.000) 0.181 (1.000) 0.246 (1.000) 0.299 (1.000)
Case 5 | 0.026 (0.962) 0.064 (0.962) 0.110 (0.988) 0.159 (0.994) 0.195 (1.000)
Case 6 | 0.048 (1.000) 0.106 (1.000) 0.168 (1.000) 0.196 (1.000) 0.272 (1.000)

Table 3: Empirical FDP and TPP versus the nominal level a of the test via HL estimator and
student’s t-statistics when p = 0.5. The numbers outside and inside the brackets are averaged
empirical false discovery proportions (FDP) and averaged true positive proportions (TPP), respec-
tively, from 50 replications of the experiments in §4.1.2 and §4.2. For every replication, we conduct
bootstrap 300 times for every dimension to compute the corresponding empirical p-values for HL
estimator using the method in §4.1.2 and §4.2. In addition, the p-values for student’s t-statistics
are computed via quantiles of the standard Gaussian distribution.

Compared with the student’s t-statistics, the empirical FDPs of HL estimator are closer to
the theoretical thresholds in most cases and outcomes based on HL estimator have larger true
positive proportion (TPP). This validates the theory of FDP control and confirms the benefit and
effectiveness of using HL estimator when heavy-tailed error exists. In addition, we also further
compare the performance of HL estimator with the student’s t-statistics in both one-sample and
two-sample tests when the noises follow ¢; distribution, where the HL estimator also performs much
better. Interested readers are referred to §A.1 for more details.

6 Conclusion

In large-scale data analysis, conventional methods are ineffective since outliers and variables with
heavy tails can easily corrupt the data. To resolve heavy-tailed contamination, existing tech-
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Estimator le% 0.05 0.10 0.15 0.20 0.25
Case 1 | 0.048 (1.000) 0.112 (1.000) 0.154 (1.000) 0.202 (1.000) 0.256 (1.000
Case 2 | 0.074 (1.000) 0.133 (1.000) 0.178 (1.000) 0.222 (1.000) 0.260 (1.000
HL Case 3 | 0.054 (1.000) 0.104 (1.000) 0.153 (1.000) 0.210 (1.000) 0.254 (1.000
Case 4 | 0.006 (0.984) 0.048 (0.998) 0.108 (1.000) 0.176 (1.000) 0.232 (1.000
Case 5 | 0.000 (0.992) 0.024 (0.992) 0.092 (0.992) 0.166 (0.992) 0.200 (0.992
Case 6 | 0.055 (1.000) 0.095 (1.000) 0.138 (1.000) 0.184 (1.000) 0.254 (1.000
Case 1 | 0.044 (1.000) 0.098 (1.000) 0.166 (1.000) 0.204 (1.000) 0.263 (1.000
Case 2 | 0.011 (0.910) 0.056 (0.910) 0.106 (0.930) 0.161 (0.968) 0.205 (0.984
Student’s ¢ Case 3 | 0.052 (1.000) 0.106 (1.000) 0.150 (1.000) 0.198 (1.000) 0.259 (1.000
Case 4 | 0.004 (1.000) 0.046 (1.000) 0.110 (1.000) 0.158 (1.000) 0.210 (1.000
Case 5 | 0.000 (0.870) 0.000 (0.952) 0.056 (0.984) 0.100 (0.990) 0.170 (1.000
Case 6 | 0.046 (1.000) 0.106 (1.000) 0.140 (1.000) 0.180 (1.000) 0.262 (1.000

Table 4: Empirical FDP and TPP versus the nominal level a of the test via HL estimator and
student’s ¢-statistics when p = 0.3. The remain captions are the same with those in Table 3.

niques, such as Huberized mean, truncation, and median of means, always require additional tun-
ing parameters and moment restrictions. Consequently, they cannot effectively be scaled to the
high-dimensional applications with fidelity. Using the well-known Hodge-Lehmann estimator, the
constraint on moment and tuning parameters can be removed. However, its non-asymptotic and
large-scale properties have never been investigated. This paper fills this important gap by con-
tributing a finite-sample analysis of the HL estimator, generalizing it to large-scale studies, and
proposing tuning-free and moment-free high-dimensional testing methods.

