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Abstract— Scalable video caching is a promising technique to
alleviate backbone traffic in sixth generation (6G) networks, and
to serve users with video quality that adapts to varying channel
conditions. In this paper, we develop a layer-based scalable video
caching technique with non-orthogonal transmission by taking
advantage of the layer feature in the scalable video. In addition,
the impact of different serving base station selection algorithms is
investigated. Our results indicate that both the caching placement
design and transmission scheme design dominate the caching
performance. To evaluate the interplay of these two policies,
a tractable metric of Caching Aided Data Rate (CADR) is
characterized and maximized by jointly optimizing the afore-
mentioned two policies. Together with extensive Monte Carlo
simulations, numerical results are also evaluated in this paper,
demonstrating that the proposed Layer-based video Caching
scheme with Non-Orthogonal Transmission (LCNOT) can achieve
higher CADR performance than other baseline schemes.

Index Terms— Layer-based scalable video caching, stochas-
tic geometry, non-orthogonal transmission, caching aided data
rate (CADR).

I. INTRODUCTION

W
IRELESS networks have witnessed an explosive

increase in mobile data traffic for years, and as pre-

dicted by Cisco, this traffic will reach 77.5 exabyte per month

in 2022, 6 times higher than that in 2017. Around 79% of

this mobile data comes from mobile video [1]. Guaranteeing

and improving customers’ Quality of Experience (QoE) of the

received video content is critical for maximizing operators’

revenue, thereby receiving significant attention in industry

and academia [2], [3]. However, the increase in mobile video

traffic incurs heavy pressure on the network, especially on the

backhaul link between the remote core network and the nearby
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base stations (BSs). This pressure becomes a bottleneck in

increasing revenue and improving the QoE of users [4], [5].

One potential solution to mitigate the backhaul pressure is

to deploy caching capacity at local BSs to proactively store

videos of interest before users request them. If users’ requests

are responded to by local cache, backhaul transmissions can

be avoided and the latency of retrieving a requested video

can be reduced accordingly [6], [7], [8], [9]. Due to the fact

that the storage capacity of each BS is quite limited, only a

small quantity of videos can be cached locally. Utilization of

the limited caching capacity to respond to as many requests as

possible, i.e., the analysis of caching placement design, is very

important in the caching analysis [8], [10], [11]. Since caching

is meaningless unless the desired content is successfully

delivered to the targeted user, cached content delivery in the

content transmission phase is another important issue in video

caching analysis [8], [12]. And caching placement policies

and content transmission schemes are coupled and should be

jointly studied to maximize caching performance. Although

significant research has been conducted in video caching and

transmission, it is either the case that many problems still

persist, or that video is treated as generic mobile data in

such research. Therefore, exclusively analyzing video caching

and transmission demands research more extensive that at

present.

In this paper, video content is considered to have its

own characteristics, rather than treating it generically [13].

To adapt to the conditions of different receivers (display size,

video quality requirement, channel condition, etc.), a single

video content contains multiple versions with different bit

rates [14], [15]. Users may adaptively retrieve the appro-

priate version according to their particular conditions. For

example, when a BS multicasts a video to multiple users

simultaneously, users with a relatively better channel condition

can get a better version of the requested video to maximize

their received video quality, while users with a comparatively

worse channel condition may receive the requested video with

only the basic quality [16] to guarantee that they avail the

minimum video watching experience. One promising cod-

ing technique to satisfy the aforementioned requirements is

Scalable Video Coding (SVC) [17], [18], [19]. Via SVC,

a video can be encoded into L layers, including one base layer

(BL) which comprises basic and essential information of the

video, and L − 1 enhancement layers (ELs) which contains
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the enhancement information and improves the received video

quality. The BL of data can be encoded exclusively but the

decoding of EL should be combined with lower layers of data.

Layer l cannot be decoded unless the previous l−1 layers are

successfully received [20].

In this article, we analyze scalable video caching and

transmission in sixth generation (6G) networks while fully

considering SVC characteristics [21]. Specifically, in the

caching placement phase, we apply a layer-based caching

scheme, in which each layer of one video content is cached

independently. Compared with the traditional content-based

caching scheme in which all the layers must be stored once

the video content is cached [22], the introduced layer-based

caching scheme offers more caching flexibility and is more

efficient in transmissions. This is because in some cases the

cached high layer data cannot be retrieved due to poor channel

conditions, rendering the caching meaningless. In the caching

placement design, we apply the probabilistic caching which is

widely used in the literature [8], [10]. Therefore, a layer of

every content is cached or not is represented by a particular

probability.

Specifically, before the transmission begins, the user needs

to select a serving BS to retrieve its desired content. In this

paper, we consider two serving transmitter selection scenarios.

The first one is the Nearest Transmitter Selection (NTS) in

which the user selects the nearest BS in order to maximize

the transmission quality by attempting to experience minimal

interference or near minimal interference from nearby BSs.

However, since the caching status is not taken into consid-

eration, the selected nearest BS may be absent from caching

the desired video. In practice, this scenario is suitable for a

distributed network where users have no idea about the caching

placement of nearby BSs. All the requests should be forwarded

to the nearest BS to enjoy the best channel condition. The

other one is the Nearest Cached Transmitter Selection (NCTS)

scenario. In this scenario, the nearest transmitter that caches

the BL of the desired video is selected as the serving BS. As a

result, the user can definitely get served by its serving BS, but

the selected BS may be far away from the receiver and the user

may suffer severe interference in this scenario. In practice, the

NCTS scenario can be applied in a network in which a central

gateway exists to maintain the caching status of BSs. Thus,

as long as a request is received, the gateway can transmit the

request to the nearest BS having the requested content.

