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Abstract Cognition and attention arise from the adaptive coordination of neural systems in
response to external and internal demands. The low-dimensional latent subspace that underlies
large-scale neural dynamics and the relationships of these dynamics to cognitive and attentional
states, however, are unknown. We conducted functional magnetic resonance imaging as human
participants performed attention tasks, watched comedy sitcom episodes and an educational docu-
mentary, and rested. Whole-brain dynamics traversed a common set of latent states that spanned
canonical gradients of functional brain organization, with global desynchronization among functional
networks modulating state transitions. Neural state dynamics were synchronized across people
during engaging movie watching and aligned to narrative event structures. Neural state dynamics
reflected attention fluctuations such that different states indicated engaged attention in task and
naturalistic contexts, whereas a common state indicated attention lapses in both contexts. Together,
these results demonstrate that traversals along large-scale gradients of human brain organization
reflect cognitive and attentional dynamics.

Editor's evaluation

This valuable study examines the distribution of four states of brain activity across a variety of cogni-
tive conditions, linking systems neuroscience with cognition and behavior. The work is convincing,
using null models and replication in independent datasets to support their findings.

Introduction

A central goal in cognitive neuroscience is understanding how cognition arises from the dynamic
interplay of neural systems. To understand how interactions occur at the level of large-scale func-
tional systems, studies have characterized neural dynamics as a trajectory in a latent state space
where each dimension corresponds to the activity of a functional network (Breakspear, 2017, Gu
et al., 2015; John et al., 2022; Shine et al., 2019a). This dynamical systems approach revealed two
major insights. First, neural dynamics operate on a low-dimensional manifold. That is, neural dynamics
can be captured by a small number of independent latent components due to covariation of neural
activity within a system (Cunningham and Yu, 2014; Shine et al., 2019b). Second, neural activity
does not just continuously flow along a manifold, but rather systematically transitions between recur-
ring latent ‘states,” or hidden clusters, within the state space (Baker et al., 2014; Chen et al., 2016;
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Vidaurre et al., 2018; Vidaurre et al., 2017). Initial work used resting-state neuroimaging (Allen
et al., 2014; Betzel et al., 2016; Bolt et al., 2022; Liu and Duyn, 2013; Yousefi and Keilholz, 2021,
Zalesky et al., 2014; Zhang et al., 2019) and data simulations (Deco et al., 2017, Deco et al., 2015;
Friston, 1997) to describe dynamic interactions among brain regions in terms of systematic transi-
tions between brain states.

Less is known about how our mental states—which constantly ebb and flow over time—arise from
these brain state transitions. Recent work in human neuroimaging suggests that brain state changes
reflect cognitive and attentional state changes in specific contexts (Gao et al., 2021, Shine et al.,
2019a). For example, work has identified neural states during a sustained attention task (Yamashita
et al., 2021) or a working memory task (Cornblath et al., 2020; Taghia et al., 2018). Dataset-specific
latent states occurred during different task blocks as well as moments of successful and unsuccessful
behavioral performance. Another line of work identified latent states during naturalistic movie
watching and demonstrated how neural dynamics relate to contents of the movies (van der Meer
et al., 2020) or participants’ ongoing comprehension states (Song et al., 2021b). An open question
is whether the same latent states underlie cognitive states across all contexts. For example, does
the same brain state underlie successful attention task performance and engaged movie watching?
If brain activity traverses a common set of latent states in different contexts, to what extent do the
functional roles of these states also generalize?

Shine et al., 2019a demonstrated that neural activity traverse a common low-dimensional manifold
across seven cognitive tasks. The dynamics within this common manifold were aligned to exogenous
task blocks and related to individual differences in cognitive traits. Here we expand on this work by
probing a common set of latent states that explain neural dynamics during task, rest, and naturalistic
contexts in five independent datasets. We also identify the nature of this shared latent manifold by
relating it to the canonical gradients of functional brain connectome (Margulies et al., 2016). Finally,
we relate neural state dynamics to ongoing changes in cognitive and attentional states to probe how
neural dynamics are adaptively modulated from stimulus-driven and internal state changes.

We collected human fMRI data, the SitcOm, Nature documentary, Gradual-onset continuous
performance task (SONG) neuroimaging dataset, as 27 participants rested, performed attention
tasks, and watched movies. We characterized latent state dynamics that underlie large-scale brain
activity in these contexts and related them to changes in cognition and attention measured with dense
behavioral sampling. Each participant performed seven fMRI runs over 2 d: two eye-fixated resting-
state runs, two gradual-onset continuous performance task (gradCPT) runs with either face or scene
images, two runs of comedy sitcom watching, and a single run of educational documentary watching.
The gradCPT measures fluctuations of sustained attention over time (Esterman et al., 2013; Rosen-
berg et al., 2013) as participants respond to images (every 1 s) from a frequent category (90% of
trials) and inhibit response to images from an infrequent category (10%). The sitcom episodes were
the first and second episodes of a South Korean comedy sitcom, High Kick Through the Roof. The
educational documentary described the geography and history of Korean rivers.

Functional brain activity transitions between states in a

common latent manifold

Large-scale neural activity transitions between discrete latent states

To infer latent state dynamics, we fit a hidden Markov model (HMM) to probabilistically infer a sequence
of discrete latent states from observed fMRI activity (Rabiner and Juang, 1986). The observed vari-
ables here were the BOLD signal time series from 25 parcels in a whole-brain parcellation of the cortex
(17 functional networks) (Yeo et al., 2011) and subcortex (8 regions) (Tian et al., 2020) sampled at a
1 s TR resolution (Figure 1A, left). Parcel time courses were z-normalized within each participant and
concatenated across all fMRI runs from all participants. The model inferred two parameters from these
time series: the emission probability and the transition probability (see ‘Materials and methods’). We
assumed that the emission probability of the observed variables follows a mixture Gaussian char-
acterized by the mean and covariance of the 25 parcels in each latent state (Figure 1A, right). The
inferred parameters of the model were used to decode latent state sequences. Four was chosen as
the number of latent states (K = 4) based on the optimal model fit to the data when tested with leave-
one-subject-out cross-validation (chosen among K of 2-10; Figure 1—figure supplement 1).
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Figure 1. Latent state space of the large-scale neural dynamics. (A) Schematic illustration of the hidden Markov model (HMM) inference. (Left) The
HMM infers a discrete latent state sequence from the observed 25-parcel fMRI time series. (Right) The fMRI time course can be visualized as a trajectory
within a 25-dimensional space, where black dots indicate activity at each moment in time. The HMM probabilistically infers discrete latent clusters within
the space, such that each state can be characterized by the mean activity (blue dots) and covariance (blue shaded area) of the 25 parcels. (A) has been
adapted from Figure 1A from Cornblath et al., 2020. (B) Four latent states inferred by the HMM fits to the SONG dataset. Mean activity (top) and
pairwise covariance (bottom) of the 25 parcels’ time series is shown for each state. See Figure 1—figure supplement 6 for replication with the Human
Connectome Project (HCP) dataset. (C) Conceptualizing low-dimensional gradients of the functional brain connectome as a latent manifold of large-
scale neural dynamics. Each dot corresponds to a cortical or subcortical voxel situated in gradient space. The colors of the brain surfaces (inset) indicate
voxels with positive or negative gradient values with respect to the nearby axes. Data and visualizations are adopted from Margulies et al., 2016. (D)
Latent neural states situated in gradient space. Positions in space reflect the mean element-wise product of the gradient values of the 25 parcels and
mean activity patterns of each HMM state inferred from the SONG (circles) and HCP (triangles) datasets.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The choice of the number of states (K) in latent state inference.

Figure supplement 2. Latent state inference conducted separately to each condition of the SONG dataset.

Figure 1 continued on next page
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Figure supplement 3. Examples of the null latent states derived from the hidden Markov models (HMMs) conducted on the surrogate fMRI time series
of the SONG dataset (1000 iterations).

Figure supplement 4. Latent state inference using a different whole-brain parcellation scheme.

Figure supplement 5. The inferred latent states and their dynamics are robust to the choice of the fMRI preprocessing approach.

Figure supplement 6. Latent state inference on the Human Connectome Project (HCP) dataset.

Figure supplement 7. The position in predefined gradient space at every time point grouped by hidden Markov model (HMM) latent state.

Figure supplement 8. Comparisons between predefined and data-specific gradients.

Figure 1B illustrates the four latent neural states inferred by the HMM in the SONG dataset (see
Figure 1—figure supplement 2 for condition-specific latent states). We labeled three states the
default mode network (DMN), dorsal attention network (DAN), and somatosensory motor (SM) states
based on high activation of these canonical brain networks (Yeo et al., 2011). (Note that these state
labels are only applied for convenience. Each state is characterized by whole-brain patterns of acti-
vation, deactivation, and covariance, rather than simply corresponding to activation of the named
network.) The fourth state was labeled the ‘base’ state because activity was close to baseline (z = 0)
and covariance strength (i.e., the sum of the absolute covariance weights of the edges) was compara-
tively low during this state. The SM state, on the other hand, exhibited the highest covariance strength,
whereas the covariance strengths of the DMN and DAN states were comparable. Compared to null
latent states derived from surrogate fMRI time series, the four states exhibited activity patterns more
similar to large-scale functional systems (Buckner et al., 2008; Corbetta and Shulman, 2002, Fox
et al., 2005; Smith et al., 2009) and significantly higher covariance strength (see Figure 1—figure
supplement 3 for examples of null latent states). These states were replicated with 250 regions of
interest (ROIs) consisting of 200 cortical (Schaefer et al., 2018) and 50 subcortical regions (Tian et al.,
2020), albeit with a caveat that the HMM provides a poorer fit to the higher-dimensional time series
(Figure 1—figure supplement 4). Neural state inference was robust to the choice of K (Figure 1—
figure supplement 1) and the fMRI preprocessing pipeline (Figure 1—figure supplement 5) and
consistent when conducted on two groups of randomly split-half participants (Pearson’s correlations
between the two groups’ latent state activation patterns: DMN: 0.791; DAN: 0.838; SM: 0.944; base:
0.837).

