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Abstract— Scalable video caching is a promising technique to
alleviate backbone traffic in sixth generation (6G) networks, and
to serve users with video quality that adapts to varying channel
conditions. In this paper, we develop a layer-based scalable video
caching technique with non-orthogonal transmission by taking
advantage of the layer feature in the scalable video. In addition,
the impact of different serving base station selection algorithms is
investigated. Our results indicate that both the caching placement
design and transmission scheme design dominate the caching
performance. To evaluate the interplay of these two policies,
a tractable metric of Caching Aided Data Rate (CADR) is
characterized and maximized by jointly optimizing the afore-
mentioned two policies. Together with extensive Monte Carlo
simulations, numerical results are also evaluated in this paper,
demonstrating that the proposed Layer-based video Caching
scheme with Non-Orthogonal Transmission (LCNOT) can achieve
higher CADR performance than other baseline schemes.

Index Terms— Layer-based scalable video caching, stochas-
tic geometry, non-orthogonal transmission, caching aided data
rate (CADR).

I. INTRODUCTION

IRELESS networks have witnessed an explosive
Wincrease in mobile data traffic for years, and as pre-
dicted by Cisco, this traffic will reach 77.5 exabyte per month
in 2022, 6 times higher than that in 2017. Around 79% of
this mobile data comes from mobile video [1]. Guaranteeing
and improving customers’ Quality of Experience (QoE) of the
received video content is critical for maximizing operators’
revenue, thereby receiving significant attention in industry
and academia [2], [3]. However, the increase in mobile video
traffic incurs heavy pressure on the network, especially on the
backhaul link between the remote core network and the nearby

Manuscript received 10 October 2020; revised 25 March 2022 and
24 July 2022; accepted 21 October 2022; approved by IEEE/ACM TRANSAC-
TIONS ON NETWORKING Editor E. Uysal. Date of publication 21 November
2022; date of current version 18 August 2023. The work of Lingjia Liu was
supported in part by the U.S. National Science Foundation (NSF) under Grant
CNS-1811720. The work of Pingzhi Fan was supported by the NSFC Project
under Grant 62020106001. (Corresponding author: Junchao Ma.)

Junchao Ma is with the School of Electrical and Information Engi-
neering, Jiangsu University of Technology, Changzhou 213001, China
(e-mail: junchao_ma@foxmail.com).

Lingjia Liu and Shashank Jere are with the Bradley Department of Electrical
and Computer Engineering, Virginia Tech, Blacksburg, VA 24061 USA.

Bodong Shang is with the Department of Engineering and Public Policy,
Carnegie Mellon University, Pittsburgh, PA 15213 USA.

Pingzhi Fan is with the Key Laboratory of Information Coding and
Transmission, Southwest Jiaotong University, Chengdu 610031, China.

Digital Object Identifier 10.1109/TNET.2022.3222931

base stations (BSs). This pressure becomes a bottleneck in
increasing revenue and improving the QoE of users [4], [5].
One potential solution to mitigate the backhaul pressure is
to deploy caching capacity at local BSs to proactively store
videos of interest before users request them. If users’ requests
are responded to by local cache, backhaul transmissions can
be avoided and the latency of retrieving a requested video
can be reduced accordingly [6], [7], [8], [9]. Due to the fact
that the storage capacity of each BS is quite limited, only a
small quantity of videos can be cached locally. Utilization of
the limited caching capacity to respond to as many requests as
possible, i.e., the analysis of caching placement design, is very
important in the caching analysis [8], [10], [11]. Since caching
is meaningless unless the desired content is successfully
delivered to the targeted user, cached content delivery in the
content transmission phase is another important issue in video
caching analysis [8], [12]. And caching placement policies
and content transmission schemes are coupled and should be
jointly studied to maximize caching performance. Although
significant research has been conducted in video caching and
transmission, it is either the case that many problems still
persist, or that video is treated as generic mobile data in
such research. Therefore, exclusively analyzing video caching
and transmission demands research more extensive that at
present.

In this paper, video content is considered to have its
own characteristics, rather than treating it generically [13].
To adapt to the conditions of different receivers (display size,
video quality requirement, channel condition, etc.), a single
video content contains multiple versions with different bit
rates [14], [15]. Users may adaptively retrieve the appro-
priate version according to their particular conditions. For
example, when a BS multicasts a video to multiple users
simultaneously, users with a relatively better channel condition
can get a better version of the requested video to maximize
their received video quality, while users with a comparatively
worse channel condition may receive the requested video with
only the basic quality [16] to guarantee that they avail the
minimum video watching experience. One promising cod-
ing technique to satisfy the aforementioned requirements is
Scalable Video Coding (SVC) [17], [18], [19]. Via SVC,
a video can be encoded into L layers, including one base layer
(BL) which comprises basic and essential information of the
video, and L — 1 enhancement layers (ELs) which contains
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the enhancement information and improves the received video
quality. The BL of data can be encoded exclusively but the
decoding of EL should be combined with lower layers of data.
Layer [ cannot be decoded unless the previous [ — 1 layers are
successfully received [20].

In this article, we analyze scalable video caching and
transmission in sixth generation (6G) networks while fully
considering SVC characteristics [21]. Specifically, in the
caching placement phase, we apply a layer-based caching
scheme, in which each layer of one video content is cached
independently. Compared with the traditional content-based
caching scheme in which all the layers must be stored once
the video content is cached [22], the introduced layer-based
caching scheme offers more caching flexibility and is more
efficient in transmissions. This is because in some cases the
cached high layer data cannot be retrieved due to poor channel
conditions, rendering the caching meaningless. In the caching
placement design, we apply the probabilistic caching which is
widely used in the literature [8], [10]. Therefore, a layer of
every content is cached or not is represented by a particular
probability.

