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Abstract—The COVID-19 pandemic caused by SARS-CoV-2
has emphasized the importance of studying virus-host protein-
protein interactions (PPIs) and drug-target interactions (DTIs)
to discover effective antiviral drugs. While several computational
algorithms have been developed for this purpose, most of them
overlook the interplay pathways during infection along PPIs
and DTIs. In this paper, we present a novel multipartite graph
learning approach to uncover hidden binding affinities in PPIs
and DTIs. Our method leverages a comprehensive biomolecular
mechanism network that integrates protein-protein, genetic, and
virus-host interactions, enabling us to learn a new graph that
accurately captures the underlying connected components. No-
tably, our method identifies clustering structures directly from
the new graph, eliminating the need for post-processing steps.
To mitigate the detrimental effects of noisy or outlier data
in sparse networks, we propose a robust objective function
that incorporates the /(7 ,-norm and a constraint based on
the pth-order Ky-Fan norm applied to the graph Laplacian
matrix. Additionally, we present an efficient optimization method
tailored to our framework. Experimental results demonstrate
the superiority of our approach over existing state-of-the-art
techniques, as it successfully identifies potential repurposable
drugs for SARS-CoV-2, offering promising therapeutic options
for COVID-19 treatment.

Index Terms—Multipartite Graph Learning, Robust Learning,
Biomolecular Mechanism Network.

I. INTRODUCTION

The Coronavirus Disease 2019 (COVID-19) is caused by
the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), a member of the coronavirus family. Understanding
the mechanisms of SARS-CoV-2 infection and developing
effective therapeutic interventions against COVID-19 are of
paramount importance. However, experimental approaches for
identifying virus-host protein-protein interactions and repur-
posing drugs can be time-consuming, expensive, and yield un-
reliable results due to false negatives and positives. Therefore,
there is a significant need to develop reliable computational
methods that can provide testable hypotheses for preliminary
investigations into hidden virus-host protein-protein interac-
tions and drug-target interactions.

Most existing computational methods for predicting protein-
protein or drug-target interactions rely on clustering relations
between host proteins and viral proteins or drug compounds

and targeted genes [37]. Unfortunately, few prediction methods
simultaneously cluster protein-protein interactions (PPI) and
drug-target interactions (DTI), and most existing computa-
tional methods fail to provide systematic investigations on
the entire pathways of infection interplay. Moreover, viruses
and drugs often indirectly affect proteins, leading to cascading
effects in the human interactome, such as the cytokine storm
observed in severe inflammatory responses to SARS-CoV-
2 infection [3]. Therefore, gaining a more comprehensive
understanding of the virus-host-drug mechanism is crucial.

In this paper, we propose an innovative computational
approach that integrates protein-protein, drug-target, and virus-
host interactions to uncover hidden interactions within the host
interactome. Our approach, depicted in Figure 1, provides in-
depth knowledge of pathological and pharmacological inter-
actions by considering both direct and indirect effects in the
host interactome. Importantly, recent insights into developing
computational methods for discovering new protein-protein
interactions (PPIs) and drug-target interactions (DTIs) have
predominantly focused on deep neural networks, which often
require large amounts of training data, resulting in intensive
computations and limited interpretability.

To address these challenges, we develop a reliable, effi-
cient, and powerful computational method for modeling and
predicting PPIs and DTIs, serving as an auxiliary tool for
proteomics or pharmacologic research. We study an integrative
dataset that combines molecular mechanisms across protein-
protein and drug-target interactions. The dataset comprises
three interaction networks: protein-protein interactions (PPIs),
genetic interactions (GIs), and virus-host interactions (VHIs),
sourced from the BioGRID database [2]. To generate an in-
formative molecular interaction network, we apply the Vanunu
smoothening method [34] to integrate these networks. Addi-
tionally, we extend the drug-target interaction (DTI) network,
originally collected from the DrugBank database [11], to a
generalized drug-target interaction network using the Tanimoto
similarity coefficient [1], [29]. Further details on the pre-
processing and construction of the dataset are provided in
Section II.

To uncover hidden interactions within the integrated net-
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The life cycle of SARS-CoV-2 and our proposed modeling approach for predicting the virus-host-drug interactome. (1) The virus enters the host
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the host machinery to replicate and translate its RNA genome and structural proteins. (4) The newly synthesized viral proteins and RNA are assembled
into a new virion in the Golgi vesicles. (5) The new virion is released from the host cell into the environment to repeat the infection cycle. Our modeling
approach consists of two main parts: (a) the encoder framework that converts the drug compound and protein sequence into vector embeddings, and (b) our
novel matrix-completion framework that takes the embeddings and constructs a tripartite graph to simultaneously predict putative virus-host protein-protein
interactions (VHIs) and drug-target interactions (DTIs). Created with BioRender.com

work, we develop an innovative k-partite graph-based co-
clustering method. This method allows us to learn a new graph
with exact connected components, presenting an explicit clus-
tering structure and indicators without the need for additional
sorting or processing work. We propose a regularized multi-
partite (k-partite) graph with constraints based on the pth-order
Ky-Fan and Schatten norms, effectively determining the rank
of the normalized Laplacian matrix. To enhance the robustness
of the objective function, we employ a loss function based on
the /5 ,-norm, considering the sparsity and potential outliers in
the collected dataset. Addressing the optimization challenges
posed by the proposed objective function, we develop an
efficient and reliable optimization algorithm that integrates the
alternating direction method of multipliers (ADMM) with an
iteratively reweighted method (IRM). Our method outperforms
current state-of-the-art methods in interaction prediction and
demonstrates superior robustness to noise.

