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Abstract—Graphical representations are essential for compre-
hending high-dimensional data across diverse fields, yet their
construction often presents challenges due to the limitations of
traditional methods. This paper introduces a novel methodology,
Beyond Simplex Sparse Representation (BSSR), which addresses
critical issues such as parameter dependencies, scale inconsis-
tencies, and biased data interpretation in constructing similarity
graphs. BSSR leverages the robustness of sparse representation to
noise and outliers, while incorporating deep learning techniques
to enhance scalability and accuracy. Furthermore, we tackle the
optimization of the standard simplex, a pervasive problem, by in-
troducing a transformative approach that converts the constraint
into a smooth manifold using the Hadamard parametrization.
Our proposed Tangent Perturbed Riemannian Gradient Descent
(T-PRGD) algorithm provides an efficient and scalable solution
for optimization problems with standard simplex or �1-norm
sphere constraints. These contributions, including the BSSR
methodology, robustness and scalability through deep represen-
tation, shift-invariant sparse representation, and optimization on
the unit sphere, represent major advancements in the field. Our
work offers novel perspectives on data representation challenges
and sets the stage for more accurate analysis in the era of big
data.

Index Terms—Data Similarity, Sparse Representation, Simplex
Constraint, Riemannian Optimization.

I. INTRODUCTION

Graphical representations play a crucial role in understand-

ing high-dimensional data across various fields, including

scientific computing, machine learning, and information tech-

nology. However, the construction of these graphical structures

often presents challenges due to the limitations of traditional

methods. These methods struggle with tasks such as selecting

suitable thresholds for the ε-neighbor network, determining

the optimal number of neighbors for the k-nearest nodes

graph, and defining appropriate similarity functions for the

fully connected graph. These challenges arise from parameter

dependencies, scale inconsistencies, and the symmetric treat-

ment of similarity matrices, potentially leading to biased data

interpretation.

In the realm of similarity graph construction, many applica-

tions rely on finding suitable approaches that address specific

requirements based on the dataset and application. However,

several challenges in this domain remain unresolved. These

include determining the optimal scale of analysis, selecting the

appropriate number of neighbors, handling multi-scale data,

and effectively managing noise and outliers. Although notable

advancements have been made in addressing some of these

challenges, such as [4]–[6], no single method currently com-

prehensively tackles all of these challenges to the best of our

knowledge. Therefore, further research is needed to develop

holistic solutions that encompass all aspects of similarity graph

construction.

To address these challenges, we propose a novel method-

ology called Beyond Simplex Sparse Representation (BSSR)

for constructing similarity graphs. Our approach leverages

the robustness of sparse representation to noise and outliers,

without imposing restrictions on the scale consistency of data

vectors. Building upon the sparse representation framework

proposed in [10], we compute the similarity matrix S. The

BSSR method is robust, parameter-independent, and takes into

account the possibility of asymmetrical relationships in the

similarity matrix. By harnessing the power of sparse repre-

sentation and deep learning techniques, we effectively handle

high-dimensional data, resulting in reliable and interpretable

graphical representations, and facilitating efficient downstream

clustering processes.

Furthermore, in our proposed objective, we encounter the

challenge of optimizing the standard simplex, a prevalent

problem across various fields. Traditional Projected Gradient

Descent (PGD) struggles with this problem due to the non-
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smooth nature of the simplex constraints. To overcome this

limitation, we introduce a transformative approach that con-

verts the standard simplex constraint into residing on the unit

sphere using the Hadamard parametrization [11], [18]. This

conversion effectively transforms the constrained optimization

problem into a smooth and simple manifold.

Through rigorous theoretical analysis, we establish a pro-

found connection between the original problem and the trans-

formed problem. We demonstrate that the KKT points and

strict-saddle points of the original problem correspond to those

of the transformed problem, ensuring their mutual solvability.

Building upon this transformative framework, we propose

an efficient algorithm called Tangent Perturbed Riemannian

Gradient Descent (T-PRGD), which leverages the manifold

structure to address the optimization problem. The T-PRGD

algorithm provides an effective and scalable solution for op-

timization problems with standard simplex or �1-norm sphere

constraints.

We believe that our work contributes significantly to the

field, offering fresh perspectives on the challenges of data

representation and paving the way for more accurate analysis

in the era of big data. Our contributions encompass:

1) Beyond Simplex Sparse Representation (BSSR): Our

parameter-independent approach revolutionizes data

analysis by introducing a reliable and simplified tech-

nique that surpasses traditional methods.

