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Algorithms for the estimation of gaze direction from mobile and video-based eye trackers typically involve
tracking a feature of the eye that moves through the eye camera image in a way that covaries with the shifting
gaze direction, such as the center or boundaries of the pupil. Tracking these features using traditional computer
vision techniques can be difficult due to partial occlusion and environmental reflections. Although recent
efforts to use machine learning (ML) for pupil tracking have demonstrated superior results when evaluated
using standard measures of segmentation performance, little is known of how these networks may affect
the quality of the final gaze estimate. This work provides an objective assessment of the impact of several
contemporary ML-based methods for eye feature tracking when the subsequent gaze estimate is produced
using either feature-based or model-based methods. Metrics include the accuracy and precision of the gaze
estimate, as well as drop-out rate.

CCS Concepts: » Computing methodologies — Tracking; Artificial intelligence; Computer vision.
Additional Key Words and Phrases: neural networks, eye tracking, gaze estimation, virtual reality

ACM Reference Format:

Kevin Barkevich, Reynold Bailey, and Gabriel J. Diaz. 2024. Using Deep Learning to Increase Eye-Tracking
Robustness, Accuracy, and Precision in Virtual Reality. Proc. ACM Comput. Graph. Interact. Tech. 7, 2, Article 27
(June 2024), 16 pages. https://doi.org/10.1145/3654705

1 INTRODUCTION

Although many researchers that use eye tracking are motivated to explore gaze behavior outside
of the laboratory, in more natural experimental contexts, some will hesitate when faced by the
large differences in data quality between desktop (i.e. remote) and head-mounted (i.e., mobile) eye
trackers. To a large degree, the difference in quality between remote and head-mounted eye trackers
is related to the ability for each eye tracker to accurately identify features in the eye image, such
as the iris [Chaudhary 2019] or pupil boundary or centroid [Fuhl et al. 2015a,b; Javadi et al. 2015;
Kassner et al. 2014; Santini et al. 2017, 2018; Swirski et al. 2012] — features that are informative
because they move through the eye image in a way that covaries with the shifting gaze direction.
The tendency for mobile eye trackers to use smaller eye cameras and to capture lower resolution
eye images for the purpose of reducing size, power consumption, and latency has consequences on
the subsequent gaze estimate. The problem is exacerbated by the need to place the eye cameras
at far oblique angles in order to minimize the occlusion of the wearer’s field of view [Fuhl et al.
2016b]. Unlike remote eye trackers that operate under controlled lighting conditions, mobile eye
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trackers often suffer from data dropouts when the infrared eye cameras are unable to sufficiently
compensate for the dynamic range of ambient infrared illumination in the natural environment.
Given the importance of feature
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tracking solution. For the purposes of this study, this gaze estimate is obtained through the use
of the open-source Pupil Labs gaze mapping software [GmbH 2022b]. Two algorithms were used
for gaze mapping. The Pupil Labs feature-based gaze mapper was included as it provides a simple
polynomial mapping between pupil location and gaze direction, and because its straightforward
and transparent nature suggests that results will generalize well to other gaze mapping systems. In
addition, we tested with a more contemporary but opaque algorithm developed to address some of
the known shortcomings of the simple polynomial mapping: the Pupil Labs 3D model-based gaze
mapper. Our general approach involves testing and reporting on the impact of several contemporary
eye segmentation networks on the spatial accuracy, precision, and robustness to dropouts of the
final gaze estimate, while other properties of the eye tracking pipeline remain unchanged.

2 BACKGROUND
2.1 Sources of error in pupil detection

There are many sources of inaccuracy and imprecision that can impact pupil detection. These
can stem from hardware limitations such as low spatial/temporal camera resolutions and extreme
off-axial camera angles [Fuhl et al. 2016b] (which is especially prevalent inside virtual reality
headsets), or from environmental factors such as reflections on the surface of the eye or poor
lighting. Individual differences such as the amount of contrast between the pupil and the iris when
imaged in the near-infrared, and obstructions from eyelashes and eyelids also play a role [Fuhl
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et al. 2016b]. Some algorithms for pupil segmentation, including the algorithm adopted by Pupil
Labs [GmbH 2022a; Kassner et al. 2014], involve segmentation of the gray-scale histogram and
rely on the assumption that the pupil is the darkest set of pixels within a region of interest in the
eye-image. It is for this reason that eyelashes can be problematic, especially when darkened and
made thicker by mascara. Some of these issues, such as low spatial/temporal camera resolutions
and poor camera angles, cannot be easily overcome using only software. Many issues, however,
may be compensated for with better algorithms that are more robust to occlusion, low contrast,
and varying lighting conditions.