There are various potential future directions that merit further studies. First, we permit mild
measurement dependence while controlling the FDP in both the one- and two-sample regimes.
However, in reality, high-dimensional data can exhibit strong dependency such as those collected
in the field of economics, finance, genomics, and meteorology. To solve such strong dependence
problems, factor-adjusted multiple testing via Huber-type estimation has been proposed (Fan et al.,
2019). However, using Huber-type loss will result in extra tuning parameters and moment con-
straints. As a result, factor adjustments can be incorporated into the large-scale HL estimation
and testing procedures in order to develop tuning-free procedures that can be adapted to a strong
dependence scenario. Second, in terms of computation, we need to compute the median of O(n?)
pairs. However, in the one sample estimation regime, if we use the sub-sampling idea, one may
compute the median of n/2 non-overlapping pair averages:

XT 71— +XT i) .
QT—median< @ 1)2 (2),z€[n/2]>

with a random permutation 7 on [n]. By taking 5 or more permutations and the averages of these
estimates, numerically, the averaged one approximates well the Hodge-Lehmann estimator and only

19



requires O(n) samples (Fan et al., 2020b). Therefore, it is also interesting to derive non-asymptotic
analysis for this estimator based on sub-sampling.
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A Appendix

In the following sections, we present additional simulation results as well as the proofs of all the

theoretical results in the main paper.

A.1 Additional Simulation

In this section, we conduct additional simulations for FDP control using HL estimator and student’s

t-statistics, respectively. We keep all settings as in §5.2, except that the noises are generated from

the following case 7 and case 8, where we change the distribution in case 1 and case 6 from t3 to

t1. The numerical outcomes are summarized in Table 5 and Table 6.

e Case 7: Scaled t; distribution with & x ~ 0.3 -t1, (i, k) € [n] x [p].

e Case 8: Scaled t; distribution, where &, ~ 0.3 -1, (4,k) € [n] x [p] and €, ~ 0.3 -t1,(j, k) €

[n] x [p].
Estimator a 0.05 0.10 0.15 0.20 0.25
L Case 7 | 0.036 (1.000) 0.082 (1.000) 0.132 (1.000) 0.180 (1.000) 0.222 (1.000)
Case 8 | 0.069 (1.000) 0.105 (1.000) 0.168 (1.000)  0.225 (1.000) 0.272 (1.000)
Student’s ¢ | CB5¢ 7 [ 0.000 (0.282) 0.000 (0.284) 0.000 (0.320) 0.000 (0.320) ~0.000 (0.320)
Case 8 | 0.000 (0.274)  0.000 (0.274)  0.000 (0.274)  0.000 (0.322)  0.000 (0.322)

Table 5: Empirical FDP and TPP versus the nominal level a of the test via HL estimator and

student’s t-statistics when p = 0.5. The remain captions are the same with those in Table 3.

Estimator « 0.05 0.10 0.15 0.20 0.25
HL Case 7 | 0.036 (1.000) 0.82 (1.000)  0.122 (1.000) 0.179 (1.000) 0.224 (1.000)
Case 8 | 0.058 (1.000)  0.105 (1.000) 0.157 (1.000) 0.214 (1.000) 0.252 (1.000)
Student’s ¢ Case 7 | 0.000 (0.282) 0.000 (0.282) 0.000 (0.282) 0.000 (0.284) 0.000 (0.284)
Case 8 | 0.000 (0.134) 0.000 (0.134) 0.000 (0.134) 0.000 (0.134) 0.000 (0.134)

Table 6: Empirical FDP and TPP versus the nominal level « of the test via HL estimator and

student’s t-statistics when p = 0.3. The other captions are the same with those in Table 3.

We conclude from Table 5 and Table 6, the HL estimator outperforms the student’s t-statistics
when the noise follows ¢; distribution in terms of the FDP and TPP. Therefore, this further confirms
the robustness of HL estimator.
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B Lemmas

Lemma B.1. Let S, = Z?:l Y;, where Yi,...,Y, € R are independent random variables such
that a; <Y; < b; for each i € [n]. Then, for any z > 0, we have

222
P(|S, —ES,| > 2 SQexp{—}.
(150 = Bl =) ORI
Lemma B.2. Let Y7,...,Y, € Rbei.i.d. random variables and H,, = {n(n—1)}~ Z#Je h(X;, X;),
where h(z,y) is a symmetrlc function with a < h(z,y) < b for some a < b € R. Then for any
z > 0, we have
2

P(H, — EH, > z) < exp {—(bn_zay} .

