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The composition and configuration of the built environment affect intra-urban heat variability and human
thermal exposure. We investigated how 2-D and 3-D building and vegetation characteristics, represented by
various landscape metrics, affect the mean radiant temperature (MRT) distribution in Phoenix and Tempe,
Arizona, USA, to determine which urban form characteristics are most important for minimizing thermal
exposure. For a hot-dry summer day with low wind speed and a maximum air temperature of 43.3 °C, the
relationship between 1-m resolution MRT data and seventeen 2-D and 3-D landscape metrics were analyzed at
the Census block (micro) and urban (macro) scale. The landscape metrics were calculated with FragStat from a
Digital Surface Model, a 3-D point cloud obtained from high-resolution (0.5-m) USGS LiDAR data, and a 1-m
resolution land use/land cover map classified from the 2015 National Agriculture Imagery Program (NAIP)
data. Hourly MRT for June 27, 2012, was simulated using the SOlar LongWave Environmental Irradiance Ge-
ometry (SOLWEIG) model. After testing for autocorrelation in hourly MRT using Moran’s I, the relationship
between landscape metrics and MRT outcomes was analyzed using correlation coefficients and multiple linear
regression. The best predictive power was achieved using 2-D and 3-D metrics together, with an explanation MRT
of 86 % (8:00 h) to 96 % (12:00 h). The five most important factors were 3-D vegetation height, 2-D percent tree
surface cover, 3-D building height, 2-D building edge density, and the 3-D vegetation height coefficient of
variation. Results show that MRT is driven by the composition and configuration of 2-D and 3-D urban features.
The horizontal arrangement impacts MRT through varying land cover, and the vertical extent influences shade
patterns, with more complex urban forms providing more shade and lowering MRT. Findings advance our un-
derstanding of how urban design can reduce thermal exposure on hot days using passive cooling strategies that
rely on changes in the configuration and composition of landscapes.

1. Introduction Charalampopoulos et al., 2013; Johansson & Emmanuel, 2006; Kong

et al., 2022; Li et al., 2020; Perkins et al., 2012; Solcerova et al., 2017;

Urbanization, one of the most visible impacts of human activity on
Earth, significantly affects the local climate in cities (Kalnay et al., 2004;
Oke et al., 2017). Buildings, roads, and other impermeable surfaces alter
natural landscapes during urbanization, resulting in fragmented and
complex landscapes (Kalnay & Cai, 2003; Yu et al., 2016). Urbanization
negatively impacts various urban systems, including air quality (Duh
etal., 2008; Han et al., 2014; Santamouris, 2013) and stormwater runoff
(Bhaduri et al., 2001; Papagiannaki et al., 2015). Converting natural to
built environments also significantly affects the urban thermal envi-
ronment (UTE) (Alberti & Marzluff, 2004; Cai et al., 2017;

Xian & Crane, 2006). High temperatures reduce thermal comfort,
especially in the absence of shade (Middel et al., 2016; Kelly Turner
et al., 2023), and increase the risk of heat stress and mortality (Chow
et al., 2011; Harlan et al., 2006; Hondula et al., 2014). These circum-
stances have led to increased awareness of the effects of land cover
composition and configuration on human health and activity (Li et al.,
2016; Middel et al., 2014; Myint et al., 2013; Zhang et al., 2018).
Previous research has identified changes in land use and land cover
(LULQC) as critical drivers of UTE degradation (Deilami et al., 2018).
Investigating how the local urban landscape structure affects UTE
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variability is crucial to developing targeted heat mitigation strategies
and promoting sustainable urban and regional development (Zhou et al.,
2022a). While the field of urban climate has investigated the urban heat
island (UHI) and its relationship to urban form for many decades
(Nichol, 1996; Unger, 2009; Middel et al., 2014; Wang et al., 2023), few
studies have focused on the impact of urban morphology on
human-centric thermal exposure, quantified as mean radiant tempera-
ture (MRT).

Landscape metrics quantify the composition and configuration of
landscape features, such as patch types and their spatial arrangement
(McGarigal et al., 2002; Yu et al., 2020). Researchers have previously
explored the relationship between land system architecture and climatic
characteristics at different scales by evaluating two-dimensional (2-D)
LULC and landscape metrics (Berger et al., 2017; Deilami et al., 2018;
Estoque et al., 2017; Sun et al., 2020a, Guo et al., 2020; Masoudi et al.,
2021; Sun et al., 2018; Tian et al., 2019). Studies focusing on the effects
of 2-D landscape metrics employed patch density (PD), edge density
(ED), landscape shape index (LSI), largest patch index (LPI), mean patch
size (AREA_MN), mean patch shape index (SHAPE_MN) and contami-
nation index (CONTAG) to investigate impacts on Land Surface Tem-
perature (LST) (Amiri et al., 2009; Huang & Wang, 2019; Li et al., 2011,
20165 Siqi & Yuhong, 2020; Zhou et al., 2017). However, 2-D urban
landscape metrics insufficiently capture the vertical heterogeneity of
cities, which affects shading patterns and therefore heat storage in the
built environment (Deilami et al., 2018; Zhou et al., 2017). Researchers
have started to analyze landscape metrics in 3-D to understand the dy-
namic thermal processes within and between landscape fragments (Yan
et al., 2019; Zhou et al., 2022b; Stewart & Oke, 2012). Using advanced
3-D data technology such as LiDAR allows to explore this relationship
(Getzner et al., 2016; Li et al., 2016; Luan et al., 2020; Petras et al., 2017;
Wu et al., 2012; Zimble et al., 2003). For example, the 3-D character-
istics of vegetation, such as tree height and crown shape, significantly
impact the UTE at the microscale (Chun & Guldmann, 2018; Zellweger
et al., 2019; Zhang et al., 2019) through increased shading and evapo-
transpiration (Alexander, 2021; Chen et al., 2019; Yu et al., 2018).
Research has shown that increasing vegetation alone cannot fully meet
the large-scale cooling demand of a city (Bowler et al., 2010; Kong et al.,
2022; Norton et al., 2015; Wong & Yu, 2005), and passive cooling
strategies that involve the configuration of landscapes, not just the
composition, should be explored.