In the content delivery, we adopt the power domain

Non-Orthogonal Transmission (NOT) scheme, in which the

BS multiplexes the layers of data to be transmitted with a

part of transmit power [16], [23]. Through appropriate power

allocation policy, the user can in turn decode part or all of the

data layers by applying Successive Interference Cancellation

(SIC) decoding method. Based on the number of layers of

the requested video collected within the delay constraint, the

user could experience a particular video quality with a certain

data rate [24]. In this paper, the motivation that we apply

the non-orthogonal transmission is as follows. First of all,

by carefully allocating powers to the transmitted video layers,

different importance and protections can be provided to these

layers. Specifically, BLs can receive more power to improve

its decoding probability, thus getting more protection in the

transmission. Secondly, through non-orthogonal transmissions

and the SIC decoding method, users can adaptively receive

the number of layers most fitting their suffered channels.

Therefore, a user with better channel can decode more than

one layers of the transmitted video, while another user can

only decode the BL at the same time due to poor channel

condition. Thus, the scalability and layer feature of the SVC

can be reflected in the transmission.

In the analysis, we apply Cache Aided Data Rate (CADR) as

the performance metric to model users’ satisfactions, since it

can quantify the impact of caching placement design and trans-

mission scheme in tandem, and also can reflect the unequal

error protection (UEP) in the caching and transmission as well.

Using stochastic geometry tools, we first characterize CADR

performance as a function of caching probabilities and power

allocation coefficients under different transmitter selection sce-

narios. Through joint optimization of the two parameters, the

maximum CADR performance can be achieved. Additionally,

the CADR performance of different transmitter selection algo-

rithms and some other benchmark schemes are compared and

investigated via extensive simulations. The simulation results

demonstrate that the introduced Layer-based Caching with

Non-Orthogonal Transmission (LCNOT) scheme outperforms

the benchmark schemes with regard to CADR performance.

The contributions of this paper can be listed as follows:

• Firstly, to take fully advantage of layer features of

scalable video caching and transmission, in this paper,

we introduce a LCNOT scheme including layer-based

caching placement policy and non-orthogonal transmis-

sion. In the introduced LCNOT scheme, users can adap-

tively retrieve its requested content with a particular data

rate depending on the caching placement probabilities and

power allocation coefficients. Also, the impact of differ-

ent transmitter selection scenarios is considered. To the

best of authors’ understanding, no previous literature

studied this scheme before, and the analytical results in

this paper can provide beneficial insights and inspirations

for further research on this topic.

• Secondly, CADR is proposed to evaluate the caching per-

formance since it can simultaneously quantify the impact

of caching placement probabilities and the power alloca-

tion coefficients. The CADR metric is characterized using

stochastic geometry, and maximized by formulating an

optimization problem with regard to caching placement

parameters and caching transmission parameters. To effi-

ciently solve the optimization problem, an iteration-based

solution is given and thereby the sub-optimal caching

placement probabilities and power allocation coefficient

are achieved accordingly.

The remainder of this article is organized as follows.

Literature review on SVC transmission and caching is pre-

sented in Section II. Then, we depict the system model in

Section III which includes the network model, layer-based

caching placement and NOT. In Section IV, we give the

detailed characterization of CADR formulation and optimiza-

tion under NTS and NCTS scenarios, respectively. Afterwards,
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in Section V, extensive simulations are carried out to highlight

the advancement of our introduced LCNOT scheme. Finally,

Section VI concludes this article.

II. RELATED WORKS

Recently, SVC transmission related research has attracted

a lot of attention. To maximize the overall video quality

received by users in multiple groups, [25] optimizes the

resource allocation strategy and scalable multicast scheduling

policy. Authors in [16] apply non-orthogonal transmission

to improve the received quality of the scalable video com-

pared to orthogonal transmission. As one of the first works

of scalable video caching, [26] analyzes the scalable video

caching structure, and studies the impact of different caching

placement policies on backhaul offloading improvement as

well as video transmission delay reduction. But no optimiza-

tion is established and the traditional transmission scheme is

adopted in this paper. Similarly with scalable video caching,

Dynamic Adaptive Streaming over HTTP (DASH) based

caching is studied in [27], in which users can dynamically

choose video quality based on their requirements. However,

the applied caching scheme is content-based and different

versions of the same video are treated as different video

contents, as a result of which one user may redundantly store

some videos. Based on the aforementioned paper, in [28] the

authors study video caching and transmission using DASH

based caching and scalable video caching, considering each

user to have a requirement for the quality of their desired

video. By optimization of the caching policy exclusively, this

paper aims to maximize the probability that the desired video

with preferred quality requirement is successfully retrieved.

The analysis in this paper ignores an important feature in

SVC that a user can tolerate receiving a different quality

of their desired video content if the requested version fails

in its delivery. In addition, different energy-efficient scalable

video caching schemes are designed in [11] to maximize the

average delivery probability when a designated user requests

content with a particular quality requirement. However, the

proposed scheme is designed only for the designated user,

without applicability to other users in the network. In our

previous work, the SVC caching and non-orthogonal trans-

mission are studied in which content-based caching placement

is considered, ignoring the layer feature and scalability in

the caching placement phase [22]. Poularakis et. al. in [29]

optimize scalable video caching under the collaboration of

multiple operators to minimize the delivery delay of users’

requested content with a preferred video quality. Like [28], this

paper also neglects the fact that users can tolerate a different

video quality. Also, the transmission failure is underestimated

in this paper. In [30], Hou et.al. consider the layer-based

caching in the machine-type communication caching network,

but the scalability in the transmission is not considered and

the optimization of the caching and transmission processes

is ignored to improve the users’ content retrieval perfor-

mance. [31] is quite relevant to our analysis because both

works aim to optimize the caching placement policy at the

caching placement phase and the power allocation at the

Fig. 1. Applied network models where BSs are deployed with intensity λt.

transmission phase. But there are major differences between

the two works. Firstly, the transmission considered in our

paper is non-orthogonal transmission with multicast feature,

while in [31] the traditional unicast feature is applied. Also, the

power allocation in our paper is related to allocating different

powers to video layers, while in [31] it is applied to adjust

the portion of power consumed in retrieving content from

backhaul and that used to transmit content from BS to users.