To validate that these states are not just specific to the SONG dataset, we analyzed fMRI data from
the Human Connectome Project (HCP; N = 119) (Van Essen et al., 2013) collected during rest, seven
block-designed tasks—the emotion processing, gambling, language, motor, relational processing,
social cognition, and working memory tasks (Barch et al., 2013)—and movie watching (Finn and
Bandettini, 2021). The same HMM inference was conducted independently on the HCP dataset using
K = 4 (Figure 1—figure supplement 6). HCP states closely mirrored the DMN, DAN, SM, and base
states (Pearson’s correlations between activity patterns of SONG- and HCP-defined states: DMN:
0.831; DAN: 0.814; SM: 0.865; base: 0.399). Thus, the latent states are reliable and generalize across
independent datasets.

Latent state dynamics span low-dimensional gradients of the functional
brain connectome

The HMM results demonstrate that large-scale neural dynamics in diverse cognitive contexts (tasks,
rest, and movie watching) are captured by a small number of latent states. Intriguingly, the DMN,
DAN, and SM systems that contribute to these states tile the principal gradients of large-scale func-
tional organization. In a seminal paper, Margulies et al., 2016 applied a nonlinear dimensionality
reduction algorithm to capture the main axes of variance in the resting-state static functional connec-
tome of 820 individuals. They found that the primary gradient dissociated unimodal (visual and SM
regions) from transmodal (DMN) systems. The secondary gradient fell within the unimodal end of the
primary gradient, dissociating the visual processing from the SM systems. These gradients, argued to
be an ‘intrinsic coordinate system’ of the human brain (Huntenburg et al., 2018), reflect variations in
brain structure (Huntenburg et al., 2017, Paquola et al., 2019; Vazquez-Rodriguez et al., 2019),
gene expressions (Burt et al., 2018), and information processing (Huntenburg et al., 2018).
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We hypothesized that the spatial gradients reported by Margulies et al., 2016 act as a low-
dimensional manifold over which large-scale dynamics operate (Bolt et al., 2022, Brown et al., 2021,
Karapanagiotidis et al., 2020; Turnbull et al., 2020), such that traversals within this manifold explain
large variance in neural dynamics and, consequently, cognition and behavior (Figure 1C). To test
this idea, we situated the mean activity values of the four latent states along the gradients defined
by Margulies et al., 2016 (see 'Materials and methods’). The brain states tiled the two-dimensional
gradient space with the base state at the center (Figure 1D, Figure 1—figure supplement 7). The
Euclidean distances between these four states were maximized in the two-dimensional gradient space
compared to a chance where the four states were inferred from circular-shifted time series (p<0.001).
For the SONG dataset, the DMN and SM states fell at more extreme positions on the primary gradient
than expected by chance (both FDR-p-values=0.004; DAN and SM states, FDR-p values=0.171). For
the HCP dataset, the DMN and DAN states fell at more extreme positions on the primary gradient
(both FDR-p values=0.004; SM and base states, FDR-p values=0.076). No state was consistently found
at the extremes of the secondary gradient (all FDR-p values>0.021).

We asked whether the predefined gradients explain as much variance in neural dynamics as latent
subspace optimized for the SONG dataset. To do so, we applied the same nonlinear dimensionality
reduction algorithm to the SONG dataset’s ROI time series. Of note, the SONG dataset includes
18.95% rest, 15.07% task, and 65.98% movie-watching data, whereas the data used by Margulies
et al., 2016 was 100% rest. Despite these differences, the SONG-specific gradients closely resembled
the predefined gradients, with Pearson’s correlations observed for the first (r = 0.876) and second (r
= 0.877) gradient embeddings (Figure 1—figure supplement 8). Gradients identified with the HCP
data also recapitulated Margulies et al.'s (2016) first (r = 0.880) and second (r = 0.871) gradients.
We restricted our analysis to the first two gradients because the two gradients together explained
roughly 50% of the variance of the functional brain connectome (SONG: 46.94%; HCP: 52.08%), and
the explained variance dropped drastically from the third gradients (more than 1/3 drop compared
to the second gradients). The degrees to which the first two predefined gradients explained whole-
brain fMRI time series (SONG: 7 = 0.097; HCP: 0.084) were comparable to the amount of variance
explained by the first two data-specific gradients (SONG: #* = 0.100; HCP: 0.086; Figure 1—figure
supplement 8). Thus, the low-dimensional manifold captured by Margulies et al.’s (2016) gradients is
highly replicable, explaining brain activity dynamics as well as data-specific gradients, and is largely
shared across contexts and datasets. This suggests that the state space of whole-brain dynamics
closely recapitulates low-dimensional gradients of the static functional brain connectome.

Transient global desynchrony precedes neural state transitions
Neural state transitions can be construed as traversals in a low-dimensional space whose axes are
defined by principal gradients of functional brain organization. When and how do these neural state
transitions occur? What indicates that the system is likely to transition from one state to another?
We predicted that neural state transitions are related to changes in interactions between functional
networks. To test this account, we computed cofluctuation between all pairs of parcels at every TR (1 s).
Cofluctuation operationalizes the time-resolved interaction of two regions as an absolute element-
wise product of their activity at every time step after z-normalization of their time series (Faskowitz
et al., 2020; Sporns et al., 2021; Zamani Esfahlani et al., 2020). We time-aligned cofluctuation
values to moments of neural state transitions estimated from the HMM (Figure 2A). A decrease in
cofluctuation prior to the neural state transitions (at time t-1) was observed for every pair of cortico-
cortical networks (z = 645.75, FDR-p=0.001). Cortico-subcortical pairs (z = 424.05, FDR-p=0.001)
and subcortico-subcortical connections (z = 64.85, FDR-p=0.037) also showed decreased cofluctu-
ation before state transitions, although the effects were less pronounced, especially for subcortico-
subcortical connections (paired Wilcoxon signed-rank tests comparing the degrees of cofluctuation
change, FDR-p-values<0.001). Results were replicated with the 250-ROI parcellation scheme as well
as with the HCP dataset (Figure 2—figure supplement 1). Furthermore, repeating this analysis with
null HMMs on circular-shifted time series suggests that the effect is not simply a by-product of the
chosen computational model (Figure 2—figure supplement 2). These results are consistent with prior
empirical findings that desynchronization, a ‘transient excursion away from the synchronized manifold’
(Breakspear, 2002), allows the brain to switch flexibly between states (Deco et al., 2017, Harris and
Thiele, 2011; Pedersen et al., 2018; Roberts et al., 2019).
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Figure 2. Neural state transitions. (A) Changes in cofluctuation of the parcel pairs, time-aligned to hidden Markov model (HMM)-derived neural state
transitions. State transitions occur between time t-1 and t. Purple lines indicate the mean cofluctuation of cortico-cortical (left), cortico-subcortical
(middle), and subcortico-subcortical (right) parcel pairs across fMRI runs and participants, and the thick black line indicates the mean of these pairs.

The shaded gray area indicates the range of the null distribution (mean + 1.96 x standard deviation), in which the moments of state transitions were
randomly shuffled (asterisks indicate FDR-p<0.05). (B) Transition matrix indicating the first-order Markovian transition probability from one state (row) to
the next (column), averaged across all participants’ all fMRI runs. The values indicate transition probabilities, such that values in each row sums to 1. The
colors indicate differences from the mean of the null distribution where the HMMs were conducted on the circular-shifted time series. (C) Mean degrees
of global cofluctuation at moments of latent neural state occurrence. The measurements at each time point were averaged within participant based

on latent state identification, and then averaged across participants. The bar graph indicates the mean of all participants’ all fMRI runs. The error bars
indicate standard error of the mean (SEM). Gray dots indicate individual data points (7 runs of 27 participants). The shaded gray area indicates the range
of the null distribution, in which the analyses were conducted on the circular-shifted latent state sequence. See Figure 2—figure supplement 1 for
replication with the Human Connectome Project (HCP) dataset.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Neural state transitions of the Human Connectome Project (HCP) dataset.

Figure supplement 2. Cofluctuations of all pairs of 25 parcels of the (A) SONG and (B) Human Connectome Project (HCP) datasets, time-aligned to the
hidden Markov model (HMM)-derived neural state transitions, compared to a null distribution that was generated differently than Figure 2A.

Figure supplement 3. Transition matrix of the (A) SONG and (B) Human Connectome Project (HCP) datasets indicating transition probability from one

state (row) to the next (column), such that values in each column sums to 1.

Figure supplement 4. Mean head motion (framewise displacement [FD]) at moments of latent neural state occurrence in the (A) SONG and (B) Human
Connectome Project (HCP) datasets.
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The base state acts as a flexible hub in neural state transitions

To further address how neural state transitions occur, we analyzed the HMM'’s transition matrix, which
indicates the probability of a state at time t-1 transitioning to another state or remaining the same at
time t. The probability of remaining in the same state was dominant (>85%), whereas the probability
of transitioning to a different state was less than 8% (Figure 2B, Figure 2—figure supplement 3).
To investigate whether certain state transitions occurred more often than expected by chance, we
compared the transition matrix to a null distribution where the HMM was conducted on circular-
shifted fMRI time series. The DMN, DAN, and SM states were more likely to transition to and from the
base state and less likely to transition to and from one another than would be expected by chance
(Figure 2B, Figure 2—figure supplement 3; FDR-p-values<0.05). The result suggests that the base
state acts as a hub in neural state transitions, replicating a past finding of the base state as a transi-
tional hub in resting-state fMRI data (Chen et al., 2016).

