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Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
Segmentation models trained using supervised machine learning can excel at this task, their effectiveness
is determined by the degree of overlap between the narrow distributions of image properties defined by
the target dataset and highly specific training datasets, of which there are few. Attempts to broaden the
distribution of existing eye image datasets through the inclusion of synthetic eye images have found that
a model trained on synthetic images will often fail to generalize back to real-world eye images. In remedy,
we use dimensionality-reduction techniques to measure the overlap between the target eye images and
synthetic training data, and to prune the training dataset in a manner that maximizes distribution overlap. We
demonstrate that our methods result in robust, improved performance when tackling the discrepancy between
simulation and real-world data samples.
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1 INTRODUCTION

Research in semantic segmentation has a wide range of applications, including autonomous vehicles,
medical image analysis, and virtual reality [Minaee et al. 2020]. In the context of eye-tracking, the
ability to accurately segment the eye’s features provides great utility for the task of gaze estimation.
Most modern approaches to eye-tracking rely on different segmented features of the eye, including
the iris or pupil centroid or boundary [Ghosh et al. 2021]. For instance, some schemes for estimating
and tracking gaze dynamics requires access to iris features uncovered through the use of its texture
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and velocity [Pelz and Hansen 2017] while others do so by extracting them according to color
thresholding and ellipse fitting [Shah and Ross 2009], multi-grid search via gradient ascent, and 2-D
Gabor filters [Daugman 1993]. In addition, segmenting different parts of the eye simultaneously
enables us to perform center localization, elliptical contour estimation, and blink detection [Yiu
et al. 2019]. Ultimately, eye segmentation serves as an essential component of the general modeling
toolbox for the eye-tracking community at large.

In general, approaches to eye segmentation [Chantapakul et al. 2019; Chaudhary et al. 2019;
Kothari et al. 2022, 2021; Perry and Fernandez 2019; Stember et al. 2019] leverage deep convolutional
neural networks [Krizhevsky et al. 2012; LeCun et al. 1995, 2015] (CNNs) and, consequently, require
large eye datasets in order to train these neural models effectively. The requisite datasets can be
collected by recording synthetic information from simulations [Nair et al. 2020] or from human
subjects directly [Garbin et al. 2019; Zhang et al. 2015]. Although, real-world eye datasets, such
as OpenEDS [Garbin et al. 2019] or MPIIGaze [Zhang et al. 2015], provide invaluable samples
of data/images to train the CNN models on, constructing such datasets requires a great deal of
human annotation effort (high labeling burden) as well as introduces potential human subject
image privacy issues. In contrast, synthetic eye datasets circumvent these issues, reducing the data
collection effort inherent to working with actual human participants as well as manual labeling
work needed to generate ground truth segmentation masks [Nair et al. 2020]. As a result, generating
datasets of synthetic data samples offers the potential to train powerful eye-tracking CNN-based
systems at greatly reduced overall cost.

Despite the promise that synthetic data brings with it, a major issue emerges — due to the
imperfections underlying computer simulation and 3D graphics models, a “reality gap” or mismatch
exists between the synthetic data produced by a simulated environment (i.e. synthetic eye images)
and the real world [Kaspar et al. 2020; Tobin et al. 2017] (i.e. images of real eyes). Fundamentally, this
mismatch (known as the sim2real problem) is caused by a domain gap or domain distribution shift
which results from a violation of the independent and identically distributed (iid) assumption that
drives much of modern-day machine learning; the simulator represents the training distribution of
the eye-tracking CNN system and the real-world represents a test distribution that the simulator can
only at best approximate. This distributional mismatch results in degraded test-time generalization
ability when the neural model is trained using data from the simulator but evaluated in the real
world. For example, past work has suggested that training eye-tracking CNN models with multiple
eye datasets potentially degrades their segmentation performance for a particular within-domain
dataset [Kothari et al. 2022]. In this work, we will address this sim2real problem in order to improve
the accuracy of the segmentation ability of neural eye-tracking models. Specifically, our research
will improve the performance of a segmentation neural network on an eye dataset, consisting of
real-world image patterns, training it using synthetic eye datasets and only a small number of real
images. In this work, we will utilize the OpenEDS eye segmentation dataset [Garbin et al. 2019] as
the real-world dataset and RITEyes as the synthetic dataset [Nair et al. 2020].

The key contributions of this work are as follows: 1) in closing the domain gap between synthet-
ically generated eye images and real eye images, our approach will ensure that the eye-tracking
CNN model is trained with a large number of synthetically generated images in proportion to
real-world images by leveraging a learned neural distance model, resulting in little to no degra-
dation of segmentation performance on the real-world test dataset, and 2) empirically, we will
demonstrate that our scheme results in overall higher generalization performance, with respect to
mean intersection over union (Jaccard Index) [Kosub 2019], compared to baseline models trained
on synthetic images only.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 2, Article 25. Publication date: June 2024.



Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems 25:3

2 RELATED WORK
2.1 Segmentation through Deep Learning

A critical component of an image segmentation system is the segmentation network. Concretely,
a segmentation network is either a parameterized multi-layer perceptron (MLP) [Haykin 1998]
or convolution neural network (CNN) [LeCun et al. 1995, 2015]. In our context, the segmentation
network takes in an eye image and produces a classification of each pixel (as ‘pupil’, ‘iris’, ‘sclera’, or
‘background/other’); this is often referred to as the segmentation map [Ronneberger et al. 2015]. Note
that a segmentation network’s input and output have the same width and height dimension, and
this network is normally based on the U-net architecture [Ronneberger et al. 2015]. Research in eye
tracking further extends the segmentation network form/design to better fit within the eye tracking
context, introducing additional task-specific objective functions, e.g., as in RITnet [Chaudhary et al.
2019] or Ellseg [Kothari et al. 2021].