Specifically, before the transmission begins, the user needs
to select a serving BS to retrieve its desired content. In this
paper, we consider two serving transmitter selection scenarios.
The first one is the Nearest Transmitter Selection (NTS) in
which the user selects the nearest BS in order to maximize
the transmission quality by attempting to experience minimal
interference or near minimal interference from nearby BSs.
However, since the caching status is not taken into consid-
eration, the selected nearest BS may be absent from caching
the desired video. In practice, this scenario is suitable for a
distributed network where users have no idea about the caching
placement of nearby BSs. All the requests should be forwarded
to the nearest BS to enjoy the best channel condition. The
other one is the Nearest Cached Transmitter Selection (NCTS)
scenario. In this scenario, the nearest transmitter that caches
the BL of the desired video is selected as the serving BS. As a
result, the user can definitely get served by its serving BS, but
the selected BS may be far away from the receiver and the user
may suffer severe interference in this scenario. In practice, the
NCTS scenario can be applied in a network in which a central
gateway exists to maintain the caching status of BSs. Thus,
as long as a request is received, the gateway can transmit the
request to the nearest BS having the requested content.

In the content delivery, we adopt the power domain
Non-Orthogonal Transmission (NOT) scheme, in which the
BS multiplexes the layers of data to be transmitted with a
part of transmit power [16], [23]. Through appropriate power
allocation policy, the user can in turn decode part or all of the
data layers by applying Successive Interference Cancellation
(SIC) decoding method. Based on the number of layers of
the requested video collected within the delay constraint, the
user could experience a particular video quality with a certain
data rate [24]. In this paper, the motivation that we apply
the non-orthogonal transmission is as follows. First of all,
by carefully allocating powers to the transmitted video layers,
different importance and protections can be provided to these
layers. Specifically, BLs can receive more power to improve
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its decoding probability, thus getting more protection in the
transmission. Secondly, through non-orthogonal transmissions
and the SIC decoding method, users can adaptively receive
the number of layers most fitting their suffered channels.
Therefore, a user with better channel can decode more than
one layers of the transmitted video, while another user can
only decode the BL at the same time due to poor channel
condition. Thus, the scalability and layer feature of the SVC
can be reflected in the transmission.

In the analysis, we apply Cache Aided Data Rate (CADR) as
the performance metric to model users’ satisfactions, since it
can quantify the impact of caching placement design and trans-
mission scheme in tandem, and also can reflect the unequal
error protection (UEP) in the caching and transmission as well.
Using stochastic geometry tools, we first characterize CADR
performance as a function of caching probabilities and power
allocation coefficients under different transmitter selection sce-
narios. Through joint optimization of the two parameters, the
maximum CADR performance can be achieved. Additionally,
the CADR performance of different transmitter selection algo-
rithms and some other benchmark schemes are compared and
investigated via extensive simulations. The simulation results
demonstrate that the introduced Layer-based Caching with
Non-Orthogonal Transmission (LCNOT) scheme outperforms
the benchmark schemes with regard to CADR performance.
The contributions of this paper can be listed as follows:

o Firstly, to take fully advantage of layer features of
scalable video caching and transmission, in this paper,
we introduce a LCNOT scheme including layer-based
caching placement policy and non-orthogonal transmis-
sion. In the introduced LCNOT scheme, users can adap-
tively retrieve its requested content with a particular data
rate depending on the caching placement probabilities and
power allocation coefficients. Also, the impact of differ-
ent transmitter selection scenarios is considered. To the
best of authors’ understanding, no previous literature
studied this scheme before, and the analytical results in
this paper can provide beneficial insights and inspirations
for further research on this topic.

o Secondly, CADR is proposed to evaluate the caching per-
formance since it can simultaneously quantify the impact
of caching placement probabilities and the power alloca-
tion coefficients. The CADR metric is characterized using
stochastic geometry, and maximized by formulating an
optimization problem with regard to caching placement
parameters and caching transmission parameters. To effi-
ciently solve the optimization problem, an iteration-based
solution is given and thereby the sub-optimal caching
placement probabilities and power allocation coefficient
are achieved accordingly.

The remainder of this article is organized as follows.
Literature review on SVC transmission and caching is pre-
sented in Section II. Then, we depict the system model in
Section III which includes the network model, layer-based
caching placement and NOT. In Section IV, we give the
detailed characterization of CADR formulation and optimiza-
tion under NTS and NCTS scenarios, respectively. Afterwards,
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in Section V, extensive simulations are carried out to highlight
the advancement of our introduced LCNOT scheme. Finally,
Section VI concludes this article.