2) Robustness and Scalability through Deep Learning: By

integrating deep learning, we enhance the robustness of

our method to scale inconsistencies and outlier noise,

enabling scalability for complex datasets.

3) Shift-Invariant Sparse Representation: Our method in-

corporates a simplex constraint into sparse represen-

tation, ensuring shift-invariance and promoting sparser

representations. This enhances data interpretation accu-

racy and computational efficiency.

4) Optimization on the Unit Sphere: We propose an in-

novative reparametrization method that optimizes the

standard simplex problem by transforming it onto the

Riemannian manifold of the unit sphere. Our Tan-

gent Perturbed Riemannian Gradient Descent (T-PRGD)

technique improves efficiency, robustness, and accuracy,

demonstrating our commitment to pioneering optimiza-

tion solutions.

II. FORMULATION AND ALGORITHM

Suppose we have m data vectors of size d, arranged as

columns in a training sample matrix X = (x1, . . . , xm) ∈
R

d×m. The objective is to obtain a sparse and non-negative

representation for each data point with respect to the remaining

points. This task is commonly addressed through sparse coding

or sparse representation algorithms [10], [13], [15], which

enable the calculation of pairwise similarities between the data

points:

min
si≥0

m∑
i=1

(||X−isi − xi||22 + λ||si||1
)
. (1)

In Eq (1), X−i ∈ R
d×(m−1) denotes the data matrix excluding

the i-th column, effectively representing all other data points.

The vector si ∈ R
m−1, subject to a non-negativity constraint

based on the assumption that the similarity matrix is usually

non-negative, is the sparse representation coefficient for the i-
th data point. It describes the linear combination of other data

points that approximates the i-th data point xi ∈ R
d.

Addressing potential asymmetry in our similarity matrix

S = [s1, . . . , sm], where si signifies the similarity coefficient

assigned to the i-th data point, we introduce a symmetry-

inducing operation. We rectify the matrix by averaging S and

its transpose to obtain a symmetric similarity matrix, computed

as: W = (S+ST )
2 . This step mitigates discrepancies between

the similarity coefficients sij and sji, ensuring more accurate

data representation. With the symmetric matrix W , we can

confidently proceed with conventional clustering procedures

such as Laplacian matrix computation and k-means clustering.
The objective function in Equation (1) comprises two

components. The first term, ||X−isi − xi||22, measures the

reconstruction error, which quantifies the Euclidean distance

between the original data point xi and its approximation

using the other data points. The regularization term, λ||si||1,

uses the �1-norm regularization that promotes sparsity [8],

[12], [14] in the representation by encouraging solutions with

fewer non-zero components in si. This term introduces a

trade-off between sparsity and reconstruction error. A higher

value of λ increases the emphasis on sparsity, potentially

leading to a sparser representation but higher reconstruction

error. Conversely, a smaller value of λ prioritizes minimizing

the reconstruction error, potentially resulting in a less sparse

representation.
However, this approach has been impeded by two significant

limitations. The first is the inherent assumption of a linear

relationship among data points, which restricts the ability

of this approach to capture complex, non-linear relation-

ships inherent in many data structures. The second limitation

pertains to scalability. The computational complexity of the

traditional approach, which involves the minimization of a

sum of functions for each data point, escalates rapidly with

an increase in data volume, making it impractical for handling

large datasets.
To counter these limitations, we introduce a new learning-

based objective function that extends the original sparse

representation paradigm by incorporating a non-linear trans-

formation. This transformation, learned by a deep neural

network, facilitates the exploration of richer, high-dimensional

representations of the data, thus enhancing our ability to depict

intricate, non-linear correlations within the data.
Our proposed learning-based objective function is formu-

lated as:

min
si≥0,θ

m∑
i=1

(||Θ(X−i; θ)si − xi||22 + λ||si||1
)
. (2)

In this formulation, Θ(X−i; θ) denotes a deep neural network

transformation of the data matrix X−i, excluding the i-th
column. This allows for nonlinear exploration of the data,
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capturing complex relationships between data points. The term

Θ(X−i; θ)si represents the approximation of the i-th data

point xi using the transformed representations of the other data

points. The integration of deep learning techniques not only

enhances representation capabilities but also improves scala-

bility. By utilizing stochastic optimization methods, like mini-

batch gradient descent, the approach achieves computational

efficiency and scalability. This is particularly advantageous for

large-scale datasets.