Given that global desynchrony indicates moments of neural state transitions (Figure 2A), we used
this measure to validate the role of the base state as a ‘transition-prone’ state. Cofluctuation between
every pair of parcels was computed at every TR, which was averaged across parcel pairs to represent
a time-resolved measure of global cofluctuation (Figure 2C). When comparing the degree of global
cofluctuation across the four latent states, we found that the base state exhibited the lowest degree
of global cofluctuation (paired t-tests comparing cofluctuation in base state vs. DMN, DAN, and SM
states, SONG: t(187) > 61, HCP: t(3093) > 170, FDR-p-values<0.001), which was significantly below
chance (FDR-p-values<0.001). This suggests that the base state was the most desynchronized state
among the four, potentially operating as a transition-prone state. Low global synchrony during the
base state was not driven by spurious head motion (Figure 2—figure supplement 4). Thus, the base
state, situated at the center of the gradient space, is a flexible ‘hub’ state with a high degree of
freedom to transition to other functionally specialized states.

Neural state dynamics are modulated by ongoing cognitive

and attentional states

Latent state dynamics differ across contexts and are synchronized
during movie watching

We identified four latent states that recur during rest, task performance, and movie watching.
Although the latent manifold of neural trajectories may be shared across contexts, latent states may
be occupied to different degrees across contexts. For example, one state may occur more frequently
in one context but not in others. We asked whether the pattern with which brain activity 'visits’ the
four states differed across contexts.

We used the HMM to infer the latent state sequence of each fMRI run (Figure 3A) and summarized
the fractional occupancy of each state (i.e., proportion of time that a state occurred) (Figure 3B; see
Figure 3—figure supplement 1 for dwell time distributions). All four states occurred in all f{MRI runs,
with no state occurring on more than 50% of time points in a run. Thus, these states are common
across contexts rather than specific to one context. Fractional occupancy, however, differed across
rest, task, and naturalistic contexts, with strikingly similar values between runs of similar contexts (e.g.,
rest runs 1 and 2). In contrast to the similar fractional occupancy values of the two sitcom-episode
runs, fractional occupancy in the documentary-watching condition differed despite the fact that it
also involved watching an audiovisual stimulus. During the documentary, the base state occurred less
frequently, whereas the SM state occurred more frequently than during the sitcom episodes.

Latent state dynamics were synchronized across participants watching the comedy sitcom episodes
(mean pairwise participant similarity: episode 1: 40.81 + 3.84%, FDR-p=0.001; episode 2: 40.79 +
3.27%, FDR-p=0.001; paired comparisons, non-parametric p=0.063; Figure 3C). Less synchrony
was observed between participants watching the educational documentary (30.39 + 3.38 %, FDR-
p=0.001; paired comparisons with the two sitcom episodes, both p<0.001). No significant synchrony
was observed during the resting-state runs (run 1: 25.81 + 4.00 %, FDR-p=0.230; run 2: 25.84 + 4.08
%, FDR-p=0.183).

These results were replicated when we applied the SONG-trained HMM to decode latent sequences
of the three independent datasets (Figure 3—figure supplement 2). The four neural states occurred
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Figure 3. Latent neural state dynamics in the seven fMRI runs. (A) Latent state dynamics inferred by the hidden Markov model (HMM) for all
participants. Colors indicate the state that occurred at each time point. (B) Fractional occupancy of the neural states in each run. Fractional occupancy
was calculated for each individual as the ratio of the number of time points at which a neural state occurred over the total number of time points in

the run. Distributions indicate bootstrapped mean of the fractional occupancies of all participants. The chance level is at 25%. (C) Synchrony of latent
state sequences across participants. For each pair of participants, sequence similarity was calculated as the ratio of the number of time points when the
neural state was the same over the total number of time points in the run. Box and whisker plots show the median, quartiles, and range of the similarity
distribution.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Dwell times of the latent neural states, measured as the duration (s) for which a neural state continuously persisted before
transitioning to a different state.

Figure supplement 2. Inferred neural state dynamics of the external datasets from the hidden Markov model (HMM) trained on the SONG dataset.

in every run of every dataset tested, with maximal fractional occupancies all below 50%. Intersubject
synchrony of the latent state sequence was high during movie watching and story listening but at
chance during rest. Together the results validate that neural states identified from the SONG dataset
generalize not only across contexts but also to independent datasets.

Prior studies reported that regional activity (Hasson et al., 2004; Nastase et al., 2019) and func-
tional connectivity (Betzel et al., 2020; Chang et al., 2022, Simony et al., 2016) are synchronized
across individuals during movie watching and story listening, and that attentional engagement modu-
lates the degree of intersubject synchrony (Dmochowski et al., 2012; Ki et al., 2016; Song et al.,
2021a). Our results indicate that the intersubject synchrony occurs not only at regional and pairwise
regional scales, but also at a global scale via interactions of functional networks. Furthermore, stronger
entrainment to the stimulus during sitcom episodes compared to documentary-watching condition
suggests that overall attentional engagement may mediate the degree of large-scale synchrony (mean
reports on overall engagement from a scale of 1 [not at all engaging] to 9 [completely engaging]:
sitcom episodel: 6.78 = 1.05, episode2: 6.93 = 1.41, documentary: 3.59 + 1.21). Indeed, demon-
strating a relationship between neural state dynamics and narrative engagement, participant pairs
that exhibited similar engagement dynamics showed similar neural state dynamics (sitcom episode

Song et al. eLife 2023;12:€85487. DOI: https://doi.org/10.7554/eLife.85487 8 of 29


https://doi.org/10.7554/eLife.85487

(3
Ife Neuroscience

1)
F

A Sitcom ep1 Sitcom ep2 B Chang et al., 2021 C

o - - -

o | | | |

c | | | |

9@ I I [ I

5 I I I I —

[&] | | | | -—

58 - o 5

95 | | ] S

T o —

2 : | /\\ b

z° = | p—

g | | | |

} } . | }

o | | | | | — FDR-p < 0.01 Gradient 2
%A 504 | [ [ [ [ [ — Typical transitions to the
Ese | | | | | | DMN state

§‘C’ 40 | | | | | ---» Transitions to the
5.9 ‘ | \ | | | DMN state at event
o5 309 | I I I boundaries

S50 1\ L !

3 5820 \ I I | I

8 | | | | | |

m 107 | } ! ! } | Null distribution

0 5 10 15 20 0 5 10 15 20 0 4 8 12 16
Time (TR=1s) from Time (TR=1.5s) from
event boundary event boundary

Figure 4. Neural state occurrence and transitions at narrative event boundaries. (A) The proportion of the default mode network (DMN) (top) and base
state (bottom) occurrences time-aligned to narrative event boundaries of sitcom episodes 1 (left) and 2 (right). State occurrence at time points relative to
the event boundaries per stimulus was computed within participant and then averaged across participants. The dark gray shaded areas around the thick
black line indicate SEM. The dashed lines at t = 0 indicate moments of new event onset and the lines at t = 5 account for hemodynamic response delay
of the fMRI. The light gray shaded areas show the range of the null distribution in which boundary indices were circular-shifted (mean + 1.96 x standard
deviation), and the black lines on top of the graphs indicate statistically significant moments compared to chance (FDR-p<0.01). (B) The proportion of
the DMN (top) and base state (bottom) occurrence time-aligned to narrative event boundaries of audio narrative. Latent state dynamics were inferred
based on the hidden Markov model (HMM) trained on the SONG dataset. Lines at t = 4 account for hemodynamic response delay. (C) Schematic
transitions to the DMN state at narrative event boundaries (dashed lines) compared to the normal trajectory which passes through the base state (solid
lines). See Figure 4—figure supplement 2 for results of statistical analysis.

The online version of this article includes the following figure supplement(s) for figure 4:
Figure supplement 1. Neural state occurrence and hippocampal BOLD activity time-aligned to narrative event boundaries.

Figure supplement 2. Transitions to the default mode network (DMN) state at narrative event boundaries.

1: Spearman’s r = 0.274, FDR-p=0.005; episode 2: r = 0.229, FDR-p=0.010; documentary: r = 0.225,
FDR-p=0.005).

Neural state dynamics are modulated by narrative event boundaries
Latent state dynamics are synchronized across individuals watching television episodes and listening
to stories, which suggests that latent neural states are associated with shared cognitive states elicited
by an external stimulus. How are these neural state dynamics modulated by stimulus-driven changes
in cognition?

Our comedy sitcom episodes had unique event structures. Scenes alternated between two distinct
storylines (A and B) that took place in different places with different characters. Each episode included
13 events (seven events of story A and six events of B) ordered in an ABAB sequence. This interleaved
event structure required participants to switch between the two storylines at event boundaries and
integrate them in memory to form a coherent narrative representation (Clewett et al., 2019, DuBrow
and Davachi, 2013; Zacks, 2020).

We asked if any latent state consistently occurred at narrative event boundaries (Figure 4A). In
both sitcom episodes, the DMN state was more likely to occur than would be expected by chance
after event boundaries (~50% probability, FDR-p<0.01), complementing past work that showed the
involvement of the DMN at event boundaries (Baldassano et al., 2017, Chen et al., 2017, Reagh
et al., 2020). The base state, on the other hand, was less likely to occur after event boundaries (~10%
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probability). DAN and SM state occurrences were not modulated by event boundaries (Figure 4—
figure supplement 1). These results replicated when the SONG-defined HMM was applied to a
50 min story-listening dataset (Chang et al., 2021b) in which 45 events were interleaved in an ABAB
sequence (Figure 4). A transient increase in hippocampal BOLD activity occurred after event bound-
aries (Figure 4—figure supplement 1), replicating previous work (Baldassano et al., 2017; Ben-
Yakov and Dudai, 2011; Ben-Yakov and Henson, 2018; Reagh et al., 2020). Together, our results
suggest that event boundaries affect neural activity not only at a regional level, but also at a whole-
brain systems level.