Let Vi,...,V,, € R be another sample of i.i.d. random variables independent of {Y7,...,Y,} and
let Hpm = (nm)™ 130 Zm h(Yi,V;), where h(zx,y) is bounded such that a < h(z,y) < b for
some a < b € R. Then, for any z > 0, we have

2
P(Hpm — EHpm > 2) < exp {_Q(n/\m)z} )

(b — a)?
C Proof of Theoretical Results in §2

C.1 Proof of Theorem 2.1

For simplicity of notation, we write Wy, (t) = U, (6 +t) — U(0 +t) for t € R. Define R(X;, X;,t) =
{0 < (X; +Xj)/2 <60 +t} and

R(Xi, X;,t) = R(X;, X;,t) — E{R(X;, X;, )| X;} — E{R(X;, X;,t)|X;} + E{R(X;, X;, 1)}
With this notation, we have W, (t) — W,,(0) = RS (t) + R (t), where
1

n(n —1)

> R(Xi, Xj,1).

Ri(t) = ii[E{R(Xi, X;, )1 X:} — E{R(X;, X;,1)}] and R;() =
i#j€n]

i=1
Lemma C.1. For any 0 < t < 1/(2/f]|~), there exists a universal positive constant C' such that

_ 1 n?z? n3z2 \'/* nz 1/2
BUR0) > 2 < Cexp |~ gmin (g () e jl e

Proof of Lemma C.1. Observe that R(X;, X;,t) is a bounded canonical kernel of X; and X; for
any t € R. Hence it is straightforward to derive (C.1) by Theorem 3.3 in Giné et al. (2000). O

Lemma C.2. For any 0 < A < 1/(2||f|lc), with probability at least 1 — C'exp(—z), we have

z 2 z 1/2 4
sup () = W00 < (F2) Ml (22) 4 2 i), e

[t[<A

where K = min{k € N : 28 > n}.

27



Proof of Lemma C.2. For any h € [25X] and ¢ € (A(h — 1)27% Ah27%], we have

- w0 <5 (0 ) -0 (0 242 2) -

<W, (;’3) —Wn(O)+U<9+§£> _U<9+A(’;;1)>
<W, @[j) ~ w0y + A

Similarly, we have

Consequently, we obtain

Ah AU |0
W, (t) — W, < Wol == | — W,(0)] +
o2, Wn(t) = Wa(0) < max QO <W oK
= h = (AR AU s
< o = | == :
hrél[%%] B <2K>‘+hr§[3§1 B <2K>‘+ 2K

For each h € [2K], by (C.1), with probability at least 1 — C exp(—z),
K > K
rie < of (F2) + VAT,
where C' > 0 is a universal constant.
X AR~ (A(h—1) _ [ Ah
ries 3 | () - B (P50 | () = e

For each k € [K], by Lemma B.1, with probability at least 1 — exp(—z), we have

_ AR\ o, (A(h—1) o kT2
1 - _ & N T =
Rn<2k> Rn< T )‘SCA\\f\yOOQ ==

max
he[2k]

Hence with the same probability, we have

K

x [2k+ 2z z+ C:

oo = 2 (OM7 2 252 < a2
k=1

Similarly, it follows that

P (T2 > CoAl| flloo/(22)/0) < Cyexp(—2).

Putting all these pieces together, we obtain (C.2).
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Proof of Theorem 2.1. For any z > 0, since U(t) is a cumulative distribution function, we have

% S U0 +2)=U@+2) = {UO+2) — Un(0+ 2)}

v

U) + /0 U'(0+ v)dy — {U(0 + 2) — Un(6 + 2)}

—_

—+ro(zAco) —{UO+2) —Un,(0+ 2)}.

\V]

By the definition of 6 in (C.4), it follows that IP’(§> 0+ z) <P{1/2 > U,(0 + z)}. Therefore
P> 0+2) <P{UO+ 2) — Up(0+ 2) > ko(z A co)} < exp{—nrd(z A cp)?},

where the last inequality follows from the Hoeffding inequality in Lemma B.2.
Recall that W, (t) = U, (6 +t) — U(0 + ¢) for t € R. Taking A = /z/(nk3) yields P(|0 — 6| >
A) <2exp(—z). By Lemma C.2, with probability at least 1 — C exp(—z), we have
Cillf o

sup [Wo(8) — Wy(0)] < Clf oz 0

|6]<A nKo
We then obtain
Wa®@=0) = Wal0)] , sald =0 _ Gl (e ) | 12

5o Un(®) = Un(0)
6—6— < _
U'(0) - Ko Ko - nkKg neky
Finally, denote
T e nU’ -
1
= T a~Tr AN 7 —1I 7 < -3
T o ( (&) + F(-6) - H&+6 <0} - 1 )
i#j€[n]
Observe that |F(—=§) + F(—=¢§;) — I{& + & < 0} — 1/2| < 2 uniformly for ¢ # j € [n]. Then (2.4)
follows from Theorem 3.3 in Giné et al. (2000). O

