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Abstract—Chest X-ray (CXR) analysis plays an important
role in patient treatment. As such, a multitude of machine
learning models have been applied to CXR datasets attempting
automated analysis. However, each patient has a differing number
of images per angle, and multi-modal learning should deal with
the missing data for specific angles and times. Furthermore,
the large dimensionality of multi-modal imaging data with the
shapes inconsistent across the dataset introduces the challenges
in training. In light of these issues, we propose the Fast Multi-
Modal Support Vector Machine (FMMSVM) which incorporates
modality-specific factorization to deal with missing CXRs in
the specific angle. Our model is able to adjust the fine-grained
details in feature extraction and we provide an efficient optimiza-
tion algorithm scalable to a large number of features. In our
experiments, FMMSVM shows clearly improved classification
performance.

Index Terms—Scalability, Multi-Instance, Multi-Modal, Sup-
port Vector Machine

1. INTRODUCTION

Chest X-ray (CRX) is a vital tool for quick patient triage
and as such, there have been great efforts to make computer
analysis of X-ray images possible. As imaging technology
advances, the number of images per patient continues to
grow. Reliable and fast automated analysis can alleviate the
workloads for practitioners by offloading some of the work
to a computer. However, there are three key challenges in
automating the analysis of CRX images.

First, medical images come in various modalities including
computed tomography (CT) and traditional X-ray. CXRs may
be captured at different angles determined by the patient’s sta-
tus and the physician. Consequently, the analysis model needs
to detect patterns varying across these different modalities
and learn the relationships between them. The multi-image
nature of the data can result in a large number of features
that requires significant computational resources to process.
Second, multiple images can be captured across different
points in time. At the same time, some images at specific
times are captured while others are not. For example, X-rays
are more accessible and cost-effective than CT which can
lead to some angles having X-rays but no CT. Finally, the
images can be collected from different devices and hospitals,
resulting in discrepancies in the image format and resolution.
Existing machine learning models assume a fixed-size image,
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so they rely on rescaling methods which may incur a loss of
information (from down-scaling) or undesirable bias (from up-
scaling). Lost information resulting from rescaling negatively
impacts a model’s performance.

The previous research has framed image analysis as a multi-
instance learning problem (MIL) for two reasons: the number
of images per patient differ across the dataset and individual
images may not be labeled. MIL [1], [2], [3] is a weakly-
supervised learning model, which is ideal for this application
as each patient is in the form of a labeled “bag”. Labels
are associated with the bag, not the individual images, so
the clinician does not need to label each image individu-
ally. There have been extensive studies into machine learn-
ing algorithms for MIL including support vector machines
(SVMs) and deep learning models. Some examples of SVMs
are Multi-Instance Support Vector Machine (MISVM) [4],
sparse Multi-Instance Learning (sMIL), sparse balanced MIL
(sbMIL) [5], Normalized Set Kernel (NSK), and Statistics
Kernel (STK) [6]. These methods have successfully labeled
the bags in the testing dataset as either malignant or benign.
The multi-instance deep learning models include mi-Net and
MI-Net [7], and more recently the attention mechanism-based
models such as Attention-based deep Multiple Instance Learn-
ing (AMIL) [8] and Loss-based Attention Multiple Instance
Learning (LAMIL) [9] are gaining popularity.

Although these models already exceed human performance
in some applications, the success of those models depends
on extensive training time and computational resources. Con-
sidering these difficulties, based on our earlier works [10],
[11], [12] in this paper we propose a Fast Multi-modal Multi-
instance Support Vector Machine (FMMSVM) method to
improve the performance and effectiveness of CXR analysis.
Our contributions can be summarized into the following:

o The proposed model simultaneously imputes the missing
modality and predicts the clinical outcomes in spite of
missing data. This joint imputation is designed to estimate
the values of missing entries most helpful for predicting
diagnoses.

