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Abstract—Chest X-ray (CXR) analysis plays an important
role in patient treatment. As such, a multitude of machine
learning models have been applied to CXR datasets attempting
automated analysis. However, each patient has a differing number
of images per angle, and multi-modal learning should deal with
the missing data for specific angles and times. Furthermore,
the large dimensionality of multi-modal imaging data with the
shapes inconsistent across the dataset introduces the challenges
in training. In light of these issues, we propose the Fast Multi-
Modal Support Vector Machine (FMMSVM) which incorporates
modality-specific factorization to deal with missing CXRs in
the specific angle. Our model is able to adjust the fine-grained
details in feature extraction and we provide an efficient optimiza-
tion algorithm scalable to a large number of features. In our
experiments, FMMSVM shows clearly improved classification
performance.

Index Terms—Scalability, Multi-Instance, Multi-Modal, Sup-
port Vector Machine

I. INTRODUCTION

Chest X-ray (CRX) is a vital tool for quick patient triage

and as such, there have been great efforts to make computer

analysis of X-ray images possible. As imaging technology

advances, the number of images per patient continues to

grow. Reliable and fast automated analysis can alleviate the

workloads for practitioners by offloading some of the work

to a computer. However, there are three key challenges in

automating the analysis of CRX images.

First, medical images come in various modalities including

computed tomography (CT) and traditional X-ray. CXRs may

be captured at different angles determined by the patient’s sta-

tus and the physician. Consequently, the analysis model needs

to detect patterns varying across these different modalities

and learn the relationships between them. The multi-image

nature of the data can result in a large number of features

that requires significant computational resources to process.

Second, multiple images can be captured across different

points in time. At the same time, some images at specific

times are captured while others are not. For example, X-rays

are more accessible and cost-effective than CT which can

lead to some angles having X-rays but no CT. Finally, the

images can be collected from different devices and hospitals,

resulting in discrepancies in the image format and resolution.

Existing machine learning models assume a fixed-size image,

so they rely on rescaling methods which may incur a loss of

information (from down-scaling) or undesirable bias (from up-

scaling). Lost information resulting from rescaling negatively

impacts a model’s performance.
The previous research has framed image analysis as a multi-

instance learning problem (MIL) for two reasons: the number

of images per patient differ across the dataset and individual

images may not be labeled. MIL [1], [2], [3] is a weakly-

supervised learning model, which is ideal for this application

as each patient is in the form of a labeled “bag”. Labels

are associated with the bag, not the individual images, so

the clinician does not need to label each image individu-

ally. There have been extensive studies into machine learn-

ing algorithms for MIL including support vector machines

(SVMs) and deep learning models. Some examples of SVMs

are Multi-Instance Support Vector Machine (MISVM) [4],

sparse Multi-Instance Learning (sMIL), sparse balanced MIL

(sbMIL) [5], Normalized Set Kernel (NSK), and Statistics

Kernel (STK) [6]. These methods have successfully labeled

the bags in the testing dataset as either malignant or benign.

The multi-instance deep learning models include mi-Net and

MI-Net [7], and more recently the attention mechanism-based

models such as Attention-based deep Multiple Instance Learn-

ing (AMIL) [8] and Loss-based Attention Multiple Instance

Learning (LAMIL) [9] are gaining popularity.
Although these models already exceed human performance

in some applications, the success of those models depends

on extensive training time and computational resources. Con-

sidering these difficulties, based on our earlier works [10],

[11], [12] in this paper we propose a Fast Multi-modal Multi-

instance Support Vector Machine (FMMSVM) method to

improve the performance and effectiveness of CXR analysis.

Our contributions can be summarized into the following:

• The proposed model simultaneously imputes the missing

modality and predicts the clinical outcomes in spite of

missing data. This joint imputation is designed to estimate

the values of missing entries most helpful for predicting

diagnoses.

• We derive an efficient solution algorithm for the proposed

FMMSVM which linearly scales to the number of fea-

tures of input data reducing the need for training time

and computing resources.
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II. THE METHOD

Throughout the remainder of this paper, we denote matrices

with bold upper-case letters (e.g., M), vectors as bold lower-

case letters (e.g., m), and scalars as lower-case letters (e.g., m).

