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Abstract—Graphical representations are essential for compre-
hending high-dimensional data across diverse fields, yet their
construction often presents challenges due to the limitations of
traditional methods. This paper introduces a novel methodology,
Beyond Simplex Sparse Representation (BSSR), which addresses
critical issues such as parameter dependencies, scale inconsis-
tencies, and biased data interpretation in constructing similarity
graphs. BSSR leverages the robustness of sparse representation to
noise and outliers, while incorporating deep learning techniques
to enhance scalability and accuracy. Furthermore, we tackle the
optimization of the standard simplex, a pervasive problem, by in-
troducing a transformative approach that converts the constraint
into a smooth manifold using the Hadamard parametrization.
Our proposed Tangent Perturbed Riemannian Gradient Descent
(T-PRGD) algorithm provides an efficient and scalable solution
for optimization problems with standard simplex or ¢;-norm
sphere constraints. These contributions, including the BSSR
methodology, robustness and scalability through deep represen-
tation, shift-invariant sparse representation, and optimization on
the unit sphere, represent major advancements in the field. Our
work offers novel perspectives on data representation challenges
and sets the stage for more accurate analysis in the era of big
data.

Index Terms—Data Similarity, Sparse Representation, Simplex
Constraint, Riemannian Optimization.

I. INTRODUCTION

Graphical representations play a crucial role in understand-
ing high-dimensional data across various fields, including
scientific computing, machine learning, and information tech-
nology. However, the construction of these graphical structures
often presents challenges due to the limitations of traditional
methods. These methods struggle with tasks such as selecting
suitable thresholds for the e-neighbor network, determining
the optimal number of neighbors for the k-nearest nodes
graph, and defining appropriate similarity functions for the
fully connected graph. These challenges arise from parameter

dependencies, scale inconsistencies, and the symmetric treat-
ment of similarity matrices, potentially leading to biased data
interpretation.

In the realm of similarity graph construction, many applica-
tions rely on finding suitable approaches that address specific
requirements based on the dataset and application. However,
several challenges in this domain remain unresolved. These
include determining the optimal scale of analysis, selecting the
appropriate number of neighbors, handling multi-scale data,
and effectively managing noise and outliers. Although notable
advancements have been made in addressing some of these
challenges, such as [4]-[6], no single method currently com-
prehensively tackles all of these challenges to the best of our
knowledge. Therefore, further research is needed to develop
holistic solutions that encompass all aspects of similarity graph
construction.

To address these challenges, we propose a novel method-
ology called Beyond Simplex Sparse Representation (BSSR)
for constructing similarity graphs. Our approach leverages
the robustness of sparse representation to noise and outliers,
without imposing restrictions on the scale consistency of data
vectors. Building upon the sparse representation framework
proposed in [10], we compute the similarity matrix S. The
BSSR method is robust, parameter-independent, and takes into
account the possibility of asymmetrical relationships in the
similarity matrix. By harnessing the power of sparse repre-
sentation and deep learning techniques, we effectively handle
high-dimensional data, resulting in reliable and interpretable
graphical representations, and facilitating efficient downstream
clustering processes.

Furthermore, in our proposed objective, we encounter the
challenge of optimizing the standard simplex, a prevalent
problem across various fields. Traditional Projected Gradient
Descent (PGD) struggles with this problem due to the non-
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smooth nature of the simplex constraints. To overcome this
limitation, we introduce a transformative approach that con-
verts the standard simplex constraint into residing on the unit
sphere using the Hadamard parametrization [11], [18]. This
conversion effectively transforms the constrained optimization
problem into a smooth and simple manifold.

Through rigorous theoretical analysis, we establish a pro-
found connection between the original problem and the trans-
formed problem. We demonstrate that the KKT points and
strict-saddle points of the original problem correspond to those
of the transformed problem, ensuring their mutual solvability.
Building upon this transformative framework, we propose
an efficient algorithm called Tangent Perturbed Riemannian
Gradient Descent (T-PRGD), which leverages the manifold
structure to address the optimization problem. The T-PRGD
algorithm provides an effective and scalable solution for op-
timization problems with standard simplex or ¢;-norm sphere
constraints.