« We derive an efficient solution algorithm for the proposed
FMMSVM which linearly scales to the number of fea-
tures of input data reducing the need for training time
and computing resources.
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II. THE METHOD

Throughout the remainder of this paper, we denote matrices
with bold upper-case letters (e.g., M), vectors as bold lower-
case letters (e.g., m), and scalars as lower-case letters (e.g., m).
The i-th row and j-th column of matrix M are written as m’ or
[M]* and m; or [M],. The scalar value indexed by the i-th row
and j-th column of M are written as m’; or [M]’. Each i-th bag
Xi={Xi1, * ,Xin, } € R contains n; instances and its
associated label is represented by y; € {1,--- ,m, -, K}.
We denote the trace norm of a matrix as tr[-].

A. Our Objective

We start our formulation with the K -class multi-instance
SVM [4]:
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Here N denotes the total number of bags, representing pa-
tients, the hyperplane w,, and bias b, are associated with the
positive class label for i-th bag X;. However, the conventional
multi-instance SVM in Eq. (1) is not able to reach ideal per-
formance with the missing data. To overcome this limitation,
we are motivated to develop FMMSVM to jointly perform the
clinical outcome prediction and imputation as:
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where d{ ¥ is time interval (i.e., temporal distance) between j-
th and k-th instance. The imputation 10ss Ly putation cONtains
factorization [13], [14], locality preserving projection [15], and
trace norm [16] terms. The mask M; € R¢*™ contains the
binary missingness information of data X;, where 1 indicates
the known entry and O indicates the unknown/missing entry.
Additionally, ® is Hadamard product. F € R¥*™ is the
imputed matrix of X; which keeps the known entries in X;.
The trace norm is defined as ||F|. = Z;n”f{d”}
tr[(FTF)z], which improves the smoothness between the
imputed and known entries.

Both factorization and trace norm terms discover low
rank structure of input data X; and unknown entries are
extrapolated using with linear combination of known en-
tries. This is accomplished by minimizing factorization term

To Zfio(” ), where the known entry in X; is ex-
pressed by the product between row of H € R7*" and column
of Z; € R"*™, and unknown entries are imputed by H and Z;
learned from the known entries. The dimensionality r of Z; is
typically much less than d of X;. Therefore, Z, represents
the enriched version of X, which removes the redundant
information in X;, and we replace X; in Eq. (1) with our
learned representation Z;. As a result, the decision function is
given as such j; = argmax,,, (max(WTH*X; + b1,)"™) ,
where H™ is Moore-Penrose pseudo-inverse of H.

From the imputation integrated SVM in Eq. (2), we should
consider the two important aspects in the images learning.
First, for each patient the multiple images are captured across
the different time points. Therefore, disease patterns in the
two consecutive images captured at the similar time points
tends to be associated each other. Second, the medical images
are provided in the multiple modalities (e.g., X-ray or CT)
and some modalities can be more predictive than the others.
To account for these two factors, we introduce the graph
learning to preserve the temporal locality where the inverse of
temporal distances each pair of instances (nodes) are weights
(similarities). We also factorize F' modality by modality to
learn H shared across all the bags and Z; shared across all
the modalities. The hyperparameters «, adjust the importance
of each modality.

B. Primal-dual Support Vector Machine with Smoothness

Although the factorization and regularizations we have
introduced in Eq. (2) are highly motivated, it adds many
terms and complexity to our objective. Following our previous
studies [11], we split the primal variables in Eq. (2) via
Alternating Direction Method of Multipliers (ADMM) [17]
approach. Another difficulty in the derivation is that the reg-
ularization terms in Eq. (2) are non-smooth and the gradients
may not exist at some points. To improve the stability of
the optimization, we use the optimization framework of the
earlier work [18] that propose the iterative reweighted method
to minimize non-smooth objective in Eq. (2) in which the key
step is minimizing the following smoothed objective:

N
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where Dy € R¥*? is a diagonal matrix whose j-th diagonal
element is o, when j-th feature of instance is in g-th features
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group (modality). Dy ; = S, — S, € R™*" where [S; HC =
(Ilz] — zF|3 + 5)_% and S is a diagonal matrix where

2dJ k
each diagonal element is the row (or column) sum of S; such

that [S;]7 = 3, [S]¥. Dy = §(FFT +6I)72 € RP*D and §
is a small constant value for smoothness.