U-net Architecture. As mentioned above, the U-net architecture is a popular method for generating
an image segmentation [Ronneberger et al. 2015]. It is designed to predict the probability of
multiple segmentation classes that each pixel within the image could fall under. The U-net encoder-
decoder neural architecture specifically designs the encoder such that each layer has a synaptic
skip connection to the corresponding layer in the decoder. This skip connection involves the
concatenation of the encoder layer output with the upsampled feature from its same-level decoder
layer. The synaptic skip connections provide contextual information with respect to the current
layer’s image resolution, allowing them to consider the context from the macro to micro-features
of the image itself [Ronneberger et al. 2015]. This makes the U-net architecture quite effective in,
and appropriate for tasks related to image segmentation.

RITnet. Specific to the context of eye-tracking, Chaudhary et al. developed an efficient real-
time eye segmentation model known as RITnet [Chaudhary et al. 2019], which utilizes a U-net
architecture in tandem with additional objective functions that focus on segmenting particular eye
regions. The first loss function in RITnet is the generalized dice loss (GDL), which combines the
weighted dice score (this measures the overlap of the prediction and ground truth coefficient) with
the cross-entropy loss; this pairing results in improved stability with respect to the cross-entropy
objective. The second loss is the boundary aware loss (BAL), which weights the loss in each pixel by
its distance to the nearest edge. To achieve this, a mask is computed by dilating the edge using the
Canny edge detector[Canny 1986]; the mask is then used to weight the original cross-entropy loss,
thus maximizing the correct pixel near each boundary. Finally, the RITnet framework introduces
the surface loss, which scales the loss value at each pixel with respect to the pixel’s distance to
the boundary of the corresponding segmentation class. Specifically, for each segmentation class, a
heat map of distance is computed by assigning to each pixel the relative distance to the nearest
boundary of the corresponding class. The final surface loss is achieved by averaging the product of
the network segmentation output and the surface heat map for each segmentation class.

2.2 Generative Adversarial Learning in Domain Transfer

This work’s approach to improving segmentation performance will rely on synthetic data and,
in order to ensure the synthetic data is useful, we will craft a scheme that will make the (in-)
distribution of the training data closer to the real (out-) data distribution of real eye images. More
specifically, our approach could be likened to a refinement process that takes in output from an
eye simulator (e.g. synthetic images produced by Blender) and modifies it to produce images that
are closer to the distribution of the real images. One possible way that we could implement this
refinement is through a generative method, such as histogram matching [Tu and Dong 2013; Yaras
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et al. 2021] where the pixel values in the source image are adjusted so that the histogram of the
source and target images match one another. However, changing the features directly, such as pixel
values, to match the raw image statistics, e.g., feature histograms, results in a difficult and complex
image distributional modeling problem. Additionally, histogram matching can potentially introduce
noise to the output image, increase the contrast, or distort the structure of the images [Mustafa
and Kader 2018]. In contrast to generative methodology based on statistic matching, generative
approaches based on unsupervised deep neural networks, specifically the generative adversarial
network (GAN) [Goodfellow et al. 2014a] and variants such as the CycleGAN [Zhu et al. 2017], offer
a parameterized means of mapping from source in-distribution to a target dataset (out-) distribution.
Given the modeling flexibility afforded by neural models, our refinement process will leverage and
build on the GAN as a central component.

Generative Adversarial Network (GAN). A GAN essentially consists of a “generator” and a “dis-
criminator” neural network that work together to perform unsupervised image generation. The
generator takes in as input noise, i.e., a noisy latent vector, and outputs a synthesized image pattern
that looks similar to those in the desired image space. The discriminator specifically tries to classify
whether an image is the output of the generator (fake) or the real image (real). The objective of the
generator is to generate images that are plausible enough so as to reduce the accuracy of (or “fool”)
the discriminator. The objective of the discriminator D is to maximize the binary cross-entropy
loss for data coming from both the real image domain and the generated image domain.

CycleGAN. The CycleGAN [Zhu et al. 2017], which is an extension of the basic GAN, is built
with the goal of facilitating image translation across different (input) data domains. Given an
image from one data domain, the CycleGAN works to output an image that resembles images
from another (target) data domain. This model is trained using two loss functions: the standard
adversarial objective of the original GAN (in order to generate meaningful images) and a “cycle
consistency” loss that maximizes the domain similarity of the model’s generated image space. The
cycle consistency loss helps to guide the CycleGAN’s generator to map the source image to the
desired general features in the target domain. Later efforts related to CycleGAN introduced the
identity loss [Liu 2022; Taigman et al. 2017], which was further shown to stabilize the image-to-
image translation process.

Domain Adversarial Neural Network (DANN). Another form of adversarial-based domain adapta-
tion is based on the DANN model. DANN [Ganin et al. 2017] is a classification model that integrates
an additional domain classifier trained under an adversarial process. In essence, training a DANN is
similar to training a GAN given that it has a class predictor which tries to maximize the accuracy of
the prediction of two domains while another domain classifier tries to distinguish between the two
domains based on the bottleneck latent representation produced by the system’s encoder. However,
in the DANN, we do not have access to the gradient for training the encoder in order to maximize
the domain classifier loss. Therefore, a “reverse gradient” layer is used for the latent embedding
output before going into the domain classifier layers. Mechanically, a reverse gradient layer is
simply an identity function that operates within the backward propagation process (for computing
parameter gradients) that further negates the resulting estimated gradient values.