C.2 Proof of Theorem 2.2

Proof of Theorem 2.2. For simplicity of notation, denote

n

V-0 1 L
Tn g 4 I n Var{F(—=£)} ; {2 Fe 51)}' (©3)

Note that max;ep,) [1/2 — F'(—&;)| < 1/2. Hence sup,cp IP(T} < 2) — ®(2)| < Cn~Y/2. Let C < 00
be a sufficiently large positive constant. Then it follows from (2.4) that
Clogn &
P(|T, - T} > —F—— ) < —.
(im-mi> €72 ) < G
Consequently, we obtain

sup [P(T}, < 2) — ®(2)| < sup [P(TF < 2) — ®(2)| 4 sup |P(Ty, < z) — P(T% < 2)| < C(logn)/v/n.
z€R z€R z€R

O]
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C.3 Proof of Theorem 2.3

Proof of Theorem 2.5. Recall the definitions of T}, and T}, in (C.3). Since max;epy [1/2 - F(=&)| <
1/2, it follows that

for 0 <2z < C’onl/6,

P(T >z) _c+2Y
1—®(z) - Wn

where Cy > 0 is any fixed constant and C' is a positive constant depending only on Cjy. Denote
®(-) =1—®(-). By (2.4), we have

P(T;, > z) < P(TF > 2z — 6,,) + C1 exp(—+/nd,)

P
23)) -
< {1 ; C“}n)} B(z — 6,) + C1 exp(—v/idn)

< {14 C“}n?’)} {14 (14 2)6, exp(26,)}8(2) + C1 exp(—/id).

By Mill’s inequality, for any z > 0,

2V/27 exp <Z22> < i)(lz) <2(zV1)V2rexp <z22) .

Consequently, it follows that

P(T5, > z) C(1+2%) 22
1< - .
- a(2) 1< N + Co(1 4 2)d, + 2C1 (2 V 1)V 2w exp 5 NS
Similarly, we have
P(T, >z) _ C(1+2%) 22
1- < 1 2 - — .
—oG) = vn + Co(1+ 2)d, + C12V 2w exp 5 Vné,
Putting all these pieces together, we obtain (2.7). O

C.4 Proof of Theorem 2.4
Define the two-sample U-process Up m(t) = (nm) 130, > {X; —Y; < t}. Then the HL

estimator © in (2.9) can be equivalently expressed as the sample median of the U-process Uy, (1),

namely,
O = inf{t € R : Upm(t) > 1/2}. (C.4)

The remaining steps for proving Theorem 2.4 can be derived by following similar steps as in the
proof of Lemma C.2 and proof of Theorem 2.1.
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C.5 Proof of Theorem 2.5
For simplicity of notation, we write Ty = v N(© — ©)/6 and
Gn — Fy,
Th L —
v Var(G,, — Fy,)

where G, =n~ 1Y | G(&) and F,, = m™! > i~y F(gj). Then, similar to proof of Theorem 2.2, it
follows that

log N
sup |[P(Ty < 2) — ®(2)| < sup |P(Ty < 2) — IP’(7§3, < 2)| + sup ]IF’('EB, <2)—®(2)| < og Y
z€R z€R z€R \/N

The proof of the Cramér-type moderate deviation for © can be derived by following similar proof
procedures of Theorem 2.3. Therefore, we decide to omit the details.

D Proof of Results in §3

Define

52+ ~( 1 L. B 2
© T n{U0))? ; (n —1 > & +¢ <0} Un(9)> :

J#i
Lemma D.1. Under the conditions of Theorem 2.1, we have

~

P( 7 _ 1‘ > z) < exp(—Cpn) + exp(—Cpnz) + exp(—Cynz?), (D.1)

¢

where Cy; is a positive constant depending only on U.