2.2 The effect of feature localization accuracy on the gaze estimate

The specific effect that degraded feature detection may have upon the subsequent gaze estimate
will differ depending on the nature of the subsequent gaze estimation algorithm. Many video based
eye trackers adopt feature-based algorithms [Mackworth and Thomas 1962; Merchant 1967] which
model the direct relationship between the movement of features in the eye image (e.g. the pupil
centroid) and the location of gaze on an outward facing scene camera. Although feature-based
algorithms were introduced in the 1960’s, some contemporary eye trackers, including the Eyelink
1000 [Ltd 2023] still rely upon feature-based methods. Because feature-based algorithms do not
typically condition the immediate estimate on the basis of prior information (with the occasional
exception, such as [Li et al. 2005]), an inaccurate feature localization will have an immediate and
direct influence on accuracy through an inaccurate mapping to the gaze location within scene
camera coordinates. However, some newer systems instead utilize 3D model-based algorithms for
gaze estimation, which monitor the movement of features for the purpose of accumulating evidence
that, through a process of error-minimization, allows them to refine the estimated pose of a 3D
geometric model of the human eye within eye-camera space [Kassner et al. 2014; Swirski and
Dodgson 2013]. The contribution of poor feature localization on the gaze estimate of a 3D model-
based system is less direct, because features serve two purposes: 1) at a relatively low temporal
frequency, eye features contribute to the incremental updating of the model used for subsequent
gaze estimates, and 2) at a higher temporal frequency, the eye feature will then be projected upon
this 3D geometric eye-model for the purpose of ray-casting (e.g. gaze from the eyeball center through
the pupil center). This information about temporal update rate is important when attempting to
diagnose the cause of an inaccurate gaze estimate. If a gaze estimate is inaccurate on a specific
frame, it is difficult to attribute the cause to an inaccurate pupil segmentation on that frame, or to a
3D eye model that was poorly fit to unreliable data from preceding frames.

2.3 Machine learning methods for eye image segmentation

Eye feature segmenting solutions attempt to provide a semantic label for each pixel in the image
corresponding to the various parts of the eye (e.g. pupil, iris, sclera, skin/other). Machine learning-
based approaches to this type of semantic segmentation have progressed significantly in recent
years, with the availability of eye feature semantic segmentation datasets [Garbin et al. 2019] giving
rise to neural networks designed to locate the pupil on a per-pixel level [Chaudhary et al. 2019;
Kothari et al. 2022, 2020; Wang et al. 2021; Yiu et al. 2019]. Two state-of-the-art systems include
RITnet [Chaudhary et al. 2019] and EllSeg/EllSegGen [Kothari et al. 2022, 2020]. The outputs of
RITnet and EllSegGen differ from each other in that while RITnet always predicts pixel-for-pixel
masks of what category of eye feature is shown in the input image, EllSegGen (as well as ESFnet
[Wang et al. 2021], a similarly structured neural network) predicts the location of its eye features
even when they are obscured by obstructions such as eyelashes and the upper eyelid (Fig. 2).
Despite these semantic segmentation solutions being high-performing, they have not yet been
widely adopted for use in the field of eye-tracking.
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Fig. 2. Comparison of semantic segmentation techniques applied to 192x192px eye images. Top: original
images with Pupil Labs’ default pupil prediction (orange). Rows 2, 3, 4: semantic segmentation results for
neural network-based techniques RITnet, EllSegGen, and ESFnet respectively. EllSegGen and ESFnet are also
capable of directly predicting the ellipse parameters that encapsulate the pupil (orange) and iris (light green).

There are several possible explanations for the lag between progress in feature detection and
its incorporation into commercial or open-source eye tracking pipelines. One possibility is that
those who might be interested in the technology, including the broader scientific community, do
not have the technical foundation to understand the connection between feature extraction and
downstream real-world eye tracking performance. A common metric for measuring the quality of
a semantic segmentation neural network is the intersection over union (IoU) score, which is a ratio
of the number of pixels that were predicted correctly over the number of pixels with that label
overall. The closer this score is to 100 (since this ratio is commonly multiplied by 100), the better
the neural network is said to have performed. Although the modern pupil segmenting solutions
that have been discussed are demonstrated to be very effective at locating the pupil in a broad
range of eye images, with mean IoU (mloU) scores across semantic labels (e.g., pupil, iris, sclera,
other) as high as 95.3 [Chaudhary et al. 2019], the potential impact that these improved feature
tracking algorithms have on the quality of the final gaze estimate has not been well characterized.
It is also notable that many of these networks increase the computational load, and not all are able
to run in real-time.

Intuitively, since semantic segmentation neural networks are capable of filtering out unwanted
information such as poor lighting and the occlusion of eye features, and were trained on eye
images representing a large variety of different eye shapes and colors, we expect that their use
as a pre-processing step will improve the accuracy, precision, and dropout rate of the final gaze
estimate. Below, we present the results of an objective evaluation of the contribution of improved
feature detection models on the quality of the final gaze estimate in a popular open-source eye
tracker integration into virtual reality by Pupil Labs. The study makes the following contributions:

e We provide an open-source pipeline for the batch processing of eye tracking videos to obtain
gaze estimates using one or more segmentation neural networks as a feature detector.
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e Using this pipeline, we provide an objective evaluation of three neural networks (RITnet,
EliSegGen, and ESFnet) when compared to the widely-used, open-source, commercial feature
detector provided by Pupil Labs.

e We provide concrete, data-driven recommendations on which feature detection neural net-
work to use in terms of dropout rate, accuracy, and precision.

3 METHODOLOGY
3.1 Privacy & Ethics Statement

In this IRB-approved study, subjects gave informed consent before participating. They were given
the option to end data collection at any time. During the setup, the VR headset and eye-tracker
hardware were described to the participant and they were allowed to ask questions before data
collection began.

3.2 Participants

10 participants (2 females, 7 males, and 1 that did not indicate) volunteered to participate in
this study. All participants reported normal and corrected-to-normal vision with no color vision
abnormalities.