III. SYSTEM MODEL

In this article, a wireless network drawn in Fig. 1 is

considered in which BSs and users locate following Poisson

Point Processes (PPPs) Φt and Φu with intensities λt and

λu, respectively. In a particular time slot, each user randomly

requests a video content from the content library according

to its popularity vector p = {p(1), · · · , p(j), · · · , p(J)},

where j, p(j), and J denote the content index, the popularity

of content fj , and the size of the content library, respec-

tively. Without loss of generality, it should be satisfied that
PJ

j=1 p(j) = 1 and p(1) ≥ p(2) ≥ · · · ≥ p(J) [8].
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In the caching placement phase, every BS adopts a proba-

bilistic caching policy, and can cache MS bits at most [32].

For probabilistic caching placement, the caching decision of a

particular layer l of content fj can be modeled by a probability

ql(j) ∈ [0, 1], thus the total caching placement policy for layer

l is ql = {ql(1), ql(2), · · · , ql(J)}. Limited by the caching

capacity of each BS, the caching probabilities should meet

the requirement that

J
X

j=1

L
X

l=1

ql (j)Sl ≤ MS , (1)

where Sl = tRl is the size of the l-th layer of data, t is the

duration of one time slot, and Rl is the data rate of layer l.

Here it should be noted that a normalized time slot duration

is considered which means Sl � Rl, and all the mentioned

assumptions are valid in different time slots. The determination

of caching decision for each layer is also assumed to be

independent in the introduced caching placement policy.

In accordance with Slivnyak’s theorem, we investigate the

video retrieval of a typical user located at the origin in this

paper, with other random users having the same performance

stochastically. When a typical user requests a content fj ,

it needs to select a serving BS before getting served [28].

In this article, two serving BS selection scenarios named NTS

and NCTS are considered. As shown in Fig. 1(a), the nearest

BS is selected as the serving BS regardless of the caching

status in the NTS scenario. The user suffers near minimal

interference from nearby BSs, but the caching status of the BS

cannot be guaranteed since the requested content may not be

cached by the serving BS. On the other contrary, in the NCTS

scenario shown in Fig. 1(b), the nearest BS which caches the

BL of the requested video fj is selected as the serving BS.

This guarantees the user can find its desired content from the

serving BS, but severe interference may be experienced when

the serving BS is far away from the receiver.

In the transmission phase, an interference limited network

is considered and the impact of noise is ignored [28]. The

transmitted signal is assumed to suffer path loss and Rayleigh

fading. Therefore, the received signal of a typical user is

y0 =
√

Pr−αhx0 +
X

k∈Φin

q

Pr−α
k hkxk, (2)

where P is the transmit power of BSs, r (rk) is the distance

between the serving BS (k-th interfering BS) and the typical

user, and α > 2 is the path loss exponent. h(hk) ∼ CN (0, 1)
expresses the Rayleigh fading parameter, and Φin denotes the

set of interfering BSs.

Considering the layer features of SVC, in the transmis-

sion phase we adopt a power domain non-orthogonal video

transmission scheme to transmit the desired video. If the

first l (l = 1, 2, · · · , L) layers are cached and transmitted,

at the transmitter side, l1-th (l1 = 1, 2, · · · , l) layer of

data is allocated with bl1 ∈ [0, 1] part of the total transmit

power, and thus in (2) x0 =
Pl

l1=1

p

bl1xl1 . The receiver

applies the SIC technique to decode the requested video layer

by layer from the received multiplexed signal. The process

terminates until all the transmitted layers are decoded or an

arbitrary layer is failed to be decoded. In practical, to balance

the decoding complexity and scalability at the receiver side,

we can adaptively set the number of content layers L ≤ 3.

Denote the received Signal-to-Interference Ratio (SIR) for the

l-th layer of data by SIRl which is expressed in (3), and

the l-th layer can be decoded if SIRl exceeds the decoding

threshold θl.

SIRl =
Pblr

−α|h|2
PL

i=l+1 Pbir−α|h|2 + IR

, (3)

where IR =
P

k∈Φin
Pr−α

k |hk|2 and
PL

i=L+1 Pbir
−α|h|2 �

0. Here we assume the capacity-achieving channel coding

method is adopted, as a result of which the decoding threshold

θl and the experienced l-th layer data rate Rl should satisfy

Rl = W log(1+θl), where W is the allocated bandwidth [16].

Theorem 1: According to the caching placement policy,

when the first l layers are cached and transmitted, the user can

decode the first l1 layers (l1 = 1, 2, · · · , l) of the requested

video with the probability that

Pr (Dl1,l) =































Pr

(

|h0|2 > Θ1

)

, if C1,

· · · ,

Pr

(

|h0|2 > Θm

)

, if Cm,

· · · ,

Pr

(

|h0|2 > Θl1

)

, if Cl1 ,

(4)

where m = 1, 2, · · · , l1, l1 = 1, 2, · · · , l, l = 1, 2, · · · , L, and

Θm =
θmIR

Pr−α
�

bm − θm

Pl
i=m+1 bl


 . (5)

Cm means the condition satisfying the following equations for

any n = 1, · · · , m − 1, m + 1, · · · , l that






















bn >
θn

θm
bm + θn

m
X

i=n+1

bi, if n < m,

bm <
θm

θn
bn + θm

n
X

i=m+1

bi, if n > m.