We believe that our work contributes significantly to the
field, offering fresh perspectives on the challenges of data
representation and paving the way for more accurate analysis
in the era of big data. Our contributions encompass:

1) Beyond Simplex Sparse Representation (BSSR): Our
parameter-independent approach revolutionizes data
analysis by introducing a reliable and simplified tech-
nique that surpasses traditional methods.

2) Robustness and Scalability through Deep Learning: By
integrating deep learning, we enhance the robustness of
our method to scale inconsistencies and outlier noise,
enabling scalability for complex datasets.

3) Shift-Invariant Sparse Representation: Our method in-
corporates a simplex constraint into sparse represen-
tation, ensuring shift-invariance and promoting sparser
representations. This enhances data interpretation accu-
racy and computational efficiency.

4) Optimization on the Unit Sphere: We propose an in-
novative reparametrization method that optimizes the
standard simplex problem by transforming it onto the
Riemannian manifold of the unit sphere. Our Tan-
gent Perturbed Riemannian Gradient Descent (T-PRGD)
technique improves efficiency, robustness, and accuracy,
demonstrating our commitment to pioneering optimiza-
tion solutions.

II. FORMULATION AND ALGORITHM

Suppose we have m data vectors of size d, arranged as
columns in a training sample matrix X = (z1,...,Z;,) €
R¥>™_ The objective is to obtain a sparse and non-negative
representation for each data point with respect to the remaining
points. This task is commonly addressed through sparse coding
or sparse representation algorithms [10], [13], [15], which
enable the calculation of pairwise similarities between the data
points:

m

?1;1(1) (11 X—isi — i[5 + llsill1) - )
==

InEq (1), X_; € R?*(m=1) denotes the data matrix excluding
the i-th column, effectively representing all other data points.
The vector s; € R™™!, subject to a non-negativity constraint
based on the assumption that the similarity matrix is usually
non-negative, is the sparse representation coefficient for the -
th data point. It describes the linear combination of other data
points that approximates the i-th data point z; € R?.

Addressing potential asymmetry in our similarity matrix
S =[s1,...,8m], where s; signifies the similarity coefficient
assigned to the i-th data point, we introduce a symmetry-
inducing operation. We rectify the matrix by averaging S and
its transpose to obtain a symmetric similarity matrix, computed
as: W = % This step mitigates discrepancies between
the similarity coefficients s;; and sj;, ensuring more accurate
data representation. With the symmetric matrix W, we can
confidently proceed with conventional clustering procedures
such as Laplacian matrix computation and k-means clustering.

The objective function in Equation (1) comprises two
components. The first term, ||X_;s; — z;||3, measures the
reconstruction error, which quantifies the Euclidean distance
between the original data point z; and its approximation
using the other data points. The regularization term, A||s;||1,
uses the ¢;-norm regularization that promotes sparsity [8],
[12], [14] in the representation by encouraging solutions with
fewer non-zero components in s;. This term introduces a
trade-off between sparsity and reconstruction error. A higher
value of A increases the emphasis on sparsity, potentially
leading to a sparser representation but higher reconstruction
error. Conversely, a smaller value of A prioritizes minimizing
the reconstruction error, potentially resulting in a less sparse
representation.

However, this approach has been impeded by two significant
limitations. The first is the inherent assumption of a linear
relationship among data points, which restricts the ability
of this approach to capture complex, non-linear relation-
ships inherent in many data structures. The second limitation
pertains to scalability. The computational complexity of the
traditional approach, which involves the minimization of a
sum of functions for each data point, escalates rapidly with
an increase in data volume, making it impractical for handling
large datasets.

To counter these limitations, we introduce a new learning-
based objective function that extends the original sparse
representation paradigm by incorporating a non-linear trans-
formation. This transformation, learned by a deep neural
network, facilitates the exploration of richer, high-dimensional
representations of the data, thus enhancing our ability to depict
intricate, non-linear correlations within the data.

Our proposed learning-based objective function is formu-

lated as:
m
min (lO(X-i;0)si — zill3 + Mlsill1) . (@)
=T =1
In this formulation, ©(X _;; #) denotes a deep neural network
transformation of the data matrix X_;, excluding the i-th

column. This allows for nonlinear exploration of the data,
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capturing complex relationships between data points. The term
©(X_;;0)s; represents the approximation of the i-th data
point z; using the transformed representations of the other data
points. The integration of deep learning techniques not only
enhances representation capabilities but also improves scala-
bility. By utilizing stochastic optimization methods, like mini-
batch gradient descent, the approach achieves computational
efficiency and scalability. This is particularly advantageous for
large-scale datasets.