Through extensive experimental evaluations and literature
validation, we identify undiscovered binding affinities for PPIs
and DTIs, leading to the discovery of potential drug candidates
for treating COVID-19. Importantly, our proposed method is
not limited to the studied dataset but is also applicable to
any situation that can be modeled as a multipartite graph.
By providing accurate predictions and uncovering hidden
interactions, our computational approach contributes to the
understanding of the virus-host-drug mechanism and holds
promise for advancing proteomics and pharmacologic research
in the context of COVID-19 and beyond.
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II. MATERIALS AND DATA SOURCES

For our study, we utilized an integrative dataset comprising
protein-protein interactions (PPIs), genetic interactions (Gls),
virus-host interactions (VHIs), and drug-target interactions
(DTIs) [37]. The PPIs, Gls, and VHIs were sourced from the
BioGRID database [2], providing a comprehensive network
consisting of 16,431 human proteins and 332 SARS-CoV-2
proteins. The genetic interaction network encompassed 3, 302
genes, while the metabolic interaction network incorporated
1,530 genes from the KEGG database [21]. By combining
these networks, we constructed a molecular interaction net-
work consisting of 16,872 genes.

The VHIs affinity matrix, denoted as Ay p, exhibited high
sparsity due to the low virus-to-host ratio of approximately
0.0197 (332/16,872). To address this sparsity issue, we em-
ployed the protein network propagation method proposed by
Vanunu et al. [34]. This method iteratively spreads prior infor-
mation on causal genes to their network neighbors, resulting in
the smoothing of protein information across the network. We
set the smoothing parameter « to 0.7 and used a convergence
threshold of A% — Al7;| < 107° to obtain a smoothed
affinity matrix Ay .

To incorporate the DTIs into our analysis, we transformed
them into an affinity matrix denoted as Apr. We employed
the Tanimoto similarity coefficient [1], [29] to calculate the
similarity between the fingerprints of each pair of drugs. The
SMILES string of each of the 8,279 drugs in the DrugBank
database was numerically encoded into a vector fingerprint. If
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Fig. 2. Illustration of the k partite graph with k disjoint sets. The pairwise
co-clustering aims to simultaneously discover all hidden interactions given
original interactions.

the similarity score for a pair of drugs exceeded 95% of all
other drug pairs, we considered it to have a strong potential to
interact with targeted genes, and we added the corresponding
connection to the smoothed affinity matrix for DTIs. This
process resulted in a DTI matrix containing 1,727,436 active
connections.

By combining the smoothed VHIs affinity matrix Ay 5 and
the DTI matrix Apr, we obtained an integrative dataset that
encompasses the interactions among proteins, genes, viruses,
and drugs. This dataset serves as the foundation for our
computational approach, enabling the prediction of virus-host
protein-protein interactions (VHIs) and drug-target interactions
(DTIs) in a comprehensive manner.

[II. METHODS

Throughout this paper, matrices are denoted by bold upper-
case letters, while vectors are represented by bold lowercase
letters. The Zp-lnorm O < p < 2) of v is defined as
[v], = (32, vF)”. For a matrix M = [m;;], the trace of M is
defined as tr(M) = 3. my;.

A common method for describing multiple distinct inde-
pendent interactions involves using an undirected weighted
k-partite graph. In this representation, data points (vertices)
can be partitioned into k disjoint sets, with every pair in
the k& sets being adjacent, as illustrated in Figure 2. When
k = 2, these graphs are referred to as bipartite, and when
k = 3, they are called tripartite. It is important to note
that pairwise interactions can propagate through the relations,
creating connected influences in a k-partite graph, as shown
in Figure 1. Often, the goal is to identify pairwise clustering
relations among these data points. However, extracting explicit
clustering structures from a k-partite graph can be challenging,
especially with large, high-dimensional datasets. Although
some graph-based learning methods, such as spectral learning
or isoperimetric clustering, have been developed to handle
this type of data, their dependencies can introduce additional
challenges in revealing the clustering structures within the
data. This is because these approaches require the graph to
possess specific properties. Furthermore, another notable issue
with these methods is the need for additional processing
approaches to determine the final clustering results, leading
to a significant increase in computational cost as the number
of data points grows.