2.3 Metric Learning

The measurement of the distribution shift among datasets can provide useful information for
closing the aforementioned reality gap, e.g., one can measure the domain shift by computing the
maximum mean discrepancy (MMD) integral probability metric between two datasets [Gretton
et al. 2012], minimizing this metric might potentially reduce the gap between datasets. To achieve
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Fig. 1. Overall process diagram of our proposed computational system for image segmentation. The synthetic
images are first refined/processed using our novel Structure Retaining CycleGAN, then filtered by our Siamese
Network that considers the distance between the latent representations of real and synthetic images, and
finally placed into a training set that is used for training our adapted domain adversarial neural network.

this, normally, a function parameterized by a deep neural network is learned in a process known
as metric learning. In the context of this work, we will utilize metric learning in our refinement
process, e.g., such as with a Siamese Network [Koch et al. 2015], in order to quantitatively measure
the degree of distribution shift between the synthetic samples we produce and the samples within
real eye datasets.

Siamese Network. The Siamese Network [Koch et al. 2015] consists of two identical deep neural
networks that specifically share the same set of weights and structure (the structure and parameters
are “tied”). The purpose of the overall model is to output the representation of two different objects
such that we may compute the distance between these objects in terms of their corresponding
projections in a latent space, using a distance function such as the L2 (Euclidean) distance. Overall,
learning in a Siamese Network is similar to learning an albeit complex distance function. Generally,
a Siamese Network is trained to minimize a contrastive loss [Hadsell et al. 2006; Melekhov et al.
2016] which penalizes the system for any deviation in its predicted distance values from a chosen
distance measurement. Other loss functions used for training include the triplet loss and the binary
cross entropy loss [Dong and Shen 2018; Koch et al. 2015; Nanni et al. 2021].

3 METHODS

To address the sim2real problem through domain adaptation, we develop and study the following: 1)
modifying the synthetic dataset such that it is closer to the real one so that the neural system benefits
from the familiarity of the data at test time, and 2) modifying the neural system to be capable of
generalizing among different domains. Based on these notions, we propose a multi-step approach
to the problem by utilizing image-to-image transfer (Section 3.1), dataset filtering (Section 3.2), and
a domain generalization feature-based network (Section 3.3). The overall architecture, as shown in
Fig. 1, first involves the implementation of our proposed Structure Retaining CycleGAN, which is
a generalization of the CycleGAN [Zhu et al. 2017] that focuses on reconstructing the synthetic
eye images under the constraint of matching the distribution of the real eye images. Next, we
design a Siamese Network [Koch et al. 2015] for filtering out poorly-reconstructed images (i.e., a
learned form of dataset pruning). Finally, we employ a model adapted from the domain-adversarial
neural network structure [Ganin et al. 2017] which we will demonstrate has the ability to perform
well across multiple domains. All project code is available at https://github.com/PerForm-Lab-
RIT/domain-adaptation-eye-tracking.
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3.1 Structure Retaining CycleGAN

In the context of image generation/creation, a CycleGAN can be used to perform domain transfer
such that images in the transferred domain are as diverse and as close to the target domain as
possible [Heusel et al. 2017; Lucic et al. 2017; Salimans et al. 2016; Zhu et al. 2017]). In the context
of domain adaptation, we also need to perform transferring within the label domain so as to
ensure that the transferred labels match, i.e., the transferred pupil segmentation matches the exact
pupil segmentation in the transferred eye image. The GeomaskGAN [Lu et al. 2022] model uses
a double input architecture which takes both the eye image and the segmentation label as input
while performing the transfer. As an alternative, we propose another model that tries to preserve
the structure of the eyes that avoids the need to transfer the segmentation label. We can achieve
this by reconstructing images that have the same segmentation map structure as the original eye
image. This inspiration comes from the intuition that there exists perceptually indistinguishable
“noise”, e.g., noise used to perturb an image in adversarial attack [Goodfellow et al. 2014b], in
the real data distribution, such that the model, when trained on the synthetic distribution, has
reduced performance when inferred on this real distribution. This problem serves as the basis for a
divergence in the pixel distribution between a synthetic image and a real one.

Problem Formulation. Formally, we want to learn a function that maps an image from the synthetic
eye domain S = {si}?fl to the real eye domain R = {ri}l{‘] | given the segmentation mask sets
Ms = {mi}{.‘il and Mg = {mi}fil. We want to build the mapping function from domain S to
domain R such that the transferred image t., € 7% has the same original eye segmentation map
m. as the original image s’ and, furthermore, similar color features for each segmentation class m’.
within the target domain image r'.

Similar to CycleGAN-like architectures [Heusel et al. 2017; Lucic et al. 2017; Salimans et al.
2016; Zhu et al. 2017], our model architecture contains two separate image generators (under an
encode-decoder setup) and two discriminators. Each generator maps an image from one domain to
the other while each discriminator distinguishes the domain for each generated image. Particularly,
we define two generators as Gsg : S — Tz # R and Ggs : R — Ts ~ S, and we define two
discriminators as Gg : Ts US — R ={0,1} and Gg : Tr U R — R = {0, 1} which output 0 if the
image sample comes from the generator and 1 if the image sample comes from S or R.