Past studies have primarily relied on LST to represent the thermal
variability in cities, but LST has limited applications for human thermal
experiences. The radiative fluxes that the human body is exposed to
outdoors significantly drive thermal exposure. MRT is one of the most
important meteorological parameters that affect thermal exposure
(Middel et al., 2021; Schneider et al., 2023; Thorsson et al., 2007). MRT
considers the radiative fluxes of the Sun, ground surfaces, building fa-
cades, and vegetation, allowing it to more thoroughly represent how a
person experiences thermal conditions, particularly in hot, dry areas
(Middel & Krayenhoff, 2019). Radiative flux models such as SOLWEIG
(Lindberg et al., 2008) model MRT for urban areas at high spatial
resolution.

In summary, previous studies have used 2-D and 3-D landscape
metrics to investigate the impact of urban morphology on UTEs but
mainly focused on coarse LST, not human-relevant heat metrics such as
MRT. It is challenging to develop generalized urban design guidelines to
improve the thermal environment based on LST alone (Huang & Wang,
2019; Yin et al., 2019; Yu et al., 2020, 2021). High-resolution spatial
MRT or similar human-centric data at different times of day are needed
to address this gap.

This study evaluates the effects of 2-D and 3-D urban landscape
patterns (configuration and composition) on thermal exposure (MRT) at
local and hyperlocal scales. We aim to find the urban form character-
istics that most strongly impact MRT to advance understanding of how
urban design can reduce thermal exposure on hot days using passive
cooling strategies that rely on changes in the configuration and
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composition of landscapes.
2. Materials and methodology
2.1. Study area

This study was conducted in Phoenix (33°27'1.70"N,
—112°4'26.5"W) and Tempe (33°25'28.6"N, —111°56'18.6”"W) in Mar-
icopa County, Arizona, USA (Fig. 1). Phoenix, the capital of the State of
Arizona, is the fifth most populous city in the USA, with a population of
4652,000 in 2022. The study area covers 176.6 km?, with 70.1 km?>
comprising central Phoenix and 106.5 km? comprising the City of
Tempe. The metropolitan area is known for its urban sprawl, with a
population density of approximately 1200 people per square kilometer.
The urban centers consist primarily of open and partially compact mid-
rise to high-rise Local Climate Zone (LCZ) classes, while the outskirts
have open low-rise buildings with a lower-density development pattern.
The southern part of the City of Tempe has one- to two-story single-
family homes and lower-density residential developments (LCZ 6, open
low-rise), strip malls (LCZ8, large low-rise), and office parks (LCZ5,
open-midrise) (Wang et al., 2018). The city center in the north is tran-
sitioning from an open low/mid-rise to an open mid/high-rise area, with
three- to four-story office and commercial buildings and several new
apartment complexes and hotels under construction. Percent tree cover
is low; vegetation mainly consists of small trees, shrubs, and grass
(Wang et al., 2018). The presence of vegetation and open green spaces
beyond residential plots, such as parks and golf courses, varies by
neighborhood across the city (Harlan et al., 2006). Due to rapid urban
expansion, the majority of urban forms in the metropolitan area consist
of open-spaced, low to mid-rise buildings (i.e., low building height and
density) and broad streets with a high sky view factor (SVF) (Middel
et al., 2018; Wang et al., 2018).

The Phoenix metropolitan area, located northeast of the Sonoran
Desert, has a semi-arid climate (Koppen-Geiger BWh (Kottek et al.,
2006) with annual precipitation of 237 mm and low humidity of 31 %.
Most of the rainfall occurs in July and August (62 mm) and during the
winter months (December-March, 112 mm), while June is exceptionally
dry with less than 1 mm of precipitation. Phoenix is one of the hottest
cities in the USA, with an average high temperature of over 39.4 °C
during the summer months and 110 days above this temperature (Na-
tional Weather Service, 2018). Maximum temperatures peak close to
50 °C in the summer, while nighttime lows typically range between
27 °C and 29 °C (Western Regional Climate Center, 2020). In winter,
mean daily high temperatures are above 13 °C, and minimum temper-
atures are rarely below 4 °C.

The synoptic macroclimate, geography, and urban patterns have
created a pronounced Urban Heat Island (UHI) over the past 60 years
(Chow et al., 2012). Impermeable surface areas in the metropolitan re-
gion have increased significantly since the mid-twentieth century. Rapid
and extensive urbanization has raised nighttime temperatures by about
0.5 °C per decade since 1910. By the end of the 20th century, the average
daily air temperature had increased by 3.1 °C and the minimum night
temperature by 5.0 °C (Brazel et al., 2000; Kane et al., 2014; Sha & Tian,
2010; Shrestha et al., 2012).

2.2. Data

We utilized 5143 census blocks (2385 in Phoenix and 2758 in
Tempe) from the 2010 Census in the downtown areas of Phoenix and
Tempe, where developments are concentrated. These census block data
were utilized as a unit of analysis to generate 2-D and 3-D landscape
metrics at the neighborhood (or local) scale. Three remote sensing
datasets were used to generate the landscape metrics and estimate MRT:
a Digital Surface Model (DSM), Vegetation/Building Heights (H, and
Hp), and a Land Use Land Cover (LULC) map. DSM, Hy, and Hy were
derived from 2014 LIDAR data with a spatial resolution of 0.5-m. The
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Fig. 1. Study areas in the City of Phoenix and the City of Tempe, Arizona, USA.

LULC map was created by classifying 1-m resolution National Agricul-
ture Imagery Program (NAIP) data from 2015 into eight land cover
classes: (1) building, (2) asphalt, (3) bare soil and concrete, (4) trees and
shrubs, (5) grass, (6) water, (7) agricultural fields, and (8) fallow land
(Zhang & Turner, 2020). The LULC classification was used to calculate
the 2-D landscape metrics for this study, excluding agricultural fields
and fallow land.