The i-th row and j-th column of matrix M are written as mi or

[M]i and mj or [M]j . The scalar value indexed by the i-th row

and j-th column of M are written as mi
j or [M]ij . Each i-th bag

Xi = {xi,1, · · · ,xi,ni
} ∈ �d×ni contains ni instances and its

associated label is represented by yi ∈ {1, · · · ,m, · · · ,K}.

We denote the trace norm of a matrix as tr[·].
A. Our Objective

We start our formulation with the K-class multi-instance

SVM [4]:

min
W,b

1

2

K∑
m=1

‖wm‖22 + C
N∑
i=1

K∑
m=1

(1− [max
i

(wT
mXi) + 1bm

−max
i

(wT
y Xi) + 1by]y

m
i )+.

(1)

Here N denotes the total number of bags, representing pa-

tients, the hyperplane wy and bias by are associated with the

positive class label for i-th bag Xi. However, the conventional

multi-instance SVM in Eq. (1) is not able to reach ideal per-

formance with the missing data. To overcome this limitation,

we are motivated to develop FMMSVM to jointly perform the

clinical outcome prediction and imputation as:

Ljoint = Limputation + Lclassification

= min
W,b,Z,H,F

τ0

N∑
i=0

G∑
g=1

(αg‖Fg
i −HgZi‖2F ) + τ1

N∑
i=1

ni∑
j,k=1

1

dj,ki

‖zji − zki ‖22

+ τ2‖F‖∗ + 1

2

K∑
m=1

‖wm‖22 + τ3

N∑
i=1

K∑
m=1

(1− [max
i

(wT
mZi + 1bm)−max

i
(wT

y Zi + 1by)]y
m
i )+

s.t. Fi �Mi = Xi �Mi, F = [F1,F2, · · · ,FN ],

ZiZ
T
i = I, H = [H1,H2, · · · ,HG],

(2)

where dj,ki is time interval (i.e., temporal distance) between j-

th and k-th instance. The imputation loss Limputation contains

factorization [13], [14], locality preserving projection [15], and

trace norm [16] terms. The mask Mi ∈ �d×ni contains the

binary missingness information of data Xi, where 1 indicates

the known entry and 0 indicates the unknown/missing entry.

Additionally, � is Hadamard product. F ∈ �d×ni is the

imputed matrix of Xi which keeps the known entries in Xi.

The trace norm is defined as ‖F‖∗ =
∑min{d,ni}

j=1 σj =

tr[(FTF)
1
2 ], which improves the smoothness between the

imputed and known entries.

Both factorization and trace norm terms discover low

rank structure of input data Xi and unknown entries are

extrapolated using with linear combination of known en-

tries. This is accomplished by minimizing factorization term

τ0
∑N

i=0(‖Fi−HZi‖2,1), where the known entry in Xi is ex-

pressed by the product between row of H ∈ �d×r and column

of Zi ∈ �r×ni , and unknown entries are imputed by H and Zi

learned from the known entries. The dimensionality r of Zi is

typically much less than d of Xi. Therefore, Zi represents

the enriched version of Xi which removes the redundant

information in Xi, and we replace Xi in Eq. (1) with our

learned representation Zi. As a result, the decision function is

given as such ỹi = argmaxm′(max(WTH+Xi + b1i)
m′

) ,

where H+ is Moore-Penrose pseudo-inverse of H.

From the imputation integrated SVM in Eq. (2), we should

consider the two important aspects in the images learning.

First, for each patient the multiple images are captured across

the different time points. Therefore, disease patterns in the

two consecutive images captured at the similar time points

tends to be associated each other. Second, the medical images

are provided in the multiple modalities (e.g., X-ray or CT)

and some modalities can be more predictive than the others.

To account for these two factors, we introduce the graph

learning to preserve the temporal locality where the inverse of

temporal distances each pair of instances (nodes) are weights

(similarities). We also factorize F modality by modality to

learn H shared across all the bags and Zi shared across all

the modalities. The hyperparameters αg adjust the importance

of each modality.