In the original sparse representation-based approach, the
computed similarities are also sensitive to constant shifts
in the data, which could lead to potential inaccuracies or
inconsistencies in data interpretation. When the data points
are shifted by a constant vector ¢ = [ty,...,¢;]T, such that
xr = xk + t for any k, the similarities change accordingly.
Ensuring shift-invariance, therefore, is crucial for maintaining
the reliability of our analyses. To obtain shift-invariant simi-
larities, the following equation needs to be satisfied:

I(X—i+t17)s; — (2 + )3 = [ X_isi — xill3. 3)

This equation indicates that the sum of the coefficients in the
sparse representation for each data point, s7 1, is equal to 1. By
incorporating this constraint into our earlier objective function,
we reformulate the optimization problem as follows:

m

. Q) L. ]2
Ig%l;(”o(X—zve)sz zillz + A

sill1) s.t.si > 0,571 =1
The constraints in this optimization problem enforce a simplex
structure on the sparse representation, ensuring that the sum
of elements in the vector s; is equal to 1. This structure
encourages sparsity by allowing a few non-zero elements in s;
to have larger values, while maintaining the constraint. Con-
sequently, the ¢;-norm regularization term, initially included
to induce sparsity, becomes unnecessary in the presence of
the simplex constraint. This approach, known as the “simplex
representation”, utilizes the unique properties of the simplex
structure to promote sparsity.

To integrate the concept of simplex representation into our
learning-based objective function, we revise the objective as
follows:

m
r&nlg; (10(X_i;0)s; — x][3)  st.s; >0,s{1=1. (5)
This formulation combines the shift-invariance property with
the power of learning-based models, enabling us to capture
intricate data relationships while preserving the desirable prop-
erties of the similarity matrix.

However, optimizing within the simplex constraints presents
challenges. Traditional approaches, such as Projected Gradient
Descent (PGD), can be computationally intensive for complex
objective functions. To overcome this, we propose a transfor-
mative methodology that reshapes the optimization landscape,
leading to more efficient optimization.

We achieve this transformation by reparametrizing our vec-
tor s; via Hadamard (element-wise) multiplication as s; =

(G
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z; o z;, where z; resides on the unit sphere, designated as
S™~1, where S"7! := {2z € R :||z||2 = 1} is the unit sphere.
This leads to the transformed objective function:

m

p hin ; (lO(X_i;0)(zi 0 2) — wi[3) -

(6)

By transforming the simplex-constrained problem to reside
on the unit sphere, we significantly simplify the optimization
task. This transformation brings the problem onto a smooth
manifold, a space without edges or discontinuities, which
offers substantial benefits for optimization. Within this space,
we can more easily calculate derivatives, which in turn allows
for more efficient and robust computation of optimization
algorithms. The unit sphere, with its smooth, continuous
surface, serves as an excellent domain for our transformed
optimization problem.

III. ALGORITHM AND THEORETICAL ANALYSIS
A. Riemannian Optimization

As we optimize over the set of points residing on the
unit sphere, 8?71, this constraint set forms a Riemannian
manifold, a smooth manifold with an inner product that varies
smoothly from point to point. This calls for the application
of Riemannian optimization techniques that adjusts traditional
optimization methods such as gradient descent or second-
order methods to the geometry of the manifold. To address
this requirement, we introduce an innovative Riemannian
optimization method, termed Tangent Perturbed Riemannian
Gradient (T-PRGD), devised to solve our problem on the unit
sphere, s?_l, as shown in Algorithm 1.