Adversarial Loss. In order to train the above model, we first employ the adversarial loss [Good-
fellow et al. 2014a], similar to what has been done in the CycleGAN literature [Zhu et al. 2017].
Particularly, this objective function encourages the generator to produce images that are closer to
the target domain while the discriminator must distinguish between images that actually come from
the source distribution or those produced by the generator, i.e, ming maxp £,4,- The objective
function for Ggg and Dg is defined as:

Lado(Gsr, Dr) = Er-g[log Dr(1)] + Es.s[1 - log Dr(Gsr(s))]- (1)

Cycle Consistency Loss. As mentioned before, this loss guides a network to learn a mapping
function where recovered images are likely to closely match the original images [Zhu et al. 2017].
Particularly, we encourage the recovery of an image after translating it to another domain and back
to the original domain. Similar to the original CycleGAN, we use the mean absolute error in order
to compute the loss between the image before and after the domain transfer as follows:

Ly (Gsg,Grs) = Es.s[ll Grs(Gsr(s)) —s [l1] + Er~g[|l Gsr(Grs(r)) — 1 [I1]. 2)

Identity Loss. This loss is often used in image-to-image translation problems in order to ensure
that the color and tint of the translated image are as close to the original image as possible [Liu
2022; Taigman et al. 2017]. Furthermore, the identity loss states that a generator for the target
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domain, when receiving an image from the same domain, must produce the image in the same
domain, i.e, Gsg (r) ~ r. The identity loss, in our context, is formulated below as follows:

Lia(Gsr,Grs) = Es-s[ll Grs(s) = s [l1] + Er~r[ll Gsr(r) — 1 [|1]. (3)

Edge Retaining Loss. Note that the cycle consistency objective function does not guarantee that
the transferred image in another (target) domain has the same segmentation structure (one can see
an incorrect mapping in the center image of Fig. 2). To overcome this problem, we propose that the
structure of the image may be retained by keeping the edges of the image fixed throughout the
translation process. In order to achieve this, we propose that the edge features of the original image
should be as close as possible to the edge features of the translated image as well as the recovered
image. For example, in the translation from domain S to domain R, the edge features among the
original image s ~ 8, the translated image Gsz (s), and the recovered image Ggs(Gsz(s)) should
be approximately equal. In support of this, we implemented the Sobel filter [Kanopoulos et al.
1988] (denoted as F) in order to compute the edges of the image by performing a convolution over
the designated image (the convolution operator is denoted as ). The objective function is then
formulated as follows:

Leage(Gsr: Grs) = Es-slll F * Gsr(s) = F #s |1 + || F x Gsgr(s) = F * Grs(Gsr(s)) |l1]

+Err[ll F *Grs(r) = F #1 |l + || F * Grs(r) = F * Gsr(Grs (1)) [l1].
(4)

Color Mean and Variance Retaining Loss. A generator that outputs the correct edge structure of
the eye may not necessarily output the correct segmentation feature corresponding to its edges,
e.g., the translated pupil is half-dark. Therefore, we propose a loss function that encourages the
minimization of the statistical (mean and variance) color difference between the translated image
and the target domain image, i.e., t., and r’, respectively. This loss works to increase the unity with
respect to the color estimation within each eye part (e.g., pupil) when performing image translation.
Particularly, we compute the difference in mean and variance for each corresponding segmentation
class k € K number of classes, i.e., pupil, iris, sclera, and background, between image pairs, i.e.,
translated image t, and target domain image r’. Let the mean of the pixels for class k of image x
be i (x), where each class k has P number of pixels. As a result, we obtain the following:

1 &
xX)=— Xp. 5
() = 5 D% (5)
=1
Given the above, the color mean retaining loss function is then represented as follows:

Liean(Gsr, Grs) = Es-sr-r Z lpx (Gsg () — pr(r)| + Erigses Z |k (Grs (1)) — pr(s)].
3 %
(6)

Similarly, let the variance of the pixels for class k of image x be o (x), where each class k has Py
number of pixels. We then compute the following:

Py
01(0) = 5 1 (5 = )" ")
p=1

The color variance retaining loss function is then represented finally in the following manner:

Loar(Gsr. Ors) = Egs-r ), 10k(Csr(8)) = 0k(D)] + Bragsms ) 10k(Crs(1) = ok(s)l. (g
k k
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Final Structure Retaining CycleGAN Objective Function. Given the above designed set of loss
functions, the full objective function used to train our neural system is the following:

L(Gsg,Grs: DR, Ds) = Lado(Gsr, DR) + Lado(Grs: Ds) + Yeye Leye (Gsg, Grs)

+YidLia(Gsr, GrS) + Yedge Ledge(Gs®> GRS) + YmeanLmean(Gsr: Grs) + Yoar Loar (Gsr, Grs)

)

where Yeyc, Yid» Yedger Ymeans Yoar are the coefficients that control the effect that each corresponding
loss term has on the full system optimization process.

3.2 Siamese Network Filtering

After a synthetic image has been reconstructed to be closer to the real eye image distribution,
there will still exist parts of the images that are not very close to the real distribution. As can
be seen from the PCA plot of intermediate latent vectors (see Fig. 3), the real image distribution
does not fully cover the reconstructed image distribution. In order to overcome this, we remove
images that are far away from the real image distribution by thresholding their distance to the
real image dataset’s centroid. In order to measure the distance of one image from the other, we
craft a Siamese Network [Chen et al. 2019; Deng et al. 2017; Koch et al. 2015] that infers the latent
representation of each image such that the distance, i.e, the L2 distance, between images from two
different domains should be far from each other. As a result, we employ a contrastive loss [Hadsell
et al. 2006; Melekhov et al. 2016] to achieve this goal.