II. RELATED WORKS

Recently, SVC transmission related research has attracted
a lot of attention. To maximize the overall video quality
received by users in multiple groups, [25] optimizes the
resource allocation strategy and scalable multicast scheduling
policy. Authors in [16] apply non-orthogonal transmission
to improve the received quality of the scalable video com-
pared to orthogonal transmission. As one of the first works
of scalable video caching, [26] analyzes the scalable video
caching structure, and studies the impact of different caching
placement policies on backhaul offloading improvement as
well as video transmission delay reduction. But no optimiza-
tion is established and the traditional transmission scheme is
adopted in this paper. Similarly with scalable video caching,
Dynamic Adaptive Streaming over HTTP (DASH) based
caching is studied in [27], in which users can dynamically
choose video quality based on their requirements. However,
the applied caching scheme is content-based and different
versions of the same video are treated as different video
contents, as a result of which one user may redundantly store
some videos. Based on the aforementioned paper, in [28] the
authors study video caching and transmission using DASH
based caching and scalable video caching, considering each
user to have a requirement for the quality of their desired
video. By optimization of the caching policy exclusively, this
paper aims to maximize the probability that the desired video
with preferred quality requirement is successfully retrieved.
The analysis in this paper ignores an important feature in
SVC that a user can tolerate receiving a different quality
of their desired video content if the requested version fails
in its delivery. In addition, different energy-efficient scalable
video caching schemes are designed in [11] to maximize the
average delivery probability when a designated user requests
content with a particular quality requirement. However, the
proposed scheme is designed only for the designated user,
without applicability to other users in the network. In our
previous work, the SVC caching and non-orthogonal trans-
mission are studied in which content-based caching placement
is considered, ignoring the layer feature and scalability in
the caching placement phase [22]. Poularakis et. al. in [29]
optimize scalable video caching under the collaboration of
multiple operators to minimize the delivery delay of users’
requested content with a preferred video quality. Like [28], this
paper also neglects the fact that users can tolerate a different
video quality. Also, the transmission failure is underestimated
in this paper. In [30], Hou et.al. consider the layer-based
caching in the machine-type communication caching network,
but the scalability in the transmission is not considered and
the optimization of the caching and transmission processes
is ignored to improve the users’ content retrieval perfor-
mance. [31] is quite relevant to our analysis because both
works aim to optimize the caching placement policy at the
caching placement phase and the power allocation at the
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Fig. 1. Applied network models where BSs are deployed with intensity A¢.

transmission phase. But there are major differences between
the two works. Firstly, the transmission considered in our
paper is non-orthogonal transmission with multicast feature,
while in [31] the traditional unicast feature is applied. Also, the
power allocation in our paper is related to allocating different
powers to video layers, while in [31] it is applied to adjust
the portion of power consumed in retrieving content from
backhaul and that used to transmit content from BS to users.

III. SYSTEM MODEL

In this article, a wireless network drawn in Fig. 1 is
considered in which BSs and users locate following Poisson
Point Processes (PPPs) @, and ®, with intensities \; and
A, respectively. In a particular time slot, each user randomly
requests a video content from the content library according
to its popularity vector p = {p(1),---,p(j), - ,p(J)},
where j, p(j), and J denote the content index, the popularity
of content f;, and the size of the content library, respec-
tively. Without loss of generality, it should be satisfied that

S p(j) =1 and p(1) > p(2) > --- > p(J) [8].
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In the caching placement phase, every BS adopts a proba-
bilistic caching policy, and can cache Mg bits at most [32].
For probabilistic caching placement, the caching decision of a
particular layer [ of content f; can be modeled by a probability
q:(j) € [0, 1], thus the total caching placement policy for layer
lis ar = {@(1),q(2), -+ ,q(J)}. Limited by the caching
capacity of each BS, the caching probabilities should meet
the requirement that

> @) S < Mg, (1

where S; = tR; is the size of the [-th layer of data, ¢ is the
duration of one time slot, and R; is the data rate of layer [.
Here it should be noted that a normalized time slot duration
is considered which means S; £ R, and all the mentioned
assumptions are valid in different time slots. The determination
of caching decision for each layer is also assumed to be
independent in the introduced caching placement policy.

In accordance with Slivnyak’s theorem, we investigate the
video retrieval of a typical user located at the origin in this
paper, with other random users having the same performance
stochastically. When a typical user requests a content fj,
it needs to select a serving BS before getting served [28].
In this article, two serving BS selection scenarios named NTS
and NCTS are considered. As shown in Fig. 1(a), the nearest
BS is selected as the serving BS regardless of the caching
status in the NTS scenario. The user suffers near minimal
interference from nearby BSs, but the caching status of the BS
cannot be guaranteed since the requested content may not be
cached by the serving BS. On the other contrary, in the NCTS
scenario shown in Fig. 1(b), the nearest BS which caches the
BL of the requested video f; is selected as the serving BS.
This guarantees the user can find its desired content from the
serving BS, but severe interference may be experienced when
the serving BS is far away from the receiver.

In the transmission phase, an interference limited network
is considered and the impact of noise is ignored [28]. The
transmitted signal is assumed to suffer path loss and Rayleigh
fading. Therefore, the received signal of a typical user is

Yo = VPr—*hzxgy + Z

ke Piy

P?”]:ahkl‘k, 2)

where P is the transmit power of BSs, r (r) is the distance
between the serving BS (k-th interfering BS) and the typical
user, and v > 2 is the path loss exponent. h(hy) ~ CN(0,1)
expresses the Rayleigh fading parameter, and ®;, denotes the
set of interfering BSs.

Considering the layer features of SVC, in the transmis-
sion phase we adopt a power domain non-orthogonal video
transmission scheme to transmit the desired video. If the
first [ (I = 1,2,---,L) layers are cached and transmitted,
at the transmitter side, /;-th (I; = 1,2,---,1) layer of
data is allocated with b;, € [0, 11 part of the total transmit
power, and thus in (2) zg = 211:1 by, x;,. The receiver
applies the SIC technique to decode the requested video layer
by layer from the received multiplexed signal. The process
terminates until all the transmitted layers are decoded or an
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arbitrary layer is failed to be decoded. In practical, to balance
the decoding complexity and scalability at the receiver side,
we can adaptively set the number of content layers L < 3.
Denote the received Signal-to-Interference Ratio (SIR) for the
l-th layer of data by SIR; which is expressed in (3), and
the [-th layer can be decoded if SIR; exceeds the decoding
threshold 6;.