How does brain activity transition to the DMN state at event boundaries? To investigate how event
boundaries perturb neural dynamics, we compared transitions to the DMN state that occurred at
event boundaries (i.e., between 5 and 15 s after boundaries) to those that occurred at the rest of the
moments (non-event boundaries) (Figure 4—figure supplement 2). At non-event boundaries, the
DMN state was most likely to transition from the base state, accounting for more than 50% of the tran-
sitions to the DMN state. Interestingly, however, at event boundaries, base-to-DMN state transitions
significantly dropped while DAN-to-DMN and SM-to-DMN state transitions increased (Figure 4C). A
repeated-measures ANOVA showed a significant interaction between the latent states and the event
boundary conditions (sitcom episode 1: F(2,50) = 10.398; episode 2: F(2,52) = 12.794; Chang et al.:
F(2,48) = 31.194; all p-values<0.001). Thus, although the base state typically acts as a transitional hub
(Figure 2B), neural state transitions at event boundaries are more likely to occur directly from the
DAN or SM state to the DMN state without passing through the base state due to the DMN state’s
functional role at event boundaries. These results illustrate one way in which neural systems adaptively
reconfigure in response to environmental demands.

Neural state dynamics reflect attention dynamics in task and
naturalistic contexts
In addition to changes in cognitive states, sustained attention fluctuates constantly over time (deBet-
tencourt et al., 2018; Esterman et al., 2013, Esterman and Rothlein, 2019, Fortenbaugh et al.,
2018; Robertson et al., 1997, Rosenberg et al., 2020). Previous studies showed that large-scale
neural dynamics that evolve over tens of seconds capture meaningful variance in arousal (Raut et al.,
2021; Zhang et al., 2023) and attentional states (Rosenberg et al., 2020, Yamashita et al., 2021).
We asked whether latent neural state dynamics reflect ongoing changes in attention in both task and
naturalistic contexts. To infer participants’ attentional fluctuations during the gradCPT, we recorded
response times (RT) to every frequent-category trial (~1 s). The RT variability time course was used as
a proxy for fluctuating attentional state, with moments of less variable RTs (i.e., stable performance)
indicating attentive states (Figure 5A and B). Paying attention to a comedy sitcom, on the other
hand, involves less cognitive effort than attending to controlled psychological tasks, more akin to
a 'flow’-like state compared to controlled tasks that require top-down exertion of control (Bellana
et al., 2022, Busselle and Bilandzic, 2009; Csikszentmihalyi and Nakamura, 2010, Kahneman,
1973). Attending to a narrative is further affected by a rich set of cognitive processes such as emotion
(Chang et al., 2021a; Smirnov et al., 2019), social cognition (Nguyen et al., 2019, Yeshurun et al.,
2021), or causal reasoning (Lee and Chen, 2022; Song et al., 2021b). To assess participants’ fluc-
tuating levels of attentional engagement during the sitcom episodes and documentary, we asked
participants to continuously self-report their levels of engagement on a scale of 1 (not engaging at all)
to 9 (completely engaging) as they rewatched the stimuli outside the fMRI (Figure 5A and B; Song
et al., 2021a).

We asked whether neural state occurrence reflected participants’ attentional states. For each
participant, we averaged time-resolved measures of attention based on the latent neural states that
occurred at particular moments of time.

Distinct states correspond to engaged attention during tasks and movies

Different brain states accompanied successful task performance and engaged movie watching. During
the gradCPT, participants were in a high attentional state when the DMN state occurred (Figure 5C).
Results replicated when the SONG-trained HMM was applied to the gradCPT data collected by
Rosenberg et al., 2016 (Figure 5D). This finding conceptually replicates previous work that showed
the DMN involvement during in-the-zone moments of the gradCPT (Esterman et al., 2013; Kucyi
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Figure 5. Relationship between latent neural states and attentional engagement. (A) Schematic illustration of the gradCPT and continuous narrative
engagement rating. (Top) Participants were instructed to press a button at every second when a frequent-category image of a face or scene appeared
(e.g., indoor scene), but to inhibit responding when an infrequent-category image appeared (e.g., outdoor scene). Stimuli gradually transitioned from
one to the next. (Bottom) Participants rewatched the sitcom episodes and documentary after the fMRI scans. They were instructed to continuously
adjust the scale bar to indicate their level of engagement as the audiovisual stimuli progressed. (B) Behavioral measures of attention in three fMRI
conditions. Inverse RT variability was used as a measure of participants’ attention fluctuation during gradCPT. Continuous ratings of subjective
engagement were used as measures of attention fluctuation during sitcom episodes and documentary watching. Both measures were z-normalized
across time during the analysis. (C-G) Degrees of attentional engagement at moments of latent state occurrence. The attention measure at every time
point was categorized into which latent state occurred at the corresponding moment and averaged per neural state. The bar graphs indicate the mean
of these values across participants. Gray dots indicate individual data points (participants). The mean values were compared with the null distributions in
which the latent state dynamics were circular-shifted (asterisks indicate FDR-p<0.01). (C, E, G) Results of the fMRI runs in the SONG dataset. (D, F) The
hidden Markov model (HMM) trained on the SONG dataset was applied to decode the latent state dynamics of (D) the gradCPT data by Rosenberg
et al., 2016 (N = 25), and (F) the Sherlock television watching data by Chen et al., 2017 (N = 16).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure 5 continued on next page
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Figure 5 continued

Figure supplement 1. Latent state dynamics during cognitive task blocks, decoded from the hidden Markov model (HMM) trained on the SONG
dataset.

et al.,, 2020) and supports the role of the DMN in automated processing of both the extrinsic and
intrinsic information (Kucyi et al., 2016; Vatansever et al., 2017, Yeshurun et al., 2021).

Other neural states indicated moments of high attention during movie watching. During comedy
sitcoms, the base state was associated with engaged attention (Figure 5E). Results replicated when
the SONG-trained HMM was applied to television episode watching data collected by Chen et al.,
2017 (N = 16) (Figure 5F). To our knowledge, the involvement of the base state at engaging moments
of movie watching has not been reported previously. During the educational documentary, on the
other hand, the DAN state was associated with engaged attention (Figure 5G). When watching a less
engaging but information-rich documentary, focusing may require goal-directed and voluntary control
of attention (Corbetta and Shulman, 2002). Together, the results imply that different neural states
indicate engaged attention in different contexts.

A common state underlies attention lapses during tasks and movies

In contrast to moments of engaged attention, moments of attention lapses were associated with the
same brain state during gradCPT performance and movie watching. The SM state occurred during
moments of poor gradCPT performance in the SONG (with the exception of the gradCPT scene run
which had the shortest run duration, FDR-p=0.589; Figure 5C) and Rosenberg et al., 2016 datasets
(Figure 5D). It also occurred during periods of disengaged focus on the comedy sitcoms (Figure 5E),
the television episode of Chen et al., 2017 (N = 16) (Figure 5F), and the educational documentary
(Figure 5G). Higher head motion was observed during the SM state compared to the three other
states (Figure 2—figure supplement 4). However, the latent states consistently predicted attention
when head motion was included as a predictor in a linear model (main effect of HMM latent states, F >
3, p-values<0.05 for 7 fMRI runs in Figure 5C-G; whereas the effect of head motion was inconsistent),
demonstrating that the effects were not driven by motion alone.

To further investigate the role of the SM state, we applied the trained HMM to two external data-
sets, one containing gradCPT runs interleaved with fixation blocks (Rosenberg et al., 2016), and the
other containing working memory task runs interleaved with fixation blocks (Barch et al., 2013; Van
Essen et al., 2013). In both the gradCPT and working memory task, the SM state occurred more
frequently during intermittent rest breaks in between the task blocks, whereas the DMN, DAN, and
base states occurred prominently during the task blocks (Figure 5—figure supplement 1). These
results suggest that the SM state indicates a state of inattention or disengagement common across
task contexts.

Discussion
Our study characterizes large-scale human fMRI activity as a traversal between latent states in a low-
dimensional state space. Neural states spanned predefined gradients of functional brain organization,
with the state at the center functioning as a transitional hub. These gradients explained significant
variance in neural dynamics, suggesting their role as a general latent manifold shared across cognitive
processes. Global desynchronization marked moments of neural state transitions, with decreases in
cofluctuation of the pairwise functional networks preceding state changes. The same latent states
recurred across fMRI runs and independent datasets, with distinct state-traversal patterns during rest,
task, and naturalistic conditions. Neural state dynamics were synchronized across participants during
movie watching and temporally aligned to narrative event boundaries. Whereas different neural states
were involved in attentionally engaged states in task and naturalistic contexts, a common neural state
indicated inattention in both contexts. Together, our findings suggest that human cognition and atten-
tion arise from neural dynamics that traverse latent states in a shared low-dimensional gradient space.
Taking a dynamical systems approach, systems neuroscientists have theorized that hierarchically
modular systems of the brain communicate and process information dynamically (Breakspear, 2017).
This framework, which characterizes the dynamics of systems-level interactions as a trajectory within
a state space, has opened a new avenue to understanding the functional brain beyond what could be
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revealed from the univariate activity of local brain regions or their pairwise connections alone (John
et al., 2022). Although a dynamical systems approach has been adopted in non-human animal studies
to understand behavior during targeted tasks (Churchland et al., 2012; Kato et al., 2015, Mante
et al., 2013; Sohn et al., 2019), there is still a lack of understanding of how human cognition arises
from brain-wide interactions, with a particularly sparse understanding of what gives rise to naturalistic,
real-world cognition.

Using fMRI data collected in rest, task, and naturalistic contexts, we identified four latent states that
tile the principal gradient axes of functional brain connectome. Are these latent states—the DMN,
DAN, SM, and base states—generalizable states of the human brain? When the HMM was applied to
data from each condition separately, the inferred latent states differed (Figure 1—figure supplement
2). However, when the HMM was applied to datasets including diverse fMRI conditions like the SONG
and HCP, the four states consistently reappeared, regardless of analytical choices (Figure 1—figure
supplement 1; Figure 1—figure supplements 5 and 6). We propose a framework that can unify
these observations and theories: large-scale neural dynamics traverse canonical latent states in a low-
dimensional manifold captured by the principal gradients of functional brain organization.