In the original sparse representation-based approach, the

computed similarities are also sensitive to constant shifts

in the data, which could lead to potential inaccuracies or

inconsistencies in data interpretation. When the data points

are shifted by a constant vector t = [t1, . . . , tm]T , such that

xk = xk + t for any k, the similarities change accordingly.

Ensuring shift-invariance, therefore, is crucial for maintaining

the reliability of our analyses. To obtain shift-invariant simi-

larities, the following equation needs to be satisfied:

||(X−i + t1T )si − (xi + t)||22 = ||X−isi − xi||22. (3)

This equation indicates that the sum of the coefficients in the

sparse representation for each data point, sTi 1, is equal to 1. By

incorporating this constraint into our earlier objective function,

we reformulate the optimization problem as follows:

min
si,θ

m∑
i=1

(||Θ(X−i; θ)si − xi||22 + λ||si||1
)

s.t. si ≥ 0, sTi 1 = 1
.(4)

The constraints in this optimization problem enforce a simplex

structure on the sparse representation, ensuring that the sum

of elements in the vector si is equal to 1. This structure

encourages sparsity by allowing a few non-zero elements in si
to have larger values, while maintaining the constraint. Con-

sequently, the �1-norm regularization term, initially included

to induce sparsity, becomes unnecessary in the presence of

the simplex constraint. This approach, known as the “simplex

representation”, utilizes the unique properties of the simplex

structure to promote sparsity.

To integrate the concept of simplex representation into our

learning-based objective function, we revise the objective as

follows:

min
si,θ

m∑
i=1

(||Θ(X−i; θ)si − xi||22
)

s.t. si ≥ 0, sTi 1 = 1. (5)

This formulation combines the shift-invariance property with

the power of learning-based models, enabling us to capture

intricate data relationships while preserving the desirable prop-

erties of the similarity matrix.

However, optimizing within the simplex constraints presents

challenges. Traditional approaches, such as Projected Gradient

Descent (PGD), can be computationally intensive for complex

objective functions. To overcome this, we propose a transfor-

mative methodology that reshapes the optimization landscape,

leading to more efficient optimization.

We achieve this transformation by reparametrizing our vec-

tor si via Hadamard (element-wise) multiplication as si =

zi ◦ zi, where zi resides on the unit sphere, designated as

Sn−1, where Sn−1 := {z ∈ R : ||z||2 = 1} is the unit sphere.

This leads to the transformed objective function:

min
θ,zi∈Sn−1

m∑
i=1

(||Θ(X−i; θ)(zi ◦ zi)− xi||22
)
. (6)

By transforming the simplex-constrained problem to reside

on the unit sphere, we significantly simplify the optimization

task. This transformation brings the problem onto a smooth

manifold, a space without edges or discontinuities, which

offers substantial benefits for optimization. Within this space,

we can more easily calculate derivatives, which in turn allows

for more efficient and robust computation of optimization

algorithms. The unit sphere, with its smooth, continuous

surface, serves as an excellent domain for our transformed

optimization problem.

III. ALGORITHM AND THEORETICAL ANALYSIS

A. Riemannian Optimization

As we optimize over the set of points residing on the

unit sphere, sn−1
i , this constraint set forms a Riemannian

manifold, a smooth manifold with an inner product that varies

smoothly from point to point. This calls for the application

of Riemannian optimization techniques that adjusts traditional

optimization methods such as gradient descent or second-

order methods to the geometry of the manifold. To address

this requirement, we introduce an innovative Riemannian

optimization method, termed Tangent Perturbed Riemannian

Gradient (T-PRGD), devised to solve our problem on the unit

sphere, sn−1
i , as shown in Algorithm 1.

Algorithm 1 T-PRGD

1: Input: s: initial point, α: learning rate, β: perturbation scale,
K: number of iterations, g: transformed objective function, Θ:
neural network, θ: parameters of the neural network, X , xi: data.