From Eq. (3) we derive the following equation using the
augmented Lagrangian method:
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where W, b,F. H,Z, B, E,Q, T,R,U are the primal vari-
ables,

A, Ao, Az Ay, 3,0, Q2T are the dual variables.

The algorithm to solve the above objective is provided in
Algorithm 1. The detailed derivations of the algorithm is not
provided here due to space limit and will be provided in the
extended journal version of this paper.

III. EXPERIMENTS

The chest X-rays are commonly utilized in medical research
and clinical practice to detect abnormalities. In our experi-
ments, we use an publicly available dataset of chest X-ray
and CT images. Each patient (bag) is labeled by in-hospital
mortality and associated with multiple images recorded across
the different time points. For each time step we have two
CXRs captured from the front and side as well as one CT
image. The images are collected from the different public
sources, hospitals, and physicians, which results in different
shapes between images. The Fig. 1 and 2 shows the widths,
heights, and ratios of images in the dataset, and we observe the
high variance in the size and ratio distributions. As a result,
rescaling the images with the interpolation method can signif-
icantly distort the objects in the images. Therefore, instead of
rescaling, we divide each image into 3 x 4 patches. Each patch
is then vectorized through Parameter Free Threshold statistics

Algorithm 1 The multiblock ADMM updates to optimize
Eq. 4

1: Data: X € ROX(mit++7N) and Y € {—1,1}K*N,

2: Hyperparameters: C' > 0, u© > 0, p > 1, tolerance > 0 and
70,71, 72,73 2> 0.

3: Initialize: primal variables W, b, F, H,Z B, E, Q, R, T, U and dual
variables A1, A2, A3,A4,3, 0, Q ET.

4: while residual > tolerance do
5.  Update Dy ; (i € {1,---,N}),D2 by Eq. (3).
6: for m € K do
7: Update w,, € W by Eq. (??).
8: Update b,, € b by b, =
o SN[ w207 /u SN S [wgf - w i Za e /]
: N+KN7 :
10: end for
11:  for (i,m) € {N,K} do
12: Update e;" € E by
nt — %y:" when y"ni" > %,
. _ pm < C
13: et =40 when 0 < yi"n} S;
n" when y"nl" < 0;
14: where n!" =y — ¢ + 1" — A7/ .
15: Update g;"* € Q by
b o P s o) o)
17: Update " € R by
18 gm— (T O e (w) o)
19: for j € n; do
20: Update tm € T by
(1/2) (@™ + o™ /u) + (1/4) - (27" + b))
21 = when j = arg max(t"’)
(1/2) (" + bm) else;
2. where B"’ =w,, TB, + 1by, — 0" /1,
' 2 =Wl Zy + by, — 07 /.
23: Update u"’ € U by
(1/2) - (r7* + wi™/p) + (1/4) - (27" + b]*)
24: ul = when j = arg max(u");
(1/2) - (Z™ + bT) else;
)5 where b" = wZBi + 1by — €/,
’ ZZ”ZWTZiJrlbyfc;”/p,..
26: end for
27: Update Z; by [2 -1 wm(tm (Wi,
28: +wy (u™ — (w gBi + 1by) + - )+2B +(1/H)A
29: +(r0/uHT Do(F, — HB,) + (1/u)Ag.s — (1 /u)B, DM]
30: (BTB; +T)~L.
31: Update B; by [1 2K | wm, (tm (wh
32: +wy (u* — (WI'Z; + 1by) + T) +27Z; + (l/u)A
33: +(r0/w)B"Do(F; — HZ;) + (1/p)A3,i — (11/1)Z; Dl,z]
34: (z¥z; +1)~L.
3s: Update F; by Eq. (2?).
36: Update Al,i, A371‘, A47¢ by
37: A11—A11+BZ 7I'A3¢:A3J’+Zi7B
38: Ay =Ag; + X
39: Update A 500 01 & by
Agly = /\21+u =Wt - )
o' =o'+ N(‘h‘ — max(t{"));
40: wi = wi" + p(r" — max(ug"))
0" = 0 + pu(t? — (WhX; + 1by));
&7 =& + p(uf — (wy X; + 1by)).
41: end for
42: Update Hby (N Z(ZT +BT))

