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A B S T R A C T   

The composition and configuration of the built environment affect intra-urban heat variability and human 
thermal exposure. We investigated how 2-D and 3-D building and vegetation characteristics, represented by 
various landscape metrics, affect the mean radiant temperature (MRT) distribution in Phoenix and Tempe, 
Arizona, USA, to determine which urban form characteristics are most important for minimizing thermal 
exposure. For a hot-dry summer day with low wind speed and a maximum air temperature of 43.3 ◦C, the 
relationship between 1-m resolution MRT data and seventeen 2-D and 3-D landscape metrics were analyzed at 
the Census block (micro) and urban (macro) scale. The landscape metrics were calculated with FragStat from a 
Digital Surface Model, a 3-D point cloud obtained from high-resolution (0.5-m) USGS LiDAR data, and a 1-m 
resolution land use/land cover map classified from the 2015 National Agriculture Imagery Program (NAIP) 
data. Hourly MRT for June 27, 2012, was simulated using the SOlar LongWave Environmental Irradiance Ge
ometry (SOLWEIG) model. After testing for autocorrelation in hourly MRT using Moran’s I, the relationship 
between landscape metrics and MRT outcomes was analyzed using correlation coefficients and multiple linear 
regression. The best predictive power was achieved using 2-D and 3-D metrics together, with an explanation MRT 
of 86 % (8:00 h) to 96 % (12:00 h). The five most important factors were 3-D vegetation height, 2-D percent tree 
surface cover, 3-D building height, 2-D building edge density, and the 3-D vegetation height coefficient of 
variation. Results show that MRT is driven by the composition and configuration of 2-D and 3-D urban features. 
The horizontal arrangement impacts MRT through varying land cover, and the vertical extent influences shade 
patterns, with more complex urban forms providing more shade and lowering MRT. Findings advance our un
derstanding of how urban design can reduce thermal exposure on hot days using passive cooling strategies that 
rely on changes in the configuration and composition of landscapes.   

1. Introduction 

Urbanization, one of the most visible impacts of human activity on 
Earth, significantly affects the local climate in cities (Kalnay et al., 2004; 
Oke et al., 2017). Buildings, roads, and other impermeable surfaces alter 
natural landscapes during urbanization, resulting in fragmented and 
complex landscapes (Kalnay & Cai, 2003; Yu et al., 2016). Urbanization 
negatively impacts various urban systems, including air quality (Duh 
et al., 2008; Han et al., 2014; Santamouris, 2013) and stormwater runoff 
(Bhaduri et al., 2001; Papagiannaki et al., 2015). Converting natural to 
built environments also significantly affects the urban thermal envi
ronment (UTE) (Alberti & Marzluff, 2004; Cai et al., 2017; 

Charalampopoulos et al., 2013; Johansson & Emmanuel, 2006; Kong 
et al., 2022; Li et al., 2020; Perkins et al., 2012; Solcerova et al., 2017; 
Xian & Crane, 2006). High temperatures reduce thermal comfort, 
especially in the absence of shade (Middel et al., 2016; Kelly Turner 
et al., 2023), and increase the risk of heat stress and mortality (Chow 
et al., 2011; Harlan et al., 2006; Hondula et al., 2014). These circum
stances have led to increased awareness of the effects of land cover 
composition and configuration on human health and activity (Li et al., 
2016; Middel et al., 2014; Myint et al., 2013; Zhang et al., 2018). 

Previous research has identified changes in land use and land cover 
(LULC) as critical drivers of UTE degradation (Deilami et al., 2018). 
Investigating how the local urban landscape structure affects UTE 
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variability is crucial to developing targeted heat mitigation strategies 
and promoting sustainable urban and regional development (Zhou et al., 
2022a). While the field of urban climate has investigated the urban heat 
island (UHI) and its relationship to urban form for many decades 
(Nichol, 1996; Unger, 2009; Middel et al., 2014; Wang et al., 2023), few 
studies have focused on the impact of urban morphology on 
human-centric thermal exposure, quantified as mean radiant tempera
ture (MRT). 