2: z0 =
√
s

3: g(z, θ) :=
∑m

i=1

(||Θ(X−i; θ)(z ◦ z)− xi||22
)

4: Initialize the neural network parameters θ
5: for k = 1, ...,K do
6: Update parameters θ by minimizing g(zk, θ)
7: Compute the gradient ∇g(zk, θ) with respect to zk
8: εk = random perturbation with scale β
9: vk = ∇g(zk, θ) + εk (Update with perturbation)

10: zk+1 = expsk
(−αvk) (Update zk)

11: end for
12: Return sK = zK ◦ zK , θ

For the i-th data point, we denote the reparametrized vector

as zi ∈ sn−1
i . At each point zi, we define a corresponding

tangent space Tzis
n−1
i = {v ∈ R

n : v�zi = 0}, consisting

of all vectors orthogonal to zi. We introduce a projection

operator Projzi to project vectors from the ambient space

onto the tangent space Tzis
n−1
i . For a given vector w ∈ R

n,

the projection operation becomes Projzi(w) = w−(w�zi)zi.
Our problem’s transformed objective function in Eq.(6) is

defined as g(zi)g(zi)g(zi). At any point zi ∈ sn−1
i , we designate

the Riemannian gradient as the projection of the Euclidean
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gradient onto the tangent space Tzis
n−1
i , denoted as gradzig =

Projzi∇g(zi). The Riemannian Hessian at a point zi ∈ sn−1
i

is formulated as the operator Hessg(zi) = Projzi ◦(∇2g(zi)−
∇g(zi)

�zi) ◦ Projzi .

With a given zi ∈ sn−1
i and a tangent vector v ∈ Tzis

n−1
i ,

we define the geodesic mapping at zi in the direction v as

γzi,v(t) : R → sn−1
i . Additionally, the exponential map at zi

translates a tangent vector to a point on the sphere along the

geodesic direction, represented as expzi : Tzis
n−1
i → sn−1

i ,

mapping v �→ γzi,v̂(|v|), where v̂ = v/|v|.
To iteratively minimize the transformed objective function,

we employ the Tangent Riemannian Gradient Descent (T-

RGD). Unlike Euclidean gradient descent, T-RGD utilizes the

Riemannian gradient and traverses along geodesics instead of

straight lines. Denoting ηk as the step size at the k-th iteration,

the T-RGD update rule in our context becomes:

zi,k+1 = expzi,k(−ηkgrad g(zi,k)). (7)

This update ensures that the reparametrized vectors zi,k+1

consistently reside on the sphere sn−1
i , verifying the feasibility

of T-RGD for our problem.

It’s worth noting that the transformed objective function

g(zi)g(zi)g(zi) inherits the smoothness from the original function, as

given by Eq.(5). For the ease of our discussion, we refer to the

original problem by using the notation f(si)f(si)f(si). Specifically, if

f(si) exhibits L-Lipschitz differentiability, the corresponding

characteristic of g(zi) is denoted as L̃-Lipschitz differentiabil-

ity, where L̃ = 4L+2M . Here, M stands for the supremum of

the infinity norm of the gradient of f(si), calculated over all s
in the set Δn, that is, M = sups∈Δn

‖∇f(si)‖∞, where Δn

denotes the set {si ∈ R
m−1 : si ≥ 0, and1T si = 1}. Given

the continuity of ∇f(si) and the compactness of the domain

Δn, it follows that M < ∞. The specifics of this characteristic

are elaborated in Lemma 1. This finding ensures the requisite

attributes of g(zi) for the successful application of RGD.

Lemma 1. If f is L-Lipschitz differentiable, then the trans-
formed objective function g is Lipschitz differentiable with
Lipschitz constant L̃ = 4L+ 2M , where M is the supremum
of the �2-norm of the gradient of f , over all x in Δn, i.e.,
M = supx∈Δn

‖∇f(s)‖2.

Proof. We begin by considering the gradient of the function

g, with respect to z, given by ∇zg(z) = 2∇sf(z ◦ z) ◦ z.

By exploring the difference between the gradients of g at two

distinct points, z1 and z2, we arrive at the following inequality:

‖∇g(z1)−∇g(z2)‖2 =

2‖∇sf(z1 ◦ z1) ◦ z1 −∇sf(z2 ◦ z2) ◦ z2‖2.

Proceeding, we bound this difference by applying the triangle

inequality and the Lipschitz condition for ∇f(s):

‖∇g(z1)−∇g(z2)‖2 ≤ 2‖∇sf(z2 ◦ z2) ◦ (z1 − z2)‖2
+ 2‖∇sf(z1 ◦ z1) ◦ z1 −∇sf(z2 ◦ z2) ◦ z1‖2.

The first term is constrained by L (the Lipschitz constant), and

the second term by the supremum M , which will be justified

in the next following lemma.

‖∇g(z1)−∇g(z2)‖2 ≤
2L‖2(z1 ◦ z1 − z2 ◦ z2)‖2 + 2M‖z1 − z2‖2.