43 (XN B.ZT + 2 BT))
44: end while

45:

46: return (W, . ..

,WK) eW, (bl,..s,bK) € b, and H.
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Fig. 1: The histogram of image sizes (width in blue and height
in orange).

(PFTAS) [19] method. These patches from two CXRs and one
CT image at each time point is concatenated to create each
information-dense instance. The PFTAS extracts the texture
features by counting the number of neighboring black pixels
for each pixel. Then the total count for all the pixels in a given
patch is stored in a nine-bin histogram [19]. The thresholding
is conducted by Otsu’s algorithm [20] which generates a 162-
dimensional feature vector for each patch. As a result, each
instance is a vector of 162 x 12 x 3 features. We list the
details of this dataset:

o Cohort size: The number of patients is 323. The number
of all patients associated with this dataset is 472, however
149 patients have been dropped because their labels are
not provided.

o Label distribution: In our experiments, we have aimed to
estimate the severity of patients from their CXR images.
The severity is determined by whether the given patient
was dead, or needs supplemental oxygen or intubation
during admission in ICU (based on clinicians decision).
As a result, 262 and 61 patients (bags) are labeled as
the severe and non-severe status. Because of the limited
number of bags, we have augmented the images in the
bags by applying flipping, random rotations, and random
translations. As a result of data augmentation, 1,000 bags
have been involved in our experiments.

o The number of missing images: Total number of instances
is 635. The number of front view CXRs captured is 611
(e.g., 24 front view CXRs are missing). The number of
side view CXRs captured is 53. The number of CT images
captured is 27.

A. Comparison Methods

We compare the classification performance and scalability
of proposed FMMSVM to the following models:

e (1) A single-instance learning (SIL) method that assigns
the bags’ labels to all instances during training and
produces the maximum response for each bag/class pair
at testing time for the training bag’s instances.
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Fig. 2: The ratio (width/height) distribution of the image sizes.

e The two multi-instance SVM methods: (2) Normalized
Set Kernel (NSK) and (3) Statistics Kernel (STK) [6]
map the entire bag to a single-instance.

o The five multi-instance deep learning (DL) models: The
(4) mi-Net and (5) MI-Net [7] approach to the MIL prob-
lem through instance space and embedded space (learning
vectorial representation of bag) paradigm respectively.
(6) The Multi-Modal Multi-Instance deep learning model
(MMMI-deep) [21] learns the global cross-modal rep-
resentation. (7) Attention-based deep Multiple Instance
Learning (AMIL) [8] calculates the parameterized atten-
tion score for each instance to generate the probability
distribution of bag labels. (8) Loss-based Attention for
deep Multiple Instance Learning (LAMIL) [9] learns the
instance scores and predictions jointly.

e (9) An variation of the FMMSVM for the purpose of
ablation study: We discard the locality preserving (Ours
w/o LP in Table. I) and smoothness learning (Ours w/o
SL) capability from our model (Ours) to evaluate their
effectiveness. We set 7, and 79 to zero to remove the
impact of each term.

B. Hyperparameters

For the classification models used in Table I, we report
the following hyperparameters found by grid search on the
balanced accuracies of five test sets. For SIL, NSK, and STK
the regularization tradeoff is set to 1.0. We set 79, 71, T2, T3,
initial i to le+2, le—1, le—2, le+2, 1le — 5 for our exact
FMMSVM model and le+2, le—2, le—2, 1le+3, 1le—10 for
our inexact FMMSVM model. The tolerance is set to le — 5
for both. We set o, to 5.0, 3.0, and 1.0 for front-view CXR,
side-view CXR, and CT image modality. The deep learning
models (mi-Net, MI-Net, MMMI-deep, AMIL, and LAMIL)
are implemented using the codes provided by their respective
papers [71, [21], (8], [9].