We retrieved hourly MRT data for the Phoenix metropolitan region
from Buo et al. (2023), who simulated MRT at 1-m spatial resolution for
a clear and hot summer day on June 27, 2012, using the SOlar and
LongWave Environmental Radiation Geometry (SOLWEIG) model.
SOLWEIG predicts short-wave and long-wave radiation fluxes based on
urban geometry, such as SVF (Lindberg et al., 2008; Ratti et al., 2006),
vegetation, geographic information (latitude, longitude, and altitude),
and meteorological forcing data (direct and diffuse radiation, global
radiation, air temperature, and relative humidity). SOLWEIG creates a
virtual 3D model that includes information about the height, width, and
orientation of buildings and other objects. The shadow casting algorithm
in the SOLWEIG model determines whether a specific pixel within the
model domain experiences shading, distinguishing between shade from
vegetation and buildings. This virtual model allows calculating
short-wave and long-wave radiation fluxes from six directions (north,

south, east, west, zenith, and nadir) for each raster point in the model
domain. The MRT is then calculated as the weighted average of the
radiant temperatures of all surfaces visible from the reference point. The
weights are determined by the proportion of sky visible from each sur-
face. This calculation considers direct solar radiation, diffuse solar ra-
diation, and long-wave radiation from the sky and surrounding surfaces
(Lindberg et al., 2008).

Buo et al. (2023) extensively validated the SOLWEIG model in
Phoenix and Tempe using 763 observations with a mobile
human-biometeorological 6-way setup (Middel et al., 2019). The ob-
servations were conducted from 07:00 h to 21:00 h Local Standard Time
(LST) across nine warm summer days in the years 2016, 2018, and 2019
(Middel et al., 2021). Biometeorological data were obtained in various
areas, including beneath trees, within building canyons, and at open
sites. The model validation revealed a strong relationship between the
modeled and observed MRT, with an R? value of 0.91 and a high index of
agreement (0.95). The MRT estimates had an overall RMSE of 5.6 °C,
with errors of 6.2 °C in open areas, 5.4 °C under trees, and 4.4 °C in
building canyons. These MRT estimates are close to the accuracy re-
quirements defined in the ISO7726 standard. The model tends to over-
estimate MRT in shaded locations, a limitation previously acknowledged
by Szucs et al. (2014) and Gal and Kantor (2020). Gal and Kantor (2020)
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attribute the overestimations in shaded areas to the use of domain-wide
surface temperature for determining longwave radiation and the theo-
retical approach employed by the model in estimating fluxes from
sun-exposed and shaded walls. Additionally, an inherent dataset
imbalance, characterized by a higher number of observations in shad-
ed/tree environments, contributes to the overall overestimation. We
retrieved Buo et al. (2023)’s hourly MRT raster data for four different
times of the day (08:00 h, 12:00 h, 16:00 h, and 20:00 h) and aggregated
the data to Census blocks.

2.3. Analysis

The analysis comprises three steps (Fig. 2). First, 2-D and 3-D land-
scape metrics were calculated using the DSM and LULC data for each
Census block to quantify the composition and configuration of land
cover patches. Second, MRT was modeled with SOLWEIG (Buo et al.,
2023). Third, a stepwise regression analysis was conducted to analyze
the relationship between the landscape metrics and MRT.

2.3.1. Selecting metrics & metric calculation

Landscape composition and configuration describe the spatial pat-
terns and relationships between different elements in a landscape (Liu
et al,, 2017a; Sun et al., 2020b; Zeng et al., 2022). We propose a
comprehensive set of 2-D and 3-D landscape metrics to evaluate these
patterns in the urban environment because landscape structure and
urban form influence local climate dynamics and microscale MRT. Many
2-D landscape metrics are available in the literature (Baker & Cai, 1992;
Frazier & Kedron, 2017). A set of metrics is generated at the patch, class,
and landscape level in FRAGSTATS, including various area metrics,
patch density, size and variability metrics, edge metrics, shape metrics,
core area metrics, diversity metrics, and contamination and scattering
metrics. We calculated all 2-D metrics in FRAGSTATS at the class and
landscape level and excluded the highly correlated ones. A cluster
analysis was initially conducted to group the factors to ensure the
non-redundancy and representability of these factors (Chen et al., 2016).
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Subsequently, backward selection algorithms based on the maximum
relevance principle were employed to rank these metrics according to
their relative importance and select representative metrics of signifi-
cance within each group (Li et al., 2021). Metrics relating to the
composition of land cover include area types such as class area, percent
surface types (e.g., percent impervious), and mean fractal dimension
index (measures the complexity of the landscape patch). 2-D metrics
related to configuration include edge density (ED), aggregation-type
metrics such as the number of patches (NP), splitting index (SPLIT),
contagion (CONTAG), and shape indices (e.g., mean contiguity). For a
complete list, please see Table Al.

The 3-D landscape metrics were grouped into two categories: (1) 3-D
landscape composition metrics and (2) elevation-based metrics
(Table A2). The first category was extended from traditional 2-D metrics
but calculated in 3-D space. In the second category, we adopted the
methods of Wu et al. (2017) to combine 2-D landscape metrics with 3-D
terrain surfaces by introducing 3-D area and length calculations.
Building and vegetation height were obtained from high-precision
LiDAR data. These metrics are commonly used in related research (Ke
et al., 2022). We calculated four 3-D landscape composition metrics and
ten 3-D elevation metrics. To combine 2-D and 3-D landscape pattern
metrics, the evenness index and patch index were calculated in 3-D
based on building and vegetation height.

The type of landscape metrics is named C or L for class or landscape,
followed by 2-D or 3-D. For example, 2D-C denotes class-level metrics in
2-D. The descriptions of each landscape metric are shown in Table A2
(Yu et al., 2021). Metrics describe building characteristics such as
height, volume, shape, and density and have been shown to affect the
UTE (Alavipanah et al., 2018; Berger et al., 2017).

2.3.2. Statistical analyses

Several statistical analyses were conducted to explain the relation-
ship between hourly MRT and landscape metrics aggregated at the
Census block level. First, a bivariate correlation analysis was applied to
all landscape metrics to determine which metrics to exclude. Second, to
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Fig. 2. Flowchart of the implementation and analysis.
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understand the spatial distribution of MRT, we used Global Moran’s I to
quantify the spatial autocorrelation of MRT at different times of day.
Global Moran’s I is a statistical measure to quantify geographical
autocorrelation, which is the degree to which the values of a variable in
a global dataset are similar or dissimilar (Bivand & Piras, 2015; Fu et al.,
2014). The index ranges from —1 to 1, with 1 indicating perfect spatial
autocorrelation, —1 indicating perfect negative spatial autocorrelation,
and O indicating no spatial autocorrelation. Global Moran’s I was
calculated in GeoDa using first-order queen contiguity weights as the
spatial weight matrix. Third, we utilized a partial correlation analysis
(Wang et al., 2006) to investigate the correlation between MRT and the
landscape metrics. Partial correlation analysis evaluates the strength of
the linear correlation between two variables while considering the in-
fluence of other variables (Xiao et al., 2022). The closer the correlation
coefficient is to 1, the stronger the correlation between variables; the
closer it is to 0, the weaker the correlation. Factors with low correlation

Phoenix 08:00
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=
3
o
7]
[
£

1
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mm352-40.6 442-454
m40.6 -42.87945.4 -46.9
542.8-44.2mm46.9-49.3

MRT 12:00 (oC)

m52.0-59.1°62.8-63.7
=59.1-61.65963.7 - 64.6
=461.6 - 62.8m64.6 - 66.2
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(R2 < 0.2) between the indices and MRT were excluded.