In the end, we establish that the inequality is less or equal to

L̂‖z1 − z2‖2, with L̂ = 4L+ 2M :

‖∇g(z1)−∇g(z2)‖2 ≤ L̂‖z1 − z2‖2
This derivation demonstrates that the Lipschitz constant of the

gradient of the transformed function g is indeed L̂, as stated

in this lemma.

Lemma 2. Suppose we have two points z1 and z2 in the
(n − 1)-dimensional unit sphere sn−1

i . We can measure the
difference between these points in terms of their element-
wise squared values. Specifically, the �2-norm of the difference
between z1 ◦ z1 and z2 ◦ z2 does not exceed twice the �2-norm
of the difference between z1 and z2. We can mathematically
represent this relationship as ‖z1◦z1−z2◦z2‖2 ≤ 2‖z1−z2‖2.

Proof.

‖z1 ◦ z1 − z2 ◦ z2‖2 ≤ ‖z1 ◦ (z1 − z2)‖2 + ‖(z1 − z2) ◦ z2‖2
≤ ‖z1‖∞‖z1 − z2‖2 + ‖z1 − z2‖2‖z2‖∞ ≤ 2‖z1 − z2‖2.

This sequence of inequalities is based on the key property

that for any vectors a and b, the �2-norm of their Hadamard

product can be bounded by the product of the �2-norm of one

vector and the infinity norm of the other, i.e., ‖a ◦ b‖2 ≤
‖a‖2‖b‖∞.

By incorporating these Riemannian notions in our problem

setting, we expect to achieve more efficient and feasible

optimization results. The specifics of the RGD implementation

and experimental results for our problem will be discussed in

the subsequent sections.

B. Analyses of the Landscape and Non-degeneracy

Now we analyze the Karush-Kuhn-Tucker (KKT) conditions

for both the original problem and the transformed problem to

better understand their relationship.

We first define the following problems:

Original Problem: We first introduce the Lagrangian func-

tion, LO, defined as:

LO(si, μ, λ) = ||Θ(X−i; θ)si − xi||22 − μ(1T si − 1)− λT si,

where μ and λ are the Lagrange multipliers.

Transformed Problem: For the transformed problem, we

define the Lagrangian function as:

LT (zi, η) = ||Θ(X−i; θ)(zi ◦ zi)− xi||22 − η(||zi||22 − 1),

where η is the Lagrange multiplier for the sphere constraint.

With the above definitions, we introduce the following the-

orems that guarantee the correctness and the non-degeneracy

of our solution algorithm.
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Theorem 1. Consider s∗i as a point fulfilling the second-
order Karush-Kuhn-Tucker (KKT) conditions for the original
problem. Subsequently, for every z∗i that adheres to the relation
z∗i ◦ z∗i = s∗i , these points also comply with the second-order
KKT conditions within the transformed problem.

Conversely, if we posit that z∗i is a point satisfying the
second-order KKT conditions for the transformed problem, it
follows that s∗i = z∗i ◦ z∗i will conform to the second-order
KKT conditions as they apply to the original problem.

Theorem 2. Assume that s∗i is a non-degenerate second-order
KKT point for the original problem. In this case, every z∗i that
follows z∗i ◦ z∗i = s∗i acts as a non-degenerate second-order
KKT point for the transformed problem.

Due to space limit, the proofs of the above two theorems are

not provided here and they will be provided in the extended

journal version of this paper.

C. Perturbed Riemannian Gradient Descent

In this section, we analyze the transformed problem from a

Riemannian perspective. Specifically, g(zi) is seen as a func-

tion that operates on the Sn−1 manifold, thus reformulating

the transformed problem into an unconstrained problem in

Riemannian optimization.

Definition 1. Consider z∗i as a second-order stationary point
for the function g : Sn−1 → R when ∇g(z∗i ) = 0 and
the smallest eigenvalue of the Hessian matrix, denoted as
μmin(∇2g(zi)), is greater than or equal to zero. Additionally,
we characterize z∗i as a non-degenerate second-order station-
ary point of g : Sn−1 → R if μmin(∇2g(z)) exceeds zero.

It is interesting to observe that z∗i is identified as a second-

order stationary point in the Riemannian context only if z∗i
also qualifies as a second-order KKT point for the transformed

problem [2]. This allows us to use these terms reciprocally,

though for the sake of precision, we will persist in using

“stationary point” when discussing the transformed problem as

a Riemannian optimization problem, and “KKT point” when

referring to it as a constrained optimization problem.