(6)

It should be noted that b = 1 when l = 1, which indicates

that all the power should be allocated to BL of fj if only BL

data is cached by the serving BS. Denote El1,l as the event

that the user only decodes the first l1 layers when the first l

layers of the requested video are cached and transmitted, then

the event El1,l happens with the probability that

Pr (El1,l)

=



















Pr

(

|h0|2 > Θ1

)

− Pr

(

|h0|2 > Θl1+1

)

, if M1,

· · · ,

Pr

(

|h0|2 > Θl1

)

− Pr

(

|h0|2 > Θl1+1

)

, if Ml1 ,

0, else.

(7)

with the assumption that Pr

(

|h0|2 > Θl+1

)

� 0, and Mm

(m = 1, · · · , l1) means the conditions that satisfy










Cm,

bm >
θm

θl1+1
bl1+1 + θm

l1+1
X

i=m+1

bi.
(8)
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Proof: The proof of Theorem 1 is shown in

Appendix A.

Based on these probabilities derived above, we recall the

responding process of the typical user’s request. Once the user

initiates a request towards video fj , the request is forwarded

to its serving BS based on the applied serving BS selection

algorithm. The serving BS checks its caching status to see

if fj is cached. If more than one layer is cached by the BS

(l ≥ 2), non-orthogonal transmission is applied and the user

receives different layers of data depending on the suffered

channel condition. If only the base layer data is cached (l = 1),

all the power is allocated to the BL data, and the user may

receive only the BL data or nothing at all. Otherwise, if BL

cache is missed, the requester has to retrieve the content

from its server via backhaul transmission which is beyond

the scope of this paper. Therefore, the typical user adaptively

enjoys different qualities of its requested video from BS

caching with different data rates depending on the adopted

caching placement performance which is expressed by caching

placement policy, and the transmission performance which is

determined by the power allocation policy. Accordingly, the

average enjoyed data rate from BS caching when the typical

user requests a video, i.e., CADR, can be formulated as

R =

J
X

j=1

p (j) Pr [q1 (j)]

�

L
X

l=2

l
Y

i=2

qi (j) (1 − qi+1 (j))

×
l
X

l1=1

Pr (El1,l)

l1
X

k=1

Rk + (1 − q2 (j)) Pr (E1,1) R1

#

,

(9)

where Pr[q1 (j)] represents the probability that the user finds

the BL of fj from its serving BS, and its value is impacted by

applied caching probability and serving BS selection scenario.

From (9), it is obvious that the value of R highly depends on

the parameters J, p, L, Rl, θ,q, and b, etc. Most of them are

known by the network and are fixed during the system run-

ning, while the caching placement policy q = {q1, · · · ,qL}
and the power allocation coefficients b = {b1, · · · , bL} can

be changed. Thus, to maximize the CADR performance,

we establish the following optimization problem and jointly

optimize the two parameters such that

P max
q,b

R (10)

s.t.























































0 ≤ ql(j), bl ≤ 1,
L
X

l=1

bl ≤ 1,

J
X

j=1

L
X

l=1

ql (j) ≤ MS, ∀l ∈ [1, L]

bl1 > θl1

l
X

i=l1+1

bi, ∀l1 ∈ [1, l − 1]

(11)

The first constraint in (11) means the caching placement

policy and power allocation scheme are both probability based.

The second and third constraints are respectively the power

allocation and caching placement parameter constraints, and

the final constraint comes from (22).

IV. PROBLEM SOLUTION

In this section, respectively under the NTS and NCTS

scenarios, we first give the detailed derivation of CADR

performance, and then effectively solve the problem P and

get the sub-optimal caching placement probability and power

allocation coefficient.

A. NTS

As shown in Fig. 1(a), in the NTS scenario, when the typical

user requests a content fj , the request is forwarded to the

nearest BS in Φt. If the nearest BS contains the BL data of

fj , then it is selected as the serving BS and serves the typical

user. Otherwise, if BL data caching is missed at the nearest

BS, the request has to be responded by the remote server.

Therefore the probability that the serving BS caches at least

the BL of content fj is Pr [q1 (j)] = qj . According to [33],

[34], the distance between the serving BS X0 and the typical

user, denoted by r0, follows

fr0
(r) = 2πλtre

−πλtr2

. (12)

Meanwhile, the interference at the typical user comes from

BSs in Φt except X0, thus IR can be represented as

IN
R =

X

k∈Φt\X0

P |hk|2r−α
k . (13)

Here the superscript N means the variable IR is in the NTS

scenario.

Theorem 2: When the first l layers of the requested content

is cached and transmitted, the probability that the requester

only decodes the first l1 layers, which is derived in (7) for

general case under the NTS scenario, is expressed as

Pr

(

EN
l1,l

)

= Pr

(

DN
l1,l

)

− Pr

(

DN
l1+1,l

)

=































1

1 + sN
1 (θ1, α,b)

− 1

1 + sN
1 (θl1+1, α,b)

, if M1,

· · · ,
1

1 + sN
1 (θl1 , α,b)

− 1

1 + sN
1 (θl1+1, α,b)

, if Ml1 ,

0, else

(14)

where 1
1+sN

1
(θl+1,α,b)

� 0, and

sN
1 (θm, α,b) = θ

2
α
mτ

− 2
α

m

Z +∞

θ
−

2
α

m τ
2
α

m

1

1 + u
α
2

du,

τm = bm − θm

l
X

i=m+1

bi. (15)

Proof: The detailed derivation is in Appendix B.

