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Abstract—Chest X-rays are commonly used for diagnosing
and characterizing lung diseases, but the complex morphological
patterns in radiographic appearances can challenge clinicians
in making accurate diagnoses. To address this challenge, vari-
ous learning methods have been developed for algorithm-aided
disease detection and automated diagnosis. However, most exist-
ing methods fail to account for the heterogeneous variability
in longitudinal imaging records and the presence of missing
or inconsistent temporal data. In this paper, we propose a
novel longitudinal learning framework that enriches inconsistent
imaging data over sequential time points by leveraging two-
dimensional principal component analysis and a robust adaptive
loss function. We also derive an efficient solution algorithm that
ensures both objective and sequence convergence for the non-
convex optimization problem. Our experiments on the CheXpert
dataset demonstrate improved performance in capturing indica-
tive abnormalities in medical images and achieving satisfactory
diagnoses. We believe that our method will be of significant
interest to the research community working on medical image
analysis.

Index Terms—Longitudinal Learning, Representation Enrich-
ment, Robust Learning.

I. INTRODUCTION

Chest X-rays are essential for clinical practice and medical

research, providing valuable insights into structural abnor-

malities, pulmonary disease classification, disease progression

tracking, and potential diagnoses [1], [2]. However, accurate

diagnosis faces significant challenges. Firstly, many patients

exhibit multiple pulmonary or cardiological diseases, and

different patients may share similar clinical phenotypes and

radiographic appearances [2], [18], [27], resulting in complex

morphological patterns and distributions in chest images.

Secondly, current diagnostic processes heavily rely on the

expertise and experience of radiologists or physicians, making

it difficult to achieve consensus on imaging findings when

physicians have varying interpretations.

To address these challenges, numerous machine learning

methods have been developed for algorithm-aided detection

and automated diagnosis [6], [17], [19], [20]. However, most

of these methods fail to adequately account for variations

in longitudinal imaging records. Longitudinal data, which

comprises repeated measurements over time for individual

patients, is crucial for studying disease progression in patients

with long treatment courses. However, analyzing longitudinal

variations on an individual level poses a notable challenge

due to missing or inconsistent records [5], [9]. Traditional

matrix/tensor completion methods, employing sparse learning

or deep neural networks [3], [29], often fail to effectively

address the problem of missing or inconsistent data and may

even discard available images [4].

In this paper, we propose a novel approach to tackle the

aforementioned challenges. Our method aims to learn a pair

of projections (L and R) and utilize them to project the image

from the last visit into an enriched form. By employing Two-

Dimensional (2D) Principal Component Analysis (PCA) to

learn these projections, our method can naturally handle tem-

poral image sequences with varying numbers of images, even

when the time points for capturing images are not aligned, as

illustrated in Fig. 1. Moreover, our method effectively handles

irregular missing images in temporal medical data, where the

imaging time points for a patient are generally misaligned with

those of other patients. This is crucial because images taken

at different time points can potentially act as outliers when

training a learning method for other patients. To address this

issue, we integrate an adaptive loss in our 2D PCA objective

function.

Our proposed method offers several major contributions.

Firstly, we derive an efficient solution algorithm with guaran-

teed objective convergence and sequence convergence, provid-

ing a solid mathematical foundation for our approach. Unlike

existing papers that use the alternating optimization method,

which only ensures a decrease in the objective value but not

algorithm convergence, our method guarantees convergence.

Secondly, our method achieves high prediction accuracy while

maintaining an efficient training process, in contrast to deep

learning methods that often come with high computational

costs and lengthy training times. Additionally, our method re-

quires tuning only four hyperparameters, significantly reducing

the complexity compared to deep learning methods.

We conduct a series of experiments on the CheXpert

dataset [11], [16], [26], which consists of 224,316 chest X-

ray scans from 65,240 patients. While this dataset has gained
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Fig. 1. The illustration of the proposed longitudinal embedding method representation for the CheXpert Database. Patient j with pneumonia is used as an
example, with a medical history comprising a total of n chest images and one missing record (image q). The images from 1 to n− 1 are aligned to create
the baseline samples. By learning from these baseline samples, we sequentially obtain and update two temporary projections. The final learned projections,
called global projections, integrate all past medical features. In the last step, we project the last scanned image (n) onto the global projections to obtain a 2-D
enriched phenotypic representation.

widespread recognition, most research works utilizing it are

limited by the aforementioned problems. In our study, we

focus on pulmonary diseases such as pneumonia, pneumoth-

orax, edema, lung lesion, and lung opacity. The experimental

findings demonstrate enhanced automated diagnosis accuracy

and greater interpretability of our method.