Definition 2. [3] A position zi on Sn−1 is characterized as
an ε-second-order stationary point for the twice-differentiable
function g : Sn−1 → R when the following conditions are
met: the magnitude of the gradient of g at zi, |∇g(zi)|, does
not exceed ε and the least eigenvalue of the second derivative
of g at zi, μmin(∇2g(zi)), is not less than −√

ξε. Here, ξ is
the Lipschitz constant for the Hessian of the ’pullback’ of g
from the manifold to the tangent space.

The convergence of Riemannian Gradient Descent (RGD)

to a second-order stationary point is not always assured when

applied to a nonconvex function - it could potentially arrive at a

saddle point. However, prior research [3] has offered optimism

by indicating that a perturbed variant of RGD (PGRD) will,

in high probability, locate an ε-second-order KKT point. We

have made modifications to apply this to spherical space in

this work.

Theorem 3. [3] Assume the sequence of iterations, {zk}Kk=1,
obtained by implementing PRGD on the function g : Sn−1 →
R for K iterations. When K = O

(
(logn)4

ε2

)
, it is expected

that the series {zk}Kk=1 will incorporate an ε-second-order
stationary point of g(z) with a high probability.

We refer to the combination of the Hadamard parameteri-

zation and PRGD as “T-PRGD”. Resulting from our analysis

of the landscape, we have:

Theorem 4. Consider the infinite sequence of iterations
{sik}∞k=1 generated by T-PRGD. It is expected that this
sequence, {sik}∞k=1, will contain a subsequence that converges
towards a second-order KKT point of the original problem,
represented as sik�

→ s∗i , with a high probability.

We begin by verifying a lemma prior to proceeding with

the proof for Theorem 4.

Lemma 3. Suppose g is twice continuously differentiable.
Given any δ > 0, there’s a corresponding εδ > 0, such that if
zi is considered an εδ-second-order stationary point, then the
inequality |zi − z∗i | < δ holds, where z∗i denotes a second-
order stationary point.

Proof. Assume δ > 0 and suppose that there is no such εδ .

In such a case, we can select any εk := 1/k and identify

an εk-second-order stationary point zk with the property that

|zik − z∗i | ≥ δ for all possible second-order stationary points

z∗i .

Given the compactness of Sn−1, it’s reasonable, if neces-

sary, to presuppose a convergence of zik: limk→∞ zik = z̃i ∈
Sn−1. Through continuity, it follows that z̃i is a second-order

stationary point:

|∇g(z̃i)| = |∇g( lim
k→∞

zik)| = lim
k→∞

|∇g(zik)| ≤ lim
k→∞

εk = 0

μmin(∇2g(z̃i)) = μmin(∇2g( lim
k→∞

zik))

= lim
k→∞

μmin(∇2g(zik)) ≥ lim
k→∞

−
√
ξεk = 0

As z̃i = limk→∞ zik this contradicts.

Let’s now denote {zik}∞k=1 as the secondary sequence

produced by T-PRGD. Define ε� := 1/�, and according to

Theorem 3, we know that a T� exists such that {zik}T�

k=1 con-

tains an ε�-second-order stationary point with high probability

(w.h.p.). We will call this point zik�
. With ε� → 0 and as per

the previous lemma, we have zik�
→ zi

∗, which is a second-

order stationary point of the transformed problem. Thus, zi
∗

coincides with a second-order KKT point of the transformed

problem [7]. The sequence {sik�
:= zik�

◦ zik�
}∞�=1 converges

to si
∗ = zi

∗ ◦ zi∗, which, as per Theorem 1, is a second-order

KKT point of the original problem.

Theorem 5. Provided that the original problem exhibits the
strict saddle property where all local minimizers are also
global minimizers, and all second-order KKT points are non-
degenerate, then, with high probability, T-PRGD identifies sik
such that the difference between f(sik) and the minimum of
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f(si) over Δn is less or equal to ε, within K = O((log n)4/ε)
iterations, given that ε is sufficiently small.

Proof. We start from a fixed zi0. From Theorem 4, it’s

established that there is a subsequence zik� → zi
∗, which is a

second-order stationary point of g, and sik� → si
∗ := zi

∗◦zi∗,

a second-order KKT point of the original problem. Since the

original problem has a strict-saddle property, si
∗ is a local

minimizer and, as per our assumption, a non-degenerate global

minimizer. As per Theorem 2, zi
∗ is a non-degenerate second-

order KKT point of the adjusted problem. As such, zi
∗ is a

non-degenerate second-order stationary point of g : Sn → R,

suggesting that ∇2g(zi
∗) is positive definite [2]. Given its

continuity, a geodesic ball B(zi
∗, δ) exists such that ∇2g(zi)

is positive definite for all zi in B(zi
∗, δ). This implies that

g confined to B(zi
∗, δ) is geodesically τ -strongly convex for

some τ > 0, and it complies with the Polyak-Lojasiewicz (PL)

condition [2]: g(zi)− g(zi
∗) ≤ 1

2τ |∇g(zi)|2.
From Lemma 3, we know that an εδ > 0 exists such that

if zi is an εδ-second-order KKT point then zi ∈ B(zi
∗, δ).