Substituting (14) into (9), we can get the expression of CADR

under the NTS scenario. To have some insightful results and

guidance in the following simulations, here we consider a

special case that L = 2 [11], [16]. In the special case, one

video constitutes one BL and one EL, which respectively

corresponds to standard definition (SD) and high definition

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on May 19,2024 at 20:39:23 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: PERFORMANCE ANALYSIS AND OPTIMIZATION FOR LAYER-BASED SCALABLE VIDEO CACHING 1499

(HD) versions of a video. Accordingly, the power allocation

parameter b = {b1, b2} is degraded to b1 = b and b2 = 1 − b.

The CADR performance under this special case is

RN
L=2 =

J
X

j=1

p (j) q1 (j)
�

q2 (j)
�

Pr

(

EN
1,2

)

RB

+ Pr

(

EN
2,2

)

(RB + RE)
�

+ [1 − q2 (j)] Pr

(

EN
1,1

)

RB

�

,

where Pr(E
N
1,2), Pr(E

N
2,2), and Pr(E

N
1,1) are given in (14), and

RB � R1 and RE � R2 for illustration purpose. Therefore,

the optimization problem P in (10) under the NTS case can

be formulated as

PN
N=2 max

q,b
RN

L=2 (16)

s.t.



















J
X

j=1

qB(j)RB + qE(j)RE ≤ MS ,

θ1

θ1 + 1
< b ≤ 1,

(17)

This is a non-convex optimization since the objective function

is non-convex with respect to power allocation parameter b and

caching placement probability q. Achieving the global optimal

solutions q∗ = {q∗B(1), · · · , q∗B(J), q∗E(1), · · · , q∗E(J)} and b∗

needs more efforts and delicate analysis, and we will take

it as our future work. Instead, to effectively calculate the

sub-optimal solutions, we apply an iteration-based algorithm

in which the original problem is decomposed into multiple

sub-problems and are solved separately. As shown in Algo-

rithm 1, we initially set b(0) = 0.5 and q(0) = {0, · · · , 0}1×2J ,

and derive the local optimal b and q iteratively. Specifically,

in each iteration k > 0, given b(k−1), the optimization

of (16) becomes a standard convex problem, and can be

solved easily using Karush-Kuhn-Tucker (KKT) condition or

fmincon function in MATLAB. Recall the problem in (16)

with local optimal q(k) and it is still non-convex due to the

complex function in (15). Thus, we can get its local optimal

solution b(k) by using one dimensional exhaustive algorithm.

Concretely, we search all the potential b from θ1

1+θ1
to 1 with

step �b and select the b that achieves the highest CADR

performance as the local optimal b(k). The complexity of the

searching process is O
�

1
�b(1+θ1)




. The progress goes to the

next iteration (k+1) with b(k) and q(k), and terminates when

the CADR performance becomes stable after K iterations. The

total complexity of the algorithm should be O
�

1
K�b(1+θ1)




.

Typically, the algorithm converges after K = 2 or 3 iterations.

B. NCTS

According to the caching status of video content fj and the

thinning theorem of PPP, all the BSs in Φt can be partitioned

into two parts: BSs with the content fj and BSs without

the content fj , following PPP Φt,j and Φt,j0 with intensities

λt,j = λtq1(j) and λt,j0 = λt [1 − q1 (j)], respectively. Here

the mentioned term BS with content fj refers to the BS that

caches the BL data of fj . Under the NCTS scenario, the typical

user’s request fj will be forwarded to the nearest BS in Φt,j

Algorithm 1 Iteration-Based Algorithm for PN
L=2

Input:

1:
(

q(0) =
�

q1
(0),q2

(0)
�

, b(0)
)

; // initial caching place-

ment policy and power allocation policy;

2: k = 0;

3: Calculate � = R
N(0)
L=2;

Output:

4: while � > 10−3 do

5: k = k + 1;

6: Solve PN
L=2 with b(k−1) and get the caching placement

parameters q1
(k) accordingly;

7: Solve PN
L=2 again with q1

(k) and q2
(k) and calculate

the b(k);

8: Calculate R
(k)
L=2 with

(

q1
(k),q2

(k), b(k)
)

;

9: � = R
N(k)
L=2 − R

N(k−1)
L=2 ;

10: end while

11: K = k; // K denotes the required number of iterations;

which may not be the nearest one in Φt. In this case, the

user has the probability of Pr [q1 (j)] = 1 to find its requested

video from the serving BS, and the distance from the user to

the selected BS has the distribution that

fr0
(r) = 2πλtq1(j)re

−πλtq1(j)r2

. (18)

Also the interfering BSs affecting the typical user comprise

two parts: BSs except X0 in Φt,j and BSs in Φt,j0 , thus,

INC
R =

X

k∈Φt,j\X0

P |hk|2r−α
k +

X

k∈Φt,j0

P |hk|2r−α
k . (19)

Theorem 3: Substituting INC
R into (4), a typical user can

successfully receive the lowest l1 layers of its requested content

with a probability that

Pr

(

DNC
l1,l

)

=











F (θ1) , if C1

· · · ,

F (θl1) , if Cl1

(20)

where

F (θm)

=
q1 (j)

q1 (j)+q1 (j) sNC
1 (θm, α,b)+(1 − q1 (j)) sNC

2 (θm, α,b)
,

and sNC
1 (θm, α,b) and sNC

2 (θm, α,b) are shown in (27). Fur-

ther, the user only decodes the first l1 layers with probability

Pr

(

ENC
l1,l

)

= Pr

(

DNC
l1,l

)

− Pr

(

DNC
l1+1,l

)

=



















F (θ1) − F (θl1+1), if M1,

· · · ,

F (θl1) − F (θl1+1), if Ml1 ,

0, else.