In summary, our proposed longitudinal embedding method

provides a novel approach to leveraging temporal information

in medical image analysis. By addressing the challenges

of multiple diseases and varying longitudinal records, our

method offers improved diagnostic accuracy and interpretabil-

ity. The mathematical foundation, efficient training process,

and promising experimental results highlight the potential im-

pact of our approach in the field of algorithm-aided diagnosis

for chest X-rays.

II. OBJECTIVE AND SOLUTION ALGORITHM

In this section, we present the novel objective and solution

algorithm of our approach. We build upon the methodology

of 2D-PCA and the adaptive loss function, which serve as

the foundation of our method. Subsequently, we introduce our

robust longitudinal embedding method, highlighting the design

choices that differentiate our approach. Given the non-convex

nature of our objective function, we propose a novel alternating

minimization algorithm as an effective optimization technique.

This algorithm provides closed-form solutions for our objec-

tive function, surpassing the performance of other optimization

methods. Through rigorous mathematical analysis, we demon-

strate that both the objective and solution converge to a global

optimum at a sub-linear rate. Our proposed methodology offers

a novel and effective approach for longitudinal medical image

analysis, showcasing our contributions to the field.

A. Objective Function
The objective of 2D-PCA [7] is to decompose a set of

2D maps {Ai}ni=1, where each Ai ∈ R
r×c, into a linear

combination of orthogonal 2D bases. The objective function

is formulated as follows:

min
L∈Rr×p,R∈Rc×s,Mi∈Rp×s

J = h(L,Mi, R)

=

n∑

i=1

||Ai − LMiR
T ||2F ,

(1)
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subject to the constraints LTL = Ip and RTR = Is. Here,

L = Ũp = (ũ1, . . . , ũp), R = Ṽs = (ṽ1, . . . , ṽs), and Mi =
ŨT
p AiṼs.

However, the squared Frobenius norm loss function used

in this objective function is sensitive to noise or corrupted

observations, making the learning performance vulnerable to

outliers. To overcome this limitation, we propose to use the

novel adaptive loss function prposed in [25] that combines the

�1-norm and �2-norm distances, thereby enhancing robustness

against outliers. The adaptive loss function is defined as

follows:

||X||σ = (1 + σ)
∑

i

(1 + σ)||xi||2
||xi||2 + σ

, (2)

where σ is an adaptive parameter and xi represents the i-th
row of matrix X . This novel loss function is grounded on the

assumption that most data points yield small losses, following

a Gaussian distribution, while only a few data points exhibit

large losses, following a Laplacian distribution.

Motivated by these findings, we incorporate the adaptive

loss function defined in Eq. (2) into the objective function

in Eq. (1), enabling robustness against outliers in longitudi-

nal imaging datasets. Thus, our proposed objective function

becomes:

h(L,Mi, R)
L∈Rr×k,R∈Rc×s,Mi∈Rk×s

=

n∑

i=1

||Ai − LMiR
T ||σ,

s.t.LTL = Ik, R
TR = Is,

(3)

where σ is the adaptive parameter and {Ai ∈ R
r×s}ni=1

represents a set of input lung images for the study.

While the motivation behind the new objective in Eq. (3) is

sound, finding its closed-form solution poses a significant chal-

lenge due to the non-convex nature of the matrix factorization

problem [25]. To tackle this challenge, we propose a novel

alternately updating method, which transforms the objective

function into a convex form. This method updates the objective

alternately with respect to one parameter while keeping the

others fixed at each time step. The updating procedure can be

summarized as follows:

Lk+1 =
n∑

i=1

||Ai − L{Mi}kRT
k ||σ,

{Mi}k+1 =
n∑

i=1

||Ai − LkMiR
T
k ||σ,

Rk+1 =
n∑

i=1

||Ai − Lk{Mi}kRT ||σ.