C. Classification Performance

In table I, we report precision, recall, Fl-score, accu-
racy, and balanced accuracy (BACC) in classification of sur-
vival/death bags. We split the bags into 80% for training and
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TABLE I: The classification performance of our FMMSVM and competing models on in-hospital mortality are below. We

highlight the best scores in bold

Model Precision Recall F1Score Accuracy BACC

SIL 0.8624+0.013  0.796+0.013  0.823£0.036  0.7814+0.043  0.804+0.024
NSK 0.8914+0.024  0.901+0.025  0.881£0.019  0.84740.031  0.860+0.022
STK 0.8794+0.030  0.880+0.021  0.861£0.032  0.84440.024  0.847+0.026
mi-Net 0.899+0.024  0.871+0.019  0.881£0.019  0.86740.015  0.877+0.026
MI-Net 0.900+0.021  0.8994+0.028  0.898+0.019  0.89940.021  0.896+0.027
MMMI-deep  0.9014+0.019  0.904+£0.021  0.902£0.027  0.9054+0.024  0.884+£0.023
AMIL 0.881+0.032  0.886+0.026  0.890+0.019  0.84940.047  0.846+0.020
LAMIL 0.893+0.028  0.895+0.041  0.894+£0.031  0.86740.026  0.879+0.026
Ours 0.919£0.021  0.9044+0.029  0.898+0.021  0.91740.029  0.91140.023
Ours w/o LP 0.86940.034  0.885+0.031  0.877£0.054  0.904+0.065  0.894+£0.027
Ours w/o SL  0.908+0.024  0.903+0.031  0.906+0.035  0.9084+0.024  0.916+0.012

20% for test set, then we train the classifier with training set of
3 folds, and tune the hyperparameters based on the accuracy
on the validation set of 1 fold. Finally, the performance is
measured on the test (held out) set of 1 fold and this is
repeated 5 times and scores are averaged across 5 results
following 5-fold cross validation scheme. The comparison
between the classification models in Table I shows that the
proposed FMMSVM models outperform the other existing
multi-instance models. We interpret that our model has the
better capability in joint imputation-prediction and learning
temporal relationships between the instances. When Ours is
compared to Ours w/o LP and Ours w/o SL, we observe
that the introduced locality preserving and smoothness loss
terms improve the prediction. These results demonstrate that
classification pattern for FMMSVM can vary based on the
optimization strategy.

D. Experiments with Multi-modal Brain Imaging Dataset

Although the results from CXR dataset are promising, the
cohort size (323 patients) is limited and the classification
score gaps between our model and best performing baseline
model (MMMI-deep) in Table I is within 30. Therefore we
have extended our experiments to the additional dataset, which
can provide the better measurement on the clinical applicabil-
ity. We have conducted experiments on Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database collected from 818
participants. In this dataset, each participant (bag) has 1 to
5 brain MRIs (1 to 5 instances), and we perform FreeSurfer
and voxel-based morphometry [22] to extract the gray matter
measures for 90 regions of interest for each brain MRIL
To reproduce the missing modalities, we discard each MRI
randomly with 50% probability. We classify each patient’s
Alzheimer’s Diesase progression (AD) in {Alzheimer’s Dis-
ease (337 AD patients), Mild Cognitive Impairment (251 MCI
patients), Healthy Control (230 HC patients)}. Considering
this ternary classification is usually more difficult than binary
classification, the results are promising and they show the
significantly improved performance of our model as the score
gaps are larger than 3o.

