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Abstract—The COVID-19 pandemic caused by SARS-CoV-2
has emphasized the importance of studying virus-host protein-
protein interactions (PPIs) and drug-target interactions (DTIs)
to discover effective antiviral drugs. While several computational
algorithms have been developed for this purpose, most of them
overlook the interplay pathways during infection along PPIs
and DTIs. In this paper, we present a novel multipartite graph
learning approach to uncover hidden binding affinities in PPIs
and DTIs. Our method leverages a comprehensive biomolecular
mechanism network that integrates protein-protein, genetic, and
virus-host interactions, enabling us to learn a new graph that
accurately captures the underlying connected components. No-
tably, our method identifies clustering structures directly from
the new graph, eliminating the need for post-processing steps.
To mitigate the detrimental effects of noisy or outlier data
in sparse networks, we propose a robust objective function
that incorporates the �2,p-norm and a constraint based on
the pth-order Ky-Fan norm applied to the graph Laplacian
matrix. Additionally, we present an efficient optimization method
tailored to our framework. Experimental results demonstrate
the superiority of our approach over existing state-of-the-art
techniques, as it successfully identifies potential repurposable
drugs for SARS-CoV-2, offering promising therapeutic options
for COVID-19 treatment.

Index Terms—Multipartite Graph Learning, Robust Learning,
Biomolecular Mechanism Network.

I. INTRODUCTION

The Coronavirus Disease 2019 (COVID-19) is caused by

the severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), a member of the coronavirus family. Understanding

the mechanisms of SARS-CoV-2 infection and developing

effective therapeutic interventions against COVID-19 are of

paramount importance. However, experimental approaches for

identifying virus-host protein-protein interactions and repur-

posing drugs can be time-consuming, expensive, and yield un-

reliable results due to false negatives and positives. Therefore,

there is a significant need to develop reliable computational

methods that can provide testable hypotheses for preliminary

investigations into hidden virus-host protein-protein interac-

tions and drug-target interactions.

Most existing computational methods for predicting protein-

protein or drug-target interactions rely on clustering relations

between host proteins and viral proteins or drug compounds

and targeted genes [37]. Unfortunately, few prediction methods

simultaneously cluster protein-protein interactions (PPI) and

drug-target interactions (DTI), and most existing computa-

tional methods fail to provide systematic investigations on

the entire pathways of infection interplay. Moreover, viruses

and drugs often indirectly affect proteins, leading to cascading

effects in the human interactome, such as the cytokine storm

observed in severe inflammatory responses to SARS-CoV-

2 infection [3]. Therefore, gaining a more comprehensive

understanding of the virus-host-drug mechanism is crucial.

In this paper, we propose an innovative computational

approach that integrates protein-protein, drug-target, and virus-

host interactions to uncover hidden interactions within the host

interactome. Our approach, depicted in Figure 1, provides in-

depth knowledge of pathological and pharmacological inter-

actions by considering both direct and indirect effects in the

host interactome. Importantly, recent insights into developing

computational methods for discovering new protein-protein

interactions (PPIs) and drug-target interactions (DTIs) have

predominantly focused on deep neural networks, which often

require large amounts of training data, resulting in intensive

computations and limited interpretability.

To address these challenges, we develop a reliable, effi-

cient, and powerful computational method for modeling and

predicting PPIs and DTIs, serving as an auxiliary tool for

proteomics or pharmacologic research. We study an integrative

dataset that combines molecular mechanisms across protein-

protein and drug-target interactions. The dataset comprises

three interaction networks: protein-protein interactions (PPIs),

genetic interactions (GIs), and virus-host interactions (VHIs),

sourced from the BioGRID database [2]. To generate an in-

formative molecular interaction network, we apply the Vanunu

smoothening method [34] to integrate these networks. Addi-

tionally, we extend the drug-target interaction (DTI) network,

originally collected from the DrugBank database [11], to a

generalized drug-target interaction network using the Tanimoto

similarity coefficient [1], [29]. Further details on the pre-

processing and construction of the dataset are provided in

Section II.

To uncover hidden interactions within the integrated net-
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Fig. 1. The life cycle of SARS-CoV-2 and our proposed modeling approach for predicting the virus-host-drug interactome. (1) The virus enters the host
cell by binding the ACE2 receptor and cleavage by TMPRSS2. (2) The viral RNA genome is released into the host cell cytoplasm. (3) The virus hijacks
the host machinery to replicate and translate its RNA genome and structural proteins. (4) The newly synthesized viral proteins and RNA are assembled
into a new virion in the Golgi vesicles. (5) The new virion is released from the host cell into the environment to repeat the infection cycle. Our modeling
approach consists of two main parts: (a) the encoder framework that converts the drug compound and protein sequence into vector embeddings, and (b) our
novel matrix-completion framework that takes the embeddings and constructs a tripartite graph to simultaneously predict putative virus-host protein-protein
interactions (VHIs) and drug-target interactions (DTIs). Created with BioRender.com

work, we develop an innovative k-partite graph-based co-

clustering method. This method allows us to learn a new graph

with exact connected components, presenting an explicit clus-

tering structure and indicators without the need for additional

sorting or processing work. We propose a regularized multi-

partite (k-partite) graph with constraints based on the pth-order

Ky-Fan and Schatten norms, effectively determining the rank

of the normalized Laplacian matrix. To enhance the robustness

of the objective function, we employ a loss function based on

the �2,p-norm, considering the sparsity and potential outliers in

the collected dataset. Addressing the optimization challenges

posed by the proposed objective function, we develop an

efficient and reliable optimization algorithm that integrates the

alternating direction method of multipliers (ADMM) with an

iteratively reweighted method (IRM). Our method outperforms

current state-of-the-art methods in interaction prediction and

demonstrates superior robustness to noise.