Algorithm 1 T-PRGD

1: Input: s: initial point, a: learning rate, 5: perturbation scale,
K number of iterations, g: transformed objective function, O:
neural network, 0: parameters of the neural network, X, z;: data.
zZ0 = \/g
 9(2,0) = S, (10X _i:0)(z 0 2) — i )
: Initialize the neural network parameters 6
for k=1,...,K do

Update parameters 6 by minimizing g(zx, 0)

Compute the gradient Vg(zy, ) with respect to z

€, = random perturbation with scale 3
9: vk = Vg(zk,0) + e, (Update with perturbation)

i A A ol >

10: Zhi1 = cxpSk(fowk) (Update zx)
11: end for
12: Return sx = zx o 2k, 0

For the i-th data point, we denote the reparametrized vector
as z; € s’;_l. At each point z;, we define a corresponding
tangent space T,,s7 ' = {v € R" : v"z = 0}, consisting
of all vectors orthogonal to z;. We introduce a projection
operator Proj,, to project vectors from the ambient space
onto the tangent space Tzis?fl. For a given vector w € R",
the projection operation becomes Proj., (w) = w—(w" z;)z;.

Our problem’s transformed objective function in Eq.(6) is
defined as g(z;). At any point z; € s!'', we designate

the Riemannian gradient as the projection of the Euclidean
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gradient onto the tangent space 17, s;"fl, denoted as gradz;g =
Proj.,Vg(z;). The Riemannian Hessian at a point z; € s}~
is formulated as the operator Hessg(z;) = Proj,,o(V2g(z;)—
Vg(z) T z) o Proj.,.

With a given z; € s~ and a tangent vector v € T, s?‘l,
we define the geodesic mapping at z; in the direction v as
Yarw(t) : R — s7~'. Additionally, the exponential map at z;
translates a tangent vector to a point on the sphere along the
geodesic direction, represented as expz; : Ty, s)' * — sI' 7,
mapping v — v,,.5(|v|), where 0 = v/|v].

To iteratively minimize the transformed objective function,
we employ the Tangent Riemannian Gradient Descent (T-
RGD). Unlike Euclidean gradient descent, T-RGD utilizes the
Riemannian gradient and traverses along geodesics instead of
straight lines. Denoting 7, as the step size at the k-th iteration,
the T-RGD update rule in our context becomes:

1

zik+1 = €xp,, , (—mkgrad g(z;x))- @)
This update ensures that the reparametrized vectors z; j41
consistently reside on the sphere s?il, verifying the feasibility
of T-RGD for our problem.

It’s worth noting that the transformed objective function
g(z:) inherits the smoothness from the original function, as
given by Eq.(5). For the ease of our discussion, we refer to the
original problem by using the notation f(s;). Specifically, if
f(s:) exhibits L-Lipschitz differentiability, the corresponding
characteristic of g(z;) is denoted as L-Lipschitz differentiabil-
ity, where L= 4L+2M. Here, M stands for the supremum of
the infinity norm of the gradient of f(s;), calculated over all s
in the set A, that is, M = sup,ca, |V f(5i)| o0, Where A,
denotes the set {s; € R™™1 :s; > 0,and17s; = 1}. Given
the continuity of V f(s;) and the compactness of the domain
A, it follows that M < oo. The specifics of this characteristic
are elaborated in Lemma 1. This finding ensures the requisite
attributes of g(z;) for the successful application of RGD.

Lemma 1. If f is L-Lipschitz differentiable, then the trans-
formed objective function g is Lipschitz differentiable with
Lipschitz constant L = 4L + 2M, where M is the supremum
of the ly-norm of the gradient of f, over all x in A,, ie.,
M = sup,ea, [VF(3)]l2

Proof. We begin by considering the gradient of the function
g, with respect to z, given by V,g(z) = 2V f(z0 z) o z.
By exploring the difference between the gradients of g at two
distinct points, z; and zo, we arrive at the following inequality:

[Vg(21) — Vg(z2)|]2 =
2|V f(z1021) 021 — Vsf(2z2 0 22) 0 22]|2.

Proceeding, we bound this difference by applying the triangle
inequality and the Lipschitz condition for V f(s):

Vg(z1) = Vg(22)ll2 < 2[|[Vsf(22 0 22) 0 (21 — 22) |2
+2||Vsf(z1021) 021 — Vs f(z2 0 23) 0 z1]|2.
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The first term is constrained by L (the Lipschitz constant), and
the second term by the supremum M, which will be justified
in the next following lemma.

[Vg(21) — Vg(z2)|]2 <
2LH2(21 0Z1— %220 ZQ)HQ + 2]\4“21 — 22”2.