Finally, stepwise multiple regression analysis was adopted to find the
independent and interactive effects of the selected metrics on MRT. Each
variable was normalized to eliminate the size effect in the regression
analysis. Then, stepwise multiple regression analysis was performed to
determine the relative importance of the variable. The highest correla-
tion coefficient (R?) was used for the optimal result (Zhan et al., 2013).
3-D and 2-D landscape metrics served as independent variables, and
MRT values at four selected hours were used as dependent variables in
the regression.

Multicollinearity is a common problem when two or more predictive
variables are highly correlated in regression analysis. When multi-
collinearity is present, it can lead to biased and unreliable regression
coefficients, which may ultimately affect the accuracy of the model’s
predictions (Stevens, 2009). Therefore, the variance inflation factor
(VIF) (Asgarian et al., 2015; Guo et al., 2019) was applied to evaluate the

1-m resolution

MRT 16:00 (oC)
m494-61.7 67.2-68.8
m61.7 - 65.19968.8 - 70.6
#65.1-67.2m70.6-74.8

MRT 20:00 (oC)

m=29.0-30.331.9-328
=303 -31.2%32.8 - 34.1
#31.2-31.9m34 1 -39.0

Fig. 3. Hourly MRT maps; results are aggregated at the Census block scale; the small maps in the center show 1-meter results for a sub-area.
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collinearity in independent variables in the models with variables hav-
ing a VIF value equal to or exceeding 7.5 (Guo et al., 2020; Shen et al.,
2022) being excluded from the model.

3. Results
3.1. Spatial MRT distribution in the study area

The average hourly MRT at the Census block level over the study area
for June 27, 2012, varied widely across space during the day and peaked
at 61 °Cat 15:00 h and 16:00 h in some blocks. MRT then decreased and
became more homogeneous spatially after sunset in the absence of
shade. MRT values in vegetated Census blocks were consistently +3 to
+5 °C lower than in bare neighborhoods. During midday, residential
areas experienced an increase in MRT because shading was minimal. In
contrast, north-south oriented streets were mostly shaded by tall
buildings in the afternoon, reducing direct solar radiation and heat
storage (e.g., downtown Phoenix and Tempe with low SVF). Average
MRT was lower in densely built-up areas with reduced SVF, but long-
wave radiation was trapped near the ground after sunset (Fig. 3).

Moran’s I values for MRT ranged between —1 (dispersed) and 1
(clustered). The spatial autocorrelation determines whether high or low

Phoenix 08:00 12:00
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average MRT values in a Census block increase the probability of simi-
larly high or low values in the surrounding blocks. The hourly Moran’s I
values for MRT for 08.00 h, 12.00 h, 16.00 h, and 20.00 h were 0.50,
0.45, 0.45, and 0.51, respectively (Fig. 4). According to these results,
almost half of the area exhibits spatial autocorrelation. The Census
blocks were categorized into four groups: high-high (H—H), low-low (L-
L), high-low (H-L), and low-high (L-H). The H—H type represents clus-
ters of high MRT values, the 1-L type indicates clusters of low MRT
values, and the H-L (L-H) type represents a cluster of low (high) MRT
values around a high (low) MRT block. During the day, south Phoenix
exhibited H—H local Moran I clusters, while the 1-L type was concen-
trated in the central and northern parts of the area. Cluster types
reversed after sunset (20:00 h). In Tempe, the H—H type was spread
along the I-10 highway from north to south and the Tempe Lake area to
the north. The 1-L type was found in Tempe’s downtown and southern
neighborhoods. In addition, few 1-H and H-L types were spread across
the two cities (Fig. 4).

3.2. 2-D/3-D landscape metrics and MRT response

At the landscape level, 27 2D metrics were generated. Since many of
these metrics were highly correlated, a bivariate correlation analysis

16:00 20:00

Local Moran Index
I Not significant ®® High-High =1 High-Low = Low-High =8 Low-Low

Fig. 4. Local moran index for hourly MRT results at the census block level.
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was applied, and nine 2-D landscape metrics were selected as dependent
variables (Table Al): Mean fractal dimension index (FRAC_MN), Edge
density (ED), Number of patches (NP), Patch density (PD), Splitting
index (SPLIT), Contagion (CONTAG), Effective mesh size (MESH), Mean
contiguity index (CONTIG_MN), and Shape index (SHAPE_MN). At the
class level, 19 2-D landscape metrics were generated. Cluster analysis
and backward selection algorithms were applied to eliminate redun-
dancy. As a result, the following metrics that showed strong correlations
(>0.70) were excluded: Largest patch index (LPI), Total edge (TE), Mean
Shape index (SHAPE_MN), Perimeter-area ratio (PARA_MN), Landscape
shape index (LSI), Patch cohesion index (COHESION), Division index
(DIVISION), Effective mesh size (MESH), and Aggregation index (AI). As
aresult, 30 class-level landscape metrics (10 metrics multiplied by three
land use classes) were used, including building, asphalt, and tree land
covers. For the 3-D landscape metrics, 16 were derived from 3-D infor-
mation from buildings and vegetation data, and twelve were used
(Table A2): Building Height (3D-Hb), Vegetation height (3D-Hv), Sky
view factor (3D-SVF), Building volume (3D-Bv), Aboveground biomass
(3D-AGB), Building height coefficient of variation (3D-CVb), Vegetation
height coefficient of variation (3D-CVv), Compactness for building
height (3D-Cb), Building height evenness index (3D-BEI), Vegetation
height evenness index (3D-VEI), Building height patch index (3D-PRb),
Vegetation height patch index (3D-PRv).