To address these challenges, we propose a novel method
that aims to learn a high-level representation matrix from the

given k-partite data graph. In this case, the desired pairwise co-
clustering results can be directly represented in the learned ma-
trix, eliminating the need for additional clustering approaches
on the data graph. Before initiating the learning process,
we must provide an end-to-end description of the original
interactions within the given data points. A common approach
in such situations involves storing the data points in an affinity
matrix, where an entry of this matrix denotes the mutual
similarity between the data in two disjoint sets represented
by the corresponding row and column of the matrix. Given
two data points x;,z; in set ¢ and j, the similarity distance
a;,j can be constructed using the radial basis function (RBF)
o |zi—x; ‘S
0.2

kernel: w; ; = exp( ), where o is the Gaussian

parameter.

From this perspective, we can construct an undirected
weighted k-partite graph using a squared affinity matrix A
as follows:

0 Ais O 0 0
A, 0 Ass 0 0
o AT, o .- 0 0
A= . h o . . € R™™,
0 0 0o - 0 Ap—1.i
| 0 0 0 Al 0
)

where A € R"*" is the global affinity matrix, A; ; € R™ <"
is a local affinity matrix measuring the similarity distance
between data points in sets ¢ and j, m; and n; represent
the number of data points in sets ¢ and j, respectively, and
n = nj + ng + --- + ng denotes the total number of data
points.

The global affinity matrix A and associated local matri-
ces A; ; are not block-diagonal matrices, meaning clustering
relations cannot be explicitly involved in them. Much of
the research into finding underlying clustering relations has
focused on the Spectral Graph Partitioning method [10], which
aims to find an optimal cutting solution using the edge-cut-
based (or normalized cut) criterion. As mentioned earlier, this
method and its variants require implementing post-processing
approaches to the results. In contrast, our model seeks to
learn a new general similarity matrix S from the global
affinity matrix A, while the learned matrix S is connected
with clustering components. Consequently, our model has a
significant advantage in that the optimal clustering structures
can be clearly represented in the learned matrix S, providing
an efficient and straightforward way to interpret underlying
relations within the data.

Our learning process aims not only to obtain clustering
relations but also to ensure that the similarity matrix S is as
close to the given affinity matrix A as possible. To achieve
this, we minimize the reconstruction error between S and A.
Additionally, we impose the /5 ,-norm on the distance function
to prevent the learning process from being corrupted by noise
potentially present in real-world datasets. Moreover, to prevent
the learned matrix S from becoming extremely sparse, we also
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impose a constraint on S where the sum of each row of S is
one. Thus, we can formulate our objective function as:

min ||.S — A|\§’p,
S.t. Zé” = 1, Sij > O,S S @,S[y[q.l S @, (2)
J

where s;; represents the element at position 7, j of matrix S,
and S € O is a constraint that restricts the set of matrices in
S to be connected with exactly ¢ clustering components. The
co-clustering structures in a k-partite graph can be viewed
as a connection passing through consecutive bipartite graphs.
To avoid ill-clustering structures (the clustering inconsistency
between consecutive bipartite graphs), it is beneficial to add
a constraint for each sub-bipartite graph such that S; ;41 =

( 0 SI,I+1)
ST 141 0
between set [ and [ + 1 (1 < I < k).

Since S € © and S; ;41 € © are non-linear constraints,
optimizing the objective in Eq. (2) can be an extremely
challenging task. To simplify the optimization problem, we can
replace the non-linear constraints with low-rank constraints
on the Laplacian matrices. According to Theorem 1-(5) [10],
the number of zero eigenvalues of the Laplacian Lg (i.e.,
the multiplicity of the 0 eigenvalue) equals the number of
connected components of the graph G. Therefore, we can
efficiently handle the non-linear constraints by replacing them
with rank(Ls) =n — c and rank(Lg, ;,,) =nr +nr41 —c
(c is the number of connected components). This leads to the
following simplified objective function:

€ ©, where Sy 41 is a sub-bipartite graph

min [|S — Al ,, s.t.ZsU =1,s;; >0,
J 3)
rank(Ls) =n —c,rank(Ls, ,.,) = nr +nr41 — c.

However, optimizing the objective function in Eq. (3) with
the low-rank constraints can still be challenging. Therefore,
we propose to treat the low-rank constraints as penalty terms
added to the cost function. This allows us to transform the
constrained minimization problem into an unconstrained one.
Specifically, we introduce non-convex penalties involving the
p-th order of the Laplacian matrices Ls and Lg, , ,. The
objective function becomes:

c k—1 c
min ||S - AHZZ),p + Ao ng(LS) + Z A1 ng)(LsI.I+1)’
i=1 I=1 i=1

s.t. Zsij = I,Sij > O,
J

“

where 0;(Ls) and o;(Ls, ,,,) represent the i-th smallest
eigenvalues of Ls and Lg, ;. ,, respectively. The parameters
Ao and A control the strength of the penalties.