Landscape metrics quantify the composition and configuration of 
landscape features, such as patch types and their spatial arrangement 
(McGarigal et al., 2002; Yu et al., 2020). Researchers have previously 
explored the relationship between land system architecture and climatic 
characteristics at different scales by evaluating two-dimensional (2-D) 
LULC and landscape metrics (Berger et al., 2017; Deilami et al., 2018; 
Estoque et al., 2017; Sun et al., 2020a, Guo et al., 2020; Masoudi et al., 
2021; Sun et al., 2018; Tian et al., 2019). Studies focusing on the effects 
of 2-D landscape metrics employed patch density (PD), edge density 
(ED), landscape shape index (LSI), largest patch index (LPI), mean patch 
size (AREA_MN), mean patch shape index (SHAPE_MN) and contami
nation index (CONTAG) to investigate impacts on Land Surface Tem
perature (LST) (Amiri et al., 2009; Huang & Wang, 2019; Li et al., 2011, 
2016; Siqi & Yuhong, 2020; Zhou et al., 2017). However, 2-D urban 
landscape metrics insufficiently capture the vertical heterogeneity of 
cities, which affects shading patterns and therefore heat storage in the 
built environment (Deilami et al., 2018; Zhou et al., 2017). Researchers 
have started to analyze landscape metrics in 3-D to understand the dy
namic thermal processes within and between landscape fragments (Yan 
et al., 2019; Zhou et al., 2022b; Stewart & Oke, 2012). Using advanced 
3-D data technology such as LiDAR allows to explore this relationship 
(Getzner et al., 2016; Li et al., 2016; Luan et al., 2020; Petras et al., 2017; 
Wu et al., 2012; Zimble et al., 2003). For example, the 3-D character
istics of vegetation, such as tree height and crown shape, significantly 
impact the UTE at the microscale (Chun & Guldmann, 2018; Zellweger 
et al., 2019; Zhang et al., 2019) through increased shading and evapo
transpiration (Alexander, 2021; Chen et al., 2019; Yu et al., 2018). 
Research has shown that increasing vegetation alone cannot fully meet 
the large-scale cooling demand of a city (Bowler et al., 2010; Kong et al., 
2022; Norton et al., 2015; Wong & Yu, 2005), and passive cooling 
strategies that involve the configuration of landscapes, not just the 
composition, should be explored. 

Past studies have primarily relied on LST to represent the thermal 
variability in cities, but LST has limited applications for human thermal 
experiences. The radiative fluxes that the human body is exposed to 
outdoors significantly drive thermal exposure. MRT is one of the most 
important meteorological parameters that affect thermal exposure 
(Middel et al., 2021; Schneider et al., 2023; Thorsson et al., 2007). MRT 
considers the radiative fluxes of the Sun, ground surfaces, building fa
cades, and vegetation, allowing it to more thoroughly represent how a 
person experiences thermal conditions, particularly in hot, dry areas 
(Middel & Krayenhoff, 2019). Radiative flux models such as SOLWEIG 
(Lindberg et al., 2008) model MRT for urban areas at high spatial 
resolution. 

In summary, previous studies have used 2-D and 3-D landscape 
metrics to investigate the impact of urban morphology on UTEs but 
mainly focused on coarse LST, not human-relevant heat metrics such as 
MRT. It is challenging to develop generalized urban design guidelines to 
improve the thermal environment based on LST alone (Huang & Wang, 
2019; Yin et al., 2019; Yu et al., 2020, 2021). High-resolution spatial 
MRT or similar human-centric data at different times of day are needed 
to address this gap. 

This study evaluates the effects of 2-D and 3-D urban landscape 
patterns (configuration and composition) on thermal exposure (MRT) at 
local and hyperlocal scales. We aim to find the urban form character
istics that most strongly impact MRT to advance understanding of how 
urban design can reduce thermal exposure on hot days using passive 
cooling strategies that rely on changes in the configuration and 

composition of landscapes. 

2. Materials and methodology 

2.1. Study area 

This study was conducted in Phoenix (33◦27′1.70′’N, 
−112◦4′26.5′’W) and Tempe (33◦25′28.6′’N, −111◦56′18.6′’W) in Mar
icopa County, Arizona, USA (Fig. 1). Phoenix, the capital of the State of 
Arizona, is the fifth most populous city in the USA, with a population of 
4652,000 in 2022. The study area covers 176.6 km2, with 70.1 km2 

comprising central Phoenix and 106.5 km2 comprising the City of 
Tempe. The metropolitan area is known for its urban sprawl, with a 
population density of approximately 1200 people per square kilometer. 
The urban centers consist primarily of open and partially compact mid- 
rise to high-rise Local Climate Zone (LCZ) classes, while the outskirts 
have open low-rise buildings with a lower-density development pattern. 
The southern part of the City of Tempe has one- to two-story single- 
family homes and lower-density residential developments (LCZ 6, open 
low-rise), strip malls (LCZ8, large low-rise), and office parks (LCZ5, 
open-midrise) (Wang et al., 2018). The city center in the north is tran
sitioning from an open low/mid-rise to an open mid/high-rise area, with 
three- to four-story office and commercial buildings and several new 
apartment complexes and hotels under construction. Percent tree cover 
is low; vegetation mainly consists of small trees, shrubs, and grass 
(Wang et al., 2018). The presence of vegetation and open green spaces 
beyond residential plots, such as parks and golf courses, varies by 
neighborhood across the city (Harlan et al., 2006). Due to rapid urban 
expansion, the majority of urban forms in the metropolitan area consist 
of open-spaced, low to mid-rise buildings (i.e., low building height and 
density) and broad streets with a high sky view factor (SVF) (Middel 
et al., 2018; Wang et al., 2018). 