This perspective is supported by previous work that has used different methods to capture recur-
ring low-dimensional states from spontaneous fMRI activity during rest. For example, to extract time-
averaged latent states, early resting-state analyses identified task-positive and task-negative networks
using seed-based correlation (Fox et al., 2005). Dimensionality reduction algorithms such as indepen-
dent component analysis (Smith et al., 2009) extracted latent components that explain the largest
variance in fMRI time series. Other lines of work used time-resolved analyses to capture latent state
dynamics. For example, variants of clustering algorithms, such as co-activation patterns (Liu et al.,
2018; Liu and Duyn, 2013), k-means clustering (Allen et al., 2014), and HMM (Baker et al., 2014,
Chen et al., 2016; Vidaurre et al., 2018; Vidaurre et al., 2017), characterized fMRI time series as
recurrences of and transitions between a small number of states. Time-lag analysis was used to iden-
tify quasiperiodic spatiotemporal patterns of propagating brain activity (Abbas et al., 2019; Yousefi
and Keilholz, 2021). A recent study extensively compared these different algorithms and showed
that they all report qualitatively similar latent states or components when applied to fMRI data (Bolt
et al., 2022). While these studies used different algorithms to probe data-specific brain states, this
work and ours report common latent axes that follow a long-standing theory of large-scale human
functional systems (Mesulam, 1998). Neural dynamics span principal axes that dissociate unimodal to
transmodal and sensory to motor information processing systems.

Prior systems neuroscience research on low-dimensional brain states was primarily performed on
data from rest or a single task. Thus, the extent to which a latent manifold underlying brain states
is common or different across contexts was unknown. It was also unclear how brain states reflected
cognitive dynamics. Our results show that neural dynamics in different cognitive contexts can be
coarsely understood as traversals between latent states in a context-general manifold. However, the
state dynamics, or most likely ‘paths’ between states, differ with context and functional demands,
potentially giving rise to our diverse and flexible cognitive processes.

Our study adopted the assumption of low dimensionality of large-scale neural systems, which led
us to intentionally identify only a small number of states underlying whole-brain dynamics. Impor-
tantly, however, we do not claim that the four states will be the optimal set of states in every dataset
and participant population. Instead, latent states and patterns of state occurrence may vary as a func-
tion of individuals and tasks (Figure 1—figure supplement 2). Likewise, while the lowest dimensions
of the manifold (i.e., the first two gradients) were largely shared across datasets tested here, we do not
argue that it will always be identical. If individuals and tasks deviate significantly from what was tested
here, the manifold may also differ along with changes in latent states (Samara et al., 2023). Brain
systems operate at different dimensionalities and spatiotemporal scales (Greene et al., 2023), which
may have different consequences for cognition. Asking how brain states and manifolds—probed
at different dimensionalities and scales—flexibly reconfigure (or not) with changes in contexts and
mental states is an important research question for understanding complex human cognition.

Previous studies reported functional relevance of latent state dynamics during controlled (Corn-
blath et al., 2020, Reddy et al., 2018; Shine et al., 2019a; Taghia et al., 2018, Yamashita et al.,
2021) and naturalistic tasks (Song et al., 2021b; van der Meer et al., 2020). The current study aimed
to unify these findings by generalizing the latent state model to multiple fMRI runs and datasets
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spanning rest, task, and naturalistic contexts. Intriguingly, the latent states commonly occurred in
every scan type (Figure 3B), but their functional roles differed depending on context. For example,
during monotonous tasks that required constant exertion of sustained attention, the DMN state
accompanied successful, stable performance whereas the DAN state characterized suboptimal perfor-
mance (Figure 5C and D). The antagonistic activity and functional relationship between the DMN and
DAN has been reported in past studies that used resting-state (Buckner et al., 2008; Fox et al., 2005)
or task fMRI (Esterman et al., 2013; Kelly et al., 2008; Kucyi et al., 2020). In contrast, in naturalistic
contexts, the DMN state indicated low attentional engagement to narratives (Figure 5E and F) and
tended to follow event boundaries (Figure 4A and B). The DAN state, on the other hand, indicated
high attentional engagement during documentary watching (Figure 5G) and was not modulated by
event boundaries (Figure 4—figure supplement 1). Our results indicate that the functional relation-
ship between the DMN and DAN states shows more nuanced dependence to contexts. (Though our
observations align with previous work on the functional roles of the default mode and dorsal attention
networks, it is important to keep in mind that the two states are not just characterized by activation of
these networks but by patterns of activation and covariation of the whole brain networks. They should
be interpreted as ‘states’ rather than isolated functional networks.) The findings highlight the need to
probe both the controlled and naturalistic tasks with dense behavioral sampling to fully characterize
the functional roles of these neural states (Song and Rosenberg, 2021).

In contrast to the context-specific DMN and DAN states, the SM state consistently indicated inat-
tention or disengagement. The SM state occurred during poor task performance and low narrative
engagement (Figure 5) as well as during intermittent task breaks (Figure 5—figure supplement
1). The result implies that whereas the optimal neural state may vary with information processing
demands, a suboptimal state is shared across contexts.

Previous work showed that time-resolved whole-brain functional connectivity (i.e., paired interac-
tions of more than a hundred parcels) predicts changes in attention during task performance (Rosen-
berg et al., 2020) as well as movie watching and story listening (Song et al., 2021a). Future work
could investigate whether functional connectivity and the HMM capture the same underlying ‘brain
states’ to bridge the results from the two literatures. Furthermore, though the current study provided
evidence of neural state dynamics reflecting attention, the same neural states may, in part, reflect fluc-
tuations in arousal (Chang et al., 2016; Zhang et al., 2023). Complementing behavioral studies that
demonstrated a nonlinear relationship between attention and arousal (Esterman and Rothlein, 2019,
Unsworth and Robison, 2018; Unsworth and Robison, 2016), future studies collecting behavioral
and physiological measures of arousal can assess the extent to which attention explains neural state
dynamics beyond what can be explained by arousal fluctuations.

Past resting-state fMRI studies have reported the existence of the base state. Chen et al., 2016
used the HMM to detect a state that had ‘less apparent activation or deactivation patterns in known
networks compared with other states.” This state had the highest occurrence probability among the
inferred latent states, was consistently detected by the model, and was most likely to transition to and
from other states, all of which mirror our findings here. The authors interpret this state as an ‘inter-
mediate transient state that appears when the brain is switching between other more reproducible
brain states.” The observation of the base state was not confined to studies using HMMs. Saggar
et al., 2022 used topological data analysis to represent a low-dimensional manifold of resting-state
whole-brain dynamics as a graph, where each node corresponds to brain activity patterns of a cluster
of time points. Topologically focal "hub’ nodes were represented uniformly by all functional networks,
meaning that no characteristic activation above or below the mean was detected, similar to what
we observe with the base state. The transition probability from other states to the hub state was the
highest, demonstrating its role as a putative transition state.

However, the functional relevance of the base state to human cognition had not been explored
previously. We propose that the base state, a transitional hub (Figure 2B) positioned at the center
of the gradient subspace (Figure 1D), functions as a state of natural equilibrium. Transitioning to
the DMN, DAN, or SM states reflects incursion away from natural equilibrium (Deco et al., 2017,
Gu et al., 2015), as the brain enters a functionally modular state. Notably, the base state indicated
high attentional engagement (Figure 5E and F) and exhibited the highest occurrence proportion
(Figure 3B) as well as the longest dwell times (Figure 3—figure supplement 1) during naturalistic
movie watching, whereas its functional involvement was comparatively minor during controlled tasks.

Song et al. eLife 2023;12:€85487. DOI: https://doi.org/10.7554/eLife.85487 14 of 29


https://doi.org/10.7554/eLife.85487

eLife

Neuroscience

This significant relevance to behavior verifies that the base state cannot simply be a by-product of
the model. We speculate that susceptibility to both external and internal information is maximized in
the base state—allowing for roughly equal weighting of both sides so that they can be integrated to
form a coherent representation of the world—at the expense of the stability of a certain functional
network (Cocchi et al., 2017; Fagerholm et al., 2015). When processing rich narratives, particularly
when a person is fully immersed without having to exert cognitive effort, a less modular state with
high degrees of freedom to reach other states may be more likely to be involved. The role of the base
state should be further investigated in future studies.

This work provides a framework for understanding large-scale human brain dynamics and their
relevance to cognition and behavior. Neural dynamics can be construed as traversals across latent
states along the low-dimensional gradients, driven by interactions between functional networks. The
traversals occur adaptively to external and internal demands, reflecting ongoing changes of cognition
and attention in humans.

Materials and methods

SitcOm, Nature documentary, Gradual-onset continuous performance
task (SONG) neuroimaging dataset

Participants

Twenty-seven participants were recruited in Korea (all native Korean speakers; two left-handed, 15
females; age range 18-30 y with mean age 23 * 3.16 y). Participants reported no history of visual,
hearing, or any form of neurological impairment, passed the Ishihara 38 plates color vision deficiency
test (https://www.color-blindness.com/ishihara-38-plates-cvd-test) for red-green color blindness,
provided informed consent before taking part in the study, and were monetarily compensated. The
study was approved by the Institutional Review Board of Sungkyunkwan University. None of the partic-
ipants were excluded from analysis.

Study overview

Participants visited twice for a 3 hr experimental session per day. Sessions were separated by approx-
imately 1 wk on average (mean 8.59 + 3.24 d, range 2-15 d). Two participants returned for an addi-
tional scan and behavioral session because technical difficulties prevented them from completing the
experiment within the 2 d.