3.3 Hardware & Data Collection

Eye-tracking data was collected from participants using the HTC Vive Pro virtual reality headset
equipped with the Pupil Labs HTC Vive Pro insert (Fig. 3). The insert captured video of each eye
under illumination in the near-infrared. For each participant capture occurred at both a spatial
resolution of 192x192px and a sampling rate of 200Hz, and at a spatial resolution of 400x400px and
a sampling rate of 120Hz. The headset and insert were connected to one of two computers running
the open-source Pupil Labs eye-tracking suite [GmbH 2022b] for data capture.

Pupil Capture version 3.5.14 was used to collect
the data. This version was modified to facilitate auto-
matic offline re-calibration of gaze data. The modifi-
cation involves saving the 3D position of calibration
targets presented to a file, so that they can be later
used for the batch-processing of multiple recording
sessions using multiple eye feature detection algo-
rithms'.

The data collection sequence was performed us-
ing Pupil Labs’ HMD-Eyes? integrated into Unity®
version 2020.3.17f1. Gaze data, as well as data con-
cerning the location of calibration and assessment

Fig. 3. Pupil Labs HTC Vive Add-On, consisting
of two infrared eye cameras and LEDs that fit
inside the eye cavity of the HTC Vive Pro VR
headset.

points was exported using the Unity Experiment
Framework [Brookes et al. 2020]. Each calibration
and assessment point was sampled with timestamps
that facilitated the post-hoc association with specific
frames in the eye video of both the left and right eye.
Each participant was asked to complete four separate data collection sessions. All four sessions
had their cameras’ exposure settings set to "automatic” within the Pupil Labs software. Each session

Ihttps://github.com/PerForm-Lab-RIT/Deep-Learning-Eye-Tracking

Zhttps://github.com/pupil-labs/hmd-eyes
Shttps://unity.com/
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involved an initial process of eye tracker calibration followed by an assessment routine, both of
which involved fixating on a sequential series of gaze targets presented within head-centered
coordinates, and both of which are described in greater detail below.

The calibration sequence was one of Pupil Labs’ default sequences provided with their Unity
plugin. The presentation sequence is automatically timed, with each target presented for 1.5 seconds
against a mid-gray background. Six calibration points were presented at 3 different depths (0.4,
0.65, and 2.0 meters), fixed in place relative to the participant’s head. At each depth, 5 outer points
were equally spaced around a central point, forming the shape of a pentagon. The layout of these
calibration points and the multiple depths that they were rendered at were deliberately chosen to
cover a broad range of the participants’ field of view within the headset, as well as multiple depths
in front and behind the virtual reality headset’s focal distance of 0.65 meters. 30 timestamps were
recorded for each calibration point after a 0.3 second delay following its appearance in front of the
subject. These timestamps would later be associated with simultaneously occurring pupil positions
in each of the eye videos for the purposes of calibration. The calibration algorithms are further
discussed in Section 3.5.

The assessment routine involved sequential fixations at 27 assessment targets presented within a
head-centered frame of reference against a mid-gray background. These targets were organized into
degrees of eccentricity and were uniformly spaced in 8-point circles 20, 30, and 40 visual degrees
in diameter, each with a target within the center of the visual field. All assessment targets were
presented at a depth of 1 meter, and only one target was visible at a time. The assessment targets
were initially presented as a black disc with a visible diameter of 1 degree that, upon trigger by the
experimenter, would turn yellow for 1 second. Participants were informed that it was during this
recording period that gaze data was logged to file. Participants used a hand-held audible clicking
device to signal to the experimenter when they were in fixation and ready to initiate recording for
that assessment target, with the instructed goal of avoiding blinks while the target was yellow. The
participant would trigger recording three times for each target before the experimenter used the
keyboard to transition to the next assessment target, where the process was repeated.

3.4 Eye image segmentation and pupil detection algorithms

Our evaluations, which were conducted using the Pupil Labs integration (developed by Pupil Labs
GmbH [GmbH 2022a] in Berlin, Germany) into the HTC Vive Pro, utilize the associated Pupil Labs
gaze estimation software framework. We chose to use the Pupil Labs framework because it is widely
adopted, open source, and can be modified to provide tests with the appropriate controls. We chose
to evaluate the influence of segmentation on the gaze estimate using the Pupil Labs HTC Vive Pro
integration rather than the Pupil Labs Core tracker (mobile with a glasses-like form-factor) because
the use of virtual reality facilitates the controlled presentation of gaze targets at known locations
within the visual scene. Our tests utilize offline processing because many of the segmentation
networks tested were not designed for real-time use, and cannot maintain the frame-rates necessary
for real-time gaze estimation.

The default Pupil Labs pupil detection algorithm has several configurable parameters that can
influence the quality of the pupil detection process. The first of these properties is the intensity
range, a value that determines the darkness threshold of what is considered to be a pupil. The
default intensity range is 23, which was found to be sufficient for the 192x192px eye videos. However,
we found that pupil detection in the 400x400px eye videos was more accurate using an intensity
range value of 10. The second and third properties are the pupil size min and pupil size max, which
determine the minimum and maximum radii of what is considered to be a pupil. The defaults of
these are 10px and 100px respectively, and these values were found to be sufficient for both the
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192x192px and 400x400px data. Hereafter, the unadulterated Pupil Labs pupil detection algorithm
will be referred to as the "native" algorithm.