Through extensive experimental evaluations and literature

validation, we identify undiscovered binding affinities for PPIs

and DTIs, leading to the discovery of potential drug candidates

for treating COVID-19. Importantly, our proposed method is

not limited to the studied dataset but is also applicable to

any situation that can be modeled as a multipartite graph.

By providing accurate predictions and uncovering hidden

interactions, our computational approach contributes to the

understanding of the virus-host-drug mechanism and holds

promise for advancing proteomics and pharmacologic research

in the context of COVID-19 and beyond.

II. MATERIALS AND DATA SOURCES

For our study, we utilized an integrative dataset comprising

protein-protein interactions (PPIs), genetic interactions (GIs),

virus-host interactions (VHIs), and drug-target interactions

(DTIs) [37]. The PPIs, GIs, and VHIs were sourced from the

BioGRID database [2], providing a comprehensive network

consisting of 16, 431 human proteins and 332 SARS-CoV-2

proteins. The genetic interaction network encompassed 3, 302
genes, while the metabolic interaction network incorporated

1, 530 genes from the KEGG database [21]. By combining

these networks, we constructed a molecular interaction net-

work consisting of 16, 872 genes.

The VHIs affinity matrix, denoted as AV H , exhibited high

sparsity due to the low virus-to-host ratio of approximately

0.0197 (332/16, 872). To address this sparsity issue, we em-

ployed the protein network propagation method proposed by

Vanunu et al. [34]. This method iteratively spreads prior infor-

mation on causal genes to their network neighbors, resulting in

the smoothing of protein information across the network. We

set the smoothing parameter α to 0.7 and used a convergence

threshold of |At
V H − At−1

V H | < 10−5 to obtain a smoothed

affinity matrix AV H .

To incorporate the DTIs into our analysis, we transformed

them into an affinity matrix denoted as ADT . We employed

the Tanimoto similarity coefficient [1], [29] to calculate the

similarity between the fingerprints of each pair of drugs. The

SMILES string of each of the 8, 279 drugs in the DrugBank

database was numerically encoded into a vector fingerprint. If
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Fig. 2. Illustration of the k partite graph with k disjoint sets. The pairwise
co-clustering aims to simultaneously discover all hidden interactions given
original interactions.

the similarity score for a pair of drugs exceeded 95% of all

other drug pairs, we considered it to have a strong potential to

interact with targeted genes, and we added the corresponding

connection to the smoothed affinity matrix for DTIs. This

process resulted in a DTI matrix containing 1, 727, 436 active

connections.

By combining the smoothed VHIs affinity matrix AV H and

the DTI matrix ADT , we obtained an integrative dataset that

encompasses the interactions among proteins, genes, viruses,

and drugs. This dataset serves as the foundation for our

computational approach, enabling the prediction of virus-host

protein-protein interactions (VHIs) and drug-target interactions

(DTIs) in a comprehensive manner.

III. METHODS

Throughout this paper, matrices are denoted by bold upper-

case letters, while vectors are represented by bold lowercase

letters. The �p-norm (0 < p ≤ 2) of v is defined as

|v|p = (
∑

i v
p
i )

1
p . For a matrix M = [mij ], the trace of M is

defined as tr(M) =
∑

i mii.

A common method for describing multiple distinct inde-

pendent interactions involves using an undirected weighted

k-partite graph. In this representation, data points (vertices)

can be partitioned into k disjoint sets, with every pair in

the k sets being adjacent, as illustrated in Figure 2. When

k = 2, these graphs are referred to as bipartite, and when

k = 3, they are called tripartite. It is important to note

that pairwise interactions can propagate through the relations,

creating connected influences in a k-partite graph, as shown

in Figure 1. Often, the goal is to identify pairwise clustering

relations among these data points. However, extracting explicit

clustering structures from a k-partite graph can be challenging,

especially with large, high-dimensional datasets. Although

some graph-based learning methods, such as spectral learning

or isoperimetric clustering, have been developed to handle

this type of data, their dependencies can introduce additional

challenges in revealing the clustering structures within the

data. This is because these approaches require the graph to

possess specific properties. Furthermore, another notable issue

with these methods is the need for additional processing

approaches to determine the final clustering results, leading

to a significant increase in computational cost as the number

of data points grows.

To address these challenges, we propose a novel method

that aims to learn a high-level representation matrix from the

given k-partite data graph. In this case, the desired pairwise co-

clustering results can be directly represented in the learned ma-

trix, eliminating the need for additional clustering approaches

on the data graph. Before initiating the learning process,

we must provide an end-to-end description of the original

interactions within the given data points. A common approach

in such situations involves storing the data points in an affinity

matrix, where an entry of this matrix denotes the mutual

similarity between the data in two disjoint sets represented

by the corresponding row and column of the matrix. Given

two data points xi, xj in set i and j, the similarity distance

ai,j can be constructed using the radial basis function (RBF)

kernel: wi,j = exp
(
− |xi−xj |22

2σ2

)
, where σ is the Gaussian

parameter.