(4)

B. Proposed Algorithm

In this section, we describe the procedures for updating the

algorithm at each time step. We derive closed-form solutions

for L, {Mi}, and R are as follows:

For Lk+1, we have:

Lk+1 = argmax
LTL=I

n∑

i=1

Tr(LTE) = Y ZT , (5)

where Y and Z are obtained from [Y,Σ, Z] = svd(E) [29].

Here, E is given by:

E = 2di(Lk{Mi}kRT
k −Ai)Rk{Mi}Tk + μLk,

and di = (1+ σ) ||Ai−L{Mi}RT ||F+2σ
2(||Ai−L{Mi}RT ||F+σ)2

is a weighting factor

derived from the adaptive loss function [25].

For {Mi}k+1, we have:

{Mi}k+1 = argmax

n∑

i=1

Tr({Mi}TG) = PQT , (6)

where G = 2diL
T
k (Lk{Mi}kRT

k − Ai)Rk + ω{Mi}k, and

[P,Σ, Q] = svd(G).

For Rk+1, we have:

Rk+1 = argmax
RTR=I

n∑

i=1

Tr(RTF ) = HJT , (7)

where F = 2di(Rk{Mi}Tk LT
k − AT

i )Lk{Mi}k + λRk, and

[H,Σ, J ] = svd(F ).

Our proposed algorithm, which efficiently updates the vari-

ables at each iteration, is summarized in Algorithm 1.

Algorithm 1 Alternating Linearized Minimization

Require: Data Ai ∈ R
r×c, rank of factors k, regularization

parameters λ, ω, and μ, and number of iterations I .

1: Initialization: L0 ∈ R
r×k, {Mi}0 ∈ R

k×s, and R0 ∈
R

c×s.

2: while k ≤ K do
3: Optimize Lk+1 as in Eq. (5).

4: Optimize {Mi}k+1 as in Eq. (6).

5: Optimize Rk+1 as in Eq. (7).

6: k ← k + 1.

7: end while
8: Output:

(
L,R, {Mi}nk=1

)
.

The complexity analysis and convergence analysis of the

algorithm are not provided here due to space limit and will be

provided in the extended journal version of this paper.

Following [23], [24], we learn the enriched image represen-

tations as follows. Once L and R are learned from a sequence

of X-ray images from the earlier medical records, they are used

to project the X-ray image from the most recent visit and the

projected representation is used for subsequent diagnosis.

III. EXPERIMENTAL EVALUATION

In this section, we present a detailed evaluation of our

proposed method and discuss its superior performance com-

pared to existing approaches. We conducted experiments on

the CheXpert dataset [27], which consists of 224,316 chest

radiographs from 65,240 patients. The dataset includes various

pulmonary diseases, but our study primarily focuses on the first

five lung diseases: pneumonia, pneumothorax, edema, lung

lesion, and lung opacity.

1129

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on February 19,2024 at 19:12:59 UTC from IEEE Xplore.  Restrictions apply. 



A. Convergence Analysis

We first evaluate the convergence behavior of our method

on the pneumonia dataset. Figure 2 shows the convergence

performance of the solution sequence L, M , and R in our

objective function. It can be observed that both L and R
exhibit fluctuations at the early steps, followed by a moderate

decrease. Beyond time step 200, both curves decline rapidly

and eventually converge to a constant value. The variable M
decreases significantly in the initial stages and then moves

towards the converging point with slight oscillations. These

results align with our mathematical analysis, confirming the

low computational cost of our method.

B. Gender Analysis

Gender differences are often assumed to exist among pa-

tients with pulmonary diseases in terms of susceptibility,

severity, and disease progression, mainly attributed to the

higher prevalence of smoking among men [12]. However,

recent research suggests that the gender difference may not be

as significant as previously thought, as these diseases are also

commonly seen in women. To investigate the gender effect in

the learning process, we divided all patients into two groups:

male and female. We used the Densenet-121 CNN method

[15] as the classifier for both enriched representations and

original images. Table I shows the detection accuracy (Acc

score) and Table II shows F1 scores of our approach on male

and female patients, and we compare our results to several

state-of-the-art methods, including longitudinal-based methods

such as Distance-LSTM [10] and Ori-CNN [22], as well as

projection-based methods such as 2D-PCA [7], R1-PCA [8],

L1-2DPCA [21], Stacked AutoEncoder (AE) [28], Locality

Preserving Projections (LPP) [13], and Restricted Boltzmann

Machine (RBM) [14].