B. Primal-dual Support Vector Machine with Smoothness

Although the factorization and regularizations we have

introduced in Eq. (2) are highly motivated, it adds many

terms and complexity to our objective. Following our previous

studies [11], we split the primal variables in Eq. (2) via

Alternating Direction Method of Multipliers (ADMM) [17]

approach. Another difficulty in the derivation is that the reg-

ularization terms in Eq. (2) are non-smooth and the gradients

may not exist at some points. To improve the stability of

the optimization, we use the optimization framework of the

earlier work [18] that propose the iterative reweighted method

to minimize non-smooth objective in Eq. (2) in which the key

step is minimizing the following smoothed objective:

min
W,b,F,H,
Z,B,E,Q,
R,T,U

τ0

N∑
i=0

tr
[
(Fi −HZi)

TD0(Fi −HBi)
]

+ τ1

N∑
i=1

tr
[
ZiD1,iB

T
i

]
+ τ2 tr

[
FTD2F

]

+
1

2

K∑
m=1

‖wm‖22 + τ3

N∑
i=1

K∑
m=1

(ymi emi )+

s.t. Fi �Mi = Xi �Mi, BiZ
T
i = I, Bi = Zi,

emi = ymi − qmi + rmi ,

rmi = max (um
i ) , qmi = max (tmi ) ,

tmi = wT
mXi + 1bm,um

i = wT
y Xi + 1by,

(3)

where D0 ∈ �d×d is a diagonal matrix whose j-th diagonal

element is αg when j-th feature of instance is in g-th features
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group (modality). D1,i = S̃i − Si ∈ �r×r where [Si]
j
k =

1

2dj,k
i

(‖zji − zki ‖22 + δ)−
1
2 and S̃ is a diagonal matrix where

each diagonal element is the row (or column) sum of Si such

that [S̃i]
j
j =

∑
k[S]

k
j . D2 = 1

2 (FF
T + δI)−

1
2 ∈ �D×D and δ

is a small constant value for smoothness.

From Eq. (3) we derive the following equation using the

augmented Lagrangian method:

min
W,b,F,H,
Z,B,E,Q,
R,T,U

τ0

N∑
i=0

tr
[
(Fi −HZi)

TD0(Fi −HBi)
]

+ τ1

N∑
i=1

tr
[
ZiD1,iB

T
i

]
+ τ2 tr

[
FTD2F

]
+

1

2

K∑
m=1

‖wm‖22

+ τ3

N∑
i=1

K∑
m=1

(ymi emi )+ +
μ

2

N∑
i=1

‖(Fi −Xi − Λ4,i

μ
)�Mi‖22,2

+
μ

2

N∑
i=1

‖BiZ
T
i − I− Λ1,i

μ
‖22,2 +

μ

2

N∑
i=1

‖Zi −Bi − Λ3,i

μ
‖22, 2

+
μ

2

N∑
i=1

K∑
m=1

[ (
emi − (ymi − qmi + rmi − λm

2,i/μ)
)2

+ (qmi −max (tmi ) + σm
i /μ)

2
+ (rmi −max (um

i ) + ωm
i /μ)

2

+ tr[(tmi − (
wT

mZi + 1bm
)
+ θm

i /μ)T

(tmi − (
wT

mBi + 1bm
)
+ θm

i /μ)]

+ tr[(um
i − (

wT
y Zi + 1by

)
+ ξmi /μ)T

(um
i − (

wT
y Bi + 1by

)
+ ξmi /μ)]

]
,

(4)

where W,b,F,H,Z,B,E,Q,T,R,U are the primal vari-

ables,

Λ1,i,Λ2,Λ3,i,Λ4,i,Σ,Θ,Ω,Ξ,Γ are the dual variables.

The algorithm to solve the above objective is provided in

Algorithm 1. The detailed derivations of the algorithm is not

provided here due to space limit and will be provided in the

extended journal version of this paper.

III. EXPERIMENTS

The chest X-rays are commonly utilized in medical research

and clinical practice to detect abnormalities. In our experi-

ments, we use an publicly available dataset of chest X-ray

and CT images. Each patient (bag) is labeled by in-hospital

mortality and associated with multiple images recorded across

the different time points. For each time step we have two

CXRs captured from the front and side as well as one CT

image. The images are collected from the different public

sources, hospitals, and physicians, which results in different

shapes between images. The Fig. 1 and 2 shows the widths,

heights, and ratios of images in the dataset, and we observe the

high variance in the size and ratio distributions. As a result,

rescaling the images with the interpolation method can signif-

icantly distort the objects in the images. Therefore, instead of

rescaling, we divide each image into 3×4 patches. Each patch

is then vectorized through Parameter Free Threshold statistics

Algorithm 1 The multiblock ADMM updates to optimize

Eq. (4)

1: Data: X ∈ R
d×(n1+···+nN ) and Y ∈ {−1, 1}K×N .