(21)

Proof: The detailed proof of Theorem 3 is shown in

Appendix C.

The following derivation of RNC and the corresponding opti-

mization is similar to that in the NTS case. Here we omit the

repeated description for brevity.
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TABLE I

SIMULATION PARAMETER SETTINGS

V. PERFORMANCE EVALUATIONS

In this section, we carry out a series of simulations and

numerical studies to evaluate the performance of the intro-

duced LCNOT scheme. The parameters setting in simulations

are given in TABLE I, unless otherwise stated. In order to

study the impact of content popularity, we need to specify

the distribution of the content popularity vector p. Complying

with the widely applied distribution in the literature [11],

in this section, we assume the content popularity follows Zipf

distribution with skewness parameter γ. That is, the popularity

of content fj can be expressed as p(j) = j−γ

�
J
i=1

i−γ
.

To prove the superiority of our proposed scheme, we also

investigate the following schemes in this section, and both

NTS and NCTS scenarios are considered for these benchmark

schemes. It is noted that the parameters in these schemes are

also optimized.

• Layer-based caching with orthogonal transmission

(LCOT): In the caching placement phase, layer-based

caching is considered and orthogonal transmission is

applied in the content delivery [16].

• Content-based caching with non-orthogonal transmission

(CCNOT): Content-based caching placement policy is

adopted which means if one video content fj is deter-

mined to be cached, all the layers are cached accordingly.

Also, NOT is adopted in the content delivery phase.

• Content-based caching with orthogonal transmission

(CCOT): Content-based caching placement and

orthogonal transmission are respectively applied in

the caching placement phase and content delivery

phase.

A. Influence of BL Data Rate RB

In this part, the impact of BL data rate on CADR perfor-

mance is studied. From (16), we can find increasing RB can

directly improve the value of CADR. On the other hand, due to

the relationship that θB = 2RB/W−1, the increase of RB leads

to a higher decoding threshold θB , which further decreases

the probabilities of successfully decoding BL of data and

EL of data. As a comprehensive result, depending on which

parameter dominates the final CADR performance, it may be

not a monotonous trend for the CADR performance with RB

increases from 1 Mbit/s to 6 Mbit/s, as shown in Fig. 2(a).

From this figure, we have the following observations. For

any compared schemes, the NCTS scenario performs better

than the NTS scenario. Among all the potential schemes, the

introduced LCNOT works the best while CCOT scheme works

the worst. When RB is small, CCNOT outperforms the LCOT,

with CADR approaching that of the introduced LCNOT. But

as RB increases, the LCOT performs better and approaches the

LCNOT gradually. This is because the threshold to success-

fully decode the base layers of the retrieved video increases

with RB . Since the successful transmission of base layer is

a prerequisite of decoding enhance layers of the retrieved

content, the optimal solutions tend to allocate more power for

the base layer to improve its decoding probability. With almost

all power allocated to the base layer of the transmitted video,

the non-orthogonal transmission degrades to the orthogonal

transmission, and the LCOT approaches LCNOT accordingly.

This indicates that in the small RB regime, the caching place-

ment policy design dominates the CADR performance and

the layer-based caching policy is superior to the content-based

caching policy, but the adopted caching transmission has very

limited influence on the CADR. On the contrary, in the high

RB regime, the caching transmission has a dominated impact

on the CADR while the applied caching placement policy does

not impact CADR performance too much. Therefore, we can

focus on the caching placement policy design in the small

RB regime, while concentrating the optimization of power

allocaton when RB is large. What is more, we also give the

simulation results of all the compared schemes, which match

the theoretical results quite well, verifying the accuracy of the

theoretical analysis.

In Fig. 2(b), the caching hit ratio (CHR) of BL and EL

for the introduced LCNOT scheme under the NTS case and

the NCTS case are respectively given. Different from the CHR

definition in the literature that describes the average probability

that one arbitrary user’s requested content is cached by any

local node, here we define CHR of one layer of content as

the average probability that the particular layer of one user’s

requested content is cached by local nodes and is successfully

transmitted and decoded. With RB increases, the required

space to cache the BL of one content also increases, as a

result of which, the caching capacity in terms of bits keeps

unchanged but that in terms of number of layers and contents is

reduced. This observation is also found in Fig. 2(c). Therefore,

the CHR of EL and BL data is a decreasing function of RB

with other parameters fixed. Since the successful decoding of

BL data is a precondition to decode EL of data, the CHR of

EL is always less than that of BL data. In addition, from the

comparison of NTS and NCTS we can observe the NCTS case

cares more about the caching and transmission of BL data than

the NTS case and the LCNOT degrades to LCOT scheme in

the RB > 3 regime in the NCTS scenario.

In Fig. 2(c), the optimal power allocation coefficient b

for the LCNOT scheme under the NTS case and the NCTS

case are respectively given as a function of RB . With RB

increases, the θB increased accordingly and the BS should

offer more power to the BL to ensure its successful decoding,

as a result of which the optimal b is an increasing function

of RB for both NTS and NCTS cases. When RB > 3,

all the power are allocated to the BL in the NCTS case.