During the first scan session, participants watched the first episode of a sitcom as well as a docu-
mentary clip during fMRI. Scan order was counterbalanced. One participant’s sitcom episode 1 fMRI
run was not analyzed because the data were not saved. Structural T1 images were collected after EPI
acquisitions. Immediately after the MRI scan session, participants completed behavioral tasks in a
different room. They first completed free recall of the two movie clips in the order of viewing. These
data are not analyzed here but were used to confirm that the participants were awake during the
scans. Participants then were asked to complete continuous engagement ratings while rewatching the
same audiovisual stimuli in the same order. This fMRI experiment lasted approximately 1 hr, and the
post-scan behavioral experiment lasted approximately 1.5-2 hr.

The second scan session began with two 10 min resting state runs in which the participants
were asked to fixate on a centrally presented black cross on a gray background. Next, participants
completed the gradCPT with face images, watched the second sitcom episode, and performed the
gradCPT with scene images. After fMRI, participants completed two runs of a recognition memory
task for the scene images that were viewed during gradCPT and a free recall of the sitcom episode 2.
These data were not analyzed here. The continuous engagement rating for the second sitcom episode
was not collected during this session due to time limitations. 18 of the 27 participants returned to the
lab to complete the continuous engagement rating task for the second sitcom episode. One partici-
pant's behavioral data during the gradCPT run with face images were not saved. The fMRI experiment
lasted approximately 1.5 hr, and the post-scan behavioral experiment lasted approximately 1 hr.
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Sitcom episodes and documentary watching

Stimuli

Two episodes of the comedy sitcom and one educational documentary clip were used as audiovisual
stimuli. The sitcom, High Kick Through the Roof, is a South Korean comedy sitcom that was aired in
2009-2010 on a public television channel, MBC (https://en.wikipedia.org/wiki/High_Kick_Through_
the_Roof). The duration of the first episode was 24 min 36 s, and the second episode was 24 min 15s.
These episodes were chosen because the narrative followed an interleaved ABAB sequence. Events of
a story A (e.g., which took place in a forest and centered around two sisters) happened independently
from events of a story B (e.g., which took place in a city and followed members of a large family), and
the two storylines occurred in different times and places and included different characters. To avoid a
transient increase in fMRI activity upon a sudden video presentation, we included a 30 s of a dummy
video clip from the Minions Mini Movies (2019) (https://www.youtube.com/watch?v=sL.3klLxsy-Lg)
prior to the presentations of the sitcom episodes that was discarded in analysis.

Rivers of Korea, Part 1 (21 min 33 s) is a documentary that aired in 2020 by a public educational
channel EBS Docuprime in South Korea. The documentary introduces the history and geography of
the two largest Korean rivers, the Han and Nakdong Rivers. This stimulus was chosen because while
it has rich and dynamically changing audiovisual and narrative content, it elicits an overall low degree
of engagement due to its educational purpose (although individuals may vary in the degree to which
they find it engaging). The first 22 s of the documentary was not included in the analysis to account
for a sudden increase in brain activity upon video presentation.

The audiovisual stimuli were presented at a visual dimension of 1280 x 720 and frame rate of
29.97 Hz on a black background. 30 s of center fixation was included at the end of every naturalistic
stimulus run. No additional task was given to participants during fMRI except for an instruction to stay
vigilant and attentive to the video.

Continuous engagement rating
Participants rewatched the videos in a behavioral testing room while they were instructed to contin-
uously adjust the scale bar from scale of 1 (not at all engaging) to 9 (completely engaging) that was
visible on the bottom of the monitor. Participants were instructed to report their experience as closest
to when they have watched the stimulus during the fMRI. The definition of engagement was given
to participants following Song et al., 2021a as: | find the story engaging when (i) | am curious and
excited to know what's coming up next, (i) | am immersed in the story, (iii) My attention is focused
on the story, and (iv) The events are interesting; whereas | find the story not engaging when (i) | am
bored; (ii) Other things pop into my mind, like my daily concerns or personal events; (iii) My attention
is wandering away from the story; (iv) | can feel myself dozing off; and (v) The events are not inter-
esting. Participants were encouraged to adjust the scale bar whenever their subjective engagement
changed during the sitcom episodes or documentary. All participants completed a practice session
with a clip from a Korean YouTube channel (https://www.youtube.com/c/VIVOTVchannel). Stimuli
were presented with Psychopy3 (Peirce, 2007) on a MacBook 13-inch laptop. Participants were given
freedom to turn on or turn off the light or have the headphone or speaker on. Upon completion of
continuous engagement ratings, participants were asked to give an overall engagement score of the
stimulus using the same 1-9 Likert scale.

Continuous engagement rating time courses, ranging from 1 to 9, were z-normalized across time
per participant and convolved with the canonical hemodynamic response function to be related with
the neural state dynamics.

Gradual-onset continuous performance task (gradCPT)

Task with face images

Grayscale face images (nine females and one male unique faces) were selected from the MIT Face
Database (Rosenberg et al., 2013; Russell, 2009), cropped to a circle at a visual dimension of 300 x
300, and presented on a gray background. 500 trials (450 female and 50 male face trials) were included
in the run, with each unique face image appearing 50 times in a random sequence. No repeats of the
images were allowed on consecutive trials. On each trial, an image gradually transitioned from one
to the next using a linear pixel-by-pixel interpolation. The transition took 800 ms, and the intact face

Song et al. eLife 2023;12:€85487. DOI: https://doi.org/10.7554/eLife.85487 16 of 29


https://doi.org/10.7554/eLife.85487
https://en.wikipedia.org/wiki/High_Kick_Through_the_Roof
https://en.wikipedia.org/wiki/High_Kick_Through_the_Roof
https://www.youtube.com/watch?v=sL3kLxsy-Lg
https://www.youtube.com/c/VIVOTVchannel

eLife

Neuroscience

image stayed for 200 ms when fully cohered. The task was to press a button on each trial when a
female face appeared (90% of trials) but to inhibit making a response when a male face appeared
(10% of trials). A fixation cross appeared for the first 1 s of the run, and the trial sequence started with
a dummy stimulus (scrambled face). The run ended with a 10 s of center-fixation and lasted 8 min 33 s
in total. A practice session was completed with the same face images prior to the scans.

Task with scene images

Colored scene images (300 indoor, 300 outdoor) were selected from the SUN database (deBetten-
court et al., 2018; Xiao et al., 2010). The stimulus was presented at a visual dimension of 500 x
500 on a gray background. Each individual saw 360 trial-unique images in a random order, with 300
(83.33%) coming from a frequent category (e.g., indoor) and 60 (16.67%) from an infrequent category
(e.g., outdoor). Whether the indoor or outdoor scenes corresponded to the frequent category was
counterbalanced across participants. Images transitioned in a pixelwise interpolation, with a transition
occurring over 500 ms and the intact image lasting 700 ms. Participants were asked to press ‘1’ for
frequent-category and ‘2’ for infrequent-category scene images. A fixation cross appeared at first 1s
of the run, and the trial started with a dummy stimulus (scrambled scene). The run ended with a 10 s
of center-fixation and lasted 7 min 25 s in total. A practice session was completed with a different set
of scene images prior to the scans.

Response time assignment algorithm

Each gradCPT trial included moments when an image was interpolated with the previous trial’s
image followed by the fully cohered image. A maximum of two responses were recorded per
trial. For most trials, a single response or no response was recorded within the trial time window.
However, if two responses were recorded in a trial (2.35% and 0.27% of all trials from tasks with
face and scene images) and the response for the previous trial was missing, then the first response
was regarded as a response for the previous trial and the second response as the response for the
current trial. In cases when two responses were recorded but the response for the previous trial
was not missing, or when the response for a single response trial happened before 40% of image
coherence, we chose a response that favored a correct response. For trials where there were errors
in image presentation (two participants during gradCPT scene runs: 1 trial and 18 consecutive
trials out of 360 trials) or participants did not respond for consecutive trials (one participant during
gradCPT face run: 66 trials out of 500 trials), the accuracy and response times for that trials were
treated as NaNs.

Response time variability

To calculate an RT variability time course for each gradCPT run, the response times for incorrect
and no-response trials were treated as NaNs, which were then filled by 1D linear interpolation. The
response time course was linearly detrended, and RT variability was calculated by taking the deviance
from the mean RT at every TR. Because the trial duration of the gradCPT scene runs was 1.2 s, the
RT variability time course was resampled to match the TR resolution of 1 s. Each participant’s mean
RT variability was appended as the value corresponding to the first TR. The RT variability time course
was z-normalized across time within run and convolved with the canonical hemodynamic response
function to be related with the neural state dynamics.

FMRI image acquisition and preprocessing

Participants were scanned with a 3T scanner (Magnetom Prisma; Siemens Healthineers, Erlangen,
Germany) with a 64-channel head coil. Anatomical images were acquired using a T1-weighted
magnetization-prepared rapid gradient echo pulse sequence (repetition time [TR] = 2200 ms, echo
time [TE] = 2.44 ms, field of view = 256 mm x 256 mm, and 1 mm isotropic voxels). Functional images
were acquired using a T2*-weighted echo planar imaging (EPI) sequence (TR = 1000 ms, TE = 30 ms,
multiband factor = 3, field of view = 240 mm x 240 mm, and 3 mm isotropic voxels, with 48 slices
covering the whole brain). The number of TRs per run are as follows: resting-state run 1 (602 TR)
and run 2 (602 TR), gradCPT with face (513 TR) and scene images (445 TR), sitcom episode 1 (1516
TR), episode 2 (1495 TR), and documentary (1303 TR). Visual stimuli were projected from a Propixx
projector (vPixx Technologies, Bruno, Canada), with a resolution of 1920 x 1080 pixels and a refresh
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rate of 60 Hz. Auditory stimuli were delivered by MRI compatible in-ear headphones (MR Confon;
Cambridge Research Systems, Rochester, UK).