In addition to the native algorithm, the segmentation neural networks RITnet, EllSegGen, and
ESFnet were used as preprocessing steps for the Pupil Labs pupil detection algorithm, as shown in
(Fig. 1). This means that the segmentation masks produced by the neural networks were given to
the Pupil Labs pupil detector instead of the raw eye image. EllSegGen is broken down into three
separate algorithms: EllSegGen, EllSegGen (Direct Pupil), and EllSegGen (Direct Iris). These algorithms
represent the use of EllSegGen as a semantic segmentation pre-processing step for the default Pupil
Labs pupil detector, the use of EllSegGen on its own as a feature detector by extracting the pupil
location directly from it, and the use of EllSegGen on its own as a feature detector by extracting
the iris location directly from it respectively. ESFnet also has this capability, and can be broken
down further into ESFnet and ESFnet (Direct Pupil). This processing and the subsequent analysis
were done offline rather than at the time of data collection. It should be noted that, even though we
performed the data processing and analysis offline, RITnet in particular is capable of performing in
realtime (>300hz) on modern hardware due to its small model size [Chaudhary et al. 2019]. RITnet
produces a segmentation mask in which each pixel of the image is assigned a group label, but was
not trained to predict the parameters of the ellipse that most accurately encapsulates that pupil.
EllSegGen and ESFnet, on the other hand, are capable of producing a per-pixel segmentation mask
of the eye as well as directly predicting the parameters of the ellipse that encapsulates the pupil
without the need for secondary processing with a pupil detector. For this reason, we used all three
neural networks as pre-processing steps to the Pupil Labs pupil detection algorithm as well as used
EliSegGen and ESFnet on their own as pupil detection algorithms.

The eye camera video obtained during the data collection phase was passed through a pupil
detection sequence frame-by-frame in order to obtain a continuous track of the participant’s pupil.
In order to test the different preprocessing algorithms, the footage from each data collection session
was processed multiple times, each time with a different preprocessing algorithm applied before
(if applicable) passing the resulting semantic segmentation mask through the Pupil Labs pupil
detection algorithm. Additionally, all data was passed independently through the native algorithm
without the assistance of a segmentation network, in order to create a baseline measure to compare
each algorithm against. The pupil ellipses obtained from each run of the Pupil Labs pupil detection
algorithm were saved for additional analysis and gaze estimation.

The resulting ellipses of the pupil detection algorithm were fed through a custom-made processing
pipeline that hooked into the open-source Pupil Labs Core software. A visual guide to this process
can be seen in (Fig. 1). Each of the pupil ellipses produced by the pupil detection algorithm was
evaluated by using a sequence of two confidence algorithms to determine the quality of the detected
ellipse. The first of these was developed by Pupil Labs [Kassner et al. 2014], which scored the
detected pupil on a scale from 0.0-1.0 based on how elliptical the shape was and how well the
shape’s edges conformed to the darkest spot in the input image. The second confidence algorithm
was a threshold of the IoU between the previously detected ellipse and the current ellipse. This
threshold, set at 0.98, ensured that only ellipses that closely overlapped with the previously detected
ellipse would be used during the gaze calibration sequence. This was done to ensure that only
fixations by the participant could be used to calibrate the gaze estimators, since the calibration
sequence involved only fixations. Both confidence algorithms are capable of preventing the ellipse
from being used in the calibration sequence.

3.5 Feature-based and 3D model-based gaze estimation algorithms

The Pupil Labs software that was used in this work comes with a feature-based gaze estimation
algorithm that uses a polynomial function to model the relationship between the position of the
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pupil centroid along the width and height of eye-image space to the x/y pixel of gaze in the world
video [Mackworth and Thomas 1962; Zhu and Ji 2005]. This polynomial function is established
using the timestamps recorded during the calibration sequence, when participants were instructed
to look at a sequence of gaze targets. Since the data collection described in this work was done in
virtual reality, a 640x480px 30fps virtual camera was placed at the observer’s head location and
used as the source for a world video. The calibration procedure, which recalls the eye video frames
associated with the timestamps recorded during the presentation of each calibration point, also
recalls the coordinate positions of each calibration point. By combining these and using them to
establish the polynomial between the pupil locations and the calibration point locations, the Pupil
Labs feature-based gaze estimation algorithm creates a mapping between each estimated pupil
position and a location on the world video (the "gaze location"). These gaze locations are then
estimated for the duration of each trial.