From this perspective, we can construct an undirected

weighted k-partite graph using a squared affinity matrix A
as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 A1,2 0 · · · 0 0
AT

1,2 0 A2,3 · · · 0 0
0 AT

2,3 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 Ak−1,k

0 0 0 · · · AT
k−1,k 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

n×n,

(1)

where A ∈ R
n×n is the global affinity matrix, Ai,j ∈ R

ni×nj

is a local affinity matrix measuring the similarity distance

between data points in sets i and j, ni and nj represent

the number of data points in sets i and j, respectively, and

n = n1 + n2 + · · · + nk denotes the total number of data

points.

The global affinity matrix A and associated local matri-

ces Ai,j are not block-diagonal matrices, meaning clustering

relations cannot be explicitly involved in them. Much of

the research into finding underlying clustering relations has

focused on the Spectral Graph Partitioning method [10], which

aims to find an optimal cutting solution using the edge-cut-

based (or normalized cut) criterion. As mentioned earlier, this

method and its variants require implementing post-processing

approaches to the results. In contrast, our model seeks to

learn a new general similarity matrix S from the global

affinity matrix A, while the learned matrix S is connected

with clustering components. Consequently, our model has a

significant advantage in that the optimal clustering structures

can be clearly represented in the learned matrix S, providing

an efficient and straightforward way to interpret underlying

relations within the data.

Our learning process aims not only to obtain clustering

relations but also to ensure that the similarity matrix S is as

close to the given affinity matrix A as possible. To achieve

this, we minimize the reconstruction error between S and A.

Additionally, we impose the �2,p-norm on the distance function

to prevent the learning process from being corrupted by noise

potentially present in real-world datasets. Moreover, to prevent

the learned matrix S from becoming extremely sparse, we also
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impose a constraint on S where the sum of each row of S is

one. Thus, we can formulate our objective function as:

min ||S −A||p2,p,
s.t.

∑
j

sij = 1, sij ≥ 0, S ∈ Θ, SI,I+1 ∈ Θ, (2)

where sij represents the element at position i, j of matrix S,

and S ∈ Θ is a constraint that restricts the set of matrices in

S to be connected with exactly c clustering components. The

co-clustering structures in a k-partite graph can be viewed

as a connection passing through consecutive bipartite graphs.

To avoid ill-clustering structures (the clustering inconsistency

between consecutive bipartite graphs), it is beneficial to add

a constraint for each sub-bipartite graph such that SI,I+1 =(
0 SI,I+1

ST
I,I+1 0

)
∈ Θ, where SI,I+1 is a sub-bipartite graph

between set I and I + 1 (1 ≤ I < k).

Since S ∈ Θ and SI,I+1 ∈ Θ are non-linear constraints,

optimizing the objective in Eq. (2) can be an extremely

challenging task. To simplify the optimization problem, we can

replace the non-linear constraints with low-rank constraints

on the Laplacian matrices. According to Theorem 1-(5) [10],

the number of zero eigenvalues of the Laplacian LS (i.e.,

the multiplicity of the 0 eigenvalue) equals the number of

connected components of the graph G. Therefore, we can

efficiently handle the non-linear constraints by replacing them

with rank(LS) = n− c and rank(LSI,I+1
) = nI + nI+1 − c

(c is the number of connected components). This leads to the

following simplified objective function:

min ‖S −A‖p2,p, s.t.
∑
j

sij = 1, sij ≥ 0,

rank(LS) = n− c, rank(LSI,I+1
) = nI + nI+1 − c.

(3)

However, optimizing the objective function in Eq. (3) with

the low-rank constraints can still be challenging. Therefore,

we propose to treat the low-rank constraints as penalty terms

added to the cost function. This allows us to transform the

constrained minimization problem into an unconstrained one.

Specifically, we introduce non-convex penalties involving the

p-th order of the Laplacian matrices LS and LSI,I+1
. The

objective function becomes:

min ||S −A||p2,p + λ0

c∑
i=1

σp
i (LS) +

k−1∑
I=1

λI

c∑
i=1

σp
i (LSI,I+1

),

s.t.
∑
j

sij = 1, sij ≥ 0,

(4)

where σi(LS) and σi(LSI,I+1
) represent the i-th smallest

eigenvalues of LS and LSI,I+1
, respectively. The parameters

λ0 and λI control the strength of the penalties.

To further simplify the objective function, we can express

the penalties using the trace operator and Ky-Fan norm.

According to the Ky-Fan norm theorem [13], we have:

c∑
i=1

σp
i (LS) = minTr(FT

0 Lp
SF0), s.t. FT

0 F0 = I,

c∑
i=1

σp
i (LSI,I+1

) = minTr(FT
I Lp

SI,I+1
FI), s.t. FT

I FI = I.

Thus, the objective function is updated as:

min ||S −A||p2,p + λ0Tr(F
T
0 Lp

SF0) +
k−1∑
I=1

λITr(F
T
I Lp

SI,I+1
FI),

s.t.
∑
j

sij = 1, sij ≥ 0, FT
0 F0 = I, FT

I FI = I. (5)

In the next section, we will present the optimization algorithm

for solving the objective function in Eq. (5).

