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A B S T R A C T   

Protecting the future of forests relies on our ability to observe changes in forest health. Thus, developing tools for 
sensing diseases in a timely fashion is critical for managing threats at broad scales. Oak wilt —a disease caused by 
a pathogenic fungus (Bretziella fagacearum)— is threatening oaks, killing thousands yearly while negatively 
impacting the ecosystem services they provide. Here we propose a novel workflow for mapping oak wilt by 
targeting temporal disease progression through symptoms using land surface phenology (LSP) from spaceborne 
observations. By doing so, we hypothesize that phenological changes in pigments and photosynthetic activity of 
trees affected by oak wilt can be tracked using LSP metrics derived from the Chlorophyll/Carotenoid Index (CCI). 
We used dense time-series observations from Sentinel-2 to create Analysis Ready Data across Minnesota and 
Wisconsin and to derive three LSP metrics: the value of CCI at the start and end of the growing season, and the 
coefficient of variation of the CCI during the growing season. We integrate high-resolution airborne imagery in 
multiple locations to select pixels (n = 3872) from the most common oak tree health conditions: healthy, 
symptomatic for oak wilt, and dead. These pixels were used to train an iterative Partial Least Square Discriminant 
(PLSD) model and derive the probability of an oak tree (i.e., pixel) in one of these conditions and the associated 
uncertainty. We assessed these models spatially and temporally on testing datasets revealing that it is feasible to 
discriminate among the three health conditions with overall accuracy between 80 and 82%. Within conditions, 
our models suggest that spatial variations among three CCI-derived LSP metrics can identify healthy (Area Under 
the Curve (AUC) = 0.98), symptomatic (AUC = 0.89), and dead (AUC = 0.94) oak trees with low false positive 
rates. The model performance was robust across different years as well. The predictive maps were used to guide 
local stakeholders to locate disease hotspots for ground verification and subsequent decision-making for treat
ment. Our results highlight the capabilities of LSP metrics from dense spaceborne observations to map diseases 
and to monitor large-scale change in biodiversity.   

1. Introduction 

The oak (Quercus) lineage is one of the most important groups of 
trees in North American temperate forests. This tree lineage comprises 
172 oak species in the United States and Mexico, contributing to >20% 
of total aboveground biomass (Cavender-Bares, 2019). As a result, oak 
trees play an invaluable role in the biodiversity, structure, and 
ecosystem functioning of temperate forests, in part as a consequence of 
their high abundance and diversity. In the U.S., oaks contribute nearly 
$22.3 B annually in net ecosystem services from wood products to 

climate protection, and air quality regulation (Cavender-Bares et al., 
2022). Alarmingly, oak trees are facing major threats from diseases and 
pests that stand to impact their role in ecosystem functioning and the 
provision of ecosystem services. Protecting the future of oak forests re
lies on our ability to observe changes in their health conditions. A 
prompt detection followed by rapid response (~ a year) gives the 
highest probability of disease management success. Thus, developing 
tools for remotely sensing forest health in a timely fashion is critical for 
managing threats at a large scale. 

One of the most lethal oak tree diseases, particularly of red oak 
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species, is oak wilt (Gibbs and French, 1980). Oak wilt is caused by an 
invasive fungal pathogen Bretziella fagacearum (Bretz, 1952; de Beer 
et al., 2017; Hunt, 1956). Spores of the oak wilt fungus are translocated 
in the sapstream of the vascular system of infected oak trees. In response, 
infected trees produce tyloses to isolate or slow lateral or vertical spread 
through the vessels (Struckmeyer et al., 1954; Yadeta and Thomma, 
2013). The efficacy of tylose formation to limit within-tree spread of the 
pathogen is strongly linked to the vessel diameter and rapidity of the 
host response, which differs by oak lineage. The white oaks (Quercus 
section Quercus) tend to have denser wood with smaller diameter vessels 
than red oaks (Cavender-Bares and Holbrook, 2001) in which tyloses are 
more effective at slowing the vascular spread of oak wilt, whereas red 
oaks (Quercus section Lobatae) have larger vessels and their immune 
responses are relatively ineffective in halting the fungus spread (Juzwik 
et al., 2011; Yadeta and Thomma, 2013). Metabolites produced by the 
fungus also contribute to the plugging of xylem vessels. Once an oak tree 
is infected, the pathogen can spread locally belowground or long- 
distance by above-ground means (Gibbs and French, 1980; Juzwik 
et al., 2011). The below-ground spread occurs by fungal movement 
through networks of grafted roots of neighboring trees forming 
“pockets” or centers of diseased and dead oak trees (Kuntz and Riker, 
1950). Above-ground spread is facilitated by insect vectors (Gibbs and 
French, 1980) such as several species of Nitidulid beetles (Coleoptera: 
Nitidulidae) that acquire B. fagacearum spores when visiting oak wilt 
sporulating mats on diseased trees and subsequently transmit the spores 
to fresh xylem-penetrating wounds on healthy oaks (Juzwik et al., 
2011). Accurate and prompt detection of oak wilt facilitates successful 
treatment of the disease. For example, severing roots around the pockets 
and removing diseased oaks is one proven tactic that is effective in 
halting the propagation of oak wilt (Juzwik et al., 2011; Koch et al., 
2010). Despite this, the detection of pockets or isolated individual 
diseased trees is laborious and expensive, particularly at regional scales. 
Thus, the development of remote sensing tools for detecting diseased 
trees at large spatial scales is crucial first step for guiding management 
efforts. 