We observe that our approach outperforms other methods

with significant margins. Furthermore, the detection accuracy

in the male group is slightly higher than that of the female

group for patients with the diseases of pneumonia, edema, lung

lesion, or lung opacity. This could be attributed to the long-

standing pathological manifestation of some male smokers

who usually have a longer smoking history compared to female

patients. However, due to the increasing prevalence of smoking

in females in recent years, other factors such as exposure to

second-hand smoke, air pollution, or hormonal effects have

made female patients susceptible to pulmonary diseases. In this

scenario, our 2D enriched imaging representation is capable

of embedding all important features along the time points

into a single image. Moreover, this enriched representation

can provide physicians with comprehensive insights into the

underlying mechanism for different patients.

IV. CONCLUSION

In conclusion, we have proposed a novel longitudinal

embedding method that enhances the effectiveness of non-

invasive diagnostic determination and facilitates clinical prac-

tice. Our method enables machine learning algorithms to make

reliable diagnoses using varying numbers of samples, while

Fig. 2. Convergence behavior of the solution sequence L, M , and R
in our objective function. Left: Convergence of L with respect to the
Frobenius norm, log ||Li+1 − Li||F , indicating the convergence rate of the
left projection. Right: Convergence of M with respect to the Frobenius norm,
log ||Mi+1 − Mi||F , demonstrating the convergence rate of the enriched
representation. Middle: Convergence of R with respect to the Frobenius norm,
log ||Ri+1 −Ri||F , illustrating the convergence rate of the right projection.

also reducing the storage volume of large and computation-

intensive real-world medical datasets. The experiments con-

ducted on the CheXpert dataset have successfully validated

our mathematical analysis and demonstrated the advantages

of enriched representations over original images in identifying

and localizing abnormalities.

The longitudinal embedding approach captures temporal

information by combining multiple imaging records into a

single enriched representation. This representation provides

a comprehensive view of the patient’s condition, allowing

for more accurate and interpretable diagnostic outcomes. Our

method has shown superior performance compared to state-
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TABLE I
THE CLASSIFICATION PERFORMANCE OF THE LONGITUDINAL EMBEDDING AND ORIGINAL IMAGES WITH RESPECT TO GENDER DISTRIBUTION.

SPECIFICALLY, WE COMPARED THE CLASSIFICATION RESULTS OF THE EMBEDDINGS AND THE ORIGINAL IMAGES USING THE ACCURACY SCORE (ACC)
METRIC.

ACC Score Gender Ours Dis-LSTM [10] Ori-CNN [22] 2D-PCA [7] R1-PCA [8]

Pneumonia Male 0.844 ± 0.029 0.831 ± 0.032 0.830 ± 0.031 0.795 ± 0.034 0.810 ± 0.030
Female 0.835 ± 0.028 0.821 ± 0.031 0.813 ± 0.029 0.781 ± 0.033 0.801 ± 0.029

Pneumothorax Male 0.837 ± 0.030 0.824 ± 0.033 0.825 ± 0.032 0.809 ± 0.035 0.812 ± 0.031
Female 0.830 ± 0.029 0.811 ± 0.032 0.813 ± 0.030 0.803 ± 0.034 0.810 ± 0.030

Edema Male 0.832 ± 0.031 0.817 ± 0.034 0.820 ± 0.033 0.796 ± 0.036 0.804 ± 0.032
Female 0.825 ± 0.030 0.813 ± 0.033 0.813 ± 0.031 0.792 ± 0.035 0.800 ± 0.031

Lung Lesion Male 0.815 ± 0.032 0.800 ± 0.035 0.799 ± 0.034 0.781 ± 0.037 0.795 ± 0.033
Female 0.807 ± 0.031 0.787 ± 0.034 0.787 ± 0.032 0.774 ± 0.036 0.782 ± 0.032