Besides the improved performance, our model has identified
the AD risk factor as shown in Fig. 3. We have analyzed the
learned weights of our model on each ROI feature. Our model

identifies hippocampus [23], caudate nucleus [23], lateral ven-
tricle [24], and amygdala [25] regions. The identified regions
have been shown in the medical literatures to be related to AD.
These results additionally validate the correctness of disease
progression prediction from our model.

IV. CONCLUSION

Information in medical image datasets usually represent
a large number of features and are delivered in a variety
of modalities. As data mining technologies develop, multi-
modal methods are attracting more attention in the field
of machine learning researches. In this study, we present a
novel multi-instance learning model that is scalable to a large
number of features. We employ the factorization based joint
imputation-prediction approach to handle the missing data in
the modalities and PFTAS methods to control the fine-grained
details of imaging information. In our experiments, we have
observed promising performance and scalability of the pro-
posed method when compared to the existing SVM and deep
learning models. In addition to the improved performance and
scalability, our model identifies the disease relevant regions in
the images.
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TABLE II: The classification performance on AD progression

Model AD-Precision =~ MCI-Precision =~ HC-Precision =~ AD-Recall MCI-Recall ~HC-Recall Accuracy
SIL 0.4540.02 0.5340.02 0.5140.02 0.44+0.02  0.494+0.02  0.484+0.03  0.54+0.02
NSK 0.4240.03 0.5040.02 0.5440.03 0.48+0.03  0.534+0.02  0.544+0.02  0.5340.02
STK 0.5040.01 0.5440.04 0.5240.04 0.58+0.02  0.484+0.03  0.554+0.02  0.55+0.03
mi-Net 0.5740.06 0.5240.03 0.4540.02 0.57+0.02  0.464+0.02  0.494+0.03  0.58+0.02
MI-Net 0.5540.01 0.5440.02 0.5740.02 0.49+0.04  0.524+0.03  0.46+0.02  0.57£0.01
MMMI-deep 0.68+0.02 0.6240.00 0.5940.02 0.57£0.02  0.524+0.05  0.544+0.02  0.54+0.03
AMIL 0.62£0.02 0.66£0.01 0.60+£0.02 0.54+0.02  0.57£0.02  0.52£0.03  0.56%0.01
LAMIL 0.6540.02 0.6140.02 0.6240.01 0.57+0.03  0.584+0.01  0.574+0.02  0.5940.02
Ours 0.7640.02 0.6940.01 0.7540.03 0.65+0.02  0.694+0.01  0.7740.03  0.7240.02
Ours w/o LP 0.6940.00 0.7340.02 0.68+0.01 0.62+0.03  0.594+0.02  0.67£0.02  0.69£0.02
Ours w/o SL 0.7040.01 0.7040.04 0.7340.02 0.68+0.02  0.6240.01 0.69+0.04  0.67£0.02

Fig. 3: Identification results on brain ROIs. The darker color indicates that the corresponding region is identified as the important
region in predicting AD progression by our model. The following regions have been identified in top-left: hippocampus and
caudate nucleus, top-right: lateral ventricle, bottom-left: amygdala, bottom-right: caudate.

[7

(8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T. Gértner, P. A. Flach, A. Kowalczyk, and A. J. Smola, “Multi-instance
kernels,” in ICML, vol. 2, 2002, p. 7.

X. Wang, Y. Yan, P. Tang, X. Bai, and W. Liu, “Revisiting multiple
instance neural networks,” Pattern Recognition, vol. 74, pp. 15-24, 2018.
M. Ilse, J. Tomczak, and M. Welling, “Attention-based deep multiple
instance learning,” in International conference on machine learning.
PMLR, 2018, pp. 2127-2136.

X. Shi, F. Xing, Y. Xie, Z. Zhang, L. Cui, and L. Yang, “Loss-based
attention for deep multiple instance learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp.
5742-5749.

H. Seo, L. Brand, L. S. Barco, and H. Wang, “Scaling multi-instance
support vector machine to breast cancer detection on the breakhis
dataset,” Bioinformatics, vol. 38, no. Supplement_1, pp. 1921100, 2022.
L. Brand, H. Seo, L. Z. Baker, C. Ellefsen, J. Sargent, and H. Wang,
“A linear primal-dual multi-instance svm for big data classifications,”
Knowledge and Information Systems, pp. 1-32, 2023.