Oak trees in advanced stages of the disease tend to express drought- 
like symptoms associated with reductions in water content and con
centration of green pigments in their leaves (Fallon et al., 2020). Such 
symptoms lead to spectral signatures that can be detected at the leaf 
(Fallon et al., 2020) or canopy level using hyperspectral sensors (Sapes 
et al., 2022). Such symptoms can also be differentiated using three- 
dimensional color space models (Monahan et al., 2022). However, it 
remains unclear the extent to which detection is feasible at the space
borne level where extensive spatial coverage and frequent observations 
could be highly informative. Although pixel size from spaceborne ob
servations could limit the ability to detect individual trees in comparison 
with traditional aerial surveys, frequent satellite observations are likely 
to track the progression of crown wilting in mid-summer, which is 
considered a key symptom for diagnosing the disease in the Upper 
Midwest (Haugen et al., 2022). We thus expect the use of phenological 
metrics that can be derived from these observations to be useful in 
observing the symptoms of disease progression and mapping the spread 
of the disease in oak trees at the regional scale. 

Here we evaluate the use of the temporal spaceborne observations 
for the mapping of oak wilt in forests of the Upper Midwest U.S. We 
present a reproducible, scalable, and open-source workflow to map oak 
wilt and its impacts across Minnesota and Wisconsin — but applicable to 
other regions—to advance guidance of disease management efforts by 
forest managers and stakeholders. In doing so, we hypothesize that 
phenological changes in pigments and photosynthetic activity of oak 
trees due to oak wilt can be tracked using phenological metrics derived 
from the Chlorophyll/Carotenoid Index (CCI) (Gamon et al., 2016) from 
satellite observations. We evaluate this approach within the spatial and 
temporal context in conjunction with high-resolution airborne obser
vations of symptomatic trees in pockets of disease from Central Min
nesota. This study highlights the use of phenological base metrics from 

frequent and continuous spaceborne observations for mapping diseases 
at a large scale to further understand the impacts of tree pathogens on 
the ecosystem functioning and services in the North American temperate 
forest. 

2. Phenological observations as a proxy for detecting oak wilt 

Susceptible red oak trees infected with the oak wilt pathogen usually 
present a rapid wilting of their crown in a period of weeks. Infected 
white oaks, on the other hand, tend to present scattered wilting of their 
crown over several to many years (Haugen et al., 2022). The wilting 
process can vary in timing but frequently occurs in mid to late summer. 
While a definitive diagnosis of oak wilt disease requires laboratory 
isolation of the fungus or a DNA test, rapid wilting, particularly of red 
oaks in a cluster formation extending outward from a previously 
diseased tree (or trees), is considered a key symptom for on-site diag
nosis by trained individuals. In this study, we seek to detect and map oak 
wilt based on knowledge of the disease progression using temporal ob
servations of a spectral index sensitive to oak wilt symptoms. 

Consider the variation over time of the CCI spectral index known to 
be sensitive to oak wilt (Sapes et al., 2022) (Fig. 1a). At the start of the 
growing season, the CCI signal from a healthy or symptomatic oak tree 
expresses sharp increases due to leaf flushing that differentiates it from 
the CCI signal of a dead oak tree (Fig. 1a). Healthy, uninfected oaks 
exhibit seasonal variation in CCI as a consequence of leaf maturation 
and seasonal changes in chlorophyll and carotenoid pigment ratios 
(Gamon et al., 2016). In comparison, a dead oak tree produces lower CCI 
signal during the growing season, but the values are rarely negative 
given the presence of forest floor vegetation and resultant spectral 
mixing of the dead tree with the understory. An oak tree symptomatic of 
oak wilt disease, on the other hand, exhibits a more pronounced and 
earlier reduction in CCI than in a healthy tree. As such, the wilting 
process leads to a reduction in the mean CCI over the course of the 
growing season and a symptomatic signal close to the senescence period 
that resembles dead trees. Higher variability (i.e., standard deviation) 
and lower mean CCI during the growing session led to higher co
efficients of variations in symptomatic oak trees in comparison with 
healthy or dead oak trees. Thus, metrics that describe phenological 
events of CCI, including the value at the start of the season (VSS), the 
value at the end of the season (VES), the variability value as the standard 
deviation of CCI during the growing season (VGV) or the coefficient of 
variation (VCV), provide a basis to differentiate healthy, symptomatic, 
and dead oak trees. These metrics can be normalized locally (i.e., z- 
scores) using the values of healthy vegetation (e.g., mean and standard 
deviation), to derive trends between conditions (Fig. 1b). The differen
tiation of symptomatic, dead, and healthy oak trees ultimately leads to 
the mapping of the disease. 