Lung Opacity Male 0.841 ± 0.033 0.822 ± 0.036 0.822 ± 0.035 0.806 ± 0.038 0.813 ± 0.034
Female 0.821 ± 0.032 0.811 ± 0.035 0.810 ± 0.033 0.798 ± 0.037 0.808 ± 0.033

ACC Score Gender L1-2DPCA [21] AE [28] LPP [13] RBM [14] Original

Pneumonia Male 0.815 ± 0.026 0.822 ± 0.033 0.818 ± 0.028 0.797 ± 0.032 0.787 ± 0.027
Female 0.799 ± 0.025 0.820 ± 0.032 0.803 ± 0.027 0.784 ± 0.031 0.772 ± 0.026

Pneumothorax Male 0.784 ± 0.027 0.813 ± 0.034 0.806 ± 0.029 0.806 ± 0.034 0.779 ± 0.028
Female 0.790 ± 0.026 0.801 ± 0.033 0.792 ± 0.028 0.789 ± 0.033 0.782 ± 0.027

Edema Male 0.793 ± 0.028 0.813 ± 0.035 0.809 ± 0.030 0.814 ± 0.035 0.770 ± 0.029
Female 0.774 ± 0.027 0.807 ± 0.034 0.799 ± 0.029 0.812 ± 0.034 0.766 ± 0.028

Lung Lesion Male 0.797 ± 0.029 0.799 ± 0.036 0.786 ± 0.031 0.781 ± 0.036 0.772 ± 0.030
Female 0.773 ± 0.028 0.784 ± 0.035 0.773 ± 0.030 0.770 ± 0.035 0.769 ± 0.029

Lung Opacity Male 0.793 ± 0.030 0.812 ± 0.037 0.808 ± 0.032 0.786 ± 0.037 0.775 ± 0.031
Female 0.797 ± 0.029 0.809 ± 0.036 0.792 ± 0.031 0.780 ± 0.036 0.771 ± 0.030

of-the-art techniques, achieving higher accuracy in detecting

pulmonary diseases across different gender distributions.

Furthermore, we have investigated the effect of treatment

time on the accuracy of our method, revealing the importance

of considering individual treatment courses for patients with

pulmonary abnormalities. By understanding the optimal treat-

ment duration for different diseases, our method can assist

physicians in determining appropriate treatment plans and

monitoring disease progression.

The interpretability of our enriched representations has been

demonstrated through visualizations that highlight the most

indicative areas within the images. These visualizations aid

in clinical diagnosis by providing insights into pathological

patterns and facilitating the identification of relevant abnor-

malities.

Overall, our longitudinal embedding method offers a valu-

able tool for non-invasive diagnostics in the field of medical

imaging. By leveraging temporal information and reducing

the computational burden, our approach has the potential to

improve healthcare outcomes and enhance the efficiency of

medical decision-making processes. Future research can ex-

plore the application of our method to other medical domains

and investigate its effectiveness in longitudinal studies and

personalized medicine.
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[5] Federico Cismondi, André S Fialho, Susana M Vieira, Shane R Reti,
João MC Sousa, and Stan N Finkelstein. Missing data in medical
databases: Impute, delete or classify? Artificial intelligence in medicine,
58(1):63–72, 2013.

[6] Padideh Danaee, Reza Ghaeini, and David A Hendrix. A deep learning
approach for cancer detection and relevant gene identification. In
PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017, pages 219–229.
World Scientific, 2017.

[7] Chris Ding and Jieping Ye. 2-dimensional singular value decomposition
for 2d maps and images. In Proceedings of the 2005 SIAM International
Conference on Data Mining, pages 32–43. SIAM, 2005.

[8] Chris Ding, Ding Zhou, Xiaofeng He, and Hongyuan Zha. R 1-
pca: rotational invariant l 1-norm principal component analysis for
robust subspace factorization. In Proceedings of the 23rd international
conference on Machine learning, pages 281–288, 2006.

[9] Garrett Fitzmaurice, Marie Davidian, Geert Verbeke, and Geert Molen-
berghs. Longitudinal data analysis. CRC press, 2008.