Proof of Lemma D.1. For each i € [n], denote
1
Wi=—— Y &+ & <0} - F(=&).
JFi
Recall that U, (0) = {n(n — 1)} 1 D izjeln H& + & < 0}. Hence

O T NP4 e 4AU0) — 12
P S 3 wwor =" T oy

=1

8 n 1
+ W ;Wz {F(_gz) - 2} = Ao‘,l — A0_72 + AU,3-

Since E(07) = of and max;cp, |F(—&) — 1/2| < 1/2, it follows from Lemma B.1 that

P([55 — o3| > 2) < 2exp(—Cynz?),
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where Cy is a positive constant depending only on the density function U’. Note that {I{&; 4+ &; <
0} — F(—&)} 2 is a sequence of independent centered random variables conditional on §; for each
i € [n]. Hence, by Hoeffding’s inequality, we have P(max;c, W2 > z) < 2nexp(—Cnz). Therefore

P(Ay1 > 2) < max W7 > z> < 2nexp(—Cynz).

< 4
{U(0)}? icln)
Consequently, by the Cauchy-Schwarz inequality, we have |Ay 3% < 462A,1 and
P(|A, 4] > 2) < 2exp(—Cpn) + 2nexp(—Cynz?).

By Lemma B.2, we have P(|U,(0) — 1/2| > z) < 2exp(—nz?) and P(A,3 > 2) < 2exp(—Cpnz).
Putting all these pieces together, we obtain (D.1). O
D.1 Proof of Theorem 3.1
Define the bootstrap U-process

Xi+X;
Z wiw; 1 { 5 J <t}, where B, = | Z Wiw;.
i#j€[n] i#j€[n]

Define Wy (t) = Uy (0+t) —U(0+t) and WS(t) = Us(0+t) —U,(0+t) for t € R. We first introduce
some notation. Let K = min {k € N: 2% >n}. For each i # j € [n] and h € [2K], denote

R<X X; ;Vl> R(X X; ;m>—Un<9+§£>+Un(9)
- (50%58) < 2 R (Xgr)

i#j€n]
Lemma D.2. Let 0 < A <1/(2]/f|lso). Under Ex = {I'y, <T'.}, for any z < Cn, we have

’I'L

AU C K) 4 Co Tols T K
]P’*{ sup W () = W0 > sup [Wa(t) — W (0)] + M Nloe  Crnlz + K) + Co/Tolz + )}
[t <A It <A 2 2n

n
<
< Cexp(—z) + exp ( 16)
(D.2)
Proof of Lemma D.2. For any h € [25] and t € (A(h — 1)275 Ah275K], we have

W) ~ W3(0) = U0 +4) — U0 + ) — (U3(6) - U(9))
<vi (0+5¢) -v (04 25H) - i - vy

« (A AU oo
i (20 i - A
Ah AU ||
< Wy (K> )+ sup |W,(t) — W,(0)] + H2K”
t|<A
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Similarly, we have

Ah—1 AU | oo
Wit~ wio) = w (252 ) < Wi~ sup wato) - w0 - M.
2 [t <A 2
Consequently, we have
Ah AU
sup |Wy(t) — W, <maxW( ) W (0 '—i—su W, (t) — W,(0)] + ——=
0<£A| (t) (0)] b oK (0) \tISI/)\’ (t) (0)] oK

Hence it suffices to upper bound maxj,cyx) |We(Ah/2K) — W2 (0)]. For each h € [25], we have

Wy (2;) WO(O)— > R<X¢,Xj,j2\£) (wiw; — 1)

i#je[n]
Ah
>R <Xi,Xj, 2K) (wi — 1)(w; — 1)
i£j€[n]
Ah
R (g Je )
=1 iy
_. Al i
—. AWJL + AW,h'
Recall that B,, = Zi#e[n} wiw;, where wi,...,wy, are i.i.d. random variables such that 0 < w; <2

and E(w;) = 1 for each ¢ € [n]. Hence, it follows from Lemma B.2 that P(B, > 2n(n — 1)) <
exp(—n/16). We first upper bound maxcpx) |AI€/Vh|. Observe that A?/Vh is a degenerate second
order U-statistic with

max max
i#j€[n] he[2K]

A
R(X X, h>‘ <1
Hence, by Theorem 3.3 in Giné et al. (2000),

1 22 2 z 2/3 n
ok < K - : - = -
F <hr§[3§ (Al > 2 2> =02 eXp[ Cmm{nQ’n’ <\/ﬁ) IH +eXp( 16)