In the end, we establish that the inequality is less or equal to
L||z1 — 23]|2, with L = 4L + 2M:

IVg(21) — Vg(z)||2 < L||z1 — 222

This derivation demonstrates that the Lipschitz constant of the
gradient of the transformed function g is indeed L, as stated
in this lemma. O

Lemma 2. Suppose we have two points z1 and zy in the
(n — 1)-dimensional unit sphere s'~'. We can measure the
difference between these points in terms of their element-
wise squared values. Specifically, the {o-norm of the difference
between z1 0 z1 and z 0 29 does not exceed twice the {y-norm
of the difference between z1 and zs. We can mathematically
represent this relationship as ||z1021— 220222 < 2||21 — 222

Proof.

l[21 021 = 22 0 222 < [|21 0 (21 = 22) |2 + [[(21 — 22) © 222

< lzlleollzr = 22(l2 + [l21 — 22]l2l22/lc0 < 2[|21 — 22]l2-

This sequence of inequalities is based on the key property
that for any vectors a and b, the ¢5-norm of their Hadamard
product can be bounded by the product of the /3-norm of one
vector and the infinity norm of the other, i.e., ||a o bljs <
lall2][b]]oo- O

By incorporating these Riemannian notions in our problem
setting, we expect to achieve more efficient and feasible
optimization results. The specifics of the RGD implementation
and experimental results for our problem will be discussed in
the subsequent sections.

B. Analyses of the Landscape and Non-degeneracy

Now we analyze the Karush-Kuhn-Tucker (KKT) conditions
for both the original problem and the transformed problem to
better understand their relationship.

We first define the following problems:

Original Problem: We first introduce the Lagrangian func-
tion, Lo, defined as:

Lo(si, i, A) = [|0(X_i;0)s; — 2i|[3 — p(17s; — 1) — ATsy,

where ¢ and A\ are the Lagrange multipliers.
Transformed Problem: For the transformed problem, we
define the Lagrangian function as:

L (zi,m) = |0(X =33 0)(zi © ) — il[5 — n(l]zl[3 — 1),

where 7 is the Lagrange multiplier for the sphere constraint.

With the above definitions, we introduce the following the-
orems that guarantee the correctness and the non-degeneracy
of our solution algorithm.
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Theorem 1. Consider s} as a point fulfilling the second-
order Karush-Kuhn-Tucker (KKT) conditions for the original
problem. Subsequently, for every 2} that adheres to the relation
zj oz = s}, these points also comply with the second-order
KKT conditions within the transformed problem.

Conversely, if we posit that z] is a point satisfying the
second-order KKT conditions for the transformed problem, it
follows that s} = z oz} will conform to the second-order
KKT conditions as they apply to the original problem.

Theorem 2. Assume that s is a non-degenerate second-order
KKT point for the original problem. In this case, every z; that
follows 2z} o z} = s} acts as a non-degenerate second-order
KKT point for the transformed problem.

Due to space limit, the proofs of the above two theorems are
not provided here and they will be provided in the extended
journal version of this paper.

C. Perturbed Riemannian Gradient Descent

In this section, we analyze the transformed problem from a
Riemannian perspective. Specifically, g(z;) is seen as a func-
tion that operates on the S™~! manifold, thus reformulating
the transformed problem into an unconstrained problem in
Riemannian optimization.

Definition 1. Consider z; as a second-order stationary point
for the function g : St — R when Vg(z;) = 0 and
the smallest eigenvalue of the Hessian matrix, denoted as
tmin(V2g(2;)), is greater than or equal to zero. Additionally,
we characterize z; as a non-degenerate second-order station-
ary point of g : S" 1 — R if pmin(V2g(2)) exceeds zero.

It is interesting to observe that z; is identified as a second-
order stationary point in the Riemannian context only if z
also qualifies as a second-order KKT point for the transformed
problem [2]. This allows us to use these terms reciprocally,
though for the sake of precision, we will persist in using
“stationary point” when discussing the transformed problem as
a Riemannian optimization problem, and “KKT point” when
referring to it as a constrained optimization problem.