3. Materials and methods 

3.1. Study area 

Our study site encompasses 365,700 km2 in the states of Minnesota 
(MN) and Wisconsin (WI), U.S.A. These neighboring states present two 
forest ecological provinces dominated by the Laurentian Mixed Forest 
and the Eastern Broadleaf Forest (Bailey, 1998). Also present is the 
Prairie Parkland Province, dominated mainly by grasslands and agri
culture (Bailey, 1998), with limited tree cover and a low abundance of 
oaks and oak wilt. Forest cover is the most dominant vegetation type in 
both states, with forest cover close to 50% and 48% of the total area in 
MN (Miles et al., 2016) and WI (Wisconsin Department of Natural Re
sources, 2020), respectively. Both states present a similar gradient of 
agricultural cover in the southernmost regions to forested cover in the 
northern regions. This region is well-suited for testing phenological 
metrics for oak wilt detection due to the wide distribution of oaks, the 
current spread of oak wilt, and the strong climatic seasonality with the 
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potential to provide valuable information to forest managers. 

3.2. Satellite data processing 

We used satellite observations from Landsat 8 collection 2 Tier 1 
L1TP data (USGS, 2021) and Sentinel-2 A/B Level 1C (Drusch et al., 
2012) with a cloud cover of up to 70%. Images were processed through 
FORCE (version 3.7.7; Frantz, 2019); a single computing environment to 
efficiently process, analyze, and stack satellite observations in a data
cube framework. These images were corrected for geometric and 
radiometric effects, reproject to the USA Contiguous Lambert projection 

(EPSG:102004), and store as 30 km × 30 km datacube tiles (Fig. S1) to 
create Analysis Ready Data (ARD) (Fig. 2) (i.e., Level 2 ARD). Geometric 
and radiometric corrections include corrections for atmospheric, topo
graphic, adjacency, and bidirectional reflectance distribution function 
(BRDF) effects (Buchner et al., 2020; Frantz et al., 2016a; Roy et al., 
2017). The creation of ARD also includes masking clouds based on 
Fmask (Frantz et al., 2018; Zhu et al., 2015; Zhu and Woodcock, 2012). 
Topographic corrections and enhancements for cloud detection were 
applied based on a digital elevation model from Copernicus GLO-90 
Digital Surface Model accessed through OpenTopography (2021). 
Landsat 8 scenes from 2017 to 2021 were first ingested as a baseline for 

Fig. 1. Temporal changes in the Chlorophyll/Carotenoid Index (CCI) of a pixel from an oak tree that died from oak wilt disease (a) and the expected behavior of land 
surface phenology metrics when oak tree conditions are compared with the surrounding healthy vegetation for a given phenological year (b). Individual points 
represent satellite observations, while the solid line shows the 16-day interpolation. The vertical color bars represent the evaluation of the three oak tree conditions 
(green: healthy; orange: symptomatic; purple: dead). The acronyms in panel b represent the day of the start and the day of the end of the green season (DSS and DES), 
the values at the start and end of the growing season (VSS and VES), the mean and standard deviation value during the growing season value (VGM and VGV), and 
the value of the coefficient of variation during the green season (VCV). Arrows indicate expected values higher or lower than healthy oak trees, while a dash indicates 
a value similar to healthy trees. 
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co-registration to create monthly multi-annual Landsat 8 near-infrared 
scenes. These were used to co-register Sentinel-2 to ensure the best 
possible geometric alignment between scenes and among sensors (Rufin 
et al., 2021). Then, Sentinel-2 scenes from November 2016 to February 
2023 were ingested and processed using FORCE. All the Sentinel-2 
bands were downscaled to a 10 m spatial resolution using the Impro
Phe algorithm (Frantz et al., 2016b). Fig. S2 illustrates the total amount 
of clear sky observations for the years of interest. 