We now upper bound maxhE [2K] \AWh\. For simplicity of notation, denote R;;, = R(X;, X;, Ah/2K)
and Ry, = {n(n— 1)}~ ZZ#]G in] Rij,n- Define

r Z R ARY 7 (D.3)
= max , .
" h€[2K =l X 2K
Hence, under £k, by Theorem 1.1 in Bentkus and Dzindzalieta (2015), it follows that
CiyTo(z+ K) n
*
¥ {Jéﬁgﬁ Ayl > on? < Coexp(—2) +exp (- 16>
Putting all these pieces together, we obtain (D.2). O
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Lemma D.3. Let I';, be defined in (D.3). Assume that A < 1/(2/f]|s) and logn < nA| f/|cc-
Then we have

B(T,, < On®A2[f%) > 1 i exp(—nA| f0). (D.4)

Proof of Lemma D.3. By the triangle inequality,

2 n
Iy $ max Z{Rwh Rijn| X))} + max n> > [E(RynlX;) — E(Rijn)|
he 2K] — he2K] —
=1"i#j J=1
+ max n ’Rn h— E(Rnyh”z = le + Fn72 + Fn73.
he[2K]

For each j € [n], conditional on X, {R;;» — E(R;jn|X;)}iz; are independent centered random
variables with

Rijn —E(RijnX;)| <1 and E{|R; Rijnl X121} < Al flloo-
&ﬁ&ﬁgﬁl.m (Rijn| X;)[ <1 an Jha max {IRijn — E(Rijn| X5)17[ X5} < Allf]

Then, by the Bernstein inequality, with probability at least 1 — C exp(—=z), we have

2
Z{Rm h—E(RijalX5)} < Ci{n(z +logn)? + n’A| fleo(z + logn)}.

'y < n max max
he[2K] jen]

We now bound 'y, 5. Observe that {|E(Rg;n|X;) —E(Rqjn)|*}jen are independent random variables
with

E(Riin|X;) — E(Riin)|? < A%||f]%.
hrél[%?]%?ri](‘ (Rijn Xj) —E(Rijn)l” < AN fIl5

Hence, it follows from Lemma B.1 that

P [Pz < O {md 82| 112 +n¥ 202 fI /(o + ogm) }] > 1= exp(—).

Recall that W,(t) = {n(n — 1)} ! > izjeln B(Xi; Xj,t). Hence Ron —E(Ryp) = Wy(AR/2K) —
W,(0) for each h € [2K]. Therefore, by Lemma C.2, with probability at least 1 — Cexp(—=z), we
have

K+ 2\? z4+c K+z 2
Loa < Ot (F52) 4 Al 225 + 52 VAT

Putting all these pieces together, we obtain (D.4). O

Proof of Theorem 3.1. By Theorem 2.1, for any w > 0 such that w < nmoco, we have

P(10—06>/w/(nkd)) < 2exp(—w).
( )
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Combined with Lemma C.2, for any z > 0 such that z < 1/(4|/f|lcc), with probability at least

1 — Cj exp(—w), we have
|Un(0 + 2) — Un(8) = {U(0 + 2) — U(B)}]
< |Un(@+ 2) = Un(0) = {U(0 + 2) — U(6)}]
+[Un(8) — Un(0) — {U(0) — U(6)}]

w+C K+w K+ w
4 17z + ufuoo).
n n nKQ

< Cz(l!fHooz

Similar to the proof of Theorem 2.1, for any z > 0 such that 0 >0 + z, we have

% S UG+ 2) > U@+ 2) — [US@+ 2) — Un(@ + 2)|
> Up0) + {U@+2) - U@}~ U0+ 2) - Un(@0+2)|
—Un(8+ 2) = Un(8) —{UB+2) U@}
> 5+ 5 00+ 9) - U@+ ) - G (VT + £ 21
> 1+ 5 U0+ 2) - U+ o) - 2By

Then it follows from Lemma B.1 that
~ o~ 2 4 oK
}W%m—ep”i¢z+(mv”g +m}§2mﬂ—@@+ﬁm(—n)
0

nKg 16

By Lemma D.2 and Lemma D.3, with probability at least 1 — C'exp(—w), we have

C(thw) } < Cexp(—2z) + exp (_£> ’