Definition 2. [3] A position z; on S™ ! is characterized as
an e-second-order stationary point for the twice-differentiable
function g : S"1 — R when the following conditions are
met: the magnitude of the gradient of g at z;, |Vg(z;)|, does
not exceed € and the least eigenvalue of the second derivative
of g at zi, pmin(V2g(2;)), is not less than —/Ee. Here, £ is
the Lipschitz constant for the Hessian of the ’'pullback’ of g
from the manifold to the tangent space.

The convergence of Riemannian Gradient Descent (RGD)
to a second-order stationary point is not always assured when
applied to a nonconvex function - it could potentially arrive at a
saddle point. However, prior research [3] has offered optimism
by indicating that a perturbed variant of RGD (PGRD) will,
in high probability, locate an e-second-order KKT point. We
have made modifications to apply this to spherical space in
this work.
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Theorem 3. [3] Assume the sequence of iterations, {z}5_,

obtained by implementing PRGD on the function g : S~ 1 —
4

R for K iterations. When K = O (%) it is expected

that the series {z Y1, will incorporate an e-second-order
stationary point of g(z) with a high probability.

We refer to the combination of the Hadamard parameteri-
zation and PRGD as “T-PRGD”. Resulting from our analysis
of the landscape, we have:

Theorem 4. Consider the infinite sequence of iterations
{sir}32, generated by T-PRGD. It is expected that this
sequence, {s;;, }72 1, will contain a subsequence that converges
towards a second-order KKT point of the original problem,
represented as s;j,, — s;, with a high probability.

We begin by verifying a lemma prior to proceeding with
the proof for Theorem 4.

Lemma 3. Suppose g is twice continuously differentiable.
Given any 6 > 0, there’s a corresponding €5 > 0, such that if
z; is considered an es-second-order stationary point, then the
inequality |z; — z}| < & holds, where z; denotes a second-
order stationary point.

Proof. Assume § > 0 and suppose that there is no such ¢s.
In such a case, we can select any €, := 1/k and identify
an ex-second-order stationary point 2z, with the property that
|zix — 2F| > 0 for all possible second-order stationary points

Given the compactness of S™~1, it’s reasonable, if neces-
sary, to presuppose a convergence of z;p: limg_, o0 2ip, = 25 €
S™~1. Through continuity, it follows that Z; is a second-order
stationary point:

[Vg(z:)| = |Vg( lim z;,)| = lim |Vg(zip)| < lim e, =0
k—o0 k—o0 k—o0
,U/mm(v2g(2?1)) = /imm(VQQ(leIEO Z?k))
= lim pimin(V?g(2i5)) > lim —y/&e, =0
k—o0 k— o0

As Z; = limy_, o 23, this contradicts.

Let’s now denote {z;;}7°, as the secondary sequence
produced by T-PRGD. Define ¢, := 1/¢, and according to
Theorem 3, we know that a T} exists such that {z; k}fi 1 con-
tains an ey-second-order stationary point with high probability
(w.h.p.). We will call this point z;;,. With ¢, — 0 and as per
the previous lemma, we have z;;,, — z;*, which is a second-
order stationary point of the transformed problem. Thus, z;*
coincides with a second-order KKT point of the transformed
problem [7]. The sequence {s;y, := Zix, © ik, }oo, converges
to s;* = z;* 0 z;*, which, as per Theorem 1, is a second-order
KKT point of the original problem. O

Theorem 5. Provided that the original problem exhibits the
strict saddle property where all local minimizers are also
global minimizers, and all second-order KKT points are non-
degenerate, then, with high probability, T-PRGD identifies s;,
such that the difference between f(s;),) and the minimum of
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f(s;) over A™ is less or equal to €, within K = O((logn)*/e)
iterations, given that € is sufficiently small.