H. Seo, L. Brand, L. S. Barco, and H. Wang, “Scalable multi-instance
multi-shape support vector machine for whole slide breast histopathol-
ogy,” in 2022 IEEE International Conference on Knowledge Graph
(ICKG). IEEE, 2022, pp. 225-232.

M. Ranjbar, P. Moradi, M. Azami, and M. Jalili, “An imputation-based
matrix factorization method for improving accuracy of collaborative
filtering systems,” Engineering Applications of Artificial Intelligence,
vol. 46, pp. 58-66, 2015.

L. Brand, L. Z. Baker, and H. Wang, “A multi-instance support vector
machine with incomplete data for clinical outcome prediction of covid-
19,7 in proceedings of the 12th ACM conference on bioinformatics,
computational biology, and health informatics, 2021, pp. 1-6.

X. He and P. Niyogi, “Locality preserving projections,” Advances in
neural information processing systems, vol. 16, 2003.

F. Nie, H. Wang, H. Huang, and C. Ding, “Joint schatten p-norm and I p-
norm robust matrix completion for missing value recovery,” Knowledge
and Information Systems, vol. 42, no. 3, pp. 525-544, 2015.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Hong and Z.-Q. Luo, “On the linear convergence of the alternating
direction method of multipliers,” Mathematical Programming, vol. 162,
no. 1-2, pp. 165-199, 2017.

Y. Liu, Y. Guo, H. Wang, F. Nie, and H. Huang, “Semi-supervised
classifications via elastic and robust embedding,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.

N. A. Hamilton, R. S. Pantelic, K. Hanson, and R. D. Teasdale, “Fast
automated cell phenotype image classification,” BMC bioinformatics,
vol. 8, no. 1, pp. 1-8, 2007.

N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp.
62-66, 1979.

H. Li, F. Yang, X. Xing, Y. Zhao, J. Zhang, Y. Liu, M. Han, J. Huang,
L. Wang, and J. Yao, “Multi-modal multi-instance learning using weakly
correlated histopathological images and tabular clinical information,” in
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2021, pp. 529-539.

S. L. Risacher, L. Shen, J. D. West, S. Kim, B. C. McDonald, L. A.
Beckett, D. J. Harvey, C. R. Jack Jr, M. W. Weiner, A. J. Saykin et al.,
“Longitudinal mri atrophy biomarkers: relationship to conversion in the
adni cohort,” Neurobiology of aging, vol. 31, no. 8, pp. 1401-1418,
2010.

L. G. Apostolova, M. Beyer, A. E. Green, K. S. Hwang, J. H. Morra,
Y.-Y. Chou, C. Avedissian, D. Aarsland, C. C. Janvin, J. P. Larsen et al.,
“Hippocampal, caudate, and ventricular changes in parkinson’s disease
with and without dementia,” Movement Disorders, vol. 25, no. 6, pp.
687-695, 2010.

O. T. Carmichael, L. H. Kuller, O. L. Lopez, P. M. Thompson, R. A.
Dutton, A. Lu, S. E. Lee, J. Y. Lee, H. J. Aizenstein, C. C. Meltzer et al.,
“Ventricular volume and dementia progression in the cardiovascular
health study,” Neurobiology of aging, vol. 28, no. 3, pp. 389-397, 2007.
S. P. Poulin, R. Dautoff, J. C. Morris, L. F. Barrett, B. C. Dickerson,
A. D. N. Initiative et al., “Amygdala atrophy is prominent in early
alzheimer’s disease and relates to symptom severity,” Psychiatry Re-
search: Neuroimaging, vol. 194, no. 1, pp. 7-13, 2011.

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on February 20,2024 at 07:25:31 UTC from IEEE Xplore. Restrictions apply.