To further simplify the objective function, we can express
the penalties using the trace operator and Ky-Fan norm.

According to the Ky-Fan norm theorem [13], we have:

> oP(Ls) = minTe(F) LLFy), st Fg Fo =1,
=1

c
Z J?(LSI,IJrl)
i=1

Thus, the objective function is updated as:

=minTe(F{ Lg, | Fy), st F{ Fr =1

k—1
min ||S — A5, + N Tr(Fy LiFo) + AN Tr(F LR,
I=1
sty sij=1,8;>0F Fo=1FF =1 5)

In the next section, we will present the optimization algorithm
for solving the objective function in Eq. (5).

A. Our Algorithm

Solving the optimization problem associated with the pro-
posed objective function in Eq. (5) can be challenging due
to its non-smooth and non-convex nature. To address this
challenge, we propose a generalized version of the Iteratively
Reweighted Method (IRM) that allows for optimization of
a surrogate loss function. This generalized IRM provides
smoothness and convexity advantages, overcoming the limi-
tations of prior studies that focused only on sparsity-inducing
penalties.

1) Generalized Iteratively Reweighted Method: First, we
introduce a more general problem as below:

mln flx)+ Z llgi(x (6)

where g; () is a scalar, vector, or matrix output function. Thus,
we have:

1) If g;(x) is a scalar output function, (6) changes to:
) + Z l9i(x (7)
2) If g;(x) is a vector output function, (6) changes to:

) + Z llgi ()15 ®)

3) If g;(z) is a matrix output function, (6) changes to:
)+ Z lgi(@)]I3, - ©)
It can be seen that the problem in (6) is equivalent to:

min f (2 +ZTr[gZ gi(x))* } (10)

HllIl f(x
mm f(x

mln flx

Since the problem in (10) is not smooth and too difficult to
solve, we can transform it to an approximation problem that
is smooth, which is formulated as:

mmf +)\ZTI‘[Q,L (m)—l—é])%}, (11)
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where § is the smooth parameter that depends on z. If ¢
approximates to zero, (11) changes to the problem in (6). We
thus propose an iterative algorithm for finding the solution to
this problem as described in the below algorithm, and provide
a theoretical analysis to prove the convergence of the proposed
algorithm.

Algorithm 1 Algorithm to solve the problem in Eq. (6)
Initialization: x € C

1: while not converge do

2:  Calculate D; = 2 (Tr[gl (z)gi(z)] + 51)

2
3: Update x by 901V1ng mingec f(z)+>, Tr [ i (z)gi(x 1];
4: end while

Output: z.

s

2) Optimization analysis: To begin with, we need to cal-
culate the variable derivation by using the following lemma.

Lemma 1. Chain rule: Given g(x) is a matrix output function,
h(z) is a scalar output function, x is a scalar, vector, or matrix
variable, we have:

Veh(g(z)) = Tr ngmz)h(g(fﬂ)) Vgij ()

T
=Tx [(Vomh (9(x)) " Vo(a)] -
Based on the chain rule in Lemma 1, we can further have:

Lemma 2. Given g(x) is a scalar, vector or matrix output
function, x is a scalar, vector or matrix variable, we can have:

V. Tr [(gT(:E)g(x) +01) %}

T [p (¢ @)g(x) +61) % f(w)Vg(x)} |

Proof. Suppose that h(x) = Tr [Tz + 61] % we have:
Voh(z) = 2%’:1:(;5% o1, (12)
which can lead to:
Vo (9(e) = 259(@) (¢ (@) +61)T . (3)

O

Furthermore, we can have the following lemma.

Lemma 3. Given g(x) is a scalar, vector or matrix output
function, x is a scalar, vector or matrix variable, D is a
constant and D is symmetrical if D is a matrix, we can have:

(x)g(=)D]

Proof. Suppose that h(z) = Tr[zTxD], we can thus have
V.h(g(x)) = 2g9(x)D. As a result of the chain rule, we can
achieve Lemma 3. L

V. Tr [gT =Tr [QDgT(x)Vg(x)} . (14)

The constrained minimization problem in Eq. (11) can be
solved by constructing a Lagrange function, which is given
by:

L) = f(z )gi(w) + 1) F = r(x, ),

s)
where 7(z, \) represents a Lagrangian term for the constraint
x € C. Taking the derivative of the Lagrange function with
respect to « and setting the derivative to zero, we can have:

Vel(w,\) =V (@) +p ) VT [gf (@)gi(x) + 81]

—Vr(z,\) =0

)+ 1y Tr[gf (=

7

p
2

According to Lemma 2, the problem is equivalent to:

+,uZTr[

—Vr(z,\) =

gi(2) +61) g7 (2)Vgi(x)

According to the Karush-Kuhn-Tucker conditions, solving the
problem in Eq. (11) is equivalent to solving the Lagrange
problem. However, solving the Lagrange problem directly is
challenging. Therefore, we propose an iterative algorithm that
allows us to find a stationary point or Optlmal solution instead.
Denote that D = £ (g7 (x)g(x) + 61) 7 isa given constant,
we can thus rewrite the problem to:

Vf(z)+p Z T[2D, g7 (2)Vgs(x)] — Vr(z,A) = 0. (16)

This problem is equivalent to:
inf(z) +p Yy Trlg! (2)gi(x)D;]. 17
min f(z) +uzi: rlg) (x)gi(x)Di] (17)

In summary, we first denote the initialization of x and then
calculate D; with respect to x. The iterative algorithm repeats
the cycling through x and D; until reaching convergence.