A. Our Algorithm

Solving the optimization problem associated with the pro-

posed objective function in Eq. (5) can be challenging due

to its non-smooth and non-convex nature. To address this

challenge, we propose a generalized version of the Iteratively

Reweighted Method (IRM) that allows for optimization of

a surrogate loss function. This generalized IRM provides

smoothness and convexity advantages, overcoming the limi-

tations of prior studies that focused only on sparsity-inducing

penalties.

1) Generalized Iteratively Reweighted Method: First, we

introduce a more general problem as below:

min
x∈C

f(x) +
∑
i

‖gi(x)‖p∗, (6)

where gi(x) is a scalar, vector, or matrix output function. Thus,

we have:

1) If gi(x) is a scalar output function, (6) changes to:

min
x∈C

f(x) +
∑
i

|gi(x)|p. (7)

2) If gi(x) is a vector output function, (6) changes to:

min
x∈C

f(x) +
∑
i

‖gi(x)‖p2. (8)

3) If gi(x) is a matrix output function, (6) changes to:

min
x∈C

f(x) +
∑
i

‖gi(x)‖pSp
. (9)

It can be seen that the problem in (6) is equivalent to:

min
x∈C

f(x) +
∑
i

Tr
[(
gTi (x)gi(x)

) p
2

]
. (10)

Since the problem in (10) is not smooth and too difficult to

solve, we can transform it to an approximation problem that

is smooth, which is formulated as:

min
x∈C

f(x) + λ
∑
i

Tr
[(
gTi (x)gi(x) + δI

) p
2

]
, (11)
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where δ is the smooth parameter that depends on x. If δ
approximates to zero, (11) changes to the problem in (6). We

thus propose an iterative algorithm for finding the solution to

this problem as described in the below algorithm, and provide

a theoretical analysis to prove the convergence of the proposed

algorithm.

Algorithm 1 Algorithm to solve the problem in Eq. (6)

Initialization: x ∈ C

1: while not converge do
2: Calculate Di =

p
2

(
Tr[gTi (x)gi(x)] + δI

) p−2
2 ;

3: Update x by solving minx∈C f(x)+
∑

i Tr
[
gTi (x)gi(x)Di

]
;

4: end while
Output: x.

2) Optimization analysis: To begin with, we need to cal-

culate the variable derivation by using the following lemma.

Lemma 1. Chain rule: Given g(x) is a matrix output function,
h(x) is a scalar output function, x is a scalar, vector, or matrix
variable, we have:

∇xh (g(x)) = Tr

⎡
⎣
⎛
⎝∑

i,j

∇gij(x)h (g(x))

⎞
⎠∇gij(x)

⎤
⎦

= Tr
[(∇g(x)h (g(x))

)T ∇g(x)
]
.

Based on the chain rule in Lemma 1, we can further have:

Lemma 2. Given g(x) is a scalar, vector or matrix output
function, x is a scalar, vector or matrix variable, we can have:

∇xTr
[(
gT (x)g(x) + δI

) p
2

]

= Tr

[
p
(
gT (x)g(x) + δI

) p−2
2 gT (x)∇g(x)

]
.

Proof. Suppose that h(x) = Tr
[
xTx+ δI

] p
2 , we have:

∇xh(x) = 2
p

2
x(xTx+ δI)

p−2
p , (12)

which can lead to:

∇g(x)h (g(x)) = 2
p

2
g(x)

(
gT (x)g(x) + δI

) p−2
2 . (13)

Furthermore, we can have the following lemma.

Lemma 3. Given g(x) is a scalar, vector or matrix output
function, x is a scalar, vector or matrix variable, D is a
constant and D is symmetrical if D is a matrix, we can have:

∇xTr
[
gT (x)g(x)D

]
= Tr

[
2DgT (x)∇g(x)

]
. (14)

Proof. Suppose that h(x) = Tr[xTxD], we can thus have

∇xh (g(x)) = 2g(x)D. As a result of the chain rule, we can

achieve Lemma 3.

The constrained minimization problem in Eq. (11) can be

solved by constructing a Lagrange function, which is given

by:

L(x, λ) = f(x) + μ
∑
i

Tr
[
gTi (x)gi(x) + δI

] p
2 − r(x, λ),

(15)

where r(x, λ) represents a Lagrangian term for the constraint

x ∈ C. Taking the derivative of the Lagrange function with

respect to x and setting the derivative to zero, we can have:

∇xL(x, λ) =∇f(x) + μ
∑
i

∇Tr
[
gTi (x)gi(x) + δI

] p
2

−∇r(x, λ) = 0.

According to Lemma 2, the problem is equivalent to:

∇f(x) + μ
∑
i

Tr

[
p
(
gTi (x)gi(x) + δI

) p−2
2 gTi (x)∇gi(x)

]

−∇r(x, λ) = 0.

According to the Karush-Kuhn-Tucker conditions, solving the

problem in Eq. (11) is equivalent to solving the Lagrange

problem. However, solving the Lagrange problem directly is

challenging. Therefore, we propose an iterative algorithm that

allows us to find a stationary point or optimal solution instead.

Denote that D = p
2

(
gT (x)g(x) + δI

) p−2
2 is a given constant,

we can thus rewrite the problem to:

∇f(x) + μ
∑
i

Tr[2Dig
T
i (x)∇gi(x)]−∇r(x, λ) = 0. (16)

This problem is equivalent to:

min
x∈C

f(x) + μ
∑
i

Tr[gTi (x)gi(x)Di]. (17)

In summary, we first denote the initialization of x and then

calculate Di with respect to x. The iterative algorithm repeats

the cycling through x and Di until reaching convergence.