The Phoenix metropolitan area, located northeast of the Sonoran 
Desert, has a semi-arid climate (Köppen-Geiger BWh (Kottek et al., 
2006) with annual precipitation of 237 mm and low humidity of 31 %. 
Most of the rainfall occurs in July and August (62 mm) and during the 
winter months (December-March, 112 mm), while June is exceptionally 
dry with less than 1 mm of precipitation. Phoenix is one of the hottest 
cities in the USA, with an average high temperature of over 39.4 ◦C 
during the summer months and 110 days above this temperature (Na
tional Weather Service, 2018). Maximum temperatures peak close to 
50 ◦C in the summer, while nighttime lows typically range between 
27 ◦C and 29 ◦C (Western Regional Climate Center, 2020). In winter, 
mean daily high temperatures are above 13 ◦C, and minimum temper
atures are rarely below 4 ◦C. 

The synoptic macroclimate, geography, and urban patterns have 
created a pronounced Urban Heat Island (UHI) over the past 60 years 
(Chow et al., 2012). Impermeable surface areas in the metropolitan re
gion have increased significantly since the mid-twentieth century. Rapid 
and extensive urbanization has raised nighttime temperatures by about 
0.5 ◦C per decade since 1910. By the end of the 20th century, the average 
daily air temperature had increased by 3.1 ◦C and the minimum night 
temperature by 5.0 ◦C (Brazel et al., 2000; Kane et al., 2014; Sha & Tian, 
2010; Shrestha et al., 2012). 

2.2. Data 

We utilized 5143 census blocks (2385 in Phoenix and 2758 in 
Tempe) from the 2010 Census in the downtown areas of Phoenix and 
Tempe, where developments are concentrated. These census block data 
were utilized as a unit of analysis to generate 2-D and 3-D landscape 
metrics at the neighborhood (or local) scale. Three remote sensing 
datasets were used to generate the landscape metrics and estimate MRT: 
a Digital Surface Model (DSM), Vegetation/Building Heights (Hv and 
Hb), and a Land Use Land Cover (LULC) map. DSM, Hv, and Hb were 
derived from 2014 LIDAR data with a spatial resolution of 0.5-m. The 
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LULC map was created by classifying 1-m resolution National Agricul
ture Imagery Program (NAIP) data from 2015 into eight land cover 
classes: (1) building, (2) asphalt, (3) bare soil and concrete, (4) trees and 
shrubs, (5) grass, (6) water, (7) agricultural fields, and (8) fallow land 
(Zhang & Turner, 2020). The LULC classification was used to calculate 
the 2-D landscape metrics for this study, excluding agricultural fields 
and fallow land. 

We retrieved hourly MRT data for the Phoenix metropolitan region 
from Buo et al. (2023), who simulated MRT at 1-m spatial resolution for 
a clear and hot summer day on June 27, 2012, using the SOlar and 
LongWave Environmental Radiation Geometry (SOLWEIG) model. 
SOLWEIG predicts short-wave and long-wave radiation fluxes based on 
urban geometry, such as SVF (Lindberg et al., 2008; Ratti et al., 2006), 
vegetation, geographic information (latitude, longitude, and altitude), 
and meteorological forcing data (direct and diffuse radiation, global 
radiation, air temperature, and relative humidity). SOLWEIG creates a 
virtual 3D model that includes information about the height, width, and 
orientation of buildings and other objects. The shadow casting algorithm 
in the SOLWEIG model determines whether a specific pixel within the 
model domain experiences shading, distinguishing between shade from 
vegetation and buildings. This virtual model allows calculating 
short-wave and long-wave radiation fluxes from six directions (north, 

south, east, west, zenith, and nadir) for each raster point in the model 
domain. The MRT is then calculated as the weighted average of the 
radiant temperatures of all surfaces visible from the reference point. The 
weights are determined by the proportion of sky visible from each sur
face. This calculation considers direct solar radiation, diffuse solar ra
diation, and long-wave radiation from the sky and surrounding surfaces 
(Lindberg et al., 2008). 

Buo et al. (2023) extensively validated the SOLWEIG model in 
Phoenix and Tempe using 763 observations with a mobile 
human-biometeorological 6-way setup (Middel et al., 2019). The ob
servations were conducted from 07:00 h to 21:00 h Local Standard Time 
(LST) across nine warm summer days in the years 2016, 2018, and 2019 
(Middel et al., 2021). Biometeorological data were obtained in various 
areas, including beneath trees, within building canyons, and at open 
sites. The model validation revealed a strong relationship between the 
modeled and observed MRT, with an R2 value of 0.91 and a high index of 
agreement (0.95). The MRT estimates had an overall RMSE of 5.6 ◦C, 
with errors of 6.2 ◦C in open areas, 5.4 ◦C under trees, and 4.4 ◦C in 
building canyons. These MRT estimates are close to the accuracy re
quirements defined in the ISO7726 standard. The model tends to over
estimate MRT in shaded locations, a limitation previously acknowledged 
by Szucs et al. (2014) and Gal and Kantor (2020). Gal and Kantor (2020) 

Fig. 1. Study areas in the City of Phoenix and the City of Tempe, Arizona, USA.  
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attribute the overestimations in shaded areas to the use of domain-wide 
surface temperature for determining longwave radiation and the theo
retical approach employed by the model in estimating fluxes from 
sun-exposed and shaded walls. Additionally, an inherent dataset 
imbalance, characterized by a higher number of observations in shad
ed/tree environments, contributes to the overall overestimation. We 
retrieved Buo et al. (2023)’s hourly MRT raster data for four different 
times of the day (08:00 h, 12:00 h, 16:00 h, and 20:00 h) and aggregated 
the data to Census blocks. 