Now, let’s suppose ε > 0 is small enough that
√
2τε < εδ .

By Theorem 3, T-PRGD discovers a
√
2τε-second-order KKT

point, referred to as zi√2τε, within K = O
(

(logn)4

(
√
2τε)2

)
=

O
(

(logn)4

ε

)
iterations (w.h.p). Since

√
2τε < εδ , we know

that zi√2τε is also an εδ-second-order KKT point, thus

z√2τε ∈ B(zi
∗, δ). Utilizing the PL condition and defining

si√2τε = zi√2τε ◦ zi√2τε, we can write:

f(si√2τε
)− min

si∈Δn
f(si) = f(si√2τε

)− f(s∗i )

= g(zi√2τε
)− g(z∗i ) ≤

1

2τ
‖∇g(zi√2τε

)‖2 ≤ 1

2τ
(
√
2τε)2 ≤ ε

IV. EXPERIMENTAL EVALUATION

To validate the effectiveness and efficiency of our proposed

method, we conducted comprehensive experiments. In this

section, we introduce the benchmark datasets used, describe

the baseline methods for comparison, outline the experimental

setup, present the evaluation metrics used, and discuss the

results obtained.

A. Datasets

We selected a diverse set of benchmark datasets to evaluate

the robustness and versatility of our method. Table I provides

a summary of the datasets used, including the number of

instances, features, and classes.

The selected datasets cover various domains, including

facial images (Olivetti), object images (COIL-20), and citation

networks (Cora). These datasets served as the foundation for

our experiments. To assess the algorithm’s robustness, we

introduced perturbations at a 30% noise level. For image

datasets (Olivetti and COIL-20), Gaussian noise was added

to pixel values using a perturbation-dependent standard de-

viation. For the Cora datasets, representing citation networks

and biomedical literature, respectively, we randomly shuffled

a small percentage of node/document attributes to induce

TABLE I: Description of benchmark datasets used in the

experiments.

Dataset Instances Features Classes
Olivetti 400 4096 40
COIL-20 1440 1024 20
Cora 2708 1433 7

perturbations. This controlled noise injection ensured that the

perturbations closely resembled real-world variations.

B. Comparative Methods and Evaluation Metrics

We compare our proposed method against state-of-the-art

approaches in three categories:

Category 1: Adjacency Matrix-based Methods: Repre-

sentatives include Spectral Clustering (SC) and NetMF [9].

These methods generate node embeddings solely based on the

adjacency matrix and employ k-means clustering.

Category 2: Direct Embedding-based Methods: Repre-

sentatives include AutoEncoder (AE) and NMF. These meth-

ods directly generate lower-dimensional embeddings and uti-

lize k-means clustering as a post-processing step.

Category 3: End-to-End Graph Neural Network (GNN)
Models: Representatives include DiffPool [17] and MinCut

[1]. These GNN models generate soft cluster assignments by

considering both graph connectivity and node features.

In our work, we leverage Graph Isomorphism Networks

(GIN) [16] as the deep representation. GIN employs multiple

graph convolutional layers with non-linear activation func-

tions to capture information from larger neighborhood scopes.

This enables GIN to effectively capture graph structure and

learn expressive node embeddings. One key advantage of our

proposed method, BSSR, is its parameter-independent nature,

eliminating the need for extensive parameter tuning. This

allows us to achieve reliable and accurate results without the

burden of parameter optimization.

We evaluate our method using a 5-fold cross-validation

approach, repeated ten times for robust statistical analysis.

We utilize Average Accuracy (ACC) and Normalized Mutual

Information (NMI) as evaluation metrics, assessing the cor-

rectness of predicted cluster assignments and the agreement

between predicted clusters and ground truth labels.

Furthermore, we compare our proposed optimization

method, Tangent Perturbed Riemannian Gradient Descent (T-

PRGD), against the Projected Gradient Descent method (PGD)

to demonstrate its superior performance in achieving accurate

and reliable graph clustering results.