P {020 - U @) - (0 - o)) > n

where C is a positive constant depending only on ko, || f|lcoc and cg. Therefore, combined with the

fact that supjs<., |U"(6 + d)| < k1, we obtain

~ 1 1 C(K+z+w)
0 —0 — ——— wi [{gG+&<0p—= || < ———.
B.U6) 2 ““"]<{5+5ﬂ—0} 2)‘— n
i#j€[n]
Combining these with Theorem 2.1, we obtain (3.2).
Proof of (3.3). For each i € [n], denote
D= 2 4L7§:H5+f.<0} Un(0)
U@ \n-1 = " '

JFi

Then if follows from (3.2) that with probability at least 1 — C'exp(—w), we have

]P’*{ C(w +logn)
n

} < Cn~“.

o~ 1
—0— =Y Di(w;—1
0 — 0 n; i (wi )‘>
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By Lemma D.1, we have P(cy > 09/2) > 1 — Cexp(—n). Consequently, by Berry-Esseen theorem,
with probability at least 1 — C'exp(—n), we have

1 C
sup ]P’*<A D;(w; — 1 Sz)—@z < —.
z€R \/’710-9 ; ( ) ( ) \/ﬁ
Combining this with (D.5) yields (3.3). O

D.2 Proof of Theorem 3.2

Based on Theorem 2.4, the proof of Theorem 3.2 can be derived by following the proof of Theo-
rem 3.1. Thus we omit the details.

E Proof of Results in §4

E.1 Proof of Theorem 4.1

Proof of Theorem /.1. For each ¢ € [n] and ¢ € [p], denote Dy = {1 — 2Fy(—&i¢)}/U;(6¢). Define
D, = (Dn1,...,Dpp)" € RP, where D,y = n=t 3 | Dy for each £ € [p]. Note that |D;e| < 1/kg
uniformly for ¢ € [n] and ¢ € [p]. Hence, it follows from Theorem 2.1 in Chernozhuokov et al. (2022)
that

C log‘r’/4 (pn)

sup [P(v/n] Dalloc < 2) = P([| 2]l < 2)| < i
z€R n

Let 6% = C'log(pn)/y/n. By Theorem 2.1, it follows that
Suglp(\/ﬁlw = 0ljoc < 2) — P(v/n|| Dnlloc < 2)]
zE
<P(Vn]|0 — 0 — Dyl > 0%) + supP(z < v/n|| Dplloc < 2+ 6)
2z€R

log™(pn) _ C'log™*(pn)

<n ¢4 o
Snttologp+ — g <

Putting all these pieces together, we obtain (4.2). O

E.2 Proof of Theorem 4.2
Proof of Theorem J.2. For each ¢ € [p] and i € [n], denote

2 1
Dié = UgUé(eg) <n 1 ;H{gd + gjﬂ < O} - Un€(0€)> :
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Let Dy, = (Dyy, - . - ,ﬁnp)T, where D,y = n~! > Dy for each £ € [p]. By the triangle inequality,

n n 1 2 12
Di¢ — Di)? < €+ &0 <0} — Fy(—€) )| + Upe(60) — =
rggﬁjﬂ( ¢ )? Igé?;f ( 1;{& &ie < 0} — Fi( §z)> nmax o(0r) = 5
2 12
< & + €50 < 0V — Fy(—E0)| + U,o(00) — =
< nmaxmax n—1; {&ie + &je < 0} — Fo(—&in) nmax o(0r) 5
=: A} + A%,

By Lemma B.1, it follows that P{A}, > C'log(np)} < (np)~¢. Recall that

Us(6r) = > Héu+&e <0}, L€p).

i#j€(n]

bt
n(n —1)

Hence, it follows from Lemma B.2 that P{A%, > Clog(np)} < (np)~¢. Consequently, for any § > 0,
by Theorem 1.1 in Bentkus and Dzindzalieta (2015), with probability at least 1 — C(np)~¢, we have

izn;(Die — Dyg)(wi — 1)‘ > 5) < pexp (-C(SZ> _

P* ( max
log(np)

Lep]

Combined with Lemma, with probability at least 1 — C(np)~¢, we have

su P*(max Diy(w; — 1 ‘§z> (max Dip(w ‘ )
cebl \ el ; s =1) telp) Z o
log(n lo log(np)+/lo
< pexp{~Clog(np)) + “ELVED < ¢ }g e,

E.3 Proof of Theorem 4.3

Proof of Theorem /.3. Following the proof of Theorem 2.3, it follows from Theorem 3.1 that with