Pblr_(’|h|2
S Poir=e|h)2 + Iy

where I = 32, o Pri;®hi|* and Y31, | Pbr=|h|? £
0. Here we assume the capacity-achieving channel coding
method is adopted, as a result of which the decoding threshold
0, and the experienced [-th layer data rate R; should satisfy
R; = Wlog(1+46;), where W is the allocated bandwidth [16].

Theorem 1: According to the caching placement policy,
when the first | layers are cached and transmitted, the user can
decode the first 11 layers (I = 1,2,--- 1) of the requested
video with the probability that

P, (lhol* > ©1), ifCy,

SIR; = (3)

P, (Dll,l) - P, (|h0|2 > @m) s lfcm; (4)
P, (|h0|2>6l1)’ lfclu
where m=1,2,--- I3, 1, =1,2,--- [, 1=1,2,---, L, and
HmIR
pr—o (b 0 bl)

C,,, means the condition satisfying the following equations for

@m =

(5)

anyn=1,--- m—1m+1,--- 1l that
On =
bn>9—bm—|—9n Z bi, ifn<m,
m i=n+1 (6)
9 n
b < —=by, + Oy, bi, if n>m.
On i:;rl /

It should be noted that b = 1 when | = 1, which indicates
that all the power should be allocated to BL of f; if only BL
data is cached by the serving BS. Denote Ey, ; as the event
that the user only decodes the first 11 layers when the first |
layers of the requested video are cached and transmitted, then
the event Ey, | happens with the probability that

P, (Ei 1)
P, (Jho|* > ©1) = Py (Jhol* > ©1,41) . if M,

. | .
P, (|hol* > ©1,) = Py ([hol® > ©1,41) , if My,

0, else.
with the assumption that P, (|ho|2 > @l+1) £ 0, and M,,
(m=1,---,l1) means the conditions that satisfy
Cin
<« @®)

Om
by, > —b +0,, b;.
01,41 ot i:%;rl
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Proof: The proof of Theorem 1 is shown in
Appendix A. [ ]
Based on these probabilities derived above, we recall the
responding process of the typical user’s request. Once the user
initiates a request towards video f;, the request is forwarded
to its serving BS based on the applied serving BS selection
algorithm. The serving BS checks its caching status to see
if f; is cached. If more than one layer is cached by the BS
(I > 2), non-orthogonal transmission is applied and the user
receives different layers of data depending on the suffered
channel condition. If only the base layer data is cached (I = 1),
all the power is allocated to the BL data, and the user may
receive only the BL data or nothing at all. Otherwise, if BL
cache is missed, the requester has to retrieve the content
from its server via backhaul transmission which is beyond
the scope of this paper. Therefore, the typical user adaptively
enjoys different qualities of its requested video from BS
caching with different data rates depending on the adopted
caching placement performance which is expressed by caching
placement policy, and the transmission performance which is
determined by the power allocation policy. Accordingly, the
average enjoyed data rate from BS caching when the typical
user requests a video, i.e., CADR, can be formulated as

J L 1
R=3 p()Plar (D D ][ (G) (1= air1 (7))
j=1 1=2 i=2
l 15
X > Pr(En) Y Re+ (1= g2 ()P (Bi) R
l1=1 k=1

©)

where P;[q1 ()] represents the probability that the user finds
the BL of f; from its serving BS, and its value is impacted by
applied caching probability and serving BS selection scenario.
From (9), it is obvious that the value of R highly depends on
the parameters J,p, L, R;, 6, q, and b, etc. Most of them are
known by the network and are fixed during the system run-
ning, while the caching placement policy q = {q1, - ,qL}
and the power allocation coefficients b = {b1,---,by} can
be changed. Thus, to maximize the CADR performance,
we establish the following optimization problem and jointly
optimize the two parameters such that

P max R (10)

q,b

qul(j)ablé]-a

L

Yot

ljl I
.t . 11
A Y w) < Ms, e MY

j=11=1

l
b, >0, Y by, Vhe[ll-1]
i=l1+1

The first constraint in (11) means the caching placement
policy and power allocation scheme are both probability based.
The second and third constraints are respectively the power
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allocation and caching placement parameter constraints, and
the final constraint comes from (22).

IV. PROBLEM SOLUTION

In this section, respectively under the NTS and NCTS
scenarios, we first give the detailed derivation of CADR
performance, and then effectively solve the problem P and
get the sub-optimal caching placement probability and power
allocation coefficient.

A. NTS

As shown in Fig. 1(a), in the NTS scenario, when the typical
user requests a content f;, the request is forwarded to the
nearest BS in ®;. If the nearest BS contains the BL data of
f;, then it is selected as the serving BS and serves the typical
user. Otherwise, if BL data caching is missed at the nearest
BS, the request has to be responded by the remote server.
Therefore the probability that the serving BS caches at least
the BL of content f; is P: (g1 (j)] = ¢;. According to [33],
[34], the distance between the serving BS X and the typical

user, denoted by rq, follows
Fro (1) = 2mA\re ™M (12)

Meanwhile, the interference at the typical user comes from
BSs in ®, except X, thus Ir can be represented as

IN= > Plhlr;"
ke®:\ Xo

13)

Here the superscript N means the variable I is in the NTS
scenario.