Problem Formulation. We construct a Siamese Network that maps from image/pixel space to a
latent vector of size n (n = 2 in our case): f : I — R2 We then filter the reconstructed dataset 7z
by thresholding each synthetic image’s distance-to-centroid on the real dataset. In particular, we
first compute the centroid vector representation cg of the real dataset in the following way:

e = Erog [f(D)]. (10)
We next compute the distance d’ of each reconstructed image t., € 7% to the real domain’s centroid:
d'=|| f(tg,) ~cr I3 - (11)

Finally, we may then choose only images in which the distance d' is smaller than a certain threshold
(0.005) to ultimately synthesize a filtered dataset.

3.3 A Domain-Adversarial Neural Network (DANN) for Segmentation

Current segmentation methodologies have excelled in working with domain-specific datasets.
However, when performing inference over different domains, performance degradation is often
observed, i.e., training a segmentation model on a synthetic dataset yields low mean intersection
over union on the test dataset of real images. One way to close the domain gap is to learn a feature
extractor that can generalize across different domains in its latent space. To achieve this, we took
inspiration from the training of domain-adversarial neural network (DANN) [Ganin et al. 2017]. In
our problem context, we propose constructing a decoder head (for segmentation) instead of a class
predictor as in the original DANN. Our goal is to make the encoder’s output the feature/component
that generalizes across two domains. As a result, we need to reverse the gradients [Ganin et al.
2017] that come from the domain classifier. In particular, given a set of n-dimensional latent vectors
R”, the set of 2D images (height h, width w, ¢ channels) I"*wxe K number of segmentation classes,
the encoder (of image x) eg(x) : I**¢ — R" (which has 5 down blocks [Chaudhary et al. 2019]),
the decoder dg(e(x)) : R — I"™%*K (which has 4 up blocks [Chaudhary et al. 2019]), and the
domain classifier fj(e(x)) : R® — R!, the optimization objective of our network is formally the
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following:
min max L(eg, dp, f) © min Lyjmer(es,dp) and max min Liomain(eo, f2)
eo.dg.fo €0 eg.do € f

with Loomain (€0, f3) = ~By_ewse [1log (fu(eg(x))) + (1= 1) log (1 - fulea ()]
Note that the above objective function can be deconstructed into two key components. First, it
involves optimizing the segmentation model (RITnet) loss function, which further decomposes into
the minimizing of a generalized dice loss [Chaudhary et al. 2019; Milletari et al. 2016; Sudre et al.
2017], a boundary-aware loss [Chaudhary et al. 2019], and a surface loss [Kervadec et al. 2021]
explained in Section 2. Second, our domain classifier loss Lgomain(€g, f1) can be expressed as the
binary cross-entropy loss between the predicted dataset classification of image x and its label [
— where [ denotes which domain that the image x comes from. Our objective is to minimize this
domain classifier loss with respect to the domain classifier f; such that it maximizes the same loss
for the encoder ey. This also means that the gradient signal that optimizes the domain classifier f}
should be negated when it flows through the encoder ey. To achieve this, we utilize the reverse
gradient layer [Ganin et al. 2017] at the end of the encoder so as to make sure that the gradients
minimize the domain classifier loss for the domain classifier f; while still ensuring that the encoder
ep is maximizing that same loss value.

4 RESULTS AND DISCUSSION

Fig. 2. Sample images from datasets used in our experiments. From left to right: OpenEDS (target domain),
and four synthetic/constructed source domains - RITEyes, CGAN, SRCGAN, and SRCGAN-S.

Table 1. Number of images used. Source domains include  Taple 2. Number of training epochs for each
RITEyes, CGAN, and SRCGAN. Filtered Source domain

combination of M images in the source domain
includes SRCGAN-S. Target domain includes OpenEDS.

and N images in target domain.

Set/Domain H Source Filtered Source Target N/M H 64 256 1,024 2,048 4,096
Train 9,216 2,915 8,916 0 1,600 800 200 100 70
Validation 1,024 323 2,403 64 400 150 120 100 70
Total [ 10240 3238 11,319 8192 || 120 100 8 70 60

Dataset Details. Fig. 2 shows sample images from five datasets. The first image is from the real
OpenEDS dataset [Garbin et al. 2019], the second image is synthetic and was generated using the
RITEyes rendering pipeline [Nair et al. 2020], and we have constructed the remaining three datasets
— CGAN (created using the CycleGAN method [Zhu et al. 2017] described in related work, SRCGAN
(created using our Structure Retaining CycleGAN method described in Section 3.1, and SRCGAN-S
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(created by filtering the SRCGAN dataset through our Siamese Network described in Section 3.2.
We denote the OpenEDS dataset [Garbin et al. 2019] as the target dataset/domain that the other
datasets must be adapted to (the other four are labeled as the source datasets). Both the source
(synthetic) and target (real) dataset have four types of label — pupil, sclera, iris, and background -
although they may have different locations within the images. The image resolution of the Open
EDS dataset is 400 X 640 pixels [Garbin et al. 2019], so we used the same resolution for the synthetic
dataset generated by the RITEyes pipeline [Nair et al. 2020] as well as for the three constructed
datasets (CGAN, SRCGAN, and SRCGAN-S) in order to reduce variance in our neural networks’
input space. We also generated synthetic images with the same number of channels (grayscale
images) and the same number of segmentation classes, i.e., pupil, iris, sclera, background. Visual
inspection suggests that even the more convincing of artificial images differ from the real images
along several dimensions, including the realism in eye lashes, skin texture, and iris texture. The
training procedure meant to reduce these differences proceeded under a 3-fold cross-validation
scheme. The number of images used in each dataset is shown in Table 1. While generating data
for training, the data augmentation methods described in RITnet [Chaudhary et al. 2019] were
used. These include vertical axis reflection, Gaussian blur (with a kernel of size 7 X 7 with standard
deviation 2 < ¢ < 7), image translation of 0-20 pixels along both axes, image corruption by drawing
2-9 random vertical and horizontal thin lines, and image corruption using a starburst pattern. Each
of the augmentation methods has a probability of 0.2 of being selected when generating training
images. The number of training epochs/iterations is shown in Table 2. Note that the number of
epochs is manually adjusted to be higher while training datasets with lower number of images.
This is done to relatively balance the total training steps across training instances.