3) Convergence analysis of the generalized iteratively
reweighted algorithm: To begin with, we introduce the fol-
lowing lemma.

Lemma 4. For any o > 0, the following inequality holds
when 0 < p < 2:

plo—1)>2(c% —1). (18)

Proof. We denote f(c) = p(o—1) —2(c% — 1) and calculate
its first-order and second-order derivatives with respect to o:

Vf(a):p—pag_l,VQf(a) :p(l—g> o572, (19)

For 0 < p < 2 and ¢ > 0, we have V2f(o) > 0. The
condition V f(o) = 0 is satisfied when ¢ = 1. Moreover, we
have f(c) = 0 when o = 1. Therefore, if 0 < p < 2 and
o >0, f(o) is non-negative, which proves Lemma 4. L

Lemma 5. Given M = USUT and M = VAVT as
eigendecompositions for positive definite matrices M and M
of the same size, where ¥ and A are diagonal matrices
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with eigenvalues arranged in increasing and decreasing order,
respectively, the following inequality holds:

Tr[MM] > Tr[SA]. (20)

Based on Lemma 5, we can derive the following lemma.

Lemma 6. Given positive definite matrices M and M of the
same size, the following inequality holds for 0 < p < 2:

2<TTMZ%]—»TTMJ%D <1)CT7{AIAJ’_1] T%[AfAJ*—q)
(21)

Proof. For 0 < p < 2 and positive values \ and o, applying
Lemma 4 yields:

P (JA%* _ A%) > 9 <o—% _ 1) . (22)

By taking eigendecompositions of M and M, M = USU”
and M = VAV, we obtain the following inequalities:

Tr [SAEY) < Tr [NEM 5] (23)
p (Tr [NEME] —Tr [AR]) < 2 (T [B5] - Tr [A%)).

Since Tr [N | = 77 (5] = 0 and Tr [M] - Tr [A%] =0,
the above inequalities yield Lemma 6. O

_ Furthermore, we can extend Lemma 6 to any two matrices
A and A of the same size, as shown below.

Lemma 7. Given any matrices Aand A of the same size, and
0 > 0, the following inequality holds for 0 < p < 2:

2 (Tr [(ATA +5I>%} ~Tr [(474 +51)§D <

p(Tr [ATA(ATA+61)5 7| — v [AT A (AT A+ 61)

W

)

Proof. Since ATA + 61(5 > 0) and ATA + 51(5 > 0) are
positive definite matrices, Lemma 6 can be applied to yield
Lemma 7. O

Finally, we propose the following theorem to establish the
convergence of our algorithm.

Theorem 1. The problem in Eq. (6) monotonically decreases
with the proposed algorithm and reaches convergence over
iterations.

Proof. Let’s denote the updated x as x’. The inequality below
holds if and only if the algorithm updates the objective to
convergence.

+ZT7’ 97 () gi(x )Dl]

+ZT7” gi(z) gi(z z)D;] .

Applying Lemma 7, we have:

2 (17 [(gF (e)gia") + 61) *| = 71 [(gF (@) gi(er) + 61) ] )
< p(Tr [T @)gi @) (o7 (@)gi ) +61)* 7]

-7 [df @) (o @) +61) ] )

21

Since D; = & (g7 (z)gi(x) + 61)
v [(o @)gi (@) + 1) = Tr [gF (@) gu(a)Di] @24)
< Tr [ (of (@)gi(x) +1)* | = Tr [gf (@)g.(x)D], 25)

which implies that, when summed over iterations, we have:

ZT7[91 )+ 61 %] ZTT‘ [97 ( (2')D;)
<ZTr[gZ

Finally, by adding Equations (26) and the inequality together,
we obtain:

P
2Tl (o7 (@)g:(a") +81)* | + f(a)
< ZTT [ 9i (
i
It is clear that Equation (27) holds if and only if the objec-

tive converges using the proposed algorithm. Therefore, the
theorem is proved. L

, we have:

z)gi(z) + 0I) } ZTT g7 (2)gi(z)D;] , (26)

2)g:(x) +51)g} + (). @7)

Additionally, it is important to note that our proposed algo-
rithm can find a locally optimal solution for the non-convex
objective, but when the objective is convex, the proposed
algorithm can find a globally optimal solution.