Theorem 2: When the first | layers of the requested content
is cached and transmitted, the probability that the requester
only decodes the first 11 layers, which is derived in (7) for
general case under the NTS scenario, is expressed as

P, (BN ,) =P (DN,) = Pr (Di41,)
1 1

- ) if M )
1+511\’(91,a,b) 1_‘_811\] (911+1aaab) s
=07 1 a4
1 N - N ) lfMllv
+51 (9117a7b) 1_‘_81 (911+1,Oé,b)
0, else
1 A
where m = 0, and
—+oo
N _pa. = 1
s7 (O, a,b) = 0571, /0,”37,:% 5ot du,
l
T = bm — O Y bi. (15)
1=m-+1
Proof: The detailed derivation is in Appendix B. [ ]

Substituting (14) into (9), we can get the expression of CADR
under the NTS scenario. To have some insightful results and
guidance in the following simulations, here we consider a
special case that . = 2 [11], [16]. In the special case, one
video constitutes one BL and one EL, which respectively
corresponds to standard definition (SD) and high definition
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(HD) versions of a video. Accordingly, the power allocation
parameter b = {by, b2} is degraded to by = b and by = 1 —
The CADR performance under this special case is
J
Ri—o = p@)a () {e0) [P (EY,) Rs
=1
+Pr (E3,) (Rp + Rp)]
+ (1= a2 ()] Pe (BT,) Rp}

where P;(EY,), Pi(EY,), and P (EY,) are given in (14), and
Rp £ R, and Rr £ R, for illustration purpose. Therefore,
the optimization problem P in (10) under the NTS case can
be formulated as

PY_, max RY_, (16)
q,
J
> as()Rs + qe(j)Re < Ms,
s.t. { j=1 17
04
<b<1
0, +1 -

This is a non-convex optimization since the objective function
is non-convex with respect to power allocation parameter b and
caching placement probability q. Achieving the global optimal
solutions q* = {q5(1), -~ ,¢5(J), g5 1), -, ¢x(J)} and b*
needs more efforts and delicate analysis, and we will take
it as our future work. Instead, to effectively calculate the
sub-optimal solutions, we apply an iteration-based algorithm
in which the original problem is decomposed into multiple
sub-problems and are solved separately. As shown in Algo-
rithm 1, we initially set 5 = 0.5and q© = {0,---,0},,,,,
and derive the local optimal b and q iteratively. Speciﬁcally,
in each iteration k£ > 0, given bE=1) " the optimization
of (16) becomes a standard convex problem, and can be
solved easily using Karush-Kuhn-Tucker (KKT) condition or
fmincon function in MATLAB. Recall the problem in (16)
with local optimal q®) and it is still non-convex due to the
complex function in (15). Thus, we can get its local optimal
solution b(*) by using one dimensional exhaustive algorithm
Concretely, I +

step €, and select the b that achieves the hlghest CADR
performance as the local optimal b(*), The complexity of the

searching process is O . The progress goes to the

%(173-91)
next iteration (k+ 1) with () and q*), and terminates when
the CADR performance becomes stable after K iterations. The
total complexity of the algorithm should be O (M)
Typically, the algorithm converges after K = 2 or 3 iterations.

B. NCTS

According to the caching status of video content f; and the
thinning theorem of PPP, all the BSs in ®, can be partitioned
into two parts: BSs with the content f; and BSs without
the content f;, following PPP @, ; and ®, ;; with intensities
At,j = Meqi(j) and A jo = M\ [1 — qu ()], respectively. Here
the mentioned term BS with content f; refers to the BS that
caches the BL data of f;. Under the NCTS scenario, the typical
user’s request f; will be forwarded to the nearest BS in @, ;
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Algorithm 1 Iteration-Based Algorithm for PX_,
Input:

1: (q(o) = {ql (0),q2(0)} ,b(U)); /I initial caching place-
ment policy and power allocation policy;

2: k=0;

3: Calculate € =

QOutput:

4: while € > 1072 do

5: k=k+1;

6:  Solve PN_, with b(*~1) and get the caching placement
parameters q; (*) accordingly;

7. Solve PY_, again with q1® and q2® and calculate
the b(F):

8:  Calculate R(Lk:)2 with (ql(k),qz(k),b(k));

o e=R)") - RYUY,

10: end while

11: K = k; // K denotes the required number of iterations;

N(0
RS

which may not be the nearest one in ®;. In this case, the
user has the probability of P; [¢1 ()] =1 to find its requested
video from the serving BS, and the distance from the user to
the selected BS has the distribution that

fro (r) =21 Nequ(f)re

Also the interfering BSs affecting the typical user comprise
two parts: BSs except X in ®; ; and BSs in ®; ;, thus,

S PP+ Y Pl

ke®s,j\Xo ked, ;i

—mAtq1 (j)TZ. (18)

IRC = (19)

Theorem 3: Substituting INC into (4), a typical user can
successfully receive the lowest 11 layers of its requested content

with a probability that

F(61), if Cq
P (DpG) =14 -+ (20)
F(0,), if Cy,
where
F(0)
_ q1 (J)
q1 (7)+a1 (5) Y€ (O, . D) +(1 = g1 (5)) 5 (0, @, b))’

and sY(0,,,a,b) and s5€(0,,, o, b) are shown in (27). Fur-
ther, the user only decodes the first |1 layers with probability
Pr (El]\icl) =P (Di\icl) (Dll+1 )
F(el) - F(611+1), lfMla
=9 . 1)
F(gli) - F(911+1), lfMllv
0, else.