2.3. Analysis 

The analysis comprises three steps (Fig. 2). First, 2-D and 3-D land
scape metrics were calculated using the DSM and LULC data for each 
Census block to quantify the composition and configuration of land 
cover patches. Second, MRT was modeled with SOLWEIG (Buo et al., 
2023). Third, a stepwise regression analysis was conducted to analyze 
the relationship between the landscape metrics and MRT. 

2.3.1. Selecting metrics & metric calculation 
Landscape composition and configuration describe the spatial pat

terns and relationships between different elements in a landscape (Liu 
et al., 2017a; Sun et al., 2020b; Zeng et al., 2022). We propose a 
comprehensive set of 2-D and 3-D landscape metrics to evaluate these 
patterns in the urban environment because landscape structure and 
urban form influence local climate dynamics and microscale MRT. Many 
2-D landscape metrics are available in the literature (Baker & Cai, 1992; 
Frazier & Kedron, 2017). A set of metrics is generated at the patch, class, 
and landscape level in FRAGSTATS, including various area metrics, 
patch density, size and variability metrics, edge metrics, shape metrics, 
core area metrics, diversity metrics, and contamination and scattering 
metrics. We calculated all 2-D metrics in FRAGSTATS at the class and 
landscape level and excluded the highly correlated ones. A cluster 
analysis was initially conducted to group the factors to ensure the 
non-redundancy and representability of these factors (Chen et al., 2016). 

Subsequently, backward selection algorithms based on the maximum 
relevance principle were employed to rank these metrics according to 
their relative importance and select representative metrics of signifi
cance within each group (Li et al., 2021). Metrics relating to the 
composition of land cover include area types such as class area, percent 
surface types (e.g., percent impervious), and mean fractal dimension 
index (measures the complexity of the landscape patch). 2-D metrics 
related to configuration include edge density (ED), aggregation-type 
metrics such as the number of patches (NP), splitting index (SPLIT), 
contagion (CONTAG), and shape indices (e.g., mean contiguity). For a 
complete list, please see Table A1. 

The 3-D landscape metrics were grouped into two categories: (1) 3-D 
landscape composition metrics and (2) elevation-based metrics 
(Table A2). The first category was extended from traditional 2-D metrics 
but calculated in 3-D space. In the second category, we adopted the 
methods of Wu et al. (2017) to combine 2-D landscape metrics with 3-D 
terrain surfaces by introducing 3-D area and length calculations. 
Building and vegetation height were obtained from high-precision 
LiDAR data. These metrics are commonly used in related research (Ke 
et al., 2022). We calculated four 3-D landscape composition metrics and 
ten 3-D elevation metrics. To combine 2-D and 3-D landscape pattern 
metrics, the evenness index and patch index were calculated in 3-D 
based on building and vegetation height. 

The type of landscape metrics is named C or L for class or landscape, 
followed by 2-D or 3-D. For example, 2D-C denotes class-level metrics in 
2-D. The descriptions of each landscape metric are shown in Table A2 
(Yu et al., 2021). Metrics describe building characteristics such as 
height, volume, shape, and density and have been shown to affect the 
UTE (Alavipanah et al., 2018; Berger et al., 2017). 

2.3.2. Statistical analyses 
Several statistical analyses were conducted to explain the relation

ship between hourly MRT and landscape metrics aggregated at the 
Census block level. First, a bivariate correlation analysis was applied to 
all landscape metrics to determine which metrics to exclude. Second, to 

Fig. 2. Flowchart of the implementation and analysis.  
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understand the spatial distribution of MRT, we used Global Moran’s I to 
quantify the spatial autocorrelation of MRT at different times of day. 
Global Moran’s I is a statistical measure to quantify geographical 
autocorrelation, which is the degree to which the values of a variable in 
a global dataset are similar or dissimilar (Bivand & Piras, 2015; Fu et al., 
2014). The index ranges from −1 to 1, with 1 indicating perfect spatial 
autocorrelation, −1 indicating perfect negative spatial autocorrelation, 
and 0 indicating no spatial autocorrelation. Global Moran’s I was 
calculated in GeoDa using first-order queen contiguity weights as the 
spatial weight matrix. Third, we utilized a partial correlation analysis 
(Wang et al., 2006) to investigate the correlation between MRT and the 
landscape metrics. Partial correlation analysis evaluates the strength of 
the linear correlation between two variables while considering the in
fluence of other variables (Xiao et al., 2022). The closer the correlation 
coefficient is to 1, the stronger the correlation between variables; the 
closer it is to 0, the weaker the correlation. Factors with low correlation 

(R2 < 0.2) between the indices and MRT were excluded. 
Finally, stepwise multiple regression analysis was adopted to find the 

independent and interactive effects of the selected metrics on MRT. Each 
variable was normalized to eliminate the size effect in the regression 
analysis. Then, stepwise multiple regression analysis was performed to 
determine the relative importance of the variable. The highest correla
tion coefficient (R2) was used for the optimal result (Zhan et al., 2013). 
3-D and 2-D landscape metrics served as independent variables, and 
MRT values at four selected hours were used as dependent variables in 
the regression. 