B. Alternating Direction Method of Multipliers (ADMM)

To efficiently obtain a closed-form solution, we employ
the Alternating Direction Method of Multipliers (ADMM)
method. The orthogonal constraints Ff Fy = I and FT Fy = I
play a crucial role in preventing degenerate solutions and
ensuring numerical stability. We leverage these constraints by
solving the Orthogonal Procrustes problem during the update
process.

Using our new optimization framework, we rewrite the
objective as:

min Tr ((S — A" Dg(S — A)) + N Tr(Fy LEFy)
+ Z)\[TI‘ S[,]+1FI)7
s.t. Zs” =1, ;>0, FFy=1, Ffr =1,
(28)

where Dg is a diagonal matrlx with the i-th diagonal element

-2
given by & (|s; — a;]2? +6) "%, and si and a; are the i-th
column vectors of matrices S and A, respectively.
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Following the ADMM framework, we can rewrite the ob-
jective in Eq. (28) as:

minTr (P — A)"Dg(S — A)) + Ao Tr(Ej LEFy)

k—1
m 1
+ Y MTH(ET LR, | Fr)+ SlIP =5+ ;ASH%
I=1

k—1
—|\E0—F0+ Ao||F+Z*HEI—FI+ S0l

I=1
S.t. Zsij =1, Sij > 0,
J
(29)

FIry =1,

where Ag, Ap, and A; are the Lagrangian multipliers for the
constraints P = S, Fy = Fy, and E; = F7, respectively. We
have also introduced the variables P, Ej, and E; as auxiliary
variables that facilitate the optimization process. Note that we
have added the /5 penalty terms in the objective function to
account for the constraint violations, and j is a parameter that
controls the trade-off between the data fidelity term and the
penalty terms.

The detailed procedures to solve Eq.(29) using the ADMM
method are provided in the following steps:

Step 1: Initialization.

Step 2: Solving for P. Fix all other variables except for P
and solve the following optimization problem:

FIF =1,

1
min Tr (P — )7 Dy (S — 4)) + gnp =S+ AslE G0)

Taking the derivative of Eq. (30) with respect to P and setting
it to 0, we have:
D A
P="2(A-8)+8- =5 31
H M
Step 3: Solving for S. Fix all other variables except for S
and solve the following optimization problem:
min Tr (P—A)T"Ds(S—A))+ f||P S+ ASHF (32)

Taking the derivative of Eq. (32) with respect to S and setting
it to 0, we have:

S==5(A-P)+P+ -2 (33)

Step 4: Solving for E). Fix all other variables except for
F)y and solve the following optimization problem:

. 1
r%m )\()TI'(E Lp E) — HE() E) + ;A() ||%~ (34)
0

We can simplify Eq. (34) as follows:
1
LI1Es = Fo + Aol

- gTr (EOEOT —(Fy — —AO - @LP FO)ET)

M Tr(ES LEFy) +
(35)

Let My = Fy — fAO - 0LngO, then we can rewrite the
optimization problem in Eq. (34) as follows:

min |Eo — Mol|%, st eo,; > 0. (36)
0

This can be decoupled to solve every element of Fj:

l'eI;ln(e()LJ - moij)2, S.t. eo,ij > 0. (37)
The solution can be easily obtained as eg;; = max(mg;;,0).

Step S: Solving F{. Fix all other variables except for F{
and solve the following optimization problem:

st. FTFy = 1.

1
min Ao Tr(EL L2 Fo)+ 2 || Eg— Fy+ = Ao %,
B ? : (38)

We can simplify this problem as follows:
1
NTe(E L5 Fo) + Sl Bo = Fo + - Ao}
i A (39)
= §Tr (F(]FOT —2F, < EO + Ao — iEO Lp>> .
Iz
Denoting M = iEoT + ﬁAo — TonT L%, we can rewrite this
problem as an Orthogonal Procrustes problem:

min || Fo — Mol|% — [ Mol%, st Fg Fo=1.  (40)
0
According to Theorem 1 in [36], this problem is equivalent
to:
Ir}?aXTr(E)T]VIO), st. FTFy =1, 41)
0

and we obtain the solution Fyy = Up, VI,TO by computing the
SVD of M()Z SVD(M()) = UF()EF()VFI';'

Step 6: Solving E; is similar to Step 4.

Step 7: Solving F7 is similar to Step 5.

Step 8: Update Ag by Ap = Ap + p(P — S).

Step 9: Update Ay by Ag = Ag + p(Eo — Fp).

Step 10: Update Ay by Ar=Ar+ ,U,(E] — F])

Step 11: Update 1 by p = pp.