1131

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on February 19,2024 at 19:12:59 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
THE CLASSIFICATION PERFORMANCE OF THE LONGITUDINAL EMBEDDING AND ORIGINAL IMAGES WITH RESPECT TO GENDER DISTRIBUTION.

SPECIFICALLY, WE COMPARED THE CLASSIFICATION RESULTS OF THE EMBEDDINGS AND THE ORIGINAL IMAGES USING THE F1 SCORE METRIC.

F1 Score Gender Ours Dis-LSTM [10] Ori-CNN [22] 2D-PCA [7] R1-PCA [8]

Pneumonia Male 0.832 ± 0.023 0.816 ± 0.029 0.818 ± 0.027 0.792 ± 0.031 0.808 ± 0.026
Female 0.827 ± 0.022 0.813 ± 0.028 0.805 ± 0.026 0.775 ± 0.030 0.797 ± 0.025

Pneumothorax Male 0.830 ± 0.024 0.819 ± 0.030 0.821 ± 0.028 0.805 ± 0.032 0.808 ± 0.027
Female 0.824 ± 0.023 0.807 ± 0.029 0.809 ± 0.027 0.799 ± 0.031 0.805 ± 0.026

Edema Male 0.828 ± 0.022 0.812 ± 0.028 0.814 ± 0.026 0.791 ± 0.030 0.799 ± 0.025
Female 0.820 ± 0.022 0.808 ± 0.028 0.808 ± 0.026 0.788 ± 0.030 0.796 ± 0.025

Lung Lesion Male 0.810 ± 0.021 0.796 ± 0.027 0.796 ± 0.025 0.776 ± 0.029 0.791 ± 0.024
Female 0.802 ± 0.021 0.782 ± 0.027 0.783 ± 0.025 0.769 ± 0.029 0.777 ± 0.024

Lung Opacity Male 0.836 ± 0.023 0.817 ± 0.029 0.818 ± 0.027 0.803 ± 0.031 0.808 ± 0.026
Female 0.818 ± 0.022 0.807 ± 0.028 0.807 ± 0.026 0.795 ± 0.030 0.803 ± 0.025

F1 Score Gender L1-2DPCA [21] AE [28] LPP [13] RBM [14] Original

Pneumonia Male 0.812 ± 0.030 0.818 ± 0.025 0.814 ± 0.028 0.793 ± 0.032 0.781 ± 0.024
Female 0.794 ± 0.029 0.815 ± 0.024 0.799 ± 0.027 0.780 ± 0.031 0.764 ± 0.023

Pneumothorax Male 0.780 ± 0.031 0.809 ± 0.026 0.803 ± 0.029 0.800 ± 0.033 0.773 ± 0.025
Female 0.786 ± 0.030 0.797 ± 0.025 0.788 ± 0.028 0.786 ± 0.032 0.777 ± 0.024

Edema Male 0.789 ± 0.029 0.809 ± 0.024 0.804 ± 0.027 0.809 ± 0.031 0.766 ± 0.023
Female 0.769 ± 0.029 0.802 ± 0.024 0.795 ± 0.027 0.807 ± 0.031 0.761 ± 0.023

Lung Lesion Male 0.792 ± 0.028 0.795 ± 0.023 0.781 ± 0.026 0.776 ± 0.030 0.766 ± 0.022
Female 0.768 ± 0.028 0.779 ± 0.023 0.768 ± 0.026 0.765 ± 0.030 0.764 ± 0.022

Lung Opacity Male 0.788 ± 0.030 0.809 ± 0.025 0.804 ± 0.028 0.781 ± 0.032 0.771 ± 0.024
Female 0.792 ± 0.029 0.804 ± 0.024 0.786 ± 0.027 0.774 ± 0.031 0.764 ± 0.023

[10] Riqiang Gao, Yuankai Huo, Shunxing Bao, Yucheng Tang, Sanja L
Antic, Emily S Epstein, Aneri B Balar, Steve Deppen, Alexis B Paulson,
Kim L Sandler, et al. Distanced lstm: time-distanced gates in long
short-term memory models for lung cancer detection. In International
Workshop on Machine Learning in Medical Imaging, pages 310–318.
Springer, 2019.