Architecture of CycleGAN-based Models. We utilize elements of the ResNet architecture [He et al.
2016; Zhu et al. 2017] within our CycleGAN-based models (i.e. CycleGAN and Structure Retaining
CycleGAN). The generator consists of a convolution neural network (CNN) block, followed by
downsampling by a factor of 4, which is then followed by 8 residual blocks [He et al. 2016], and
finally, upsampling is applied with a factor of 4 to obtain the generated image. For the discriminator,
we use 4 CNN blocks with a stride of 4 and a leaky ReLU activation function (a = 0.2), followed by
a linear transformation layer that outputs a single neuron which predicts if an input is real or fake.

In Section 3.1, a number of hyperparameters that control the Structure Retaining CycleGAN
objective function are mentioned. We choose to keep the cycle loss yy. and identity loss yiq
coefficient the same as in prior work [Liu 2022; Taigman et al. 2017; Zhu et al. 2017] (i.e, 10). For
the coefficients of the newly proposed objective functions (Yedge, Ymeans Yvar), We perform a test over
multiple combinations of parameters and choose the best combination based on model performance,
i.e., with respect to mean distance to the real distribution’s centroid. The best combination of
hyperparameters was Yedge = 0.1, Ymean = 0, Yvar = 60.

There are multiple ways to measure the performance of CycleGAN-based models such as Incep-
tion Score where generated images are evaluated based on predictability and diversity [Lucic et al.
2017; Salimans et al. 2016]. In our context, the CycleGAN-based model-generated images have to
be both meaningful, i.e., predictable by the Inception Network classifier, as well as meet the goal of
being close to the real domain. We choose to utilize mean intersection over union (mloU) to compare
classification performance across models in the context of segmentation prediction. In addition, we
measure the closeness of generated datasets to the real dataset. In order to achieve this, we first
employ the Inception Network [Szegedy et al. 2017] used in the Siamese Network (Section 3.2) to
infer the latent representation vector corresponding to each image. Then, we compute the statistics
for each vector in the source domain distribution compared to the centroid of the real distribution,
i.e., using the L2 distance. We next compute the real distribution’s centroid by averaging every real
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Table 3. Model performance (mloU and mmloU€) comparison on the real target dataset (OpenEDS) of
the RITnet segmentation network (a) and our DANN segmentation network (b). Both models were trained
on different number of images (N) from the 4 source domains (see Fig. 2). The final standard deviation of
mmloUC is computed based on Bessel’s correction formula. Best performance in bold and highlighted.

(a) RITnet
Dataset/N || 64 256 1,024 2,048 2,915 4,096 || mmloU®
RITEyes 036+0.11 0474003 0.54+0.03  0.53+0.04 - 0.56+0.04 || 0.49+0.09
CGAN 0.20£0.01  0.21+0.00  0.22+0.01  0.230.02 - 0.22+0.01 || 0.210.01
SRCGAN (ours) || 0.50+0.02  0.55+0.01  0.55+0.01  0.57+0.03 - 0.61+0.01 || 0.55+0.04
SRCGAN-S (ours) || 0.52+0.02 0.56+0.04 0.57+0.01 0.61+0.01 0.66+0.02 - 0.59+0.05
(b) DANN
Dataset/N || 64 256 1,024 2,048 2,915 4,096 || mmloU®
RITEyes 0.55+0.04 0.54+0.05 0.52+0.03  0.55+0.05 - 0.57+0.03 || 0.54+0.04
CGAN 0224001  0.22+0.01  0.22+0.01  0.24%0.01 - 0.23+0.01 || 0.22+0.01
SRCGAN (ours) || 0.60+0.03 0.62+0.02 0.64+0.02 0.65+0.04 - 0.70+0.04 || 0.64:0.04
SRCGAN-S (ours) || 0.62+0.02 0.61+0.03  0.63+0.04 0.65+0.02 0.71+0.04 - 0.64+0.04

image vector. The mean distance-to-real-centroid can be formally stated as:

ng =Ee-c [l f(e) —cr II3] .- (13)
where C represents the source dataset being evaluated and cg is the vector representation of the
real dataset’s centroid as calculated in Equation 10. We obtain z$%AN ~ 0.023 and ,usRCGAN ~ 0.005
(the best given the hyperparameter combination). The results notably align with the PCA plots of
the DANN module (see Section 3.3) across different datasets as shown in Fig. 3.

2 component PCA 2 component PCA 2 component PCA

| Component 2

Principal Component 2
Principal Component 2

Principal Component 1 Principal Component 1 Principal Component 1

Fig. 3. Comparison of PCA plots of intermediate latent vectors for source and target domains produced by
the DANN module (described in Section 3.3). Left: RITEyes (red) vs. OpenEDS (green). Middle: CGAN (red) vs.
OpenEDS (green). Right: SRCGAN (red) vs. OpenEDS (green). Note that red dots inside the ellipse make up
the SRCGAN-S distribution which represents filtered images that are close to the real distribution.