Structural images were bias-field corrected and spatially normalized to the Montreal Neurolog-
ical Institute (MNI) space using FSL. The first two images of the resting-state and gradCPT runs,
30 for sitcom episodes and 22 for documentary were discarded to allow the MR signal to achieve
T1 equilibration. Functional images were motion-corrected using the six rigid-body transformation
parameters. The functional images were intensity-normalized, and the FMRIB's ICA-based X-noisei-
fier (FIX) was applied to automatically identify and remove noise components (Griffanti et al., 2017,
Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). The images were registered to MNI-aligned
T1-weighted images. We additionally regressed out low-frequency components (high-pass filtering,
f > 0.009 Hz), linear drift, and the global signal. The raw datasets of the SONG, Rosenberg et al.,
2016, and Chen et al., 2017 were all preprocessed with the same pipeline. Results replicated when
processing included band-pass filtering in place of high-pass filtering (0.009 < f < 0.08 Hz) and when
preprocessing did not include global signal regression (Figure 1—figure supplement 5). All analyses
were conducted in volumetric space.

Human Connectome Project (HCP) dataset

We used 3-Tesla and 7-Tesla data from 184 young adult participants in the HCP dataset. 3-Tesla
data included four resting-state runs (REST1 and RESTZ2 in the left-to-right and right-to-left phase
encoding directions) and two runs each of the seven tasks (EMOTION, GAMBLING, LANGUAGE,
MOTOR, RELATIONAL, SOCIAL, and WORKING MEMORY). 7-Tesla data included four resting-state
runs (RESTT1_PA, REST2_AP, REST3_PA, REST4_AP) and four movie-watching runs (MOVIE1_AP,
MOVIE2_PA, MOVIE3_PA, MOVIE4_AP). The combined data included 8400 TRs of the resting-state
runs, 3880 TRs of task runs, and 3655 TRs of the movie-watching runs per participant. Of these 184
individuals, we excluded 19 who had not completed any of the scan runs, and 6 whose scan run was
aborted earlier than others. Additionally, 40 participants’ data were discarded due to excessive head
motion; having at least one fMRI run with more than 20% of the time points’ framewise displacement
(FD) = 0.5 or mean FD > 0.5. This resulted in the analysis of 119 participants in total. We downloaded
the MNI-aligned, minimally preprocessed structural and functional MRI images from the HCP reposi-
tory (Glasser et al., 2013). Additionally, the global signal, white matter, and cerebrospinal fluid time
courses, 12 head motion parameters (provided by Movement_Regressors.txt), and a low-frequency
component (high-pass filtering, f > 0.009 Hz) were regressed from the data. For details on fMRI image
acquisitions and task procedures, see Barch et al., 2013; Finn and Bandettini, 2021; Van Essen
etal., 2013.

Hidden Markov model (HMM)

We used the HMM to characterize the dynamics of latent neural states that underlie large-scale func-
tional brain activity (Rabiner and Juang, 1986). First, we parcellated the whole brain into 17 cortical
networks (Yeo et al., 2011) and 8 subcortical regions (Tian et al., 2020) and averaged the BOLD time
series of the voxels that corresponded to these parcels. The 25 parcel time courses of all participants’
every run were z-normalized within-run and concatenated.

Expectation-maximization (Dempster et al., 1977) of the forward-backward algorithm was used
to estimate the optimal model parameters: (i) the emission probability p(y: | x;) of the observed fMRI
time series { y; ... yr } from the hidden latent sequence { x; ... x7 }, and (ii) the first-order Markovian
transition probabilities p(x; =s; | x,—1 =s;) for 1 <i, j < K. The emission probability was modeled

using a mixture Gaussian density function (hmmlearn.hmm.GaussianHMM), such that p(y; | x; = s)
_ (x— 1)

~MN (xlm, 03) = \/217r76 20¢  per discrete K number of latent state s € { sy ... s }, where g =

%Zé\; y; and 02 = %2511 (vi — us)z for a set of observed fMRI time steps { y; ... yny } identified as
the latent state s. The ps and o2 represent the mean activation and covariance patterns of the 25
parcels per each state (Figure 1A). The transitions between the hidden states were assumed to have
a form of a first-order Markov chain, such that if a;; represents the probability of transitioning from
state i to state j, then Zf:l ajj = 1. The inference procedure terminated if there was no longer a gain
in log-likelihood during the re-estimation process of the forward-backward algorithm or if the number
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of maximum 1000 iterations was reached. We initialized the HMM parameters using the output of
k-means clustering to overcome the problem of falling into a local minima (sklearn.cluster.kMeans).

The estimated transition and emission probabilities were applied to decode the most probable
latent state sequence conditioned on the observed fMRI time series using a Viterbi algorithm (Rezek
and Roberts, 2005). The Viterbi algorithm estimates the probability of each latent state being the
most likely state at a specific time point. We chose the state with the highest probability at every time
step (TR), thus discretizing the latent sequence.

To choose the optimal number of latent states (K), a hyperparameter that needed to be selected
in advance, we conducted the HMM in a leave-one-subject-out cross-validated manner where we
trained the HMM on all participants but one to infer transition and emission probabilities, and applied
the HMM to decode the latent state dynamics of the held-out participant. A Calinski-Harabasz score
was compared across the choice of K from 2 to 10 (Calinski and Harabasz, 1974; Gao et al., 2021,
Song et al., 2021b; Figure 1—figure supplement 1). The K with the largest mean Calinski-Harabasz
score across cross-validations was selected, and we conducted the HMM on all participants’ data with
the chosen K. The HMM inference and decoding procedure was repeated 10 times, and the instance
with the maximum expected likelihood was chosen as a final result.

The surrogate latent sequence was generated by having 25-parcel time series circular-shifted
across time respectively for each parcel, thereby disrupting meaningful covariance between parcels
while retaining temporal characteristics of the time series, and applying the same HMM fitting and
decoding algorithms 1000 times. The maximum number of estimations was set as the number of iter-
ations that was reached during the actual HMM procedure (1000 for SONG and 248 for HCP).

Unless otherwise noted, the HMM parameter inference was conducted on the SONG and HCP
datasets respectively and the model decoded latent state sequence of the same dataset. However,
for analyses validating the functional roles of the latent states, the parameters inferred from SONG
data were used to decode the latent state sequence of external datasets collected by (Figure 4B),
Rosenberg et al., 2016 (Figure 5D, Figure 5—figure supplement 1A and B), Chen et al., 2017
(Figure 5F), and working memory runs of the HCP dataset (Barch et al., 2013; Van Essen et al., 2013,
Figure 5—figure supplement 1C and D).

Figure 1B shows mean activity and covariance patterns derived from the Gaussian emission prob-
ability estimation. The brain surfaces were visualized with nilearn.plotting.plot_surf_stat_map. The
parcel boundaries in Figure 1B are smoothed from the volume-to-surface reconstruction.

Covariance strength was operationalized as the sum of the absolute covariance weights of all
possible pairwise edges. Covariance strength calculated for each latent state was compared to
chance distributions generated from covariance matrices estimated from the HMMs conducted on the
circular-shifted 25 parcel time series (1000 iterations, two-tailed non-parametric permutation tests,
FDR-corrected for the number of latent states).

Predefined and data-driven functional connectivity gradients
The gradients of the cortical and subcortical voxels estimated by Margulies et al., 2016 were down-
loaded from the repository (https://identifiers.org/neurovault.collection:1598). The gradient values
of the voxels within each of the 25 parcels were averaged to represent each parcel’s position in the
gradient space. To situate the latent states in Margulies et al.’s (2016) gradient axes, we took the
mean of element-wise product between these gradient values and the mean activity loadings of the
25 parcels inferred by the HMM. To ask whether the four latent states are maximally distant from
one another, we computed the Euclidean distance between every pair of latent states in the two-
dimensional gradient space. The mean distance between all pairs of states was compared to a chance
distribution where the null latent states were derived from HMM inferences on the circular-shifted 25
parcel time series (1000 iterations, two-tailed non-parametric permutation tests). Furthermore, to test
whether the latent states were positioned at more extreme ends of the gradients than expected by
chance, we situated the same null latent states in the gradient space. Each latent state’s position on
each gradient axis was compared to a chance distribution. The significance was FDR-corrected for
eight comparisons (four latent states on two-dimensional axes).

We evaluated how well these predefined gradients captured large-scale neural dynamics compared
to data-driven gradients defined from the SONG and HCP datasets. To do so, we extracted fMRI time
series from the 1000 cortical ROIs of Schaefer et al., 2018 and 54 subcortical ROIs of Tian et al.,
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2020. The 1054 ROI time series were z-normalized across time, and the time series from multiple
scan runs were concatenated within each participant. All participants’ 1054 ROI-by-ROI functional
connectivity matrices were averaged. As in Margulies et al., 2016, the average functional connec-
tivity matrix was thresholded row-wise at 90% for sparseness. The affinity matrix was computed using
cosine distance and then decomposed using diffusion embedding. The variance of the functional
connectome explained by each gradient was computed by taking the ratio of its eigenvalue to the
sum of all eigenvalues.

First, to compare the predefined gradients and data-specific gradients, we calculated Pearson’s
correlations across the two 1054 parcels’ gradient embeddings. Next, we computed the variance
that the predefined and data-specific gradients explained in the 1054 ROI time series of the SONG
and HCP datasets. The fMRI time series were projected onto the first two gradient axes by taking the
mean of element-wise product between the fMRI time series (time x 1054 ROls) and the gradient
embeddings (1054 ROIs x 2). The explained variance was calculated by the mean of squared Pear-
son’s correlations (?) between the 1054 ROI fMRI time series (time x 1054 ROls) and the gradient-
projected time series (time x 2). All participants’ all runs were concatenated to compute one % per
gradient axis. The explained variance of the first two gradients was equal to the sum of two r? values.