C. Empirical Studies of the Convergency of the Proposed
Algorithm

The findings from Figure 1 offer valuable insights into the

performance of our proposed optimization method, T-PRGD,

compared to the traditional method, PGD, on the Olivetti

dataset.

Firstly, the figure demonstrates that T-PRGD achieves faster

convergence than PGD. The steeper decreasing rate of the loss

curve for T-PRGD indicates that our method reaches lower loss
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Fig. 1: Loss and Accuracy Comparison of T-PRGD and PGD

on the Olivetti dataset. (Green line: T-PRGD, Blue line: PGD.

Solid line: Loss, Dashed line: Accuracy.)

values in fewer iterations. This faster convergence is essential

for efficient optimization and can result in significant time sav-

ings in real-world applications. Furthermore, the figure high-

lights the superior capability of T-PRGD in overcoming saddle

points. The presence of ”plateaus” in the loss curves suggests

the existence of saddle points, where the gradient becomes

close to zero and conventional optimization algorithms tend

to stagnate. In contrast, T-PRGD exhibits a fluctuating loss

curve, indicating its ability to explore alternative directions

and avoid getting trapped in suboptimal solutions.

Importantly, these findings align with our previous the-

oretical analysis, which emphasized T-PRGD’s potential to

converge to a global optimum and effectively navigate saddle

points. The observed lower loss achieved by T-PRGD further

supports these theoretical claims. Moreover, the accuracy

(ACC) curve of T-PRGD outperforms that of PGD, indicating

superior clustering performance. This demonstrates the effec-

tiveness of T-PRGD in producing more accurate data similarity

measures, aligning with our expectations.

Overall, the empirical evidence from Figure 1 confirms

the superiority of our proposed method, T-PRGD. It exhibits

faster convergence, effectively overcomes saddle points, and

achieves improved accuracy. These findings align with our

theoretical analysis, showcasing the practical advantages of

employing T-PRGD for data similarity measurement.

D. Comparative Studies of the Proposed Algorithm in Clus-
tering Tasks

In Table II and Table III, the comparative analysis of differ-

ent methods on the original and perturbed datasets provides

compelling evidence for the effectiveness and superiority of

our proposed method, BSSR-GIN, when compared to state-

of-the-art approaches.

Across the original datasets, BSSR-GIN consistently

achieves superior performance in terms of average accuracy

score (Acc score) and normalized mutual information (NMI),

confirming its ability to accurately identify data similarity and

capture the underlying structure of the data. This exceptional

performance can be attributed to the robustness and scalability

of BSSR-GIN, leveraging the power of GIN to capture com-

plex graph structures and learn expressive node embeddings, as

well as the advanced parameter-independent BSSR approach.

These characteristics enable BSSR-GIN to effectively handle

scale inconsistencies and outlier noise, leading to more reliable

and precise cluster assignments. Furthermore, the integration

of shift-invariant sparse representation in BSSR-GIN further

enhances its clustering performance. By incorporating a sim-

plex constraint, our method promotes sparser representations

while ensuring shift-invariance, leading to more accurate and

interpretable clustering results. This unique design choice

enables a precise analysis of the data, providing deeper insights

into its underlying patterns.

Overall, the experimental results showcased in the tables

strongly validate the advantages and motivations of our novel

method, BSSR-GIN. Its robustness, scalability, shift-invariant

sparse representation, and optimized optimization process all

contribute to its exceptional performance. By outperforming

other state-of-the-art methods in terms of average accuracy

score and normalized mutual information, BSSR-GIN demon-

strates its effectiveness in accurately uncovering the intrinsic

structure of complex datasets and providing valuable insights

for a wide range of data analysis tasks.

V. CONCLUSION

We propose the Beyond Simplex Sparse Representation

(BSSR) method, which effectively constructs reliable and

interpretable graphical representations of high-dimensional

data. By leveraging sparse representation and deep learning

techniques, BSSR addresses challenges such as parameter

dependencies and scale inconsistencies. We also introduce the

Tangent Perturbed Riemannian Gradient Descent (T-PRGD)

algorithm, which optimizes the standard simplex by transform-

ing the constraint onto the Riemannian manifold of the unit

sphere. Experimental evaluation demonstrates the superiority

of our methods compared to state-of-the-art approaches, show-

casing their accuracy and robustness. Our work contributes

significant advancements to data representation and optimiza-

tion, enabling more accurate analysis in the era of big data.
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