In addition to the Pupil Labs feature-based gaze estimation algorithm, we also test the influence
of feature detection done with RITnet, EllSegGen, and ESFnet on the gaze estimate produced using
Pupil Lab’s open-source 3D model-based gaze estimation algorithm in which the production
of gaze estimates relies on the initial fitting of a 3D geometric eye model within eye-camera
space. [Kar and Corcoran 2017] define 3D model-based methods as those which use geometrical
models of the human eye to ascertain its visual axis and estimate the gaze coordinates as points of
intersection where the visual axis meets the scene. [Kar and Corcoran 2017] also identify some of
the earliest examples of single-camera 3D model-based gaze estimation ([Guestrin and Eizenman
2006; Hennessey et al. 2006; Meyer et al. 2006]). The Pupil Labs 3D model-based gaze estimation
algorithm falls under this category, as it uses a single camera to position the 3D eye model given
a set of detected features. This model relies on the intuition that if the projected image of the
pupil/iris boundary is tracked over time, then the systematic pupil deformations that accompany
changes in eye orientation provide information that can be used to estimate the eye’s center of
rotation within eye camera space. Subsequently, gaze estimation is a two-step process: first, a ray
is cast from the eye camera through the image of the pupil centroid, and onto the 3D eye model.
Once the pupil has been projected onto the 3D model, a second ray is cast from the center of the
3D eyeball through the projected pupil centroid. This 3D vector represents the gaze orientation
within 3D camera space. This gaze direction in eye-space is then rotated into a direction in world
space by an amount that minimizes error between gaze directions and the ground-truth 3D fixation
target locations presented during the calibration sequence.

The Pupil Labs software suite relies on an elaborated version of the Swirski model that also
accounts for view-dependent refraction of the pupil by the intervening cornea and aqueous humor
[Dierkes et al. 2019]. Our work specifically relies on Pupil Labs’ Post-Hoc HMD 3D implementation
of this gaze mapping algorithm. In addition to view-dependent refraction, this implementation
relies on several assumptions, including a normative eye radius and a fixed geometry of the eyes
relative to the eye camera inserts into the HMD. During development, we found that 3D model fits
were sometimes erratic in response to high-quality pupil data.

We took two steps to address this issue. First, we pre-fit and subsequently "froze" the 3D eye
model. During normal operation, the 3D eye model is typically updated incrementally as each
pupil is segmented from the 2D eye image, each providing additional information about the 3D
eye’s location in eye camera space. This typically means that gaze estimates produced early in the
session will be worse in quality than those produced a few minutes into the session. Given the short
duration of our capture sessions, we chose to disable incremental model updating and instead fit the
3D eye models to the entire sequence of pupil data collected during the calibration sequence before
gaze direction was estimated on each frame. In addition, and in consultation with the Pupil Labs
software development team, we implemented an additional filter that excluded pupils with aspect
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ratios exceeding Pupil Labs’ recommended threshold of 0.8 from being used to update the 3D eye
models. This decision was based on the feedback that pupils with aspect ratios closer to 1 provided
ambiguous information with regard to eye distance, and this in-turn degraded the optimization
process used to estimate the location of the eyeball’s centroid. It is important to note that this filter
is only applied to the samples used to fit the model used for 3D gaze estimation and not to the
samples used for gaze mapping, or for the subsequent calculation of dropout rate, precision, or
accuracy.

Data Preserved Under Different Dropout Thresholds

3.6 Dropout Rate, Accuracy, and Precision

@
S

Eye feature detection will sometimes fail when a spuri-
ous eye feature has been detected where there is none,
such as when a false pupil is detected in the eye lashes.
Although the knowledge that this error occurred is
informative on a qualitative level, the quantitative mag-
nitude of the error is not informative of the quality
of the pupil detection algorithm. For this reason, we Fig- 4. A comparison of dropout thresholds
have opted to drop these samples from subsequent ~across all data used in the analysis portion of
calculations of accuracy and precision using a fixed this eXper_imentj Shown is the percentage of
dropout threshold, as in [Macinnes et al. 2018]. A com- data that is retained for ea§h dropout thresh-
. . - old. Due to the slope leveling out at around

parison of dropout threshol(.is is presented in Fig. 4, 10°, we set the dropout threshold at 10°.
which presents the cumulative amount of gaze data
that lies within the bounds of thresholds ranging from 0-50 degrees of accuracy error in the gaze
estimate. The dropout threshold was set to 10 degrees of accuracy error on the basis that approxi-
mately 80% of the gaze data lies under the threshold, and because the change in cumulative gaze
data above that threshold is very gradual over the range of 10-40 degrees of error. Gaze estimates
equal to or above this threshold contribute to the dropout rate metric and were removed from
further analysis.

Accuracy represents the distance between the centroid of all gaze angles collected during fixation
at a single assessment target and the ground-truth target location, both defined units of visual
degrees along the azimuth and elevation, consistent with the formula:
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where n is the number of estimated gaze locations in the group, a; and e; are the azimuth and
elevation of the group’s ith estimated gaze location in the head-centered spherical reference frame
respectively, and a and € are the azimuth and elevation of the associated known ground truth
fixation point in the head-centered spherical reference frame.

The precision error for a fixation point is defined as the average difference between each calculated
gaze location in the fixation and the center of mass of all gaze locations sampled during the fixation.
The formula for the precision error of a single fixation is shown below,
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where n is the number of estimated gaze locations in the group, and a; and e; are the azimuth and
elevation of the group’s ith estimated gaze location in the head-centered spherical reference frame
respectively.
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Fig. 5. Dropout rate (left), accuracy error (center), and precision error (right) across fixation eccentricities for
the 192x192px eye data from the feature-based (top) and 3D model-based (bottom) gaze estimation algorithms.
Samples above the dropout threshold of 10° were omitted from accuracy and precision calculations. Shading
represents 95% confidence intervals for the mean. The range of the Y axis was chosen to provide insight
into the performance of the best-performing algorithms, with the consequence that RITnet’s and EllSegGen

(Direct Iris)’s error falls beyond its range in some graphs. This data is also shown in in Tables 1, 2, 3.