3.3. Time series of chlorophyll/carotenoid index 

3.3.1. Chlorophyll/carotenoid index 
Using Sentinel-2 ARD, we calculated the chlorophyll/carotenoid 

index (CCI) (Gamon et al., 2016) to target physiological responses sen
sitive to wilting. The CCI index was estimated as: 

CCI =
ρ560 − ρ664
ρ560 + ρ664

(1)  

where p560 and p664 are bands 3 and 4 of Sentinel-2. Originally this 
index was developed to track the evergreen forest phenology using the 
Moderate Resolution Imaging Spectroradiometer (MODIS) (Gamon 
et al., 2016), but it has also been found to be sensitive to mixed decid
uous forest phenology (Wong et al., 2020) and oak wilt (Sapes et al., 
2022). Despite the lack of matching spectral bands between MODIS and 
Sentinel-2, the Sentinel-2 bands selected in this study are the closest 
available to MODIS bands (1 and 11) and Sentinel-2 derived CCI 
resulting from these bands has previously been shown to have a strong 
resemblance to MODIS CCI (Helfenstein et al., 2022). Although other 
indices are sensitive to oak wilt symptoms (e.g., Sapes et al., 2022), we 
use CCI because of its relationship to physiological stresses and strong 
correlation/redundancy with other indices. The kernel density of the 
Normalized Difference of Vegetation Index (kNDVI) (Camps-Valls et al., 
2021) was also calculated to be used as a forest mask in the following 
procedures. The CCI and kNDVI estimation, the temporal interpolation 
of observations, and the derivation of phenological metrics were also 

conducted in FORCE using the ‘force-higher-level’ chain processing 
submodule as detailed below. 

3.3.2. Land surface phenology 
Our approach to using LSP metrics to detect oak wilt is based on the 

premise that visible oak wilt symptoms are not likely to be expressed 
during the early growing season (e.g., when the transmission tends to 
occur), but in the late-growing season after a period of incubation. We 
test the extent to which LSP metrics using spectral indices related to 
wilting symptoms can discriminate between symptomatic and dead trees 
(early growing season) and symptomatic and healthy oak trees (late 
growing season). 

LSP metrics are calculated on a per-pixel basis to create annual time 
series observations following Brooks et al. (2020) and Frantz et al. 
(2022). Poor-quality pixels flagged as cloud, cloud shadow, or snow as 
well as saturated and sub-zero reflectance pixels are excluded from the 
analysis. The CCI was interpolated to a 16-day observation period using 
an ensemble of Radial Basis Function convolution filters as described by 
Schwieder et al. (2016) and Frantz et al. (2022). This filter is based on 
retrieving a weight value computed from a Gaussian distribution func
tion on a set of observations retrieved from a given kernel width (i.e., 
days windows) at a specific period (detail in Frantz et al., 2022). We 
used three kernel widths of 8, 16, and 32 days and a kernel cutoff value 
that preserves 95% of the area under the Gaussian curve as employed by 
Frantz et al. (2022), which gives preference to kernel widths with a 
higher number of observations for the final estimation. No-data values 
are likely to occur during winter when there are few clear-sky satellite 
observations, but a linear interpolation is then performed to fill the 
remaining data gaps which are likely to be negative values and 
considered as zero for the estimation of the LSP. 

LSP metrics were computed for each year between 2017 and 2022 
using a polar transformation-based method (Brooks et al., 2020; Frantz 
et al., 2022). Days of the year (DOY) are converted to radians and CCI is 
transformed into a cartesian space using angles. An index value from a 
given observation period will thus result in a transformed value with a 

Fig. 2. Workflow to acquire, process, and analyze Landsat 8 and Sentinel-2 imagery as a basis for describing land surface phenology to map oak wilt disease.  
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[x, y] cartesian coordinate. From all the cartesian coordinates a long- 
term polar average vector is computed to describe the central ten
dency of the annual peak of the phenological year. The diametric 
opposite angle of this average vector is then estimated to characterize 
the direction to the lowest values and thus, the long-term start of the 
phenological year. The timing of the peak and the start of the pheno
logical year can vary from pixel to pixel and gradually change according 
to its latitude. The long-term start of the phenological year is then used 
to divide the whole interpolated time series into annual slices of 
phenological years. The start of the phenological year is then re- 
estimated on each annual slice to consider the potential inter-annual 
variability following Frantz et al. (2022). This fine-tuning of the 
phenological year consists in re-computing the polar average vector and 
its diametric opposite angle per season to further describe phenological 
years with dynamics starting and ending days. 