Multicollinearity is a common problem when two or more predictive 
variables are highly correlated in regression analysis. When multi
collinearity is present, it can lead to biased and unreliable regression 
coefficients, which may ultimately affect the accuracy of the model’s 
predictions (Stevens, 2009). Therefore, the variance inflation factor 
(VIF) (Asgarian et al., 2015; Guo et al., 2019) was applied to evaluate the 

Fig. 3. Hourly MRT maps; results are aggregated at the Census block scale; the small maps in the center show 1-meter results for a sub-area.  
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collinearity in independent variables in the models with variables hav
ing a VIF value equal to or exceeding 7.5 (Guo et al., 2020; Shen et al., 
2022) being excluded from the model. 

3. Results 

3.1. Spatial MRT distribution in the study area 

The average hourly MRT at the Census block level over the study area 
for June 27, 2012, varied widely across space during the day and peaked 
at 61 ◦C at 15:00 h and 16:00 h in some blocks. MRT then decreased and 
became more homogeneous spatially after sunset in the absence of 
shade. MRT values in vegetated Census blocks were consistently +3 to 
+5 ◦C lower than in bare neighborhoods. During midday, residential 
areas experienced an increase in MRT because shading was minimal. In 
contrast, north-south oriented streets were mostly shaded by tall 
buildings in the afternoon, reducing direct solar radiation and heat 
storage (e.g., downtown Phoenix and Tempe with low SVF). Average 
MRT was lower in densely built-up areas with reduced SVF, but long
wave radiation was trapped near the ground after sunset (Fig. 3). 

Moran’s I values for MRT ranged between −1 (dispersed) and 1 
(clustered). The spatial autocorrelation determines whether high or low 

average MRT values in a Census block increase the probability of simi
larly high or low values in the surrounding blocks. The hourly Moran’s I 
values for MRT for 08.00 h, 12.00 h, 16.00 h, and 20.00 h were 0.50, 
0.45, 0.45, and 0.51, respectively (Fig. 4). According to these results, 
almost half of the area exhibits spatial autocorrelation. The Census 
blocks were categorized into four groups: high-high (H–H), low-low (L- 
L), high-low (H-L), and low-high (L-H). The H–H type represents clus
ters of high MRT values, the l-L type indicates clusters of low MRT 
values, and the H-L (L-H) type represents a cluster of low (high) MRT 
values around a high (low) MRT block. During the day, south Phoenix 
exhibited H–H local Moran I clusters, while the l-L type was concen
trated in the central and northern parts of the area. Cluster types 
reversed after sunset (20:00 h). In Tempe, the H–H type was spread 
along the I-10 highway from north to south and the Tempe Lake area to 
the north. The l-L type was found in Tempe’s downtown and southern 
neighborhoods. In addition, few l-H and H-L types were spread across 
the two cities (Fig. 4). 

3.2. 2-D/3-D landscape metrics and MRT response 

At the landscape level, 27 2D metrics were generated. Since many of 
these metrics were highly correlated, a bivariate correlation analysis 

Fig. 4. Local moran index for hourly MRT results at the census block level.  
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was applied, and nine 2-D landscape metrics were selected as dependent 
variables (Table A1): Mean fractal dimension index (FRAC_MN), Edge 
density (ED), Number of patches (NP), Patch density (PD), Splitting 
index (SPLIT), Contagion (CONTAG), Effective mesh size (MESH), Mean 
contiguity index (CONTIG_MN), and Shape index (SHAPE_MN). At the 
class level, 19 2-D landscape metrics were generated. Cluster analysis 
and backward selection algorithms were applied to eliminate redun
dancy. As a result, the following metrics that showed strong correlations 
(>0.70) were excluded: Largest patch index (LPI), Total edge (TE), Mean 
Shape index (SHAPE_MN), Perimeter-area ratio (PARA_MN), Landscape 
shape index (LSI), Patch cohesion index (COHESION), Division index 
(DIVISION), Effective mesh size (MESH), and Aggregation index (AI). As 
a result, 30 class-level landscape metrics (10 metrics multiplied by three 
land use classes) were used, including building, asphalt, and tree land 
covers. For the 3-D landscape metrics, 16 were derived from 3-D infor
mation from buildings and vegetation data, and twelve were used 
(Table A2): Building Height (3D-Hb), Vegetation height (3D-Hv), Sky 
view factor (3D-SVF), Building volume (3D-Bv), Aboveground biomass 
(3D-AGB), Building height coefficient of variation (3D-CVb), Vegetation 
height coefficient of variation (3D-CVv), Compactness for building 
height (3D-Cb), Building height evenness index (3D-BEI), Vegetation 
height evenness index (3D-VEI), Building height patch index (3D-PRb), 
Vegetation height patch index (3D-PRv). 