Also, in Fig. 2(d), we study the optimal caching policies

for BL and EL of data under NTS scenario. The caching
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Fig. 2. CADR comparison with different BL data rates RB .

probability is a decreasing function of content index fj . This

is intuitive since the popularity of a content with smaller

index is higher, and more requests target such content. Allo-

cating larger caching probabilities to more popular contents

can achieve higher CADR performance. Another interesting

observation is that the probability based caching degrades to

the popularity-based caching that only the most popular BL

and EL of data are cached until the caching space is fully

utilized. It should be noted that since NTS case and NCTS

case have similar caching probabilities, here we only present

the optimal caching probabilities in the NTS case fo the sake of

illustration.

B. Influence of Popularity Skewness Parameter γ

In this part, we propose to analyze the impact of content

popularity skewness parameter γ on the CADR performance.

Specifically, with a higher γ, users’ requests are more skewed

to the most popular videos. By caching the most popular

contents, users’ requests are more likely to be hit by node

caching, as a result of which the CADR performance can be

improved. Therefore, as shown in Fig. 3(a), the enjoyed CADR

performance of all the schemes is an increasing function of

γ. In LCOT, all the caching capacity is allocated to BL data

because no EL will be involved in the transmission, and every

BS can cache the BL of almost all the contents, thus the change

of γ does not impact its performance too much. Also, the gap

between NOT based schemes (LCNOT and CCNOT) and OT

based schemes (LCNOT and CCOT) increases but the gap

between layer-based caching policy and content-based policy

with the same transmission scheme becomes narrow. This

indicates that caching transmission plays a more important

role with γ increases. Some other observations consistent with

Fig. 2(a) can be seen such as the match of theoretical results

and simulation results, and the outperformance of NCTS

scenario against NTS scenario.
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Fig. 3. CADR comparison with different popularity skewness parameters γ.

From Fig. 3(b) which plots the CHRs of BL and EL of

data we have the following observations. The CHR of BL

of data decreases when γ changes from 0 to 0.3, and then

increases gradually. With γ increases, while the CHR of EL

of data always increases with γ. This can be explained as

follows. When γ = 0, all the contents have homogeneous

popularity and users have the same probability to request

any content. To handle this, the BS prefers to cache all the

BL of every content uniformly. This also can be observed

in Fig. 3(d) (see when γ = 0). Therefore, the CHR of

BL reaches its maximum in this case. When γ > 0, the

popularity of different contents differ and the gap goes shape

with γ. The BS allocates more caching capacity to EL to

achieve higher CADR performance (see the optimal caching

when γ = 1.2 in Fig. 3(d)). As a consequence, the CHR of

BL decreases and that of EL increases. With users’ requests

concentrating to the most popular contents, the CHR of BL

increases gradually, but never exceeds its maximum value

when γ = 0.

C. Influence of Path Loss Exponent α

Besides the influence of content related parameters (data

rate RB), caching placement related parameter (popularity

skewness parameter γ), as shown in Fig. 4(a), in this part

the impact of transmission related parameter, i.e., path loss

exponent α on the CADR is studied. With α increases, the

transmitted signals suffer less path loss and from Fig. 4(a)

we can see the CADR of all the schemes is an increasing

function of α. As for the comparison of different schemes,

the CCOT scheme performs the worst while the introduced

LCNOT scheme performs the best. When α is small, the

LCOT and CCNOT schemes perform quite similar. But with

α increases, LCOT falls behind gradually. This indicates that
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Fig. 4. CADR comparison with different path loss exponents α.

the OT based scheme is not sensitive to the change of α

(see LCOT and CCOT). In orthogonal transmission, BL of

data gets all the transmit power and almost all transmission

are successful, thus the CADR performs relative stable with

α. In comparison, the power is partitioned for BL and EL

in the non-orthogonal transmission, not all the transmission,

especially the transmission of EL, is successful. Thus, the

increase of α improves the CADR performance a lot in these

NOT schemes.

In Fig. 4(b) the trends of CHR of BL and EL are respectively

plotted for the proposed LCNOT scheme. From the figure

we can observe that the CHR of BL performs stable and

higher than that of EL. This is because the transmission of

BL data has higher chance to be successfully decoded but the

successful transmission probability improves for the EL data

with α. In this case, the increase of α mainly impacts the

transmission of EL data rather than the BL. It is worthy to

note that with the increase of α the BS prefers to allocate

more caching space to the EL data, as shown in Fig.4(d);

but the transmit power allocation is not impacted as shown in

Fig. 4(c). Therefore, under the NCTS, the BS allocates more

caching space to EL from BL when α increases from 4 to

4.5, and the CHR of BL decreases suddenly while that of EL

increases accordingly. Together with Fig. 2(c) and Fig. 3(c),

we can find an interesting observation that in the proposed

LCNOT with iteration based solution, the optimal b does

not change with caching placement related parameters and

transmission environment as long as the caching probabilities

are not all zeros.

VI. CONCLUSION

In this article, we investigated the introduced LCNOT

scheme for scalable video caching in cache-enabled wire-

less networks in terms of CADR. Two different serving BS

selection algorithms named NTS and NCTS were considered.
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Using stochastic geometry, the transmission performance in

terms of the successful transmission probability of each layer

when each video can be decoded into generalized layers

was first derived. Then the CADR was characterized and

maximized by jointly optimizing the caching placement pol-

icy and the caching transmission scheme. The optimization

problem was effectively solved by using an iteration-based

algorithm. Finally, numerical results were provided and were

verified by Monte Carlo simulations. Results showed that

the introduced LCNOT scheme outperforms the benchmark

schemes, and NCTS performs better than NTS by adopting

optimal caching placement probabilities and power allocation

policy.