4 RESULTS

Results averaged across all participants for dropout
rate, accuracy, and precision are in the left, center,
and right columns respectively of Fig. 5 (for 192 x
192px images) and Fig. 6 (for 400 x 400px images).
Additionally, the mean and standard error across all
participants for dropout rate, accuracy, and precision
are shown in Tables 1, 2, and 3 respectively.

4.1 RlITnet

At the 192x192px resolution, RITnet performed the
poorest overall in terms of dropout, accuracy error,
and precision error compared to the other detection
methods. Average dropout rates were above 61%
for feature-based methods and above 81% for 3D
model-based methods (see Table 1). Accuracy and
precision were similarly poor, and together these
results indicate that RITnet is unsuitable for use at
the 192x192 resolution.

Table 1.

Dropout rate mean values across sub-

jects for the feature-based and 3D model-based
gaze estimators. Shaded green are the best-
scoring values for the category (lower is bet-
ter). This data encompasses the 192x192px resolu-
tion (top) and the 400x400px resolution (bottom).
*EllSegGen (Direct Iris), when used in conjunction
with the 3D model-based eye tracker, is not rec-
ommended. See Section 5.

Dropout Rate (192)

Feature

Native

EllSegGen

EllSegGen (Direct Pupil)
EllSegGen (Direct Iris)
ESFnet

ESFnet (Direct Pupil)
RITnet (Pupil)

Dropout Rate (400)

Mean
4.52%
1.68%
2.05%
1.18%
2.67%
1.51%
61.57%
Feature

Native

EllSegGen

EllSegGen (Direct Pupil)
EliSegGen (Direct Iris)
ESFnet

ESFnet (Direct Pupil)
RITnet (Pupil)

Mean
12.05%
5.65%
5.84%
5.05%
7.82%
6.00%
11.72%

Std. Error

1.52%
0.77%
1.47%
0.66%
0.96%
0.72%
2.65%

Std. Error

4.67%
3.97%
4.16%
3.45%
4.73%
4.17%
5.66%

3D Model
Mean
8.58%
5.61%
3.16%

4.36%
3.73%
14.16%

Std. Error
5.03%
3.82%
1.66%

3.29%
1.03%
2.44%

Std. Error

4.95%
1.05%
6.64%

2.45%
1.58%
5.81%

At the 400x400px eye image resolution, RITnet demonstrated performance that was similar to the
native Pupil Labs algorithm. Like the native algorithm, dropout rate increased approximately linearly
with the eccentricity of gaze angles, from ~5% to a peak of ~20% when passed through feature-based
and 3D model-based gaze estimation algorithms. Accuracy error remained within 0.5 degrees of the
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Fig. 6. Dropout rate (left), accuracy error (center), and precision error (right) across fixation point eccentricities
for the 400x400px eye data collected from the feature-based (top) and 3D model-based (bottom) gaze estimation
algorithms. Samples above the dropout threshold of 10° were omitted from calculations of accuracy and
precision. Shading represents 95% confidence intervals for the mean. This data is also shown in Tables 1, 2, 3.

native algorithm for both the feature-based and 3D model-based gaze estimators. There was some
improvement to the dropout rate and precision over the native algorithm when passed through the
feature-based gaze estimation algorithm, though this improvement can be attributed to only three
of ten individuals. When using the 3D model-based gaze estimation algorithm, the output from the
native pupil detector improved to match that of RITnet.

4.2 EliSegGen Table 2. Accuracy error mean values (degrees)

Wh f EllSecGen (Di i d across subjects for the feature-based and 3D
en output from egGen (Direct Iris) was passe model-based gaze estimators after dropouts have

through the 3D model-based gaze estimation algo-  peen filtered from the data. Shaded green are
rithm, dropout rates were so high (30% for 192x192, the best-scoring values for the category (lower is
32% for 400x400, see Table 1) as to not be recom- better). This data encompasses the 192x192px res-
mended compared to the other EllSegGen options. olution (top) and 400x400px resolution (bottom).
For this reason, the use of EllSegGen (Direct Iris) with  *EllSegGen (Direct Iris), when used in conjunction
3D model-based methods will not receive further dis- with the 3D model-based eye tracker, is not rec-
cussion in this section. However, the issue will be ommended. See Section 5.

revisited in the discussion (Section 5). Accuracy Error (192) | Feature 3D Model
. . Mean  Std. Error Mean  Std. Error
At an eye image resolution of 192x192, EliSegGen  Native 2601 0310 3375 0.494
. . . EllSegGen 2471 0.345 4.048 0.382
and EliSegGen (Direct Pupil) demonstrated notice-  EiisegGen (Direct Pupil) | 2483 0306 3124 0.421

. . EllSegGen (Direct Iris) 2.563 0.277 _

ably lower dropout rates than the native algorithm  Esne 253 0300 a5 0377
el N . ESFnet (Direct Pupil 2.519 0.293 2.802 0.345
across all eccentricities, for both gaze estimation  rrmet pupi) up G e 0080