3) Convergence analysis of the generalized iteratively
reweighted algorithm: To begin with, we introduce the fol-

lowing lemma.

Lemma 4. For any σ > 0, the following inequality holds
when 0 < p ≤ 2:

p(σ − 1) ≥ 2(σ
p
2 − 1). (18)

Proof. We denote f(σ) = p(σ− 1)− 2(σ
p
2 − 1) and calculate

its first-order and second-order derivatives with respect to σ:

∇f(σ) = p− pσ
p
2−1,∇2f(σ) = p

(
1− p

2

)
σ

p
2−2. (19)

For 0 < p ≤ 2 and σ > 0, we have ∇2f(σ) ≥ 0. The

condition ∇f(σ) = 0 is satisfied when σ = 1. Moreover, we

have f(σ) = 0 when σ = 1. Therefore, if 0 < p ≤ 2 and

σ > 0, f(σ) is non-negative, which proves Lemma 4.

Lemma 5. Given M̃ = UΣUT and M = V ΛV T as
eigendecompositions for positive definite matrices M̃ and M
of the same size, where Σ and Λ are diagonal matrices
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with eigenvalues arranged in increasing and decreasing order,
respectively, the following inequality holds:

Tr[M̃M ] ≥ Tr[ΣΛ]. (20)

Based on Lemma 5, we can derive the following lemma.

Lemma 6. Given positive definite matrices M̃ and M of the
same size, the following inequality holds for 0 < p ≤ 2:

2
(
Tr[M̃

p
2 ]− Tr[M

p
2 ]
)
≤ p

(
Tr

[
M̃M

p
2−1

]
− Tr

[
MM

p
2−1

])
.

(21)

Proof. For 0 < p ≤ 2 and positive values λ and σ, applying

Lemma 4 yields:

p
(
σλ

p
2−1 − λ

p
2

)
≥ 2

(
σ

p
2 − 1

)
. (22)

By taking eigendecompositions of M̃ and M , M̃ = UΣUT

and M = V ΛV T , we obtain the following inequalities:

Tr
[
ΣΛ

p
2−1

] ≤ Tr
[
M̃M

p
2−1

]
(23)

p
(
Tr

[
M̃M

p
2−1

]
− Tr

[
Λ

p
2

]) ≤ 2
(
Tr

[
Σ

p
2

]− Tr
[
Λ

p
2

])
.

Since Tr
[
M̃

p
2

]
− Tr [Σ] = 0 and Tr

[
M

p
2

]− Tr
[
Λ

p
2

]
= 0,

the above inequalities yield Lemma 6.

Furthermore, we can extend Lemma 6 to any two matrices

Ã and A of the same size, as shown below.

Lemma 7. Given any matrices Ã and A of the same size, and
δ > 0, the following inequality holds for 0 < p ≤ 2:

2

(
Tr

[(
ÃT Ã+ δI

) p
2

]
− Tr

[(
ATA+ δI

) p
2

])
≤

p
(
Tr

[
ÃT Ã

(
ATA+ δI

) p
2−1

]
− Tr

[
ATA

(
ATA+ δI

) p
2−1

])
.

Proof. Since ÃT Ã + δI(δ > 0) and ATA + δI(δ > 0) are

positive definite matrices, Lemma 6 can be applied to yield

Lemma 7.

Finally, we propose the following theorem to establish the

convergence of our algorithm.

Theorem 1. The problem in Eq. (6) monotonically decreases
with the proposed algorithm and reaches convergence over
iterations.

Proof. Let’s denote the updated x as x′. The inequality below

holds if and only if the algorithm updates the objective to

convergence.

f(x′) +
∑
i

Tr
[
gTi (x

′)gi(x′)Di

]

≤ f(x) +
∑
i

Tr
[
gi(x)

T gi(x)Di

]
.

Applying Lemma 7, we have:

2
(
Tr

[(
gTi (x

′)gi(x′) + δI
) p

2

]
− Tr

[(
gTi (x)gi(x) + δI

) p
2

])

≤ p

(
Tr

[
gTi (x

′)gi(x′)
(
gTi (x)gi(x) + δI

) p
2−1

]

− Tr
[
gTi (x)gi(x)

(
gTi (x)gi(x) + δI

) p
2−1

])
.

Since Di =
p
2

(
gTi (x)gi(x) + δI

) p
2−1

, we have:

Tr
[(
gTi (x

′)gi(x′) + δI
) p

2

]
− Tr

[
gTi (x

′)gi(x′)Di

]
(24)

≤ Tr
[(
gTi (x)gi(x) + δI

) p
2

]
− Tr

[
gTi (x)gi(x)Di

]
, (25)

which implies that, when summed over iterations, we have:

∑
i

Tr
[(
gTi (x

′)gi(x′) + δI
) p

2

]
−
∑
i

Tr
[
gTi (x

′)gi(x′)Di

]

≤
∑
i

Tr
[(
gTi (x)gi(x) + δI

) p
2

]
−
∑
i

Tr
[
gTi (x)gi(x)Di

]
, (26)

Finally, by adding Equations (26) and the inequality together,

we obtain:∑
i

Tr
[(
gTi (x

′)gi(x′) + δI
) p

2

]
+ f(x′)

≤
∑
i

Tr
[(
gTi (x)gi(x) + δI

) p
2

]
+ f(x). (27)

It is clear that Equation (27) holds if and only if the objec-

tive converges using the proposed algorithm. Therefore, the

theorem is proved.