Algorithm 2 Solve the optimization problem

Require: Affinity matrix A € R™*"
1: Imitialization: Ao, c, i, A1, P, S, Eo, Fo, E1, F1,As, Ao, A1
2: repeat
3: Step 1: Update P
Step 2: Update S
Step 3: Update E,
Step 4: Update Fj
Step 5: Update Er
Step 6: Update F7
9: Step 7: Update Lagrangian multipliers
10: Step 9: Update 1
11: until convergence

PR h

IV. EXPERIMENT
A. Interaction Prediction Evaluation

In this section, we evaluate our method’s performance in
predicting interacting pairs. We use four standard evaluation
metrics: precision, recall, AUC (area under the ROC curve),
and AP (average precision). These metrics provide a compre-
hensive assessment of the prediction performance and enable
meaningful comparisons with other methods.

To assess the performance of our method, we compare it
with five competitive prediction methods: ENN [18], SFCN
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Fig. 3. ROC and PR curves for evaluating the capability of the proposed
method and its counterparts to recover the hidden protein-protein interactions
using 10-fold cross-validation.
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Fig. 5. Mean AUC and AP values (solid lines) and their standard deviations
(shadow areas) of our method on the PPI and DTI test data with respect to
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[24], NMF [35], NN [19], and DeepWalk [32]. These methods
were selected as they represent state-of-the-art approaches for
interaction prediction.

To conduct a comprehensive evaluation, we perform a 10-
fold cross-validation, repeated ten times. In each trial, we
randomly remove 10% of known links from the input graph
and attempt to recover them using the remaining graph. The
reported results of our 10-fold cross-validation represent the
average values across all folds and repeats.

Figures 3 and 4 present the ROC-AUC and PR-AP curves
for protein-protein interaction (PPI) and drug-target interaction
(DTI) predictions, respectively. It is evident from the curves
that our method consistently outperforms the compared meth-
ods. The superiority of our approach is further supported by
the higher average AUC values (0.86 for PPI and 0.82 for
DTI) and AP values (0.82 for PPI and 0.80 for DTI).

To assess the robustness of our method, we conduct
different-fold cross-validations, as shown in Figures 6 and 7.
The ROC-AUC and PR-AP curves demonstrate the stability
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Fig. 6. ROC and PR curves for Protein-Protein interactions using different
fold cross-validations.
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Fig. 7. ROC and PR curves for Drug-Target interactions using different fold
cross-validations.

and robustness of our method, as indicated by the insignifi-
cant standard deviation observed across different-fold cross-
validation on the unbalanced dataset. These results reinforce
the reliability of our model for predicting hidden PPIs and
DTIs.

Furthermore, we evaluate the performance of our method on
datasets of different sizes. Figure 5 illustrates the mean AUC
and AP values (solid lines) along with their standard deviations
(shadow areas) on the PPI and DTI test data with respect to
different training sizes. The trend line clearly shows a rapid
increase in performance until the training size reaches 10,000.
This finding suggests that our method benefits significantly
from the addition of more training samples in this range,
indicating the effectiveness of our approach in learning from
larger training datasets.

The above evaluations and analyses confirm the superior
performance, robustness, and scalability of our method in
predicting hidden PPIs and DTIs.

B. Discovery of Repurposable Drugs for SARS-CoV-2

In this subsection, we present a subset of candidate drug-
target interactions with the highest-ranking scores derived
from our proposed method. These putative interactions are
supported by published antiviral research, indicating their
potential effectiveness in combating SARS-CoV-2. Table I
provides the DrugBank ID, drug name, known indication, gene
target, and associated validation documents with their PubMed
IDs.

We highlight some of the significant candidate interactions
and their supporting evidence below:

Lidocaine - IL1B: ILIB is a protein-coding gene that
plays a crucial role in proinflammatory cytokines. The lung
damage observed in patients with SARS-CoV-2 is largely
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TABLE 1

THE LITERATURE-DERIVED ANTIVIRAL EVIDENCE FOR THE REPURPOSABLE DRUGS WITH THE HIGHEST-RANKING SCORES PREDICTED BY OUR METHOD.

DrugBank ID | Drug Name | Known Indication | Gene Target | PubMed ID
DB00281 Lidocaine sore throat, arrhythmia IL1B 11876744, 32171193
DB01394 Colchicine anti-inflammatory TUBAITA 22814904
DB01234 Dexamethasone anti-inflammatory RASDI1 16489124
DB01244 Bepridil chronic stable angina FOXO03 33597253, 27283899
DB06151 Acetylcysteine | mucolytic therapy, acetaminophen overdose EGFR 31891230
DB06287 Sirolimus immunosuppressant APOE 14697997
DB08901 Ponatinib blast phase chronic myeloid leukemia BRAF 32873792
DB00539 Toremifene metastatic breast cancer CLU 18508997
DB00615 Rifabutin mycobacterium avium complex SLCOIBI1 26482301
DB00541 Vincristine acute lymphocytic leukemia AKT1 19968493

related to the inflammatory response induced by cytokines
such as IL1B. Lidocaine and related drugs have been found
to induce immunoregulatory effects and regulate the secretion
of the cytokine IL1B [6], [22].