The main factors affecting MRT were determined by evaluating the
2-D and 3-D landscape metrics separately and combined through step-
wise multiple regression analysis. The results are presented in Table 1,
which shows the standardized regression coefficients that demonstrate a
significant relationship between dependent and independent variables.
A positive relationship between MRT and 2-D and 3-D landscape metrics
at 8.00 h, 12:00 h, and 16:00 h becomes negative at 20:00 h and vice
versa. MRT responds positively to 2D-I-CONTAG and 2D-1-SHAPE_MN
during the day and negatively at 20:00 h. On the other hand, 2D-I-
FRAC_MN, 2D-1-ED, and 2D-I-SPLIT exhibit negative responses at 8:00
h, 12:00 h, and 16:00 h and positive responses at 20:00 h. 2D-1-MESH
shows a positive response at 8:00 h and 12:00 h but no correlation at
16:00 h and 20:00 h. On the other hand, 2D-I-CONTIG_MN shows a
negative response at 8:00 h and 12:00 h but no significant correlation at
16:00 h and 20:00 h. Conversely, 2D-1-NP has a positive correlation at
16:00 h and 20:00 h and no correlation at other hours. In contrast, 2D-1-
PD provides a positive correlation only at 16:00 h.

The stepwise regression analysis for the selected 2-D metrics at the
landscape level revealed R-squared (R?) values between 0.32 and 0.35
for hourly MRT. Each model’s R? and adjusted R? values were less than
0.70, indicating that the model is unreliable for interpreting the results.
The relative importance of each metric in the model is 2D-SPLIT > 2D-I-
SHAPE_MN > 2D-FRAC_MN ~ 2D-CONTAG > 2D-1-ED > 2D-1-CON-
TIG_MN > 2D-I-MESH > 2D-I-NP > 2D-1-PD. These metrics, generally
referring to landscape configuration, were weakly correlated with MRT
at the landscape level.

At the class level, 2D-C-ED_Building, 2D-C-C-CONTIG_MN_Building,
2D-C-CONTIG_MN Trees, and 2D-C-PAFRAC_MN Building display a
positive correlation with MRT during daytime and a negative correlation
after sunset. Conversely, 2D-C-PLAND_Building, 2D-C-PLAND_Trees,
and 2D-C-ED_Asphalt are negatively correlated during the day and
positively correlated at night. The remaining class-level metrics do not
exhibit a significant correlation with MRT. In particular, 2D-C-
PAFRAC_MN _Trees and 2D-C-FRAC_MN_Asphalt show positive correla-
tions between 08:00 h and 12:00 h, whereas 2D-C-PD_Asphalt shows
negative and positive correlations between 16:00 h and 20:00 h. There is
also a significant low-impact correlation between the metrics 2D-C-
CA_Asphalt, 2D-C-CA_Building, 2D-C-PLAND_Asphalt, 2D-C-NP_Trees,
and 2D-C-PD _Trees, usually at 8:00 h or 20:00 h.

For the 3D building and vegetation metrics, MRT is positively
correlated with 3D-CVb, 3D-CVv, 3D-Bv, 3D-SVF, and 3D-AGB during
daytime hours and negatively correlated with the other 3-D metrics. This
relationship reverses at 20:00 h. MRT is collinear with the 3D-SVF
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variable at all hours with a VIF greater than 7.5. Therefore, the SVF
was excluded from the stepwise multiple regression analysis. The model
accuracy between MRT and 3-D metrics varies between 71 % to 87 %,
indicating a high correlation. The lowest R? accuracy occurred at 8:00 h,
while the highest occurred at noon. Vegetation-related metrics were
more significant than building height metrics. The relative importance
levels are as follows: 3D-Hv>3D-CVv>3D-BEI>3D-Bv>3D-AGB>3D-
CVb>3D-PRb>3D-PRv>>3D-Hb. The strongest correlation for the 3D-Hv
and 3D-BEI metrics occurs at 12:00 h when solar radiation is closest to
its peak, and the average MRT is the highest. However, there is no sig-
nificant correlation with the 3D-Hb metric because building shadows are
minimal at these hours.

Multiple regression with 2D and 3D landscape metrics yields model
accuracies between 86 % and 96 %. This strong relationship indicates
the necessity of using both horizontal and vertical data in an integrated
manner. The variable importance is as follows: 3D-Hv > 2D-C-PLAND -
Tree > 3D-Hb > 3D-CVv > 2D-C-ED_Building > 2D-1-PD > 3D-VEI > 2D-
C-ED_Asphalt > 2D-C-CLUMPY _Tree > 2D-C-PAFRAC_MN Tree > 2D-C-
CLUMPY _Building > 3D-Bv > 3D-BEL The R? for a regression using the
five metrics with the strongest relationship in the model (3D-Hv > 2D-C-
PLAND _Tree > 3D-Hb > 3D-CVv > 2D-C-ED_Building) at 08:00 h, 12:00
h, 16:00 h, and 20:00 h is 0.82, 0.95, 0.88 and 0.91, respectively. This
result shows that 3D-Hv (vegetation height), 2D-C-PLAND Tree (per-
centage of tree cover), 3D-Hb (building height), and 2D-C-ED_Building
(Building edge density) have a significant negative correlation with
MRT during the daytime as they characterize how much direct solar
radiation an urban surface receives. In contrast, they have a positive
correlation after sunset.

4. Discussion

The stepwise regression analysis results indicate a negative correla-
tion between MRT, 2D-C-ED, and 2D-SPLIT metrics during the daytime
hours. This outcome aligns with findings from previous research studies
(Kwon & Lee, 2019; Zhang et al., 2022). ED measures the diversity of the
landscape, while SPLIT measures the density of discrete regions. High
values of ED and SPLIT positively influence MRT at the urban scale. In
our study, ED exhibits a strong negative correlation with LPI, while it has
a high positive correlation with DIVISION and all aggregation indices.
These metrics take a similar approach to ED, and research conducted by
Zhang et al. (2022), Chen et al. (2020), Li et al. (2020), and Wang et al.
(2020) support this grouping.