The main factors affecting MRT were determined by evaluating the 
2-D and 3-D landscape metrics separately and combined through step
wise multiple regression analysis. The results are presented in Table 1, 
which shows the standardized regression coefficients that demonstrate a 
significant relationship between dependent and independent variables. 
A positive relationship between MRT and 2-D and 3-D landscape metrics 
at 8.00 h, 12:00 h, and 16:00 h becomes negative at 20:00 h and vice 
versa. MRT responds positively to 2D-l-CONTAG and 2D-l-SHAPE_MN 
during the day and negatively at 20:00 h. On the other hand, 2D-l- 
FRAC_MN, 2D-l-ED, and 2D-l-SPLIT exhibit negative responses at 8:00 
h, 12:00 h, and 16:00 h and positive responses at 20:00 h. 2D-l-MESH 
shows a positive response at 8:00 h and 12:00 h but no correlation at 
16:00 h and 20:00 h. On the other hand, 2D-l-CONTIG_MN shows a 
negative response at 8:00 h and 12:00 h but no significant correlation at 
16:00 h and 20:00 h. Conversely, 2D-l-NP has a positive correlation at 
16:00 h and 20:00 h and no correlation at other hours. In contrast, 2D-l- 
PD provides a positive correlation only at 16:00 h. 

The stepwise regression analysis for the selected 2-D metrics at the 
landscape level revealed R-squared (R2) values between 0.32 and 0.35 
for hourly MRT. Each model’s R2 and adjusted R2 values were less than 
0.70, indicating that the model is unreliable for interpreting the results. 
The relative importance of each metric in the model is 2D-SPLIT > 2D-l- 
SHAPE_MN > 2D-FRAC_MN ~ 2D-CONTAG > 2D-l-ED > 2D-l-CON
TIG_MN > 2D-l-MESH > 2D-l-NP > 2D-l-PD. These metrics, generally 
referring to landscape configuration, were weakly correlated with MRT 
at the landscape level. 

At the class level, 2D-C-ED_Building, 2D-C-C-CONTIG_MN_Building, 
2D-C-CONTIG_MN_Trees, and 2D-C-PAFRAC_MN_Building display a 
positive correlation with MRT during daytime and a negative correlation 
after sunset. Conversely, 2D-C-PLAND_Building, 2D-C-PLAND_Trees, 
and 2D-C-ED_Asphalt are negatively correlated during the day and 
positively correlated at night. The remaining class-level metrics do not 
exhibit a significant correlation with MRT. In particular, 2D-C- 
PAFRAC_MN_Trees and 2D-C-FRAC_MN_Asphalt show positive correla
tions between 08:00 h and 12:00 h, whereas 2D-C-PD_Asphalt shows 
negative and positive correlations between 16:00 h and 20:00 h. There is 
also a significant low-impact correlation between the metrics 2D-C- 
CA_Asphalt, 2D-C-CA_Building, 2D-C-PLAND_Asphalt, 2D-C-NP_Trees, 
and 2D-C-PD_Trees, usually at 8:00 h or 20:00 h. 

For the 3D building and vegetation metrics, MRT is positively 
correlated with 3D-CVb, 3D-CVv, 3D-Bv, 3D-SVF, and 3D-AGB during 
daytime hours and negatively correlated with the other 3-D metrics. This 
relationship reverses at 20:00 h. MRT is collinear with the 3D-SVF 

variable at all hours with a VIF greater than 7.5. Therefore, the SVF 
was excluded from the stepwise multiple regression analysis. The model 
accuracy between MRT and 3-D metrics varies between 71 % to 87 %, 
indicating a high correlation. The lowest R2 accuracy occurred at 8:00 h, 
while the highest occurred at noon. Vegetation-related metrics were 
more significant than building height metrics. The relative importance 
levels are as follows: 3D-Hv>3D-CVv>3D-BEI>3D-Bv>3D-AGB>3D- 
CVb>3D-PRb>3D-PRv>3D-Hb. The strongest correlation for the 3D-Hv 
and 3D-BEI metrics occurs at 12:00 h when solar radiation is closest to 
its peak, and the average MRT is the highest. However, there is no sig
nificant correlation with the 3D-Hb metric because building shadows are 
minimal at these hours. 

Multiple regression with 2D and 3D landscape metrics yields model 
accuracies between 86 % and 96 %. This strong relationship indicates 
the necessity of using both horizontal and vertical data in an integrated 
manner. The variable importance is as follows: 3D-Hv > 2D-C-PLAND_
Tree > 3D-Hb > 3D-CVv > 2D-C-ED_Building > 2D-l-PD > 3D-VEI > 2D- 
C-ED_Asphalt > 2D-C-CLUMPY_Tree > 2D-C-PAFRAC_MN_Tree > 2D-C- 
CLUMPY_Building > 3D-Bv > 3D-BEI. The R2 for a regression using the 
five metrics with the strongest relationship in the model (3D-Hv > 2D-C- 
PLAND_Tree > 3D-Hb > 3D-CVv > 2D-C-ED_Building) at 08:00 h, 12:00 
h, 16:00 h, and 20:00 h is 0.82, 0.95, 0.88 and 0.91, respectively. This 
result shows that 3D-Hv (vegetation height), 2D-C-PLAND_Tree (per
centage of tree cover), 3D-Hb (building height), and 2D-C-ED_Building 
(Building edge density) have a significant negative correlation with 
MRT during the daytime as they characterize how much direct solar 
radiation an urban surface receives. In contrast, they have a positive 
correlation after sunset. 