The mloU results of our system, trained on each source dataset, also demonstrates that using the
Structure Retaining CycleGAN model improves the performance of the model when processing real
datasets (Fig. 4 and Table 3). Specifically, let {C™} be the set of all dataset C instances that have N
number of training images, e.g., for {SRCGAN-SV}, N € {64, 128, 1024, 2048, 2915}. We may then
compute the representative mean of the individual mloUs (mmIoUC) for each dataset C as:

mmloU® = ECiE{CN}mIoUCi (14)
where mIoU% is the mIoU of the segmentation model trained on the i-th instance in that collection

of instances. In other words, we average all segmentation mloU scores for a model over every
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dataset C instance for each dataset C in order to obtain the per-dataset statistics mmIoU®. We
observe that the RITnet segmentation model, when trained with (C =) SRCGAN-S images, has
0.04,0.38, and 0.10 higher mmloU® measurements than when trained with SRCGAN, CGAN, and
RITEyes images, respectively. Similarly, the DANN model, when trained with (C =) SRCGAN-S
images, yields 0.00,0.42, and 0.10 higher mmloUC scores as compared to training with SRCGAN,
CGAN, RITEyes images, respectively (see Table 3). Note that, in Fig. 4 and Table 3, there is no data for
the number of images greater than 2,915 for SRCGAN-S dataset because there are only 2,915 images
in the training set (see Table 1). This result shows that we have developed a dataset production
and refinement method that maps from the synthetic domain to the real domain, improving the
plausibility of the synthetic images and providing a means of closing the domain/sim2real gap.

Siamese Network for Image Filtering. We train a Siamese
Network based on the Inceptionv4 architecture [Szegedy
et al. 2017] as the feature extractor, resulting in a total
number of 27,465,826 parameters. Concretely, we train the
Siamese Network for 20 epochs with 10,000 pairs of the
same source, same target, and different domain images for
each epoch. We achieve a (final) 0.0001 contrastive loss
when estimating the L2/Euclidean distance between image ~ °

pairs given that the labeled margin between two different- ™ "o 0 w0 s e oo o0 o0 oo
domain images is one. This means that the images that - RN o AT NSREOM) - Tt R
are close to each other (within the same domain) will have
an estimated distance close to zero while images that are
further away from one another (from different domains) s °°

will have a distance around one (see the sample estimation
of L2 distance shown in Fig. 5).

After training the Siamese Network, the resulting model
is used to output a latent representation of each im- ™
age which is then used to filter the SRCGAN dataset.
Through experimentation, we set the distance threshold
used for filtering to be 0.005 (the best mean distance-to- o DANN(NATEES) e DANNINSRCGAN) e DANN (1 SRCGANS)
real-centroid pZRCGAN considering datasets generated from
various Structure Retaining CycleGAN models). We then
train all of the models on this filtered dataset and mea-
sure the mloU. As seen in Fig. 4 and Table 3, the model
trained on the filtered dataset desirably results in a higher . - 4omains (see Figure 2). Shaded
mloU compared to every other model. This score is specif- regions depict =1 SD in the 3-fold cross
ically higher than that of the model trained on the non- validation scheme.
filtered synthetic dataset (RITEyes) by about 10%. This
result shows that, after processing the synthetic dataset with our pipeline’s other modules, we can
further refine this dataset by filtering out images that are estimated not close to the real image
distribution. This, in effect, further boosts the performance of the eye segmentation network.

64 500 1000 1500 2000 2500 3000 3500 4000
N images

Fig.4. Performance comparison on the real
target dataset (OpenEDS) of the RITnet
(Left) and our DANN (Right) segmentation
networks. Both models were trained on the

Domain Adversarial Neural Network. Our DANN module consists of a segmentation network
based on RITnet with the addition of a fully-connected neural network domain classifier. The
bottleneck output of the segmentation network, i.e., encoder output, is then fed into a reverse
gradient layer. This reverse gradient layer acts as the identity function in the forward pass and
negation function in the backward pass. The domain classifier then takes this in as input and
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Table 4. Performance (mloU) of RITnet vs. DANN when training on 4,096/2,915 source domain images together
with 8,192 (a), or 64 (b) images from the OpenEDS dataset. Best performance in bold and highlighted.

(a) 8,192 OpenEDS images used in training

Model/Dataset || 4,096 RITEyes 4,096 CGAN 4,096 SRCGAN (ours) 2,915 SRCGAN-S (ours)

RITnet 0.94+0.00 0.94+0.00 0.94+0.00 0.94+0.00
DANN (ours) 0.94+0.00 0.93+0.00 0.94+0.00 0.93+0.01

(b) 64 OpenEDS images used in training

Model/Dataset H 4,096 RITEyes 4,096 CGAN 4,096 SRCGAN (ours) 2,915 SRCGAN-S (ours)

RITnet 0.83+0.04 0.80+0.04 0.81+0.01 0.82+0.01
DANN (ours) 0.90+0.02 0.89+0.01 0.90+0.01 0.89+0.02

outputs a single classification probability (score). The network classifier is made up of five dense
layers that use ReLU activation functions with the logistic sigmoid activation in the last layer.
We compare the performance of
the RITnet and DANN segmentation
networks when trained on datasets
consisting of 4,096 or 2,915 synthetic
eye images and a varying number of
real images. Our results are shown in
Table 4 for 8,192 and 64 real images
(top and bottom). We observe that
the performance of the two modelsis  Fig. 5. Sample distance prediction measurements of the Siamese
close to each other when the number Network for two images from OpenEDS dataset (left) and an

of real training images is high, and image from RITEyes and one from OpenEDS respectively (right).
the DANN module outperforms RITnet when training with a smaller number of real images (see
Table 4). Therefore, we conclude that the DANN module improves the generalization between
different domains, significantly closing the domain gap while increasing the mIoU performance of
the segmentation networks when fewer real images are used in the training process.