Our results confirm that the thermal environment in urban areas is
influenced by various factors, including building height, vegetation, and
other urban landscape elements (Oke, 1989). Our regression analysis of
the 3-D landscape metrics revealed that vegetation height had the most
substantial negative relationship. No significant association was found
for building height at 12:00 h and 16:00 h. Since most of the study area
consists of 2-story residential buildings with wide roads, these areas
have less shade from buildings, and plant height affects MRT more than
buildings.

The five most important 3-D factors explaining MRT at all times of
the day are 3D-Hv, 2D-C-PLAND_Tree, 3D-Hb, 2D-C-ED _Building, and
3D-CVv metrics. Except for 3D-CVv, these metrics have a significant
negative correlation with MRT, consistent with previous studies (Chen
etal., 2014; Lietal., 2012). Similar to the 2D metrics, 3D metrics related
to vegetation and building height have a significant negative daytime
and positive nighttime effect on MRT. They characterize how much
direct solar radiation an urban surface can receive (Alavipanah et al.,
2018). Increasing building or vegetation height throughout the day in-
creases shading, thus reducing the heat storage of surfaces in the urban
canyon. However, vegetation traps more longwave radiation from the
ground at night. On the other hand, the 3D-CVv (vegetation height co-
efficient of variation) metric has a significant positive correlation with
MRT during the daytime, while the relationship is reversed at night.

Building edge density at 2-D and 3-D scales reduces MRT by
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increasing landscape diversity, producing more shade patterns. How-
ever, this relationship increases the building surface area and leads to
the absorption of more solar radiation that is dissipated to the envi-
ronment at night, increasing nighttime warming (Huang & Wang, 2019;
Jamei & Rajagopalan, 2017). Dense urban areas also have poor venti-
lation, causing more heat retention at night (Alexander, 2021; Lin et al.,
2017; Sun et al., 2020a). We also found that high MRT values are
clustered predominantly in large open areas. Conversely, clusters of low
MRT values are concentrated in city centers with tall buildings and more
vegetated neighborhoods.

Increasing the number of trees and water bodies and reducing

Table 1
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impervious surfaces effectively cools the urban environment, but the
implementation can be challenging in hot, arid areas such as Phoenix
and Tempe. Instead of changing the landscape composition, urban
planners can consider optimizing the configuration of urban landscapes
as an alternative cooling approach (Zheng et al., 2014). According to Li
et al. (2011), the spatial configuration of different land cover types
significantly affects the UTE. In our study, vegetation height, percentage
of tree cover, and coefficient of variation of vegetation height were the
critical factors for MRT concerning vegetation cover, supporting these
previous findings. Building and edge density in cities had the largest
impact on MRT because more complex building shapes create more

The stepwise regression analysis results between multi-dimensional landscape metrics and MRT after eliminating collinear variables at four hours of interest (8:00h,

12:00h, 16:00h, and 20:00h).

Times 8:00h 12:00h 16:00h 20:00h
UC (Std. SC*  VIF [UC (Std. SC* VIF |UC (Std. sc* VIF | UC (Std. SC* VIF
Error) Error) Error) Error)
2-D Variables
(Landscape
level)
(Constant) 53.132 69.225 75.79 27.992
(0.899) (0.624) (1.070) (0.444)
2D-L-SHAPE_MN 1.663 - 2.66 1.061 - 2.66 1.941 - 1.94 -0.856 - 1.83
(0.134) (0.093) (0.171) (0.07)
2D-L-FRAC_MN -8.691 -0.36  2.33 -5.871 -0.25  2.33 -10.442 044  1.71 4733 020 1.62
(0.765) (0.531) (0.979) (0.402)
2D-L- -0.886 -0.12 1.71 -0.858 -0.12  1.71 4
CONTIG_MN (0.200) (0.139)
2D-L-ED -0.001 [-0.31  4.08 -0.001 -0.13  4.08 0.000 [-0.29  1.24 0.000 0.13 3.92
(0.000) (0.000) (0.000) (0.000)
2D-L-NP 0.000 0.17 0.000 -0.08 1.24
(0.000) (0.000)
2D-L-PD 0.000 0.14  1.23
(0.000)
2D-L-CONTAG 0.023 [0:24 " 3.47 0.019- 3.47 0.0555-3.38 -0.022-3.37
(0.003) (0.002) (0.005) (0.002)
2D-L-MESH 0.071 013 11 0.0357 0.07 1.1
(0.011) (0.008)
2D-L-SPLIT -0.063 - 1.46 -0.049 - 1.46 0.112 - 1.61 0.051 - 1.61
(0.003) (0.002) (0.005) (0.002)
R? 0.34 0.32 0.33 0.35
Adjusted R2 0.34 0.32 0.33 0.35
2-D Variables
(Class level)
(Constant) 46.262 63.359 68.907 31.337
(0.586) (0.155) (0.238) (0.106)
2D-C-CA-Asphalt 0.032 0.07 1.24
(0.006)
2D-C-CA-Building -0.091 -0.09 3.89
(0.012)
2D-C- -0.060 [-0.57  1.69 -0.023 -023 157 -0.084 -008 157 0.043 0.04 2.09
PLAND_Building (0.001) (0.001) (0.002) (0.001)
2D-C- -0.169 - 1.6 -0.144 - 1.36 -0.281 - 1.32 0.127 0.00 1.44
PLAND_Trees (0.002) (0.001) (0.002) (0.001)
2D-C- 0.003 - 2.68
PLAND_Asphalt (0.000)
2D-C-ED-Building 0.000 2.32 0.000- 1.73 0.001 0.00 178 0.000 0.00 224
(0.000) (0.000) (0.000) (0.000)
2D-C-ED-Asphalt -0.001 -0.24 1.19 0.000 -0.16  1.15 -0.001 0.00 1.25 0.000 0.00 2.08
(0.000) (0.000) (0.000) (0.000)
2D-C-NP-Trees 0.000 0.00 357
(0.000)
2D-C-PD-Trees 0.000 -0.13 1.99
(0.000)
2D-C-PD-Asphalt 0.000 0.00 127 0.000 0.00 1.30
(0.000) (0.000)
2D-C-FRAC_MN- -1.384 -0.06 1.45
Building (0.379)
2D-C-FRAC_MN- 0.606 0.06 1.16 0.321 0.03 1.09
Asphalt (0.153) (0.083)
2D-C- 2.153 1.68 1.547 1.30 3.411 1.36 -1.693 1.36
CONTIG_MN- (0.247) (0.123) (0.290) (0.127)
Building
2D-C- 0.906 0.08 1.47 0.853 | 0.08 1.28 1500 1.50  1.27 -0.735 -0.74 1.30
CONTIG_MN- (0.176) (0.092) (0.214) (0.094)
Trees