. . . . Ad E 400 Feat: 3D Model
types. EllSegGen (Direct Iris) demonstrated similarly ceuracy Error (100) | Featwre = Mean St Exror
lowered dropout rates than the native algorithm for Eff;‘evgecen S0 PO o o
: . s EllSegGen (Direct Pupil) 2775 0.309 4.335 0.442

the feature-based gaze estimation algorithm, outper- EllSesGon (Direet i) 2 ppees

: : : ESFnet 2.836 0.399 3.713 0.352
for ming all other algonthms in the Categor Y. How- ESFnet (Direct Pupil) 2.833 0360 3.684 0.299
ever, there was no improvement to accuracy over _XTnet®uri) 3084 0384 3814 0431
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the native algorithm when using feature-based gaze estimation algorithms, and performance was
equivalent to or worse than that of the native algorithm when features were then passed through
a 3D model-based estimation algorithm. There were modest improvements to precision when
compared to the native algorithm for both feature and 3D model-based estimation algorithms.

At the 400x400px resolution, in combination with
feature-based methods, EllSegGen and its two vari-
ants have mean dropout rates below 6% with little
variation between eccentricities. Although the accu-
racy error does not show consistent improvement

Table 3. Precision error mean values (degrees)
across subjects for the feature-based and 3D
model-based gaze estimators after dropouts have
been filtered from the data. Shaded green are

the best-scoring values for the category (lower is ) > ) -
better). This data encompasses the 192x192px res- OVer the native algorithm across different eccentrici-

olution (top) and 400x400px resolution (bottom). ~ ties, there are noticeable improvements to precision.
*EllSegGen (Direct Iris), when used in conjunction The improvement is negligible at 0° eccentricity,
with the 3D model-based eye tracker, is not rec-  but increases to ~4° at 20° eccentricity. EllSegGen

ommended. See Section 5. (Direct Iris) demonstrates similar improvements for

Precision Error (192) | Feature 3D Model feature-based methods, with only a modest increase
Mean  Std. Error Mean  Std. Error . .. . ..
Native 7 o2 184 om0 in precision error at the highest eccentricity. In con-
EllSegGen 0.729 0.231 0.502 0.172 B . .
FllsesGen (Direct Pupil) | 0643 ppes 0363 ons  trast, EllSegGen is the best-performing option when
ElbegGen (DirectIrlg) | 0847 0168 BT gaze is estimated using 3D model-based methods at
ESFnet (Direct Pupil) 0.613 0.126 0.503 0.087 : :
ErTact (Papd) P v IS 007 a400x400px resolution. Dropout rates remain below
Precision Error (100) | Feature 3D Model 5% at all eccentricities, and accuracy remains low-
ean  Std. Error Mean  Std. Error

Native 2.885 1.100 1.913 0.690 1011 1
Mieescen 28 L0 rors oe% estat all eccentricities, although the improvement
EllSegGen (Direct Pupl) |[0389 0176 073 024 gyer the native algorithm is still modest. The most
EllSegGen (Direct Iris) 1.242 0.382 [INBO2Z 070 . . o
ESFnet _ 1.257 0417 0729 028  potable improvement, however, is that precision re-
ESFnet (Direct Pupil) 0.730 0.238 0.508 0.155 . -
RITnet (Pupil) 2228 0836 2140 o721 mains below 1.5° across all eccentricities.

4.3 ESFnet

Atan eye image resolution of 192x192px, ESFnet performed similarly to EllSegGen. The one exception
is a drop in precision at greater eccentricities using feature-based methods. In contrast, ESFnet
(Direct Pupil) matches or outperforms all other models in every metric, with the exception of
dropout rate, which increased with eccentricity when using feature-based gaze estimation methods.

When operating on the 400x400px data, ESFnet and ESFnet (Direct Pupil) match or exceed the
performance of the native algorithm when passed through either feature or 3D model-based gaze
estimation methods. Their performance is very similar to EllSegGen in every metric, with the one
notable exception that there is an increase in dropout rate at greater eccentricities when passed
through 3D model-based methods.

5 DISCUSSION

Fig. 7 summarizes the best options in terms of dropout rate, accuracy, and precision. Nonetheless,
care must be taken when interpreting these results. In particular, a high dropout rate means fewer
samples are used to compute the accuracy and precision metrics which could potentially lead to
skewed results.

The positive performance demonstrated by the ML segmentation models tested here is encour-
aging when one considers that the application context was not well-represented in any of the
datasets used to train these models. In particular, the eye images passed into the models in our
tests were taken from off-axial angles within a virtual reality headset using the Pupil Labs HTC
Vive Add-On. In contrast, the OpenEDS dataset [Garbin et al. 2019], which all tested segmentation
models were trained on, contains eye images taken on-axis inside a virtual reality headset. The
Labeled Pupils in Wild (LPW) [Tonsen et al. 2015] dataset, which EllSegGen and ESFnet were trained
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on, contains eye images captured from a mobile eye tracker in real-world environments outside of
virtual reality, both indoors and outdoors. The Swirski dataset [Swirski et al. 2012], which was used
in training EllSegGen, also contained eye images captured from an eye tracker outside of virtual
reality. The BAT dataset was also used to train EllSegGen, and is composed of eye images from
physically-restrained subjects rather than subjects in virtual reality. The last of the non-artificial
datasets used by both EllSegGen and ESFnet are the Fuhl datasets, defined as a blend of the ExCuSe
[Fuhl et al. 2015a], ElSe [Fuhl et al. 2015b], and PupilNet [Fuhl et al. 2016a] datasets. These datasets
contain eye images captured from mobile eye trackers while performing tasks such as driving. In
addition, multiple datasets containing artificial eye images were used in the training of EllSegGen
and ESFnet [Kim et al. 2019; Nair 2020; Nair et al. 2020; Wood et al. 2016]. This demonstrates that
these machine learning models are capable of generalizing to mobile eye trackers with parameters
that differ from the datasets used to train them.
Despite the positive impact of ML mod-