2: Hyperparameters: C > 0, μ > 0, ρ > 1, tolerance > 0 and
τ0, τ1, τ2, τ3 ≥ 0.

3: Initialize: primal variables W,b,F,H,Z,B,E,Q,R,T,U and dual
variables Λ1,Λ2,Λ3,Λ4,Σ,Θ,Ω,Ξ,Γ.

4: while residual > tolerance do
5: Update D1,i (i ∈ {1, · · · , N}),D2 by Eq. (3).
6: for m ∈ K do
7: Update wm ∈ W by Eq. (??).
8: Update bm ∈ b by bm =

9:

∑N
i=1[t

m
i −wT

mZi+θm
i /μ]+

∑N′
i′=1

∑K
m=1

[
um
i′ −wT

mZi′+ξm
i′ /μ

]
N+KN′ .

10: end for
11: for (i,m) ∈ {N,K} do
12: Update emp ∈ E by

13: emi =

⎧⎪⎨
⎪⎩

nm
i − C

μ
ymi when ymi nm

i > C
μ
;

0 when 0 ≤ ymi nm
i ≤ C

μ
;

nm
i when ymi nm

i < 0;
14: where nm

i = ymi − qmi + rmi − λm
i /μ.

15: Update qmi ∈ Q by

16: qmi =

(
ym
i −emi +rmi −λm

i /μ+max
(
tmi

)
−σm

i /μ
)

2
.

17: Update rmi ∈ R by

18: rmi =

(
emi −ym

i +qmi +λm
i /μ+max

(
um
i

)
−ωm

i /μ
)

2
.

19: for j ∈ ni do
20: Update tmi,j ∈ T by

21: tmi,j =

⎧⎪⎨
⎪⎩

(1/2) · (qmi + σm
i /μ) + (1/4) · (ẑmi + b̂m

i )

when j = argmax(tmi );

(1/2) · (ẑmi + b̂m
i ) else;

22:
where b̂m

i = wT
mBi + 1bm − θm

i /μ,

ẑmi = wT
mZi + 1bm − θm

i /μ.
23: Update um

i,j ∈ U by

24: um
i,j =

⎧⎪⎨
⎪⎩

(1/2) · (rmi + ωm
i /μ) + (1/4) · (z̄mi + b̄m

i )

when j = argmax(um
i );

(1/2) · (z̄mi + b̄m
i ) else;

25:
where b̂m

i = wT
y Bi + 1by − εmi /μ,

ẑmi = wT
y Zi + 1by − εmi /μ.

.

26: end for
27: Update Zi by [ 1

2

∑K
m=1 wm(tmi − (wT

mBi + 1bm) +
θmi
μ

)

28: +wy(um
i − (wT

y Bi + 1by) +
εmi
μ

) + 2Bi + (1/μ)ΛT
1,iBi

29: +(τ0/μ)HTD0(Fi −HBi) + (1/μ)Λ3,i − (τ1/μ)BiD1,i]
30: (BT

i Bi + I)−1.

31: Update Bi by [ 1
2

∑K
m=1 wm(tmi − (wT

mZi + 1bm) +
θmi
μ

)

32: +wy(um
i − (wT

y Zi + 1by) +
εmi
μ

) + 2Zi + (1/μ)ΛT
1,iZi

33: +(τ0/μ)HTD0(Fi −HZi) + (1/μ)Λ3,i − (τ1/μ)ZiD1,i]
34: (ZT

i Zi + I)−1.
35: Update Fi by Eq. (??).
36: Update Λ1,i,Λ3,i,Λ4,i by
37: Λ1,i = Λ1,i +BiZ

T
i − I; Λ3,i = Λ3,i + Zi −Bi;

38: Λ4,i = Λ4,i +Xi − Fi.
39: Update λm

2,i, σ
m
i , ωm

i ,θm
i , ξmi by

40:

λm
2,i = λm

2,i + μ(emi − (ymi − qmi + rmi ));

σm
i = σm

i + μ(qmi −max(tmi ));

ωm
i = ωm

i + μ(rmi −max(um
i ));

θm
i = θm

i + μ(tmi − (wT
mXi + 1bm));

ξmi = ξmi + μ(um
i − (wT

y Xi + 1by)).
41: end for
42: Update H by (

∑N
i=1 Fi(Z

T
i +BT

i ))

43: (
∑N

i=1(BiZ
T
i + ZiB

T
i ))−1

44: end while
45:
46: return (wm, . . . ,wK) ∈ W, (b1, . . . , bK) ∈ b, and H.