4. Discussion 

The stepwise regression analysis results indicate a negative correla
tion between MRT, 2D-C-ED, and 2D-SPLIT metrics during the daytime 
hours. This outcome aligns with findings from previous research studies 
(Kwon & Lee, 2019; Zhang et al., 2022). ED measures the diversity of the 
landscape, while SPLIT measures the density of discrete regions. High 
values of ED and SPLIT positively influence MRT at the urban scale. In 
our study, ED exhibits a strong negative correlation with LPI, while it has 
a high positive correlation with DIVISION and all aggregation indices. 
These metrics take a similar approach to ED, and research conducted by 
Zhang et al. (2022), Chen et al. (2020), Li et al. (2020), and Wang et al. 
(2020) support this grouping. 

Our results confirm that the thermal environment in urban areas is 
influenced by various factors, including building height, vegetation, and 
other urban landscape elements (Oke, 1989). Our regression analysis of 
the 3-D landscape metrics revealed that vegetation height had the most 
substantial negative relationship. No significant association was found 
for building height at 12:00 h and 16:00 h. Since most of the study area 
consists of 2-story residential buildings with wide roads, these areas 
have less shade from buildings, and plant height affects MRT more than 
buildings. 

The five most important 3-D factors explaining MRT at all times of 
the day are 3D-Hv, 2D-C-PLAND_Tree, 3D-Hb, 2D-C-ED_Building, and 
3D-CVv metrics. Except for 3D-CVv, these metrics have a significant 
negative correlation with MRT, consistent with previous studies (Chen 
et al., 2014; Li et al., 2012). Similar to the 2D metrics, 3D metrics related 
to vegetation and building height have a significant negative daytime 
and positive nighttime effect on MRT. They characterize how much 
direct solar radiation an urban surface can receive (Alavipanah et al., 
2018). Increasing building or vegetation height throughout the day in
creases shading, thus reducing the heat storage of surfaces in the urban 
canyon. However, vegetation traps more longwave radiation from the 
ground at night. On the other hand, the 3D-CVv (vegetation height co
efficient of variation) metric has a significant positive correlation with 
MRT during the daytime, while the relationship is reversed at night. 

Building edge density at 2-D and 3-D scales reduces MRT by 
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increasing landscape diversity, producing more shade patterns. How
ever, this relationship increases the building surface area and leads to 
the absorption of more solar radiation that is dissipated to the envi
ronment at night, increasing nighttime warming (Huang & Wang, 2019; 
Jamei & Rajagopalan, 2017). Dense urban areas also have poor venti
lation, causing more heat retention at night (Alexander, 2021; Lin et al., 
2017; Sun et al., 2020a). We also found that high MRT values are 
clustered predominantly in large open areas. Conversely, clusters of low 
MRT values are concentrated in city centers with tall buildings and more 
vegetated neighborhoods. 

Increasing the number of trees and water bodies and reducing 

impervious surfaces effectively cools the urban environment, but the 
implementation can be challenging in hot, arid areas such as Phoenix 
and Tempe. Instead of changing the landscape composition, urban 
planners can consider optimizing the configuration of urban landscapes 
as an alternative cooling approach (Zheng et al., 2014). According to Li 
et al. (2011), the spatial configuration of different land cover types 
significantly affects the UTE. In our study, vegetation height, percentage 
of tree cover, and coefficient of variation of vegetation height were the 
critical factors for MRT concerning vegetation cover, supporting these 
previous findings. Building and edge density in cities had the largest 
impact on MRT because more complex building shapes create more 

Table 1 
The stepwise regression analysis results between multi-dimensional landscape metrics and MRT after eliminating collinear variables at four hours of interest (8:00h, 
12:00h, 16:00h, and 20:00h).  

(continued on next page) 
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Table 1 (continued ) 

(continued on next page) 
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shade than compact, simple structures. According to our results, 2-D and 
3-D characteristics of buildings and vegetation significantly affect the 
UTE. Therefore, studying the relative differences in buildings and 
vegetation under different urban form scenarios is essential for urban 
planners to create optimal UTEs in cities. 

Urban green spaces regulate the UTE through shading and evapo
transpiration (Liu et al., 2017b; Tan et al., 2021; Unal Cilek & Cilek, 
2021; Wang et al., 2021). Kong et al. (2022) found that above-ground 
biomass (AGB) negatively correlates with daytime MRT in Nanjing, 
China. The importance of AGB in mitigating the UHI effects has been 
emphasized in numerous studies (Deng et al., 2018; Wang et al., 2021). 
However, the low biomass presence in Arizona was not significantly 
correlated with MRT in the model using all metrics. While several 
studies have reported the cooling effects of urban green spaces on the 
thermal environment, the interactions between AGB and other factors in 
regulating the thermal environment remain unclear. More studies are 
needed to investigate the role of AGB in heterogeneous locations. 