Colchicine - TUBA1A: TUBAIA plays an important role
in microtubule formation and morphologically differentiated
neurologic cells. Colchicine, known for its anti-inflammatory
effects, exerts its mechanism of action by suppressing mi-
crotubule formation. The interaction between colchicine and
TUBATA has been extensively studied for its therapeutic
potential in various conditions [16], [25], [27].

Dexamethasone - RASD1: RASDI is a gene expressed
in multiple tissues and involved in receptor-independent sig-
nal transduction pathways. Dexamethasone, a corticosteroid,
possesses anti-inflammatory properties and can affect RASD1
expression and related cellular processes [9], [14], [28].

Bepridil - FOXO3: FOXO3 plays a role in protein turnover
regulation and apoptosis during the cell cycle. Bepridil, used
in the treatment of chronic stable angina, has been shown to
upregulate FOXO3 expression and impact signaling pathways
associated with this gene [15], [30], [33].

Acetylcysteine - EGFR: EGFR is a receptor tyrosine kinase
involved in cell growth, proliferation, and

survival. Acetylcysteine, also known as N-acetylcysteine
(NACQ), acts as an antioxidant and inducer of glutathione. Com-
bined treatment of N-acetylcysteine and gefitinib, an EGFR
inhibitor, has been shown to reverse EGFR-TKI resistance in
lung cancer cells [23], [26].

Sirolimus - APOE: APOE is associated with lipid par-
ticle clearance and various chronic conditions. Sirolimus,
an immunosuppressant, has been investigated for its impact
on APOE expression and its potential benefits in reducing
atherosclerotic lesion size [8], [12].

Ponatinib - BRAF: BRAF is a protein kinase involved in
cell signaling pathways. Ponatinib, a kinase inhibitor, has been
extensively used for the treatment of chronic myeloid leukemia
(CML). The interaction between Ponatinib and BRAF has been
studied for its potential therapeutic effects [5], [7].

Toremifene - CLU: CLU is a gene associated with cellular
debris clearance and apoptosis. Toremifene, used in the treat-
ment of metastatic breast cancer, has been shown to affect
CLU expression and play a role in the response to anti-
estrogen treatment [4], [20].

Rifabutin - SLCO1B1: SLCOIB1 encodes a liver-specific
transporter involved in drug uptake. Rifabutin, an antibiotic,
has been studied for its impact on SLCO1B1 and its influence
on drug exposure in tuberculosis patients [17], [31].

Vincristine - AKT1: AKTI is a protein kinase involved
in various cellular functions, including cell proliferation and
survival. Vincristine, a cytotoxic compound used in the treat-
ment of leukemia, has been shown to interact with AKT1 and
modulate cell apoptosis and drug sensitivity [27], [38].

The significant overlaps between our predictions and the
findings in existing literature provide strong evidence for the
potential effectiveness of the suggested repurposable drugs.
However, it is crucial to validate all predicted drug-target
interactions in clinical and experimental trials specific to
SARS-CoV-2 before considering their application in patient
treatment.

Table I presents a subset of the predicted drug-target interac-
tions along with their associated literature evidence, supporting
the potential repurposing of these drugs for SARS-CoV-2.

V. CONCLUSION

In this study, we proposed a novel k-partite graph-clustering
framework for predicting protein-protein interactions (PPIs)
and drug-target interactions (DTIs). Our approach stands out
from existing methods by learning a new k-partite graph with
an explicit cluster structure and ensuring the desired connected
components through a rank constraint on the Laplacian matrix.
To enhance model robustness, we introduced the /5 ,-norm
on the distance function and developed an efficient algorithm
that integrates the alternating direction method of multipliers
(ADMM) with the iteratively reweighted method.

Through extensive evaluations and experiments, we demon-
strated the reliability, efficiency, and power of our method in
computational approaches for PPI and DTI prediction. We
compared our method with state-of-the-art approaches and
consistently outperformed them in terms of precision, recall,
AUC, and AP. The evaluation results, including ROC and
PR curves, average AUC and AP values, and the analysis
of different-fold cross-validation and scalability, all provided
strong evidence of the superior performance and robustness of
our approach.

Furthermore, we applied our method to discover repurpos-
able drugs for the treatment of SARS-CoV-2. By predicting
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undiscovered binding affinities, we identified a subset of can-
didate drug-target interactions supported by existing antiviral
research. These findings hold promise for potential therapeu-
tic interventions against COVID-19. However, it is crucial
to validate these predicted interactions through clinical and
experimental trials specific to SARS-CoV-2 before considering
their application in patient treatment.

In summary, our proposed k-partite graph-clustering frame-
work offers a reliable and efficient computational approach for
predicting PPIs and DTIs. It serves as a valuable auxiliary tool
for proteomics and pharmacologic research, providing insights
into potential interactions and facilitating the discovery of new
therapeutic strategies.
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