Proof. We start from a fixed z;5. From Theorem 4, it’s
established that there is a subsequence z;,, — z;*, which is a
second-order stationary point of g, and s;;, — s;* 1= 2z;%02;%,
a second-order KKT point of the original problem. Since the
original problem has a strict-saddle property, s;* is a local
minimizer and, as per our assumption, a non-degenerate global
minimizer. As per Theorem 2, z;* is a non-degenerate second-
order KKT point of the adjusted problem. As such, z;* is a
non-degenerate second-order stationary point of g : S™ — R,
suggesting that V2g(z;*) is positive definite [2]. Given its
continuity, a geodesic ball B(z;*,§) exists such that V2g(z;)
is positive definite for all z; in B(z*,0). This implies that
g confined to B(z;*,d) is geodesically 7-strongly convex for
some 7 > 0, and it complies with the Polyak-Lojasiewicz (PL)
condition [2]: g(z;) — g(z*) < 5=|Vg(z:)[*

From Lemma 3, we know that an €5 > 0 exists such that
if z; is an eg-second-order KKT point then z; € B(z;*,0).
Now, let’s suppose € > 0 is small enough that v/27e < es.
By Theorem 3, T-PRGD discovers a v/27¢-second-order KKT

‘thi — (10g")4) —
within K = O((\/@P =

(0] (M iterations (w.h.p). Since v/27¢ < €5, we know
that z; Nor is also an es-second-order KKT point, thus
2 37c € B(#*,6). Utilizing the PL condition and defining

Sim = sz o} Zi\/ﬁ, Wwe can write:

Flsi3e) = min f(si) = f(si ) = S(0)

point, referred to as z; Nor

TE?

x 1 1
= gz ) — 9(20) < 5 IVl oI < 5o (VBT < €
O

IV. EXPERIMENTAL EVALUATION

To validate the effectiveness and efficiency of our proposed
method, we conducted comprehensive experiments. In this
section, we introduce the benchmark datasets used, describe
the baseline methods for comparison, outline the experimental
setup, present the evaluation metrics used, and discuss the
results obtained.

A. Datasets

We selected a diverse set of benchmark datasets to evaluate
the robustness and versatility of our method. Table I provides
a summary of the datasets used, including the number of
instances, features, and classes.

The selected datasets cover various domains, including
facial images (Olivetti), object images (COIL-20), and citation
networks (Cora). These datasets served as the foundation for
our experiments. To assess the algorithm’s robustness, we
introduced perturbations at a 30% noise level. For image
datasets (Olivetti and COIL-20), Gaussian noise was added
to pixel values using a perturbation-dependent standard de-
viation. For the Cora datasets, representing citation networks
and biomedical literature, respectively, we randomly shuffled
a small percentage of node/document attributes to induce
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TABLE I: Description of benchmark datasets used in the
experiments.

Dataset Instances  Features  Classes
Olivetti 400 4096 40
COIL-20 1440 1024 20
Cora 2708 1433 7

perturbations. This controlled noise injection ensured that the
perturbations closely resembled real-world variations.

B. Comparative Methods and Evaluation Metrics

We compare our proposed method against state-of-the-art
approaches in three categories:

Category 1: Adjacency Matrix-based Methods: Repre-
sentatives include Spectral Clustering (SC) and NetMF [9].
These methods generate node embeddings solely based on the
adjacency matrix and employ k-means clustering.

Category 2: Direct Embedding-based Methods: Repre-
sentatives include AutoEncoder (AE) and NMF. These meth-
ods directly generate lower-dimensional embeddings and uti-
lize k-means clustering as a post-processing step.

Category 3: End-to-End Graph Neural Network (GNN)
Models: Representatives include DiffPool [17] and MinCut
[1]. These GNN models generate soft cluster assignments by
considering both graph connectivity and node features.

In our work, we leverage Graph Isomorphism Networks
(GIN) [16] as the deep representation. GIN employs multiple
graph convolutional layers with non-linear activation func-
tions to capture information from larger neighborhood scopes.
This enables GIN to effectively capture graph structure and
learn expressive node embeddings. One key advantage of our
proposed method, BSSR, is its parameter-independent nature,
eliminating the need for extensive parameter tuning. This
allows us to achieve reliable and accurate results without the
burden of parameter optimization.

We evaluate our method using a 5-fold cross-validation
approach, repeated ten times for robust statistical analysis.
We utilize Average Accuracy (ACC) and Normalized Mutual
Information (NMI) as evaluation metrics, assessing the cor-
rectness of predicted cluster assignments and the agreement
between predicted clusters and ground truth labels.

Furthermore, we compare our proposed optimization
method, Tangent Perturbed Riemannian Gradient Descent (T-
PRGD), against the Projected Gradient Descent method (PGD)
to demonstrate its superior performance in achieving accurate
and reliable graph clustering results.