Once the dynamic phenological years are defined, values from 
spectral indices were converted from zero to one in cumulative pro
portions which were used to characterize cumulative milestones for the 
starting and ending of growing seasons within a phenological year based 
on thresholds. We chose phenological thresholds at 0.15 and 0.85 of the 
cumulative proportions to define the beginning and end of the growing 
season (e.g., green season). Using these thresholds, five LSP metrics were 
derived from CCI (as explained in Section 2): VSS, VES, VGM, VGV, and 
VCV as VGV/VGM. VSS and VES are defined as the CCI value at 0.15 and 
0.85 of the cumulative threshold, while VGM and VGV as the mean and 
standard deviation of the CCI between the start and end of the growing 
season. The previous LSP metrics except for VCV were directly computed 
in FORCE. In addition, the value of the peak of the growing season (VPS) 
was derived from kNDVI and used as a forest mask if it exceeds a 
threshold of 0.5. 

We normalized the LSP metrics derived from CCI (i.e., VSS, VSS, and 
VCV) each year by tile based on z-scores to further reduce the inter- 
annual and spatial variability of the phenological observations. We 
used the annual VSS to identify healthy forest cover and then used VSS 
values higher than 0.25 to mask forested areas given their clear differ
entiation from other cover types. The mean and standard deviation of 
the resulting masked pixels were used to compute the z-scores (e.g., (LSP 
metric - LSP mean) / LSP standard deviation). The LSP metrics estimated 
are available at https://app.globus.org/file-manager?origin_id=d5f 
9b461-7d6e-442b-87ed-be8aa2ca6763&origin_path=%2F. 

3.4. Detection of oak wilt and accuracy assessment 

3.4.1. Oak wilt dataset 
We developed datasets of observations of symptomatic trees from 

three years of airborne imagery to guide the selection of pixels to model 
oak wilt presence from metrics of LSP. Aerial data included 0.3 m 
multispectral National Agriculture Imagery Program (NAIP) scenes ac
quired between July 15th to August 15th, 2019 across eight tiles of ARD 
(900 km2 each) and 1 m resolution HySpex VNIR-1800 (NEO, Oslo, 
Norway) scenes captured in two surveys over six locations on July 24th 
2018, and for one location on July 24th 2021. The HySpex images were 
processed following Liu et al. (2021) and Queally et al. (2022), and we 
used composite images of 664, 562, and 491 nm to create true color 
images to identify oak wilt locations. All aerial imagery was co- 
registered to the average red band of Sentinel-2 ARD for the concur
rent period using AROSICS (Scheffler et al., 2017). 

Once the airborne imagery was co-registered, we then proceeded 
with the digitalization of points. This was done with the guide of digi
tized polygons of pockets of disease created by the Department of Nat
ural Resources (DNR) of Minnesota (Department of Natural Resources, 
2021). These disease pockets are ground-checked areas based on 2019 
National Agriculture Imagery Program (NAIP) imagery, reports from 
DNR foresters and the U.S. Department of Agriculture Forest Service, 
and windshield surveys (Department of Natural Resources, 2021). These 
polygons were distributed over several counties across Minnesota, and 

close to or within them it is possible to visualize trees with oak wilt 
symptoms, which we infer are mostly red oaks species (Quercus rubra or 
Quercus ellipsoidalis). These polygons were manually co-registered to our 
2019 NAIP co-registered imagery and used as a guide for selecting pixels 
(i.e., trees) in areas affected by the disease. We manually digitized points 
on tree crowns that appeared to be symptomatic of oak wilt (i.e., wilted), 
healthy, or dead within or around the disease pockets on the high- 
resolution airborne imagery. We assumed that if an oak crown looked 
symptomatic, was within or close to a disease pocket, and appeared to be 
dead in subsequent years, it is likely that the tree was killed by oak wilt. 
A single point was digitized on symptomatic or dead crown within or 
close to small disease pockets (~ 0.5 ha), and between two and three 
points within large pockets to avoid potential spatial autocorrelation 
among pixels. Given its nature, points of symptomatic oak trees selected 
were mostly surrounded by the three oak tree conditions, while dead or 
healthy trees were mostly surrounded by trees of their own condition. 
All trees classified as symptomatic trees in 2018 and 2019 were assessed 
for mortality using NAIP imagery of the following years. In total, 3872 
points were digitized (Table S1 and Fig. S3). We then used these points 
to extract pixels for the LSP metrics (Section 3.3.2) and to develop the 
models for detecting the disease (Section 3.4.2). Moreover, we manually 
delineated polygons on tree crowns in a subset of 470 symptomatic oak 
trees digitized in 2019 NAIP scenes. This delineation procedure was 
conducted to perform a pixel-level assessment by evaluating the rela
tionship between crown size and the coverage of pixels occupied by 
symptomatic trees based on the predicted probability for the three oak 
conditions. This subset of symptomatic trees comes from three tiles (i.e., 
X0014_Y0014, X0014_Y0015, and X0014_Y0016) and was selected 
because the tree crowns were visually feasible to segment from their 
surroundings. Similar to above, the delineated polygons were used to 
extract pixels for the LPS metrics, but we only retained one pixel per 
polygon to match with the digitized point for further analysis. The 
digitization of points and polygons were performed using QGIS 3.22 
(QGIS Development Team, 2022) with a USA Contiguous Lambert pro
jection (EPSG:102004) and a fixed window scale of 1:1000. 