Additionally, it is important to note that our proposed algo-

rithm can find a locally optimal solution for the non-convex

objective, but when the objective is convex, the proposed

algorithm can find a globally optimal solution.

B. Alternating Direction Method of Multipliers (ADMM)

To efficiently obtain a closed-form solution, we employ

the Alternating Direction Method of Multipliers (ADMM)

method. The orthogonal constraints FT
0 F0 = I and FT

I FI = I
play a crucial role in preventing degenerate solutions and

ensuring numerical stability. We leverage these constraints by

solving the Orthogonal Procrustes problem during the update

process.

Using our new optimization framework, we rewrite the

objective as:

minTr
(
(S −A)TDS(S −A)

)
+ λ0Tr(FT

0 Lp
SF0)

+
k−1∑
I=1

λITr(FT
I Lp

SI,I+1
FI),

s.t.
∑
j

sij = 1, sij ≥ 0, FT
0 F0 = I, FT

I FI = I,

(28)

where DS is a diagonal matrix with the i-th diagonal element

given by p
2

(|si − ai|22 + δ
) p−2

2 , and si and ai are the i-th
column vectors of matrices S and A, respectively.
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Following the ADMM framework, we can rewrite the ob-

jective in Eq. (28) as:

minTr
(
(P −A)TDS(S −A)

)
+ λ0Tr(ET

0 L
p
SF0)

+
k−1∑
I=1

λITr(ET
I L

p
SI,I+1

FI) +
μ

2
‖P − S +

1

μ
ΛS‖2F

+
μ

2
‖E0 − F0 +

1

μ
Λ0‖2F +

k−1∑
I=1

μ

2
‖EI − FI +

μ

2
ΛI‖2F ,

s.t.
∑
j

sij = 1, sij ≥ 0, FT
0 F0 = I, FT

I FI = I,

(29)

where ΛS , Λ0, and ΛI are the Lagrangian multipliers for the

constraints P = S, E0 = F0, and EI = FI , respectively. We

have also introduced the variables P , E0, and EI as auxiliary

variables that facilitate the optimization process. Note that we

have added the �2 penalty terms in the objective function to

account for the constraint violations, and μ is a parameter that

controls the trade-off between the data fidelity term and the

penalty terms.

The detailed procedures to solve Eq.(29) using the ADMM

method are provided in the following steps:

Step 1: Initialization.
Step 2: Solving for P. Fix all other variables except for P

and solve the following optimization problem:

min
P

Tr
(
(P −A)TDS(S −A)

)
+

μ

2
‖P −S+

1

μ
ΛS‖2F . (30)

Taking the derivative of Eq. (30) with respect to P and setting

it to 0, we have:

P =
DS

μ
(A− S) + S − ΛS

μ
. (31)

Step 3: Solving for S. Fix all other variables except for S
and solve the following optimization problem:

min
S

Tr
(
(P −A)TDS(S −A)

)
+

μ

2
‖P −S+

1

μ
ΛS‖2F . (32)

Taking the derivative of Eq. (32) with respect to S and setting

it to 0, we have:

S =
DS

μ
(A− P ) + P +

ΛS

μ
. (33)

Step 4: Solving for E0. Fix all other variables except for

E0 and solve the following optimization problem:

min
E0

λ0Tr(ET
0 L

p
SF0) +

μ

2
‖E0 − F0 +

1

μ
Λ0‖2F . (34)

We can simplify Eq. (34) as follows:

λ0Tr(ET
0 L

p
SF0) +

μ

2
‖E0 − F0 +

1

μ
Λ0‖2F

=
μ

2
Tr

(
E0E

T
0 − 2(F0 − 1

μ
Λ0 − λ0

μ
Lp
SF0)E

T
0

)
.

(35)

Let M0 = F0 − 1
μΛ0 − λ0

μ Lp
SF0, then we can rewrite the

optimization problem in Eq. (34) as follows:

min
E0

‖E0 −M0‖2F , s.t. e0ij ≥ 0. (36)

This can be decoupled to solve every element of E0:

min
e0ij

(e0ij −m0ij)
2, s.t. e0ij ≥ 0. (37)

The solution can be easily obtained as e0ij = max(m0ij , 0).
Step 5: Solving F0. Fix all other variables except for F0

and solve the following optimization problem:

min
F0

λ0Tr(ET
0 L

p
SF0)+

μ

2
‖E0−F0+

1

μ
Λ0‖2F , s.t. FT

0 F0 = I.

(38)

We can simplify this problem as follows:

λ0Tr(ET
0 L

p
SF0) +

μ

2
‖E0 − F0 +

1

μ
Λ0‖2F

=
μ

2
Tr

(
F0F

T
0 − 2F0

(
1

μ
ET

0 +
1

μ
Λ0 − λ0

μ
ET

0 L
p
S

))
.

(39)

Denoting MT
0 = 1

μE
T
0 + 1

μΛ0− λ0

μ ET
0 L

p
S , we can rewrite this

problem as an Orthogonal Procrustes problem:

min
F0

‖F0 −M0‖2F − ‖M0‖2F , s.t. FT
0 F0 = I. (40)

According to Theorem 1 in [36], this problem is equivalent

to:

max
F0

Tr(FT
0 M0), s.t. FT

0 F0 = I, (41)

and we obtain the solution F0 = UF0V
T
F0

by computing the

SVD of M0: SVD(M0) = UF0ΣF0V
T
F0

.