APPENDIX A

PROOF OF THEOREM 1

A user can decode the first l1 layers of its requested video

when the first l layers are cached are cached and transmitted

with the probability that

Pr (Dl1,l) = Pr (SIR1 >θ1, · · · , SIRm >θm, · · · , SIRl1 >θl1)

= Pr

�

b1Pr−α
0 |h0|2

Pl
i=2 biPr−α

0 |h0|2 + IR

> θ1, · · · ,

× bl1Pr−α
0 |h0|2

Pl
i=l1+1 biPr−α

0 |h0|2 + IR

> θl1

�

(a)
= Pr

(

|h0|2 > Θ1, · · · , |h0|2
× > Θm, · · · , |h0|2 > Θl1

)

,

where Θm is formulated in (5).

bl1 > θl1

l
X

i=l1+1

bi, (22)

in operation (a) should be satisfied for l1 = {1, · · · , l} and
Pl

i=l1+1 bi := 0. θm

bm−θm

�
l
i=m+1

bi
> θn

bn−θn

�
l
i=n+1

bi
holds

for any n ∈ {1, · · · , m − 1, m + 1, · · · , l1} in Cm that

Θm > max{θ1, · · · , θm−1, θm+1, · · · , θl1}, which further can

be transformed to (6). Accordingly, in this case the user only

decodes the first l1 layers with the probability that

Pr (El1,l) = Pr (SIR1 >θ1, · · · , SIRl1 >θl1 , SIRl1+1 < θl1+1)

= Pr (SIR1 > θ1, · · · , SIRl1 > θl1)

− Pr (SIR1 > θ1, · · · , SIRl1+1 > θl1+1)

= Pr (Dl1,l) − Pr (Dl1+1,l)

=



















Pr

(

|h0|2 >Θ1

)

−Pr

(

|h0|2 >Θl1+1

)

, if M1,

· · · ,

Pr

(

|h0|2 >Θl1

)

−Pr

(

|h0|2 >Θl1+1

)

, if Ml1 ,

0, else.

(23)

In the derivation, Pr

(

|h0|2 > Θl+1

)

= Pr (Dl+1,l) � 0 is

applied.

APPENDIX B

PROOF OF THEOREM 2

In NTS scenario, Pr

(

|h0|2 > Θm

)

derived in (4) is updated

to

Pr

(

|h0|2 > ΘN
m

)

= Pr

�

|h0|2 >
θmIN

R

Pr−α
0 τm

�

= Er0

�

LIN
R

�

θm

Pr−α
0 τm

��

= Er0







exp



−2πλt

Z ∞

r0

1

1 + τmθ−1
m

�

r
r0


α rdr











= Er0

�

exp

�

−πλtr
2
0θ

2
α
mτ

− 2
α

m

Z ∞

θ
−

2
α

m τ
2
α

m

1

1 + u
α
2

du

��

= Er0

�

exp
�

−πλtr
2
0s

N
1 (θm, α,b)

��

=

Z ∞

0

2πλtr0 exp
�

−πλt

�

1 + sN
1 (θm, α,b)

�

r2
0

�

dr0

=
1

1 + sN
1 (θm, α,b)

, (24)

where LT N
R
(s) is the Laplace transform of random variable

IN
R at s with fixed r0 and the detailed derivation of (24)

can be found in [22]. Further, we can get the expressions of

Pr

�

DN
l1,l




− Pr

�

DN
l1+1,l




by substituting (24) into (7), and

the probability that the typical user can only decode the first

l1 layers of its requested content in NTS case Pr

�

EN
l1,l




can

be derived as shown in (14). Theorem 2 is proved accordingly.

APPENDIX C

PROOF OF THEOREM 3

Similar with NTS case, in the NCTS case

Pr

(

|h0|2 > ΘNC
m

)

= Pr

�

|h0|2 >
θmINC

R

Pr−α
0 τm

�

= Er0

�

LINC
R

�

θm

Pr−α
0 τm

��

, (25)

where INC
R is shown in (19), and

LINC
R

�

θm

Pr−α
0 τm

�

= exp



−2πλt,j

∞
Z

r0

r

1 + θ−1
m τm

�

r
r0


α dr





× exp



−2πλt,j0

∞
Z

0

r

1 + θ−1
m τm

�

r
r0


α dr





= exp

�

−πλt,jr
2
0θ

2
α
mτ

− 2
α

m

Z ∞

θ
−

2
α

m τ
2
α

m

1

1 + u
α
2

du

�

× exp

�

−πλt,j0r
2
0θ

2
α
mτ

− 2
α

m

Z ∞

0

1

1 + u
α
2

du

�

= exp
�

−πλt,jr
2
0s

NC
1 (θm, α,b)

�

exp
�

−πλt,jr
2
0s

NC
2 (θm, α,b)

�

= exp
�

−πr2
0

�

λt,js
NC
1 (θm, α,b) + λt,j0s

NC
2 (θm, α,b)

��

,

(26)
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where














sNC
1 (θm, a,b) = θ

2
α
mτ

− 2
α

m

Z ∞

θ
−

2
α

m τ
2
α

m

1

1 + u
α
2

du,

sNC
2 (θm, a,b) = θ

2
α
mτ

− 2
α

m

Z ∞

0

1

1 + u
α
2

du.

(27)

The derivation of (26) is detailed in [22]. Subsisting (26)

and (18) back to (25), the closed form expression of

Pr

(

|h0|2 > ΘNC
m

)

can be achieved, and if we substitute it back

to (7), then Pr

�

DNC
l1,l




and Pr

�

ENC
l1,l




can be derived as shown

in (20) and (21), respectively. We omit the detailed description

here for simplicity, and Theorem 3 is proved accordingly.
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