. . Feature-based Gaze Estimator 3D Model-based Gaze Estimator
,

the counter-intuitive result that models : SIS R L
applied to the lower resolution 192x192px .
images outperformed their application to | = v v VIV v v
the higher resolution 400x400px images. | Sweocer v
We attributed this result to one of two pos- aisescen |/ v X %
sibilities: to a difference between the res-
olution of training images and the images =
collected by the eye tracker in our tests, or orect P v v v
to confounding differences in image con- pan | X X X %

tent across the 192x192px and 400x400px

datasets used in our study. To test these Fig. 7. Summary of best-performing feature detection tech-
competing hypotheses, we took a high- niques in each category (indicated with a checkmark). D:
resolution dataset (OpenEDS) in which Dropout Rate; A: Accuracy; P: Precision. Since dropout

images are provided along-side ground- rates have a cascading effect on both accuracy and precision,
models with a higher dropout rate than the native approach

are marked with a red X. Regardless of the numerical perfor-
mance of the accuracy and precision, we do not recommend
using models with a high dropout rate - indicated by a red
line through the remaining categories.

truth pupil segmentation masks. We then
took each of our detector plugins and mea-
sured the error between the centroids of
our algorithm-segmented pupils and the
centroids of the ground truth pupils. This
measure was taken using both cropped 400x400px images and corresponding versions that had
been down-sampled to 192x192px, but that were otherwise identical. To account for differences
in resolution, error was measured in units of image width. This test revealed that performance
was no better on the 192x192px than 400x400px pixel variants. The observation that the effect of
resolution disappeared when image content was held constant suggests that the effect of image
resolution in our study can be attributed to differences in image content between the 192x192px
and 400x400px images.

The findings also reveal that EllSegGen (Direct Iris) can provide very competitive results when
passed through a feature-based gaze estimator, but disastrous results when passed through a 3D
model-based gaze estimator. This likely reflects inherent assumptions in the Pupil Labs Pye3D 3D
model-based gaze estimator about pupil size that have not been well documented, but that prevent
iris features from being used to estimate the centroid of the eyeball. Alternatively, this may reflect
differences in the information that the two estimators rely on to produce their estimates. Whereas
the feature-based gaze estimation algorithm only utilizes the centroid of the detected ellipse, the
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3D model-based algorithm uses all of the ellipse’s parameters to position the 3D eye models. As a
result, any flaws in the model’s ability to accurately estimate all of the parameters of the iris ellipse
would have a more significant effect on the 3D model-based algorithm than on the feature-based
algorithm. This raises the possibility that EllSegGen (Direct Iris) is very good at detecting the iris
centroid while also being very bad at estimating the iris boundaries.

6 CONCLUSION

The large disparity in data quality between remote and mobile eye trackers has made attempts
to explore gaze behavior in experimental contexts outside the laboratory difficult. The hardware
constraints necessitated by the form factor and head-mounted nature of a mobile eye tracker often
result in output data of limited quality. Therefore, in order to maximize the quality of mobile eye
tracker data, it becomes necessary to apply sophisticated software techniques to the data prior to
performing more traditional eye tracking algorithms.

The most commonly used consumer-level mobile eye tracking systems have not taken advantage
of machine learning for accurate eye image segmentation or feature localization. In this paper, we
have measured the potential effect that machine learning improvements to the accuracy of the
feature localization stage could have on the quality of the final gaze estimate. These measurements
have led us to conclude that high-performing eye feature detection neural networks are capable of
improving the dropout rate and precision of gaze estimates without negatively affecting the gaze
accuracy. Hence, our work provides users of eye tracking systems a means to reduce dropouts in
their own data through the informed selection of pupil detection models.

This manuscript has discussed the groundwork we have laid for evaluating the contribution of
feature detection models on the quality of the gaze estimate when applied to a widely adopted
open-source eye tracking solution. The software we have written and used to evaluate these
contributions, including the software pipeline for the controlled evaluation of the feature-detection
stage and the additional modules for the evaluation of several contemporary eye segmentation
networks, can be found at https://github.com/PerForm-Lab-RIT/Deep-Learning-Eye-Tracking.

Though our evaluations rely on the Pupil Labs integration into the HTC Vive Pro headset and
the associated Pupil Labs gaze estimation software framework, none of the findings of this paper
are necessarily dependent on either of these factors. Future work may evaluate the viability of
these machine learning solutions on alternative eye-tracking hardware/software, and outside of
virtual reality. Outdoor eye tracking, especially in direct sunlight, is particularly challenging [Binaee
et al. 2021] and may benefit significantly from the use of state-of-the-art feature detection neural
networks. It is also possible that further contributions to this area, especially on the side of the
machine learning algorithms, may result in a machine learning-assisted eye tracking pipeline that
is capable of running in real-time.
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