Step 6: Solving EI is similar to Step 4.

Step 7: Solving FI is similar to Step 5.

Step 8: Update ΛS by ΛP = ΛP + μ(P − S).
Step 9: Update Λ0 by Λ0 = Λ0 + μ(E0 − F0).
Step 10: Update ΛI by ΛI = ΛI + μ(EI − FI).
Step 11: Update μ by μ = ρμ.

Algorithm 2 Solve the optimization problem

Require: Affinity matrix A ∈ R
n×n

1: Initialization: λ0, c, μ, λI , P, S,E0, F0, EI , FI ,ΛS ,Λ0,ΛI

2: repeat
3: Step 1: Update P
4: Step 2: Update S
5: Step 3: Update E0

6: Step 4: Update F0

7: Step 5: Update EI

8: Step 6: Update FI

9: Step 7: Update Lagrangian multipliers
10: Step 9: Update μ
11: until convergence

IV. EXPERIMENT

A. Interaction Prediction Evaluation

In this section, we evaluate our method’s performance in

predicting interacting pairs. We use four standard evaluation

metrics: precision, recall, AUC (area under the ROC curve),

and AP (average precision). These metrics provide a compre-

hensive assessment of the prediction performance and enable

meaningful comparisons with other methods.

To assess the performance of our method, we compare it

with five competitive prediction methods: ENN [18], SFCN
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Fig. 3. ROC and PR curves for evaluating the capability of the proposed
method and its counterparts to recover the hidden protein-protein interactions
using 10-fold cross-validation.
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Fig. 4. ROC and PR curves for evaluating the capability of the proposed
method and its counterparts to recover the hidden drug-target interactions
using 10-fold cross-validation.
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Fig. 5. Mean AUC and AP values (solid lines) and their standard deviations
(shadow areas) of our method on the PPI and DTI test data with respect to
different training sizes.

[24], NMF [35], NN [19], and DeepWalk [32]. These methods

were selected as they represent state-of-the-art approaches for

interaction prediction.

To conduct a comprehensive evaluation, we perform a 10-

fold cross-validation, repeated ten times. In each trial, we

randomly remove 10% of known links from the input graph

and attempt to recover them using the remaining graph. The

reported results of our 10-fold cross-validation represent the

average values across all folds and repeats.

Figures 3 and 4 present the ROC-AUC and PR-AP curves

for protein-protein interaction (PPI) and drug-target interaction

(DTI) predictions, respectively. It is evident from the curves

that our method consistently outperforms the compared meth-

ods. The superiority of our approach is further supported by

the higher average AUC values (0.86 for PPI and 0.82 for

DTI) and AP values (0.82 for PPI and 0.80 for DTI).

To assess the robustness of our method, we conduct

different-fold cross-validations, as shown in Figures 6 and 7.

The ROC-AUC and PR-AP curves demonstrate the stability
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Fig. 6. ROC and PR curves for Protein-Protein interactions using different
fold cross-validations.
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Fig. 7. ROC and PR curves for Drug-Target interactions using different fold
cross-validations.

and robustness of our method, as indicated by the insignifi-

cant standard deviation observed across different-fold cross-

validation on the unbalanced dataset. These results reinforce

the reliability of our model for predicting hidden PPIs and

DTIs.

Furthermore, we evaluate the performance of our method on

datasets of different sizes. Figure 5 illustrates the mean AUC

and AP values (solid lines) along with their standard deviations

(shadow areas) on the PPI and DTI test data with respect to

different training sizes. The trend line clearly shows a rapid

increase in performance until the training size reaches 10,000.

This finding suggests that our method benefits significantly

from the addition of more training samples in this range,

indicating the effectiveness of our approach in learning from

larger training datasets.

The above evaluations and analyses confirm the superior

performance, robustness, and scalability of our method in

predicting hidden PPIs and DTIs.

B. Discovery of Repurposable Drugs for SARS-CoV-2

In this subsection, we present a subset of candidate drug-

target interactions with the highest-ranking scores derived

from our proposed method. These putative interactions are

supported by published antiviral research, indicating their

potential effectiveness in combating SARS-CoV-2. Table I

provides the DrugBank ID, drug name, known indication, gene

target, and associated validation documents with their PubMed

IDs.

We highlight some of the significant candidate interactions

and their supporting evidence below:

Lidocaine - IL1B: IL1B is a protein-coding gene that

plays a crucial role in proinflammatory cytokines. The lung

damage observed in patients with SARS-CoV-2 is largely
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TABLE I
THE LITERATURE-DERIVED ANTIVIRAL EVIDENCE FOR THE REPURPOSABLE DRUGS WITH THE HIGHEST-RANKING SCORES PREDICTED BY OUR METHOD.