Comprehensive knowledge of landscape metric impacts on MRT is 
necessary for developing effective UTE improvement strategies. Our 
multiple regression incorporating 2-D and 3-D metrics shows high 
explanatory power ranging from 86 % to 96 %, suggesting that using a 
combination of horizontal and vertical data is crucial. Using the most 
relative five metrics with the strongest relationship in the model (3D-Hv 
> 2D-C-PLAND_Tree > 3D-Hb > 3D-CVv > 2D-C-ED_Building) can 
achieve an accuracy ranging from 82 % to 95 %, indicating that 
considering only these metrics is sufficient. 

4.1. Limitations 

Our analysis of the hierarchical variation and interaction effects in 
the relationship between various landscape metrics and MRT has several 
limitations. First, the study was confined to summer. Identifying the 
spatial hierarchy of all landscape metrics is crucial based on their sea
sonal characteristics, and future research should consider other seasons. 

Second, while MRT is used to assess the spatial distribution of an 
experienced heat load on the body, calculating Physiological Equivalent 
Temperature (PET) or other more comprehensive indices would be 
needed to evaluate the impact of landscape metrics on human thermal 
comfort. However, calculating PET at high resolution in the area is 
challenging because the index combines multiple meteorological vari
ables (wind speed, relative humidity, air temperature) that are unknown 
at high resolution and would have to be modeled. MRT works well as a 

proxy for human thermal exposure in hot and dry places such as 
Phoenix, while PET will be more representative in areas with high hu
midity (Hu et al., 2020; Middel & Krayenhoff, 2019). 

Lastly, the high-resolution MRT data used in our study was calcu
lated without land cover considerations. Future research should include 
high-resolution classified land cover to examine the impact of different 
surface materials on MRT. 

4.2. Implication for urban planning and design 

Our results offer important insights into the dynamics of thermal 
exposure and land system architecture (Turner et al. 2013) that can 
inform passive cooling strategies in urban planning and design. First, our 
2-D and 3-D landscape metrics show that the impact of urban 
morphology on pedestrian-experienced intra-urban heat is dynamic and 
changes between day and night. Some metrics correlate positively with 
MRT during the day and negatively at night, and vice versa, illustrating 
tradeoffs that are inherent in urban design; strategies that reduce ther
mal exposure during the day, such as urban densification, will increase 
thermal loads after sunset due to longwave trapping. In an urban design 
process, it is important to decide what times of day should be prioritized 
for cooling depending on space use. Second, vegetation, especially tree 
height (3D-Hv), is important for shading pedestrians in residential 
neighborhoods with wide roads and large setbacks, such as LCZ 6 in 
Phoenix and Tempe. These neighborhoods should be targeted for tree 
planting if resources are available. 

We found that the most significant drivers of MRT are building and 
vegetation height, percent tree coverage, and edge density of buildings. 
While it seems obvious that taller buildings and trees (vertical urban 
features) increase shade production, our study is the first to show that 
increased landscape diversity decreases thermal exposure during the 
day. Complex buildings produce more shade than square or rectangular 
structures of the same area coverage, offering great potential for passive 
cooling. 

5. Conclusions 

Tree planting can be challenging in hot, arid areas such as Phoenix 
and Tempe. Instead of changing the landscape composition and 
increasing the vegetated fraction, our study shows that diversifying the 
3-D configuration of the built environment yields additional passive 
cooling. Using stepwise multiple regression, we investigated the 

Table 1 (continued ) 

Note: UC stands for unstandardized coefficient; SC stands for standardized coefficient * Sig. level p<0.001 
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hierarchical exchange and interaction effects of 2-D and 3-D landscape 
metrics with MRT. We found a weak correlation between MRT and 2-D 
landscape metrics at the landscape level, but when 2-D and 3-D metrics 
were combined, a highly significant correlation with MRT was found at 
various times of the day. The impact of average building and vegetation 
height on MRT depends on the location, environment, and time. 
Building and vegetation height has a significant influence on MRT, 
exhibiting a noteworthy negative response. During the day, shade from 
tall vertical urban features reduced surface temperatures and heat 
storage in the urban fabric, but the building edge density (i.e., the 
complexity of the building shape) also positively contributed to urban 
cooling at the hyperlocal scale. Similarly, tall vegetation contributes to 
MRT reduction by blocking shortwave radiation. Our results provide a 
new perspective on managing urban form for thermally comfortable and 
livable environments using 3-D configuration and composition metrics. 
The study emphasizes the need to consider the complex relationships 
between urban landscapes and MRT in designing and planning sus
tainable urban environments and suggests that more complex, hetero
geneous built environments are cooler than homogeneous landscapes 
due to increased shading. Insights from this study can guide urban 
planners and designers to develop passive cooling strategies, create 
more thermally comfortable outdoor environments, and reduce energy 
consumption in buildings. 
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