3.4.2. Model development and assessment 
We built machine learning models to detect oak wilt from the LSP 

metrics, with the ultimate objective of a map of the probability of oak 
wilt presence. We randomly split 60% of samples (i.e., pixels) from the 
2019-point dataset to train the classification algorithms. Specifically, 
the data splitting procedure was conducted on samples from each tile 
based on their condition (i.e., symptomatic, healthy, or dead) to ensure a 
balanced representation of conditions by spatial locations during the 
algorithm’s training. The training dataset encompassed 1984 samples 
(661 samples per condition) at the end of this procedure. We used the 
remaining 40% of point-samples (n = 1520) to test the performance of 
classification at the spatial level as well as at the temporal using the 
2018 and 2021 datasets (n = 370). 

Using the established framework, we trained and selected classifi
cation algorithms. Six widely-used classification algorithms that 
required little or no tuning parameters for their computation were 
implemented using the caret package in R (Kuhn, 2008) (Table 1). 
During training, we avoided potential spatial auto-correlation within a 
set of scenes by using an 8-fold spatial cross-validation in which ARD 
tiles comprised the spatial component. We iterated this optimization 
procedure 100 times using 80% of the training dataset during each 
iteration using the CAST package of R (Meyer et al., 2023). 

We selected the final model for implementation based on accuracy 
assessment and kappa statistics. The best-performing model was further 
evaluated with four main descriptors of performance: i) balance accu
racy; ii) the sensitivity, or the true-positive rate, which measures the 
probability of which a pixel condition is predicted correctly for all 
samples of that condition; iii) the specificity or 1- the false-positive rate, 
which measures the probability of which non-event conditions are 
predicted as non-event conditions, and iv) the F1 which describes the 
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average of precision and recall (Kuhn, 2008). Since our goal is to pro
duce maps of probabilities, we examine the selected model further by 
estimating the receiver operating characteristic (ROC) curves and their 
area under the curve (AUC) among the condition. We identified the 
probability level at which there was a balance between sensitivity and 1 
– specificity to inform ‘cutoff’ values to produce maps. Moreover, the 
macro and micro performance of multiclass classification were also 
estimated using ROC curves. Macro performance is evaluated based on 
metrics (i.e., sensitivity and 1 – specificity) independently for each oak 
tree condition and subsequently, treating all conditions equally. Micro 
performance, on the other hand, is evaluated from metrics that aggre
gate across all conditions at once, taking into account the individual 
contributions of each oak tree condition. 

On the pixels extracted from polygons of symptomatic crowns, we 
applied the predictive models to obtain probabilities for the three oak 
conditions. These probabilities were linearly regressed against crown 
area and pixel cover to perform a pixel-level assessment and identify 
majority probability thresholds (> 0.5). 

3.4.3. Mapping of oak wilt 
We applied the selected predictive model to three annual LSP metrics 

from 2017 to 2022 to map the probability of the oak tree condition in 
Minnesota and Wisconsin. We applied 100 iterative models to generate a 
mean probability value and estimated uncertainty as the amplitude 
between the upper and lower limits of the confidence intervals at 95% of 
the predicted probabilities per condition, assuming that these follow a 
normal distribution. We used the sum of amplitudes among conditions 
as a descriptor of the overall uncertainty of the model on the presented 
maps (Section 4.3). We showcase areas outside of our training tiles 
affected by oak wilt disease to prove its potential to guide stakeholders. 
The predicted maps are available at https://app.globus.org/file-manage 
r?origin_id=2ad70821-cc5a-424e-aa72-8553d2bb45eb&origin_path=

%2F. 

4. Results 

4.1. Datasets evaluation 

The LSP metrics differentiate healthy, symptomatic, and dead oak 
trees within each phenological year of evaluation (Fig. 3). VSS clearly 
differentiates pixels from healthy oak crowns from symptomatic and 
dead crowns, with the highest values in healthy trees, and lowest in dead 
ones (Fig. 3a). For VES, symptomatic and dead oak trees tend to display 
similar values, but healthy crowns show higher values (Fig. 3c). Simi
larly, VCV differentiates symptomatic trees from healthy and dead oak 

trees because symptomatic crowns tend to have higher values than 
healthy or dead crowns. (Fig. 3e). The z-score transformation to 
normalize the LSP variation among tiles enhanced this differentiation 
and our ability to make accurate inferences of crown health. During the 
three years of evaluation (Fig. 3b, d, and f), healthy oak trees always 
have values that tend towards zero, while symptomatic and dead crowns 
tend to be differentiated by their means (except for VCV in dead oak 
trees). Differentiation among oak tree conditions using the land surface 
phenology (LSP) metrics and their transformations are also observed 
spatially in our 2019 dataset (Fig. S4). Maps of the three evaluated LSP 
metrics across Minnesota and Wisconsin are presented in Fig. S5. 