DrugBank ID Drug Name Known Indication Gene Target PubMed ID

DB00281 Lidocaine sore throat, arrhythmia IL1B 11876744, 32171193
DB01394 Colchicine anti-inflammatory TUBA1A 22814904
DB01234 Dexamethasone anti-inflammatory RASD1 16489124
DB01244 Bepridil chronic stable angina FOXO3 33597253, 27283899
DB06151 Acetylcysteine mucolytic therapy, acetaminophen overdose EGFR 31891230
DB06287 Sirolimus immunosuppressant APOE 14697997
DB08901 Ponatinib blast phase chronic myeloid leukemia BRAF 32873792
DB00539 Toremifene metastatic breast cancer CLU 18508997
DB00615 Rifabutin mycobacterium avium complex SLCO1B1 26482301
DB00541 Vincristine acute lymphocytic leukemia AKT1 19968493

related to the inflammatory response induced by cytokines

such as IL1B. Lidocaine and related drugs have been found

to induce immunoregulatory effects and regulate the secretion

of the cytokine IL1B [6], [22].

Colchicine - TUBA1A: TUBA1A plays an important role

in microtubule formation and morphologically differentiated

neurologic cells. Colchicine, known for its anti-inflammatory

effects, exerts its mechanism of action by suppressing mi-

crotubule formation. The interaction between colchicine and

TUBA1A has been extensively studied for its therapeutic

potential in various conditions [16], [25], [27].

Dexamethasone - RASD1: RASD1 is a gene expressed

in multiple tissues and involved in receptor-independent sig-

nal transduction pathways. Dexamethasone, a corticosteroid,

possesses anti-inflammatory properties and can affect RASD1

expression and related cellular processes [9], [14], [28].

Bepridil - FOXO3: FOXO3 plays a role in protein turnover

regulation and apoptosis during the cell cycle. Bepridil, used

in the treatment of chronic stable angina, has been shown to

upregulate FOXO3 expression and impact signaling pathways

associated with this gene [15], [30], [33].

Acetylcysteine - EGFR: EGFR is a receptor tyrosine kinase

involved in cell growth, proliferation, and

survival. Acetylcysteine, also known as N-acetylcysteine

(NAC), acts as an antioxidant and inducer of glutathione. Com-

bined treatment of N-acetylcysteine and gefitinib, an EGFR

inhibitor, has been shown to reverse EGFR-TKI resistance in

lung cancer cells [23], [26].

Sirolimus - APOE: APOE is associated with lipid par-

ticle clearance and various chronic conditions. Sirolimus,

an immunosuppressant, has been investigated for its impact

on APOE expression and its potential benefits in reducing

atherosclerotic lesion size [8], [12].

Ponatinib - BRAF: BRAF is a protein kinase involved in

cell signaling pathways. Ponatinib, a kinase inhibitor, has been

extensively used for the treatment of chronic myeloid leukemia

(CML). The interaction between Ponatinib and BRAF has been

studied for its potential therapeutic effects [5], [7].

Toremifene - CLU: CLU is a gene associated with cellular

debris clearance and apoptosis. Toremifene, used in the treat-

ment of metastatic breast cancer, has been shown to affect

CLU expression and play a role in the response to anti-

estrogen treatment [4], [20].

Rifabutin - SLCO1B1: SLCO1B1 encodes a liver-specific

transporter involved in drug uptake. Rifabutin, an antibiotic,

has been studied for its impact on SLCO1B1 and its influence

on drug exposure in tuberculosis patients [17], [31].

Vincristine - AKT1: AKT1 is a protein kinase involved

in various cellular functions, including cell proliferation and

survival. Vincristine, a cytotoxic compound used in the treat-

ment of leukemia, has been shown to interact with AKT1 and

modulate cell apoptosis and drug sensitivity [27], [38].

The significant overlaps between our predictions and the

findings in existing literature provide strong evidence for the

potential effectiveness of the suggested repurposable drugs.

However, it is crucial to validate all predicted drug-target

interactions in clinical and experimental trials specific to

SARS-CoV-2 before considering their application in patient

treatment.

Table I presents a subset of the predicted drug-target interac-

tions along with their associated literature evidence, supporting

the potential repurposing of these drugs for SARS-CoV-2.

V. CONCLUSION

In this study, we proposed a novel k-partite graph-clustering

framework for predicting protein-protein interactions (PPIs)

and drug-target interactions (DTIs). Our approach stands out

from existing methods by learning a new k-partite graph with

an explicit cluster structure and ensuring the desired connected

components through a rank constraint on the Laplacian matrix.

To enhance model robustness, we introduced the �2,p-norm

on the distance function and developed an efficient algorithm

that integrates the alternating direction method of multipliers

(ADMM) with the iteratively reweighted method.

Through extensive evaluations and experiments, we demon-

strated the reliability, efficiency, and power of our method in

computational approaches for PPI and DTI prediction. We

compared our method with state-of-the-art approaches and

consistently outperformed them in terms of precision, recall,

AUC, and AP. The evaluation results, including ROC and

PR curves, average AUC and AP values, and the analysis

of different-fold cross-validation and scalability, all provided

strong evidence of the superior performance and robustness of

our approach.

Furthermore, we applied our method to discover repurpos-

able drugs for the treatment of SARS-CoV-2. By predicting
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undiscovered binding affinities, we identified a subset of can-

didate drug-target interactions supported by existing antiviral

research. These findings hold promise for potential therapeu-

tic interventions against COVID-19. However, it is crucial

to validate these predicted interactions through clinical and

experimental trials specific to SARS-CoV-2 before considering

their application in patient treatment.

In summary, our proposed k-partite graph-clustering frame-

work offers a reliable and efficient computational approach for

predicting PPIs and DTIs. It serves as a valuable auxiliary tool

for proteomics and pharmacologic research, providing insights

into potential interactions and facilitating the discovery of new

therapeutic strategies.
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