1297

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on February 20,2024 at 07:25:31 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: The histogram of image sizes (width in blue and height

in orange).

(PFTAS) [19] method. These patches from two CXRs and one

CT image at each time point is concatenated to create each

information-dense instance. The PFTAS extracts the texture

features by counting the number of neighboring black pixels

for each pixel. Then the total count for all the pixels in a given

patch is stored in a nine-bin histogram [19]. The thresholding

is conducted by Otsu’s algorithm [20] which generates a 162-

dimensional feature vector for each patch. As a result, each

instance is a vector of 162 × 12 × 3 features. We list the

details of this dataset:

• Cohort size: The number of patients is 323. The number

of all patients associated with this dataset is 472, however

149 patients have been dropped because their labels are

not provided.

• Label distribution: In our experiments, we have aimed to

estimate the severity of patients from their CXR images.

The severity is determined by whether the given patient

was dead, or needs supplemental oxygen or intubation

during admission in ICU (based on clinicians decision).

As a result, 262 and 61 patients (bags) are labeled as

the severe and non-severe status. Because of the limited

number of bags, we have augmented the images in the

bags by applying flipping, random rotations, and random

translations. As a result of data augmentation, 1,000 bags

have been involved in our experiments.

• The number of missing images: Total number of instances

is 635. The number of front view CXRs captured is 611

(e.g., 24 front view CXRs are missing). The number of

side view CXRs captured is 53. The number of CT images

captured is 27.

A. Comparison Methods

We compare the classification performance and scalability

of proposed FMMSVM to the following models:

• (1) A single-instance learning (SIL) method that assigns

the bags’ labels to all instances during training and

produces the maximum response for each bag/class pair

at testing time for the training bag’s instances.

Fig. 2: The ratio (width/height) distribution of the image sizes.

• The two multi-instance SVM methods: (2) Normalized

Set Kernel (NSK) and (3) Statistics Kernel (STK) [6]

map the entire bag to a single-instance.

• The five multi-instance deep learning (DL) models: The

(4) mi-Net and (5) MI-Net [7] approach to the MIL prob-

lem through instance space and embedded space (learning

vectorial representation of bag) paradigm respectively.

(6) The Multi-Modal Multi-Instance deep learning model

(MMMI-deep) [21] learns the global cross-modal rep-

resentation. (7) Attention-based deep Multiple Instance

Learning (AMIL) [8] calculates the parameterized atten-

tion score for each instance to generate the probability

distribution of bag labels. (8) Loss-based Attention for

deep Multiple Instance Learning (LAMIL) [9] learns the

instance scores and predictions jointly.

• (9) An variation of the FMMSVM for the purpose of

ablation study: We discard the locality preserving (Ours

w/o LP in Table. I) and smoothness learning (Ours w/o

SL) capability from our model (Ours) to evaluate their

effectiveness. We set τ1 and τ2 to zero to remove the

impact of each term.

B. Hyperparameters

For the classification models used in Table I, we report

the following hyperparameters found by grid search on the

balanced accuracies of five test sets. For SIL, NSK, and STK

the regularization tradeoff is set to 1.0. We set τ0, τ1, τ2, τ3,

initial μ to 1e+2, 1e− 1, 1e− 2, 1e+2, 1e− 5 for our exact

FMMSVM model and 1e+2, 1e−2, 1e−2, 1e+3, 1e−10 for

our inexact FMMSVM model. The tolerance is set to 1e − 5
for both. We set αg to 5.0, 3.0, and 1.0 for front-view CXR,

side-view CXR, and CT image modality. The deep learning

models (mi-Net, MI-Net, MMMI-deep, AMIL, and LAMIL)

are implemented using the codes provided by their respective

papers [7], [21], [8], [9].

C. Classification Performance

In table I, we report precision, recall, F1-score, accu-

racy, and balanced accuracy (BACC) in classification of sur-

vival/death bags. We split the bags into 80% for training and
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TABLE I: The classification performance of our FMMSVM and competing models on in-hospital mortality are below. We

highlight the best scores in bold

.