4.2. Assessment of the predictive model 

4.2.1. Assessment of the models 
The six machine learning models we tested credibly discriminated 

pixels among healthy, symptomatic, or dead oak trees (Fig. 4). Overall, 
the mean accuracy for the training dataset ranges between 0.76 and 0.81 
among all the classifiers, and between 0.80 and 0.82 for the testing 
dataset. Similarly, the mean kappa value for training data ranged be
tween 0.64 and 0.72 (0.68 ± 0.01) and between 0.69 and 0.73 (0.71 ±
0.01) for testing data. Among the algorithms we tested, LDA, PLSD, and 
KNN exhibited the highest mean accuracy close to 0.79 for the training 
dataset. For the testing datasets, QDA had a mean accuracy of 0.82 
closely followed by KNN, SVM, LDA, and PLSD with values close to 0.81. 
RF gave the lowest classification performance on both training and 
testing datasets with accuracies of 0.78 and 0.80, respectively. Given 
that the PLSD performance was among the highest and is readily applied 
and interpreted in comparison with QDA or SVM, we selected the PLSD 
model to map symptomatic trees and further test spatial and temporal 
classification performance. 

4.2.2. Spatial assessment 
Spatial evaluation of the model built using the 2019 testing dataset 

reveals that the classification performance varies across observation 
tiles (Fig. 5). The balanced classification accuracy of pixels from healthy 
oak trees was highest and ranged between 0.83 and 0.95 among tiles; for 
pixels from dead and symptomatic oak trees it ranged from 0.76 to 0.92, 
and from 0.67 to 0.88, respectively. Overall, the balanced accuracy of 
classification for healthy oak trees was higher and less variable (0.90 ±
0.04) among tiles than for dead (0.85 ± 0.04) or symptomatic oak trees 
(0.80 ± 0.06). We found this same pattern for the sensitivity, specificity, 
and F1 parameters (Fig. 5). Most of the class confusion was between 
dead and symptomatic oak trees (Fig. S6). For instance, in tiles where 
symptomatic oak trees had higher sensitivity or specificity values, dead 
oak trees showed lower values, and vice versa. Our spatial assessment 
also indicates that mapping in the three southernmost tiles (i.e., 
X0016_Y0025, X0017_Y0026, and X0017_Y0027) performed worse than 
average. However, this performance was always >0.7 of balanced ac
curacy. In addition, the ROC curves and their AUC demonstrate that 
across tiles pixels from healthy oak trees are more readily classified 
(AUC = 0.94 ± 0.05), than dead (AUC = 0.90 ± 0.05) or symptomatic 
oak trees (AUC = 0.84 ± 0.08) (Table S2). These curves also reveal a 
congruent multiclass classification performance independently of the 
conditions (i.e., macro) (AUC = 0.89 ± 0.05) or potential class imbal
ance (i.e., micro) (AUC = 0.88 ± 0.06). The probability of ‘cutoff’ from 
these ROC curves to obtain a balance between sensitivity and 1 – spec
ificity within conditions was higher in healthy oak trees (0.41 ± 0.04) 
than in dead (0.35 ± 0.02) or symptomatic trees (0.32 ± 0.01). 

4.2.3. Temporal assessment 
The temporal evaluation of the model built from 2019 data using the 

withheld 2019 data as well as the 2018 and 2021 datasets indicates that 
it is possible to classify oak tree conditions accurately through time 
(Fig. 7, Fig. 8). Similar to spatial performance, the temporal comparison 
reveals that pixels from healthy oak trees have higher values of balanced 

Table 1 
List of classification algorithms and their corresponding tuning parameters used 
to differentiate oak tree conditions.  