Cofluctuation time course time-aligned to neural state transitions

Cofluctuation, the absolute element-wise product of the normalized activity in two regions, was
computed based on Faskowitz et al., 2020; Zamani Esfahlani et al., 2020. We normalized the time
courses of the two regions among the 25 parcels, x; and x; (i=1... Tand j =1 ..T), such that z; =

HZHUL, where ;= 3% (t)and o; = \/ﬁ > (i (1) — p,-)z. The cofluctuation time series between

z; and z; was computed as the absolute of the element-wise product, | z; - zj |, which represents the
magnitude of moment-to-moment cofluctuations between region i and j based on their baseline
activities. Cofluctuation was computed for every pair of parcels, resulting in a time-resolved, 25
(parcel) x 25 x T (number of TRs) matrix for each fMRI run, with a symmetric matrix at every time point.

We categorized the 25-parcel pairs to cortico-cortical (136 pairs), cortico-subcortical (136 pairs),
and subcortico-subcortical (28 pairs) connection categories. The cofluctuation time courses were
time-aligned to multiple moments of state transitions indicated by the HMM inference, which were
averaged within a participant. The time-aligned mean cofluctuation of each pair was then averaged
across all runs of the entire participants.

The chance distributions were created in two ways. First, cofluctuation time courses were time-
aligned to the circular-shifted indices of neural state transitions (1000 iterations; Figure 2A). Second, we
circular-shifted the 25-parcel time series, thereby disrupting their covariance structure, and conducted
HMM inference on these null time series (1000 iterations; Figure 2—figure supplement 2). The time-
aligned cofluctuation of every pair of parcels was averaged per category and was compared to chance
distributions using z-statistics and two-tailed non-parametric permutation tests. The significance at
each time point was FDR-corrected for the number of time points (i.e., =3 to 3 from the onset of new
latent states). Furthermore, to compare the degrees of cofluctuation change between cortico-cortical,
cortico-subcortical, and subcortico-subcortical connection categories, mean cofluctuation difference
at time t-1 and t+3 was taken per category and the values were compared across categories using
paired Wilcoxon signed-rank tests (FDR-corrected for three pairwise comparisons).

Neural state transition probabilities

The T-1 number of transitions in each participant’s latent state sequence were categorized based on
which state it transitioned from (at t-1) and which state it transitioned to (at t) as a 4 (‘from’ state) X
4 ('to’ state) transition-count matrix. We controlled for the number of state occurrences by either
dividing each element by the sum of each row, which identified the probabilities of transitioning ‘to’
one of the four latent states (Figure 2B), or dividing by the sum of each column, which identified the
probabilities of transitioning ‘from’ one of the four latent states (Figure 2—figure supplement 3).
The transition probability matrices estimated from every participant's every run were averaged. The
chance distribution was created by conducting the HMM fits on the circular-shifted 25 parcel time
series (1000 iterations). Significance was computed for each state pair of the transition matrix using
the two-tailed non-parametric permutation tests (FDR-corrected for 16 pairs).
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Global cofluctuation of the latent states

Cofluctuation time courses of all pairs of parcels were averaged within a run of each participant. This
global cofluctuation measure at every TR was categorized based on the HMM latent state identi-
fication, which was then averaged per state (Figure 2C). Cofluctuation values of the base state of
all participants” entire runs were compared with the DMN, DAN, and SM states’ using the paired
t-tests (FDR-corrected for three comparisons). The values at each latent state were averaged and
compared to a chance distribution in which the analysis was repeated with a circular-shifted latent
state sequence (1000 iterations, two-tailed non-parametric permutation tests, FDR-corrected for the
number of states).

Fractional occupancy of the latent states

Using the HMM-derived latent state sequence, we calculated fractional occupancy of the latent states
for all participants’ every run. Fractional occupancy is the probability of latent state occurrence over
the entire fMRI scan sequence, with a chance value of 25% when K = 4. The mean of all participants’
fractional occupancy values was bootstrapped (10,000 iterations) for visualization in Figure 3B.

Pairwise participant similarity of the latent state sequence

The similarity between pairs of participants’ latent state sequences was computed as the ratio of the
times when the same state occurred over the entire time course. The mean similarity was compared
to the chance distribution in which participants’ neural state dynamics were circular-shifted 1000 times
(FDR-corrected for the number of fMRI runs). To compare the degree of synchrony across conditions,
we bootstrapped the same pairs of participants with replacement (yC, iterations, where N = number
of participants) in paired conditions and took the differences of bootstrapped participant pairs’ latent
state sequence similarities. The median of these differences was extracted 1000 times, and the distri-
bution was compared to 0 non-parametrically.

Neural state dynamics at narrative event boundaries

Narrative event boundaries were marked by the experimenter at moments in the sitcom episodes
when an event of a storyline transitioned to another event of a different story. Both sitcom episodes
comprised 13 events (seven events of story A and six events of story B), and thus 12 event boundaries.
The latent state sequences at t-2 and t+20 TRs from each of the 12 event boundaries were extracted,
and the mean probability of state occurrence across these event boundaries was computed for every
latent state within a participant. The probabilities were then averaged across participants. The state
occurrence probability at every time step was compared to a chance distribution that was created by
relating neural state dynamics to circular-shifted moments of event boundaries (1000 times, two-tailed
non-parametric permutation tests, FDR-corrected for number of time points). An audio-story listening
data of Chang et al., 2021b comprised 45 interleaved events. Because TR resolution (TR = 1.5 s) was
different from the SONG dataset, latent neural states from t-2 to t+16 TRs from event boundaries
were used in analysis.

Next, we compared transitions made to the DMN state at event boundaries to transitions made
to the DMN state at moments other than event boundaries. We categorized every transition to the
DMN state (i.e., from the DAN, SM, or base state) based on whether it occurred 5-15 TRs (for Chang
et al., 2021b, 4-12 TRs) after a narrative event boundary or not. The proportions of DAN-to-DMN,
SM-to-DMN, and base-to-DMN state transitions at event boundaries and non-event boundaries were
compared using paired Wilcoxon signed-rank tests (FDR-corrected for three comparisons). The inter-
action between the DMN-preceding latent states and event boundary conditions was tested using the
repeated-measures ANOVA.

Neural state dynamics related to attention dynamics

We measured participants’ attention fluctuations during gradCPT and movie-watching fMRI scans.
Fluctuations during gradCPT performance were inferred from the inverted RT variability time course
(z-normalized) collected concurrently during the gradCPT scans with face and scene images, as well as
during gradCPT in the Rosenberg et al., 2016 dataset. Continuous engagement rating time courses
(z-normalized) collected after the sitcom episode and documentary watching scans were used to infer
changes in the degree to which the naturalistic stimuli were engaging over time. Engagement ratings
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of the Sherlock dataset (Chen et al., 2017) were collected by Song et al., 2021a from an independent
group of participants.

To relate attentional dynamics to the occurrence of neural states, we categorized each person’s
attention measure at every TR based on the HMM latent state identification, which was averaged
per state. The mean attention measures of the four states were averaged across participants and
compared to a chance distribution in which the attention measures were circular-shifted to be related
to the latent state dynamics (1000 iterations, two-tailed non-parametric permutation tests, FDR-
corrected for the number of states). For Sherlock dataset only, a single group-average engagement
time course was related to the latent state sequence of each fMRI participant because we did not have
fMRI participant-specific behavioral ratings.

Linear mixed-effects models were conducted on the seven fMRI runs (Figure 5C-G), where the
model predicted attention measure at every time step from the inferred HMM state indices and
head motion (framewise displacement computed after fMRI preprocessing). The participant index
was treated as a random effect. The significance of the two main effects and their interaction were
computed using ANOVA.

To investigate the role of the SM state, we analyzed the gradCPT data collected by Rosenberg
et al., 2016 and two sessions of the HCP working memory task (Figure 5—figure supplement 1).
The Rosenberg et al., 2016 dataset (N = 25) included gradCPT task blocks separated by intervening
fixation blocks. The working memory task run of the HCP dataset included 2-back and 0-back working
memory task blocks and fixation blocks (N = 119). Nine participants’ left-to-right phase encoding
runs and 11 participants’ right-to-left phase encoding runs in the HCP working memory dataset were
discarded in the analysis either because their block orders differed from the other HCP participants’
or because the experiment log was not saved in the dataset repository. Latent state fractional occu-
pancy values were computed for each task block within a participant. Comparisons of a state’s frac-
tional occupancies across block types were based on paired t-tests (FDR-corrected for the number of
states). The interaction between latent neural states and task block types was tested using repeated-
measures ANOVA.
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0.1. Behavioral data, processed fMRI output, and main analysis scripts are published on Github (copy
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The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier
Song H, Shim WM, 2023 SONG dataset https://doi.org/10. OpenNeuro, 10.18112/
Rosenberg MD 18112/openneuro. openneuro.ds004592.v1.0.1
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The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier
Nastase SA, Liu 'Y, 2020 Narratives: fMRI data https://doi.org/10. OpenNeuro, 10.18112/
Hillman H, Zadbood for evaluating models 18112/openneuro. openneuro.ds002345.v1.1.4
A, Hasenfratz L, of naturalistic language ds002345.v1.1.4

Keshavarzian N, comprehension

Chen J, Honey CJ,
Yeshurun Y, Regev M,
Nguyen M, Chang
CHC, Baldassano C,
Lositsky O, Simony E,
Chow MA, Leong YC,
Brooks PP, Micciche
E, Choe G, Goldstein
A, Vanderwal T,
Halchenko YO,
Norman KA, Hasson

U

Chen J, Leong YC, 2018 Sherlock https://doi.org/10. OpenNeuro, 10.18112/
Honey CJ, Yong CH, 18112/openneuro. openneuro.ds001132.v1.0.0
Norman KA, Hasson ds001132.v1.0.0

U

Margulies DS, 2016 Situating the default-mode https://identifiers.org/ NeuroVault, 1598
Ghosh SS, Goulas network along a principal  neurovault.collection:

A, Falkiewicz M, gradient of macroscale 1598

Huntenburg JM, cortical organization

Langs G, Bezgin

G, Eickhoff SB,

Castellanos FX,
Petrides M, Jefferies
E, Smallwood J
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