Model Precision Recall F1Score Accuracy BACC

SIL 0.862±0.013 0.796±0.013 0.823±0.036 0.781±0.043 0.804±0.024
NSK 0.891±0.024 0.901±0.025 0.881±0.019 0.847±0.031 0.860±0.022
STK 0.879±0.030 0.880±0.021 0.861±0.032 0.844±0.024 0.847±0.026
mi-Net 0.899±0.024 0.871±0.019 0.881±0.019 0.867±0.015 0.877±0.026
MI-Net 0.900±0.021 0.899±0.028 0.898±0.019 0.899±0.021 0.896±0.027
MMMI-deep 0.901±0.019 0.904±0.021 0.902±0.027 0.905±0.024 0.884±0.023
AMIL 0.881±0.032 0.886±0.026 0.890±0.019 0.849±0.047 0.846±0.020
LAMIL 0.893±0.028 0.895±0.041 0.894±0.031 0.867±0.026 0.879±0.026
Ours 0.919±0.021 0.904±0.029 0.898±0.021 0.917±0.029 0.911±0.023
Ours w/o LP 0.869±0.034 0.885±0.031 0.877±0.054 0.904±0.065 0.894±0.027
Ours w/o SL 0.908±0.024 0.903±0.031 0.906±0.035 0.908±0.024 0.916±0.012

20% for test set, then we train the classifier with training set of

3 folds, and tune the hyperparameters based on the accuracy

on the validation set of 1 fold. Finally, the performance is

measured on the test (held out) set of 1 fold and this is

repeated 5 times and scores are averaged across 5 results

following 5-fold cross validation scheme. The comparison

between the classification models in Table I shows that the

proposed FMMSVM models outperform the other existing

multi-instance models. We interpret that our model has the

better capability in joint imputation-prediction and learning

temporal relationships between the instances. When Ours is

compared to Ours w/o LP and Ours w/o SL, we observe

that the introduced locality preserving and smoothness loss

terms improve the prediction. These results demonstrate that

classification pattern for FMMSVM can vary based on the

optimization strategy.

D. Experiments with Multi-modal Brain Imaging Dataset

Although the results from CXR dataset are promising, the

cohort size (323 patients) is limited and the classification

score gaps between our model and best performing baseline

model (MMMI-deep) in Table I is within 3σ. Therefore we

have extended our experiments to the additional dataset, which

can provide the better measurement on the clinical applicabil-

ity. We have conducted experiments on Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database collected from 818

participants. In this dataset, each participant (bag) has 1 to

5 brain MRIs (1 to 5 instances), and we perform FreeSurfer

and voxel-based morphometry [22] to extract the gray matter

measures for 90 regions of interest for each brain MRI.

To reproduce the missing modalities, we discard each MRI

randomly with 50% probability. We classify each patient’s

Alzheimer’s Diesase progression (AD) in {Alzheimer’s Dis-

ease (337 AD patients), Mild Cognitive Impairment (251 MCI

patients), Healthy Control (230 HC patients)}. Considering

this ternary classification is usually more difficult than binary

classification, the results are promising and they show the

significantly improved performance of our model as the score

gaps are larger than 3σ.

Besides the improved performance, our model has identified

the AD risk factor as shown in Fig. 3. We have analyzed the

learned weights of our model on each ROI feature. Our model

identifies hippocampus [23], caudate nucleus [23], lateral ven-

tricle [24], and amygdala [25] regions. The identified regions

have been shown in the medical literatures to be related to AD.

These results additionally validate the correctness of disease

progression prediction from our model.

IV. CONCLUSION

Information in medical image datasets usually represent

a large number of features and are delivered in a variety

of modalities. As data mining technologies develop, multi-

modal methods are attracting more attention in the field

of machine learning researches. In this study, we present a

novel multi-instance learning model that is scalable to a large

number of features. We employ the factorization based joint

imputation-prediction approach to handle the missing data in

the modalities and PFTAS methods to control the fine-grained

details of imaging information. In our experiments, we have

observed promising performance and scalability of the pro-

posed method when compared to the existing SVM and deep

learning models. In addition to the improved performance and

scalability, our model identifies the disease relevant regions in

the images.
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