Proof: The detailed proof of Theorem 3 is shown in
Appendix C. |
The following derivation of RN and the corresponding opti-
mization is similar to that in the NTS case. Here we omit the
repeated description for brevity.
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TABLE I
SIMULATION PARAMETER SETTINGS

| Parameter | Value

System bandwidth, W 10 MHz

Path loss exponent, o 4

EL data rate, Rg 2 Mbit/s

BL data rate, Rp 1.5 Mbit/s

BS density, Ay 10~ BSs per m?
Content library, J 20 contents
Skewness parameter, v | 0.5

Caching capacity, Mg 20 Mbit

V. PERFORMANCE EVALUATIONS

In this section, we carry out a series of simulations and
numerical studies to evaluate the performance of the intro-
duced LCNOT scheme. The parameters setting in simulations
are given in TABLE I, unless otherwise stated. In order to
study the impact of content popularity, we need to specify
the distribution of the content popularity vector p. Complying
with the widely applied distribution in the literature [11],
in this section, we assume the content popularity follows Zipf
distribution with skewness parameter ~. That is, the popularity
of content f; can be expressed as p(j) = E,j;:_v

To prove the superiority of our proposed Zs=c]heme, we also
investigate the following schemes in this section, and both
NTS and NCTS scenarios are considered for these benchmark
schemes. It is noted that the parameters in these schemes are

also optimized.

o Layer-based caching with orthogonal transmission
(LCOT): In the caching placement phase, layer-based
caching is considered and orthogonal transmission is
applied in the content delivery [16].

o Content-based caching with non-orthogonal transmission
(CCNOT): Content-based caching placement policy is
adopted which means if one video content f; is deter-
mined to be cached, all the layers are cached accordingly.
Also, NOT is adopted in the content delivery phase.

o Content-based caching with orthogonal transmission
(CCOT): Content-based caching placement and
orthogonal transmission are respectively applied in
the caching placement phase and content delivery
phase.

A. Influence of BL Data Rate Rp

In this part, the impact of BL data rate on CADR perfor-
mance is studied. From (16), we can find increasing Rp can
directly improve the value of CADR. On the other hand, due to
the relationship that 5 = 2%8/W _1_ the increase of R leads
to a higher decoding threshold g, which further decreases
the probabilities of successfully decoding BL of data and
EL of data. As a comprehensive result, depending on which
parameter dominates the final CADR performance, it may be
not a monotonous trend for the CADR performance with Rp
increases from 1 Mbit/s to 6 Mbit/s, as shown in Fig. 2(a).
From this figure, we have the following observations. For
any compared schemes, the NCTS scenario performs better
than the NTS scenario. Among all the potential schemes, the

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

introduced LCNOT works the best while CCOT scheme works
the worst. When R p is small, CCNOT outperforms the LCOT,
with CADR approaching that of the introduced LCNOT. But
as Rp increases, the LCOT performs better and approaches the
LCNOT gradually. This is because the threshold to success-
fully decode the base layers of the retrieved video increases
with Rp. Since the successful transmission of base layer is
a prerequisite of decoding enhance layers of the retrieved
content, the optimal solutions tend to allocate more power for
the base layer to improve its decoding probability. With almost
all power allocated to the base layer of the transmitted video,
the non-orthogonal transmission degrades to the orthogonal
transmission, and the LCOT approaches LCNOT accordingly.
This indicates that in the small Rp regime, the caching place-
ment policy design dominates the CADR performance and
the layer-based caching policy is superior to the content-based
caching policy, but the adopted caching transmission has very
limited influence on the CADR. On the contrary, in the high
Rp regime, the caching transmission has a dominated impact
on the CADR while the applied caching placement policy does
not impact CADR performance too much. Therefore, we can
focus on the caching placement policy design in the small
Rp regime, while concentrating the optimization of power
allocaton when Rp is large. What is more, we also give the
simulation results of all the compared schemes, which match
the theoretical results quite well, verifying the accuracy of the
theoretical analysis.

In Fig. 2(b), the caching hit ratio (CHR) of BL and EL
for the introduced LCNOT scheme under the NTS case and
the NCTS case are respectively given. Different from the CHR
definition in the literature that describes the average probability
that one arbitrary user’s requested content is cached by any
local node, here we define CHR of one layer of content as
the average probability that the particular layer of one user’s
requested content is cached by local nodes and is successfully
transmitted and decoded. With Rp increases, the required
space to cache the BL of one content also increases, as a
result of which, the caching capacity in terms of bits keeps
unchanged but that in terms of number of layers and contents is
reduced. This observation is also found in Fig. 2(c). Therefore,
the CHR of EL and BL data is a decreasing function of Rp
with other parameters fixed. Since the successful decoding of
BL data is a precondition to decode EL of data, the CHR of
EL is always less than that of BL data. In addition, from the
comparison of NTS and NCTS we can observe the NCTS case
cares more about the caching and transmission of BL data than
the NTS case and the LCNOT degrades to LCOT scheme in
the Rp > 3 regime in the NCTS scenario.