[11] Christian Garbin, Pranav Rajpurkar, Jeremy Irvin, Matthew P Lungren,
and Oge Marques. Structured dataset documentation: a datasheet for
chexpert. arXiv preprint arXiv:2105.03020, 2021.

[12] ShuYi Gu, XiaoJun Deng, QingYun Li, XianWen Sun, JinFu Xu, and
HuiPing Li. Gender differences of chronic obstructive pulmonary disease
associated with manifestations on hrct. The clinical respiratory journal,
11(1):28–35, 2017.

[13] Xiaofei He and Partha Niyogi. Locality preserving projections. Advances
in neural information processing systems, 16:153–160, 2003.

[14] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimen-
sionality of data with neural networks. science, 313(5786):504–507,
2006.

[15] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 4700–4708, 2017.

[16] Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-
Ilcus, Chris Chute, Henrik Marklund, Behzad Haghgoo, Robyn L. Ball,
Katie S. Shpanskaya, Jayne Seekins, David A. Mong, Safwan S. Halabi,
Jesse K. Sandberg, Ricky Jones, David B. Larson, Curtis P. Langlotz,
Bhavik N. Patel, Matthew P. Lungren, and Andrew Y. Ng. Chexpert:
A large chest radiograph dataset with uncertainty labels and expert
comparison. CoRR, abs/1901.07031, 2019.

[17] Rachna Jain, Meenu Gupta, Soham Taneja, and D Jude Hemanth. Deep
learning based detection and analysis of covid-19 on chest x-ray images.
Applied Intelligence, 51(3):1690–1700, 2021.

[18] Mi-Jin Kang, Chang Min Park, Chang-Hyun Lee, Jin Mo Goo, and
Hyun Ju Lee. Dual-energy ct: clinical applications in various pulmonary
diseases. Radiographics, 30(3):685–698, 2010.

[19] Konstantina Kourou, Themis P Exarchos, Konstantinos P Exarchos,
Michalis V Karamouzis, and Dimitrios I Fotiadis. Machine learning

applications in cancer prognosis and prediction. Computational and
structural biotechnology journal, 13:8–17, 2015.

[20] Philippe Lambin, Ruud GPM Van Stiphout, Maud HW Starmans,
Emmanuel Rios-Velazquez, Georgi Nalbantov, Hugo JWL Aerts, Erik
Roelofs, Wouter Van Elmpt, Paul C Boutros, Pierluigi Granone, et al.
Predicting outcomes in radiation oncology—multifactorial decision sup-
port systems. Nature reviews Clinical oncology, 10(1):27–40, 2013.

[21] Xuelong Li, Yanwei Pang, and Yuan Yuan. L1-norm-based 2dpca. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
40(4):1170–1175, 2010.

[22] Fangzhou Liao, Ming Liang, Zhe Li, Xiaolin Hu, and Sen Song.
Evaluate the malignancy of pulmonary nodules using the 3-d deep leaky
noisy-or network. IEEE transactions on neural networks and learning
systems, 30(11):3484–3495, 2019.

[23] Lyujian Lu, Saad Elbeleidy, Lauren Baker, Hua Wang, Li Shen, and
Huang Heng. Improved prediction of cognitive outcomes via globally
aligned imaging biomarker enrichments over progressions. IEEE Trans-
actions on Biomedical Engineering, 68(11):3336–3346, 2021.

[24] Lyujian Lu, Hua Wang, Saad Elbeleidy, and Feiping Nie. Predicting
cognitive declines using longitudinally enriched representations for
imaging biomarkers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4827–4836, 2020.

[25] Feiping Nie, Hua Wang, Heng Huang, and Chris Ding. Adaptive loss
minimization for semi-supervised elastic embedding. In Twenty-Third
International Joint Conference on Artificial Intelligence, 2013.

[26] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel
Mehta, Tony Duan, D Ding, Aarti Bagul, C Langlotz, K Shpanskaya,
et al. Radiologist-level pneumonia detection on chest x-rays with deep
learning. arXiv preprint arXiv:1711.05225, 2017.

[27] Shine Raju, Subha Ghosh, and Atul C Mehta. Chest ct signs in
pulmonary disease: a pictorial review. Chest, 151(6):1356–1374, 2017.

[28] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-
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