C. Empirical Studies of the Convergency of the Proposed
Algorithm

The findings from Figure 1 offer valuable insights into the
performance of our proposed optimization method, T-PRGD,
compared to the traditional method, PGD, on the Olivetti
dataset.

Firstly, the figure demonstrates that T-PRGD achieves faster
convergence than PGD. The steeper decreasing rate of the loss
curve for T-PRGD indicates that our method reaches lower loss
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values in fewer iterations. This faster convergence is essential
for efficient optimization and can result in significant time sav-
ings in real-world applications. Furthermore, the figure high-
lights the superior capability of T-PRGD in overcoming saddle
points. The presence of “plateaus” in the loss curves suggests
the existence of saddle points, where the gradient becomes
close to zero and conventional optimization algorithms tend
to stagnate. In contrast, T-PRGD exhibits a fluctuating loss
curve, indicating its ability to explore alternative directions
and avoid getting trapped in suboptimal solutions.

Importantly, these findings align with our previous the-
oretical analysis, which emphasized T-PRGD’s potential to
converge to a global optimum and effectively navigate saddle
points. The observed lower loss achieved by T-PRGD further
supports these theoretical claims. Moreover, the accuracy
(ACC) curve of T-PRGD outperforms that of PGD, indicating
superior clustering performance. This demonstrates the effec-
tiveness of T-PRGD in producing more accurate data similarity
measures, aligning with our expectations.

Overall, the empirical evidence from Figure 1 confirms
the superiority of our proposed method, T-PRGD. It exhibits
faster convergence, effectively overcomes saddle points, and
achieves improved accuracy. These findings align with our
theoretical analysis, showcasing the practical advantages of
employing T-PRGD for data similarity measurement.

D. Comparative Studies of the Proposed Algorithm in Clus-
tering Tasks

In Table II and Table III, the comparative analysis of differ-
ent methods on the original and perturbed datasets provides
compelling evidence for the effectiveness and superiority of
our proposed method, BSSR-GIN, when compared to state-
of-the-art approaches.

Across the original datasets, BSSR-GIN consistently
achieves superior performance in terms of average accuracy
score (Acc score) and normalized mutual information (NMI),
confirming its ability to accurately identify data similarity and
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capture the underlying structure of the data. This exceptional
performance can be attributed to the robustness and scalability
of BSSR-GIN, leveraging the power of GIN to capture com-
plex graph structures and learn expressive node embeddings, as
well as the advanced parameter-independent BSSR approach.
These characteristics enable BSSR-GIN to effectively handle
scale inconsistencies and outlier noise, leading to more reliable
and precise cluster assignments. Furthermore, the integration
of shift-invariant sparse representation in BSSR-GIN further
enhances its clustering performance. By incorporating a sim-
plex constraint, our method promotes sparser representations
while ensuring shift-invariance, leading to more accurate and
interpretable clustering results. This unique design choice
enables a precise analysis of the data, providing deeper insights
into its underlying patterns.

Overall, the experimental results showcased in the tables
strongly validate the advantages and motivations of our novel
method, BSSR-GIN. Its robustness, scalability, shift-invariant
sparse representation, and optimized optimization process all
contribute to its exceptional performance. By outperforming
other state-of-the-art methods in terms of average accuracy
score and normalized mutual information, BSSR-GIN demon-
strates its effectiveness in accurately uncovering the intrinsic
structure of complex datasets and providing valuable insights
for a wide range of data analysis tasks.

V. CONCLUSION

We propose the Beyond Simplex Sparse Representation
(BSSR) method, which effectively constructs reliable and
interpretable graphical representations of high-dimensional
data. By leveraging sparse representation and deep learning
techniques, BSSR addresses challenges such as parameter
dependencies and scale inconsistencies. We also introduce the
Tangent Perturbed Riemannian Gradient Descent (T-PRGD)
algorithm, which optimizes the standard simplex by transform-
ing the constraint onto the Riemannian manifold of the unit
sphere. Experimental evaluation demonstrates the superiority
of our methods compared to state-of-the-art approaches, show-
casing their accuracy and robustness. Our work contributes
significant advancements to data representation and optimiza-
tion, enabling more accurate analysis in the era of big data.
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