In Fig. 2(c), the optimal power allocation coefficient b
for the LCNOT scheme under the NTS case and the NCTS
case are respectively given as a function of Rp. With Rp
increases, the fp increased accordingly and the BS should
offer more power to the BL to ensure its successful decoding,
as a result of which the optimal b is an increasing function
of Rp for both NTS and NCTS cases. When Rp > 3,
all the power are allocated to the BL in the NCTS case.
Also, in Fig. 2(d), we study the optimal caching policies
for BL and EL of data under NTS scenario. The caching
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(c) Optimal resource allocation.

Fig. 2. CADR comparison with different BL data rates Rp.

probability is a decreasing function of content index f;. This
is intuitive since the popularity of a content with smaller
index is higher, and more requests target such content. Allo-
cating larger caching probabilities to more popular contents
can achieve higher CADR performance. Another interesting
observation is that the probability based caching degrades to
the popularity-based caching that only the most popular BL
and EL of data are cached until the caching space is fully
utilized. It should be noted that since NTS case and NCTS
case have similar caching probabilities, here we only present
the optimal caching probabilities in the NTS case fo the sake of
illustration.

B. Influence of Popularity Skewness Parameter ~y

In this part, we propose to analyze the impact of content
popularity skewness parameter v on the CADR performance.
Specifically, with a higher ~, users’ requests are more skewed

1501

07 T T T T
—¥¢— Basement Layer-NTS
- 2 = Enhancement Layer-NTS

0.6 Basement Layer-NCTS 4
- * = Enhancement Layer-NCTS

0.5,

0.3

caching hit ratio

0.2

0.1

1 1.5 2 25 3 3.5 4 4.5 5 55 6
Basement Layer data rate RB

(b) Caching hit ratio performance.

T T T T
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- A — optimal EL caching policy-RB =5

o o I IS4
ES 3] o ~

optimal caching probability

o
w

0.2

0.1

0 2 4 6 8 10 12 14 16 18 20
content index

(d) Optimal caching placement policy.

to the most popular videos. By caching the most popular
contents, users’ requests are more likely to be hit by node
caching, as a result of which the CADR performance can be
improved. Therefore, as shown in Fig. 3(a), the enjoyed CADR
performance of all the schemes is an increasing function of
~. In LCOT, all the caching capacity is allocated to BL data
because no EL will be involved in the transmission, and every
BS can cache the BL of almost all the contents, thus the change
of v does not impact its performance too much. Also, the gap
between NOT based schemes (LCNOT and CCNOT) and OT
based schemes (LCNOT and CCOT) increases but the gap
between layer-based caching policy and content-based policy
with the same transmission scheme becomes narrow. This
indicates that caching transmission plays a more important
role with y increases. Some other observations consistent with
Fig. 2(a) can be seen such as the match of theoretical results
and simulation results, and the outperformance of NCTS
scenario against NTS scenario.
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Fig. 3.

From Fig. 3(b) which plots the CHRs of BL and EL of
data we have the following observations. The CHR of BL
of data decreases when vy changes from 0 to 0.3, and then
increases gradually. With ~ increases, while the CHR of EL
of data always increases with . This can be explained as
follows. When v = 0, all the contents have homogeneous
popularity and users have the same probability to request
any content. To handle this, the BS prefers to cache all the
BL of every content uniformly. This also can be observed
in Fig. 3(d) (see when v = 0). Therefore, the CHR of
BL reaches its maximum in this case. When ~v > 0, the
popularity of different contents differ and the gap goes shape
with 7. The BS allocates more caching capacity to EL to
achieve higher CADR performance (see the optimal caching
when v = 1.2 in Fig. 3(d)). As a consequence, the CHR of
BL decreases and that of EL increases. With users’ requests
concentrating to the most popular contents, the CHR of BL

CADR comparison with different popularity skewness parameters ~y.
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increases gradually, but never exceeds its maximum value
when v = 0.

C. Influence of Path Loss Exponent o

Besides the influence of content related parameters (data
rate Rp), caching placement related parameter (popularity
skewness parameter ), as shown in Fig. 4(a), in this part
the impact of transmission related parameter, i.e., path loss
exponent o on the CADR is studied. With « increases, the
transmitted signals suffer less path loss and from Fig. 4(a)
we can see the CADR of all the schemes is an increasing
function of «. As for the comparison of different schemes,
the CCOT scheme performs the worst while the introduced
LCNOT scheme performs the best. When « is small, the
LCOT and CCNOT schemes perform quite similar. But with
« increases, LCOT falls behind gradually. This indicates that
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Fig. 4. CADR comparison with different path loss exponents .

the OT based scheme is not sensitive to the change of «
(see LCOT and CCOT). In orthogonal transmission, BL of
data gets all the transmit power and almost all transmission
are successful, thus the CADR performs relative stable with
a. In comparison, the power is partitioned for BL and EL
in the non-orthogonal transmission, not all the transmission,
especially the transmission of EL, is successful. Thus, the
increase of o improves the CADR performance a lot in these
NOT schemes.

In Fig. 4(b) the trends of CHR of BL and EL are respectively
plotted for the proposed LCNOT scheme. From the figure
we can observe that the CHR of BL performs stable and
higher than that of EL. This is because the transmission of
BL data has higher chance to be successfully decoded but the
successful transmission probability improves for the EL data
with «. In this case, the increase of o mainly impacts the
transmission of EL data rather than the BL. It is worthy to
note that with the increase of « the BS prefers to allocate
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(d) Optimal caching placement policy.

more caching space to the EL data, as shown in Fig.4(d);
but the transmit power allocation is not impacted as shown in
Fig. 4(c). Therefore, under the NCTS, the BS allocates more
caching space to EL from BL when « increases from 4 to
4.5, and the CHR of BL decreases suddenly while that of EL
increases accordingly. Together with Fig. 2(c) and Fig. 3(c),
we can find an interesting observation that in the proposed
LCNOT with iteration based solution, the optimal b does
not change with caching placement related parameters and
transmission environment as long as the caching probabilities
are not all zeros.