(continued on next page)
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Table 1 (continued)

2D-C- 0.032 0.05 1.08 0.019 0.03 1.07 | 0.048 (0.01) 0.05 1.06 -0.018 -0.02 1.07
PAFRAC_MN- (0.008) (0.004) (0.004)
Building
2D-C- 0.274 0.08 1.27 0.157 0.05 1.16
PAFRAC_MN- (0.050) (0.026)
Trees
R? 0.70 0.81 0.77 0.78
Adjusted R? 0.70 0.81 0.77 0.78
3-D Variables
(Constant) 46.36 64.577 70.335 30.666
(0.064) (0.031) (0.086) (0.039)
3D-Hb -0.055 -0.09 4.22 0.035 0.06 4.22
(0.016) (0.008)
3D-Hv -3.012 |-1.12 | 1.66 -2.611 [-0.97 1.65 -4.959 [-1.84 1.65 2.226 10.83 | 1.66
(0.045) (0.021) (0.059) (0.024)
3D-Bv 0.001 ' 0.16 1.6 0.001 (0) 0.08 1.29 0.001 0.15 1.27 -0.001 -0.10 1.6
(0.000) (0.000) (0.000)
3D-AGB 0.343 0.15 1.46 0.094 0.04 1.47 0.291 0.13 1.46 -0.161 -0.07 1.53
(0.0356) (0.016) (0.047) (0.019)
3D-CVb 0.008 0.12 1.37 0.005 0.08 1.32 -0.002 -0.04 1.4
(0.001) (0.001) (0.000)
3D-CVv 0.093 1 0.23 1.33 0.057 1 0.15 1.31 0.136 | 0.34 1.3 -0.055 [-0.14  1.33
(0.006) (0.002) (0.007) (0.003)
3D-BEI -1.048 -0.33 2.51 -0.198 -0.06 1.9 -1.583 -0.50 1.63 0.610 0.19 2.52
(0.065) (0.026) (0.069) (0.034)
3D-PRb -0.012 -0.13 2.67 -0.01 -0.10 2.66 -0.023 -0.23 2.64 0.010 0.10 3.63
(0.002) (0.001) (0.002) (0.001)
3D-PRv 0.009 0.06 214 0.017 0.11 2.08 -0.005 -0.04 2.14
(0.001) (0.003) (0.001)
R? 0.72 0.87 0.78 0.81
Adjusted R2 0.71 0.87 0.78 0.81
2-D and 3-D
Variables
(Constant) 41.476 63.298 69.177 32.105
(0.610) (0.132) (0.709) (0.209)
2D-C-CA-Building 0.069 0.08 1.58
(0.009)
2D-C-ED-Asphalt 0.000 -0.10 1.4 0.000 -0.05 1.3 0.000 -0.14 1.34 -0.035 -0.04 1.53
(0.000) (0.000) (0.000) (0.004)
2D-C-ED-Building 0.000 -0.21 2.34 0.000 -0.09 2.57 0.000 -0.24 279 0.000 0.07 1.35
(0.000) (0.000) (0.000) (0.000)
2D-C-CLUMPY- 1.355 0.06 1.55 0.628 0.03 2.04 1.701  0.07 3.62 0.000 0.06 2.37
Building (0.266) (0.106) (0.490) (0.000)
2D-C-CLUMPY- 2.794 0.11 1.76 0.858 0.03 2.01 2.275 0.09 2.01 -1.103 -0.05 1.55
Trees (0.300) (0.111) (0.386) (0.117)
2D-C-SPLIT- 0.000 -0.07 2.47 -1.342 -0.05 2.02
Building (0.000) (0.141)
2D-C-FRAC_MN- -1.029 -0.04 1.25 0.538 0.02 1.2
Building (0.321) (0.115)
2D-C-FRAC_MN- 0.394 0.04 1.2
Asphalt (0.107)
2D-C-FRAC_MN- 1.773 0.05 1.22
Trees (0.360)
2D-C- 0.231 0.01 1.7
CONTIG_MN- (0.068)
Building
EIEC))-I\(I::I’IG VN -0.319 - 2.57 -1.04 -0.09 2.54 0.454 0.04 2.54
Troes = (0.056) 0.03 (0.194) (0.070)
2D-C- -0.035 -0.26 7.37 -0.029 -0.21 7.13 -0.078 -0.58 6.82 0.027 0.21 7.43
PLAND_Trees (0.003) (0.001) (0.003) (0.001)
2D-C- 0.333 0.10 1.49 0.121 0.04 14 0.275 0.08 1.36 -0.189 -0.06 1.39
PAFRAC_MN- (0.038) (0.012) (0.044) (0.016)
Trees
2D-L-SHAPE_MN -0.979 -0.12 251
(0.119)
2D-L-PD 0.000 -0.18 3.1 0.000 -0.05 2.54 0.000 -0.12 25 0.000 0.08 25
(0.000) (0.000) (0.000) (0.000)
2D-L-SPLIT 0.002 0.02 1.92
(0.000)

(continued on next page)
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Table 1 (continued)
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3D-Hb 0172 029 529 0.085 -0.14 467 0274 -046 3.7 0.113 019 529
(0.012) (0.004) (0.011) (0.005)

3D-Hv -1.731 [20587 5.84 -1.925 [E0I65M  6.14 -3.539 |29 5.96 1.374 0467 6.07
(0.066) (0.023) (0.08) (0.029)

3D-Bv 0.000 0.05 1.77 0.000 0.03  1.69 0.000 0.07 1.71 0.000 -0.04 1.78
(0.000) (0.000) (0.000) (0.000)

3D-CVb 0.002 0.02 147

(0.000)

3D-CVv 0.263 JOB7 3.12 0.124 oH8 3.15 0.207 0290 3.13 -0.157 [E0I22W 3.16
(0.011) (0.004) (0.013) (0.005)

3D-Cb 0.001 -0.04 1.07

(0.000)