Predicted L2 Distance: 0.0012

Predicted L2 Distance: 1.1382

Privacy and Ethics. No new human data was recorded for this study. We instead utilized an
existing dataset of real human eyes (OpenEDS) as our target domain. The source datasets were
either rendered using computer graphics (RITEyes) or generated by neural networks (CGAN,
SRCGAN, SRCGAN-S). Importantly, our work makes substantial contributions toward the objective
of minimizing reliance on actual human training data. Concretely, given that we develop a modular
neural system that is trained mostly on synthetic data in order to estimate the segmentation for
real eyes, we reduce the need to collect eye tracking data on actual human subjects. Each method
in our work also contributes to the mitigation of privacy issues/concerns. For example, while our
Structure Retaining CycleGAN method needs a real eye dataset to which to map a synthetic dataset,
only a small fixed number of real images are ultimately required to establish the centroid and
spread of the target distribution (compared to performant systems that require a vast collections of
human eye images containing sensitive data). This reduces the risk of human data exposure and
violation of the subjects’ data privacy. Furthermore, avoiding/reducing the need to record human
data further protects humans from exposing other aspects of their identity such as facial biometric
information, facial behaviors, gaze behavior, and subject personality.
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In Table 4, we observe that although the performance of both the RITnet and DANN segmentation
networks is low when there are no real training images and performance for both increases
proportionally with respect to the number real training images, the performance of the DANN
model is higher and more stable than that of RITnet once we use a small number of real training
images. This further reinforces the fact that DANN exhibits the ability to generalize across domains
given only a fixed, finite set of real training image samples while RITnet cannot. This, again,
circumvents the need to record large amounts of training data from the human subjects. While
using a small, finite number of real human eye image samples as the target domain is beneficial for
the reasons listed above, we acknowledge that this approach can potentially introduce issues of
bias and fairness, particularly when different ages, genders, races, eye-textures, skin color, etc. are
not represented in the target real dataset.

5 CONCLUSION

In this paper, we presented a multi-step neural pipeline for tackling the problem of simZ2real in the
context of eye-tracking through the use of domain adaptation. Our architecture consists of three
main components. First, a novel Structure Retaining CycleGAN is implemented to reconstruct
synthetic eye images while ensuring they match the distribution of real eye images. Second, a
Siamese Network is designed to filter out poorly-reconstructed images through a learned dataset
pruning approach. Lastly, a model adapted from a domain-adversarial neural network structure is
employed to semantically segment the real images.

Subjectively, the datasets reconstructed at the different stages as we progress through our pipeline
do appear to be more realistic/plausible (see Fig. 2). Our objective results further indicate that the
later stage datasets do indeed yield greater performance (see Fig. 4 and Table 3). Specifically, the
SRCGAN dataset outperforms CGAN in terms of mean distance to the real centroid and downstream
mloU score. The SRCGAN-S dataset performance is similar to SRCGAN but offers the additional
benefit of faster training time since the number of images in the dataset is greatly reduced compared
to SRCGAN (2,915 for SRCGAN-S vs. 9,216 for SRCGAN, see Table 1). The fact that we are able to
achieve similar performance with fewer images confirms that our Siamese Network successfully
filters out problematic synthetic image samples. Finally, our results show that our proposed DANN
segmentation network outperforms RITnet in terms of segmentation mIoU score when only a small
number of real images is included among the synthetic datasets used for training (see Table 4).
Overall, we have provided empirical evidence that our multi-step neural architecture results in
improved synthetic datasets for training semantic segmentation models, and we also present an
improved segmentation model (DANN). Furthermore, our results have positive implications for
reducing the cost and burden associated with capturing and manually labeling large quantities of
real human eye data, which in turn also promotes data privacy.

In terms of future research work, the results we presented focus on the overall mIoU score
averaged across distinct eye regions. However, delving into region-specific mloU scores could yield
additional insights and improvements. For instance, our observations indicate that the mIoU score
for the sclera region tends to lag behind those for the pupil and iris regions. Further exploration
of region-specific objective functions may effectively address and enhance performance in these
specific areas. Additionally, in our DANN sub-module, the reverse gradient from the domain
classifier currently flows through the encoder of only the segmentation network, which makes the
domain generalization learning occur in the encoder but not in the decoder. It is worth exploring
whether this might be a contributing factor in the DANN model’s slight underperformance compared
to RITnet when the number of real images gets (much) larger. Another challenge central to the
problem of domain adaptation relates to the ability to generalize eye segmentation models with
respect to the target domain. Although the OpenEDS dataset consider different combinations of
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age, sex, usage of glasses, and corneal topography [Garbin et al. 2019], they may not account for
the diversity in other features such as sclera/iris texture. While it is possible to introduce diversity
in the rendering pipeline by using different head models representing different genders, ages, races,
iris/sclera textures, etc. as in RITEyes [Nair et al. 2020], our current pipeline does not prioritize the
retention of these features during domain transfer. Therefore, it is worthwhile to explore domain
transfer functions that preserve such features. Additionally, while mapping from the synthetic to
the real domain, it may be beneficial to incorporate eye glint as an additional transferable structure
in order to further improve the realism of the resulting eye images. While our current research
integrates glints within the eye region textures, future studies could explore framing it as a separate
structural element and aim to preserve its characteristics from the source domain. Lastly, future
works can also explore the impacts of different image resolution on the efficiency of our algorithms.
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