VI. CONCLUSION

In this article, we investigated the introduced LCNOT
scheme for scalable video caching in cache-enabled wire-
less networks in terms of CADR. Two different serving BS
selection algorithms named NTS and NCTS were considered.
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Using stochastic geometry, the transmission performance in
terms of the successful transmission probability of each layer
when each video can be decoded into generalized layers
was first derived. Then the CADR was characterized and
maximized by jointly optimizing the caching placement pol-
icy and the caching transmission scheme. The optimization
problem was effectively solved by using an iteration-based
algorithm. Finally, numerical results were provided and were
verified by Monte Carlo simulations. Results showed that
the introduced LCNOT scheme outperforms the benchmark
schemes, and NCTS performs better than NTS by adopting
optimal caching placement probabilities and power allocation
policy.

APPENDIX A
PROOF OF THEOREM 1

A user can decode the first [ layers of its requested video
when the first [ layers are cached are cached and transmitted
with the probability that

P. (Dll,l) =P (SIRl >91,"-
by Pry “|hol|?
. ; 1 r(llol >617...
Y iso biPry“|ho|? + Ig
b, Pry “|hol?
ity 11 0P hol? + Ir
(|hO|2 > @17 a|h0|
X >@m7 a|h0| >@l1)a

,SIR,;, >0, -+, SIRy, >0,,)

911>

X

(a)

where ©,, is formulated in (5).

l
b, >0, Y b

(22)
i=l1+1
in operation (a) should be satisfied for I; = {1 -, 1} and
! — O
Diei, 41 bi = 0. - _am T — 27 - holds

i=m+1

for any n € {1,-- —1m+1,---,l1} in C’m that
0,, > max{0;,- - ,Om,l, 9m+1, e ,911}, which further can
be transformed to (6). Accordingly, in this case the user only
decodes the first [ layers with the probability that

P (Ei, 1) = P (SIRy > 64, ,SIR;; >6;,,SIR;, 11 < 61,41)
=P, (SIRy > 61,---,SIR;, > 6;,)
— P, (SIRy > 61,--- ,SIR;, 11 > 6;,41)
=P (Di, 1) = P (Diy41,1)

P; (|ho|>>©1) =P (|ho|*>Op11), if My,
- P; (|h0|2>@l1)—Pr (|h0|2>®ll+1) , if My,
0, else.
(23)

In the derivation, P; (|h0|2 > ®l+1) = P (Dl-i-l,l) £
applied.
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APPENDIX B
PROOF OF THEOREM 2

In NTS scenario, P, (|h0|2 > Gm) derived in (4) is updated
to

P, (|h0|2 > @ﬁz)

N
=P <|h0|2 4 IR > =B, [ﬁ,N <€7’">}
P ’I"O *r m B\ P L) O(Tm,

o 1
= FE,, { exp —27r)\t/
1+ bt (£)

Zrdr
9,2 2 [ 1
= Ero |:eXp <_7T)\tr09’r(r’l7—ma /gmi .,_7% 71 T us d’u>:|
= FE,, {exp[ 7r)\tr051 (O, v, b)]}

[o ]
— / 2T\ Tg €Xp {—7r)\t [1 + sI{I (O, b)} rg} dro
0
- 1
14 8Y (0, a,b)’

(24)

where £TN(S) is the Laplace transform of random variable
n r at s w1th fixed 9 and the detailed derivation of (24)
can be found in [22]. Further, we can get the expressions of

P (DY) = Pr (D41, by substituting (24) into (7), and
the probability that the typical user can only decode the first
l1 layers of its requested content in NTS case P; (E}jé) can
be derived as shown in (14). Theorem 2 is proved accordingly.

APPENDIX C

PROOF OF THEOREM 3

Similar with NTS case, in the NCTS case

Om TR )
Pry®m,
Om
= ET() ,Clll\éc W 5 (25)
0 m

is shown in (19), and

P, (|h0|2 > @I;Inc) =P, (|h0|2 >

NC
where I

= exp —27r)\t}j/ ! Zdr

0 1+ Hrn,le (%)

oo

=27 A, /1+9m Tm( )
1

oo

2
= exp | =T 7205 Tm © ——du
p{ t’”mm/em%éHf }
[ 1

o0

X exp

9,2 2
=T 170 Tm

X exp

-~ du}
0 ]. +uz
= exp [—TF/\t ]rosl (Qm, o b)} exp [_Tr)\f jrosgc (O, b)]
= exp {—777“0 [)\msl (O, ,b) + )\M/SQ (O, oz,b)} },
(26)
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where

2 2

2 o 1
)¢ (Omya,b) = 057m° /_2 N ﬁdu,
0.0 T +uz
1

0 1+u%

27)

2 2
5§C (O, a,b) = 057m

The derivation of (26) is detailed in [22]. Subsisting (26)
and (18) back to (25), the closed form expression of
P; (|ho|? > ©NC) can be achieved, and if we substitute it back

to (7), then P; (Dﬁcl) and P,
in (20) and (21), respectively.

gfﬁcl can be derived as shown
e omit the detailed description

here for simplicity, and Theorem 3 is proved accordingly.
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