3D-BEI 0.322 -0.09 3.69 0.317 [0.09 3.2 0395 -0.11  3.39 0.237 0.07 368
(0.062) (0.020) (0.071) (0.027)

3D_VEI 0570 -0.13 3.7 0379 -0.09  3.69 0489 -0.11  3.51 0.379 0.09 352
(0.077) (0.026) (0.090) (0.032)

3D-PRb -0.001 -0.10 3.7 -0.004 -0.05  3.69 0.006 0.06 273
(0.001) (0.000) (0.000)

3D-PRv 0.007 -0.05 247 0.002 0.02 237
(0.002) (0.000)

R? 0.86 0.96 0.91 0.94

Adjusted R2 0.86 0.96 0.90 0.94

Note: UC stands for unstandardized coefficient; SC stands for standardized coefficient * Sig. level p<0.001

shade than compact, simple structures. According to our results, 2-D and
3-D characteristics of buildings and vegetation significantly affect the
UTE. Therefore, studying the relative differences in buildings and
vegetation under different urban form scenarios is essential for urban
planners to create optimal UTEs in cities.

Urban green spaces regulate the UTE through shading and evapo-
transpiration (Liu et al., 2017b; Tan et al., 2021; Unal Cilek & Cilek,
2021; Wang et al., 2021). Kong et al. (2022) found that above-ground
biomass (AGB) negatively correlates with daytime MRT in Nanjing,
China. The importance of AGB in mitigating the UHI effects has been
emphasized in numerous studies (Deng et al., 2018; Wang et al., 2021).
However, the low biomass presence in Arizona was not significantly
correlated with MRT in the model using all metrics. While several
studies have reported the cooling effects of urban green spaces on the
thermal environment, the interactions between AGB and other factors in
regulating the thermal environment remain unclear. More studies are
needed to investigate the role of AGB in heterogeneous locations.

Comprehensive knowledge of landscape metric impacts on MRT is
necessary for developing effective UTE improvement strategies. Our
multiple regression incorporating 2-D and 3-D metrics shows high
explanatory power ranging from 86 % to 96 %, suggesting that using a
combination of horizontal and vertical data is crucial. Using the most
relative five metrics with the strongest relationship in the model (3D-Hv
> 2D-C-PLAND_Tree > 3D-Hb > 3D-CVv > 2D-C-ED Building) can
achieve an accuracy ranging from 82 % to 95 %, indicating that
considering only these metrics is sufficient.

4.1. Limitations

Our analysis of the hierarchical variation and interaction effects in
the relationship between various landscape metrics and MRT has several
limitations. First, the study was confined to summer. Identifying the
spatial hierarchy of all landscape metrics is crucial based on their sea-
sonal characteristics, and future research should consider other seasons.

Second, while MRT is used to assess the spatial distribution of an
experienced heat load on the body, calculating Physiological Equivalent
Temperature (PET) or other more comprehensive indices would be
needed to evaluate the impact of landscape metrics on human thermal
comfort. However, calculating PET at high resolution in the area is
challenging because the index combines multiple meteorological vari-
ables (wind speed, relative humidity, air temperature) that are unknown
at high resolution and would have to be modeled. MRT works well as a
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proxy for human thermal exposure in hot and dry places such as
Phoenix, while PET will be more representative in areas with high hu-
midity (Hu et al., 2020; Middel & Krayenhoff, 2019).

Lastly, the high-resolution MRT data used in our study was calcu-
lated without land cover considerations. Future research should include
high-resolution classified land cover to examine the impact of different
surface materials on MRT.

4.2. Implication for urban planning and design

Our results offer important insights into the dynamics of thermal
exposure and land system architecture (Turner et al. 2013) that can
inform passive cooling strategies in urban planning and design. First, our
2-D and 3-D landscape metrics show that the impact of urban
morphology on pedestrian-experienced intra-urban heat is dynamic and
changes between day and night. Some metrics correlate positively with
MRT during the day and negatively at night, and vice versa, illustrating
tradeoffs that are inherent in urban design; strategies that reduce ther-
mal exposure during the day, such as urban densification, will increase
thermal loads after sunset due to longwave trapping. In an urban design
process, it is important to decide what times of day should be prioritized
for cooling depending on space use. Second, vegetation, especially tree
height (3D-Hv), is important for shading pedestrians in residential
neighborhoods with wide roads and large setbacks, such as LCZ 6 in
Phoenix and Tempe. These neighborhoods should be targeted for tree
planting if resources are available.

We found that the most significant drivers of MRT are building and
vegetation height, percent tree coverage, and edge density of buildings.
While it seems obvious that taller buildings and trees (vertical urban
features) increase shade production, our study is the first to show that
increased landscape diversity decreases thermal exposure during the
day. Complex buildings produce more shade than square or rectangular
structures of the same area coverage, offering great potential for passive
cooling.

5. Conclusions

Tree planting can be challenging in hot, arid areas such as Phoenix
and Tempe. Instead of changing the landscape composition and
increasing the vegetated fraction, our study shows that diversifying the
3-D configuration of the built environment yields additional passive
cooling. Using stepwise multiple regression, we investigated the
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hierarchical exchange and interaction effects of 2-D and 3-D landscape
metrics with MRT. We found a weak correlation between MRT and 2-D
landscape metrics at the landscape level, but when 2-D and 3-D metrics
were combined, a highly significant correlation with MRT was found at
various times of the day. The impact of average building and vegetation
height on MRT depends on the location, environment, and time.
Building and vegetation height has a significant influence on MRT,
exhibiting a noteworthy negative response. During the day, shade from
tall vertical urban features reduced surface temperatures and heat
storage in the urban fabric, but the building edge density (i.e., the
complexity of the building shape) also positively contributed to urban
cooling at the hyperlocal scale. Similarly, tall vegetation contributes to
MRT reduction by blocking shortwave radiation. Our results provide a
new perspective on managing urban form for thermally comfortable and
livable environments using 3-D configuration and composition metrics.
The study emphasizes the need to consider the complex relationships
between urban landscapes and MRT in designing and planning sus-
tainable urban environments and suggests that more complex, hetero-
geneous built environments are cooler than homogeneous landscapes
due to increased shading. Insights from this study can guide urban
planners and designers to develop passive cooling strategies, create
more thermally comfortable outdoor environments, and reduce energy
consumption in buildings.
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