¢, we have

P*{\/n(0} — 00) > =}
2{1 — ®(z/0y)}

uniformly for 0 < z < o(n'/%) and ¢ € [p]. By Lemma 1 in Storey et al. (2004), it follows that

probability at least 1 — Cn~

=1+o0(1), (E.1)

P I{P, <t} 1
tsz{te[al}:tgamax( = M < 1), )},
P

By the definition of tg, we have

b — amax(d ) I{P < tg}, 1)_ (E.2)
p
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Observe that ts > a/p. Hence, it follows from (E.1) that P{ts > max,c, Gr(oe(2logp)t/?)} — 1.
Combining this with (E.2) yields

p

ts > jfﬂ{a <ts) 2 53 1{Gi (Valfi) < G; (ovv/2loap) }

/=1 /=1

p
>

ZH{\FW >o£\/@}

=1

» ~
Z]I{| E’ 2logp +Ig1ax\/w}.
¢

=1 €lrl 7

@\Q

>

@\Q

For some X\ > 0, define

SA:{fmax| —0d - (1+A)\/@}.

LE€(p] oy

Under &), it is straightforward to verify that
ax~y [10d
tsZZH{ (2+)\)\/210gp}

By theorem 2.3, it follows that P(E¢) < Cpexp{—(1 + A)?logp} < Cp~*"=2*. Then, following the
proof of Theorem 3.3 in Zhou et al. (2018), for any sequence 1 < b, — o0, it is straightforward to
derive that

P <t
sup ZEE’HO { [ } - E}O
bp/p<t<1 | Holt
Putting all these pieces together, we obtain (4.6). O

E.4 Large-scale Two-sample Simultaneous Testing

We consider the following high dimensional two-sample global test,
Hy: 6, =0; for all ¢ € [p] versus Hj : 0y # 0; for some ¢ € [p]. (E.3)

Given the HL estimators O, = median{X;, —Yj, : i € [n],j € [m]}, £ € [p], for ©p = 6, —07, we shall
the null hypothesis Hp in (E.3) whenever maxcf, |(:)g] exceeds some threshold. To this end, we
develop a Gaussian approximation for maxc[, |ég — ©y|. More specifically, let Z = (Z,... ,Zp)T
be a p-dimensional centered Gaussian random vector with

N Cov(Guk — Fuks G — Frt)
Uy, (01U (Oy)

COV(Zk,Zg) = s k,ﬁ S [p]

In the following theorem, we establish a non-asymptotic upper bound for the Kolmogorov distance
between the distribution functions of maxc(,) [0, — O] and its Gaussian analogue maxc[, | Ze|-
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Theorem E.1. Let Uy(t) = P(X1 — Y1y < t) for each ¢ € [p]. Assume that there exist positive
constants ¢y, kg, ¢1 and k1 such that

min inf Uy(O;+ A) > Ko >0 and max sup |U)(Op+ A)| < Fy.
Le[p] |AI<eo Lelp] |A|<e

Then, under Assumption 2.1, we have

o C'log®*(Np)
P (g vNI6 -0 <) = (gl <) |« S

sup

z€R
Proof of Theorem E.1. We are able to prove Theorem E.1 by using similar arguments as in The-
orem 4.1. The major differences only lies in changing the one-sample to two-sample estimators.
Thus, we decided to omit the corresponding details. ]

Motivated by Theorem E.1, an asymptotic a-level test for (E.3) is given by H{maxzeip] 6] >

o
11—«

}, where Q7_, stands for the (1 — a)th quantile of the bootstrap statistic max,c[,) [0 — O/,

namely,

<1>a:inf{zéR:IP’*(glz[n}d@;—@A§z> 21—04}, a e (0,1).
Elp

The validity of the proposed test is justified via the following theorem.

Theorem E.2. Under the conditions of Theorem E.1, we have

_ C'log®*(pN)
'IP’ (ﬁ;ﬁ;}(\@g — Oy > Q?a) —o < TONUE

Proof of Theorem E.2. The proof of Theorem E.2 can be derived similarly by following the proof
procedure of Theorem 4.2 by replacing the one-sample estimator with the two-sample version.
Therefore, we omit the details. O

E.5 Proof of Theorem 4.4

The proof of Theorem 4.4 can be derived similarly by following the proof procedure of Theorem 4.3
by changing the one-sample estimator to the two-sample version. Therefore, we omit the details.
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