Algorithm Abbreviation Function Library Turning 
parameter 

Linear 
Discriminant 
Analysis 

LDA lda MASS (Venables 
and Ripley, 
2002) 

– 

Quadratic 
discriminant 
analysis 

QDA qda MASS (Venables 
and Ripley, 
2002) 

– 

Support Vector 
Machine with 
Linear Kernel 

SVM svmLinear kernlab ( 
Karatzoglou 
et al., 2004) 

Cost = 0.3 

k-Nearest 
Neighbors 

KNN knn – k = 33 

Partial Least 
Squares 
Discrimination 

PLSD pls pls (Mevik and 
Wehrens, 2007) 

ncomp = 3 

Random forest RF rf randomForest ( 
Liaw and 
Wiener, 2002) 

mtry = 1  
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accuracy and F1 than pixels from symptomatic or dead oak trees (Fig. 7). 
Also, decreases in the sensitivity of pixels for symptomatic oak trees tend 
to be associated with sensitivity increases of pixels for dead and healthy 
oak trees (Fig. S5). The ROC curves (Fig. 8) and AUC (Table S2) also 
demonstrate that pixels of healthy oak trees are more accurately clas
sified (AUC = 0.95 ± 0.02) than pixels for dead (AUC = 0.87 ± 0.02) or 
symptomatic oak trees (AUC = 0.79 ± 0.04). The macro (0.87 ± 0.02) 
and micro (0.88 ± 0.02) metrics of multiclass discrimination also indi
cate a congruent balance of classification performance independently of 
the conditions or class imbalance, respectively. Moreover, the proba
bilities of ‘cutoff’ to obtain a balance between sensitivity and 1 – spec
ificity within conditions were relatively similar to the spatial assessment 
with average values of 0.42 (± 0.02), 0.29 (± 0.02), and 0.36 (± 0.01) 

for healthy, symptomatic, and dead oak trees respectively. 

4.2.4. Pixel-level assessment 
The crown area and the pixel coverage occupied by symptomatic oak 

trees appear to influence predicted probabilities (Fig. 9). As the crown 
area or pixel coverage increases, the probability of predicting symp
tomatic trees as true positives also increases. However, this trend does 
not apply when predicting false positives (healthy or dead oak trees), as 
the probabilities tend to decrease with an increase in the crown area or 
pixel coverage. At lower values of predicted probabilities for both re
lationships (i.e., crown area or pixel coverage), symptomatic and dead 
oak trees seem to overlap more than symptomatic or healthy trees — an 
effect that may explain the class confusion described in the sections 

Fig. 3. Ridgeline plots for land surface phenology metrics (a, c, e) comparing three oak tree conditions in 2018, 2019, and 2021 and their z-score normalization (b, d, 
f). Metrics shown are the Value at the Start of the Season (VSS) (a, b), the Value at the end of the Season (VGV) (c, d), and the Value of the Coefficient of Variation 
(VCV) (e, f). The curves describe the kernel density distributions with different bandwidths for better visualization. Each small vertical line represents a pixel (i.e., an 
oak tree crown), while the large vertical lines within the density distribution represent the 50th percentile. 
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above. For both relationships, the intercepts of the linear regressions for 
values predicted for symptomatic trees were lower than the cutoff 
thresholds described in the previous ROC relationships for symptomatic 
oak trees. Overall, to obtain a majority probability (> 0.5), pixels pre
dicted as symptomatic to oak wilt should have symptomatic crowns that 
cover >88% of the pixel (i.e., 88 m2) or have a crown area larger than 
149.50 m2. 

4.3. Mapping of oak tree conditions 

The implementation of the model in areas outside of our training tiles 
enabled mapping symptomatic trees to oak wilt disease across locations 
(Fig. 10) and years (Fig. 11). For instance, pixels from symptomatic oak 
trees on forest patches (e.g., Fig. 10a) or outside (e.g., Fig. 10b) of 

pockets of disease tend to present contrasting probabilities that help to 
differentiate them among other pixels. In most of the cases, pixels that 
resample any of the evaluated conditions were also accompanied by 
lower values of overall uncertainties (e.g., Fig. 10 and Fig. 11). In many 
instances edges of forest patches or areas that were not properly masked 
tend to be wrongly predicted as symptomatic or dead pixels (e.g., top 
right Fig. 10h); however, these pixels also tend to present high values of 
overall uncertainty. In this sense, the overall uncertainty appears to help 
isolate potential conditions (of any of the evaluated conditions) from 
false positives or other elements on the landscape such as grasslands (e. 
g., top right in Fig. 10c or Fig. S6j), roads (e.g., top in Fig. 11h), or water 
bodies (e.g., left in Fig. 10f). Moreover, there were some instances where 
the predicted maps appeared with high values of overall uncertainty 
(Fig. 11g) and misleading probabilities (Fig. 11d and Fig. 6f), but this 

Fig. 4. Performance of the classification algorithm for predicting oak tree conditions (i.e., healthy, symptomatic to oak wilt, and dead) on normalized metrics of land 
surface phenology. Points in a color gradient represent the variability of the repeated model training (n = 100). Solid white points represent the mean value, and the 
error bars show the standard deviation. Vertical dotted lines represent the overall mean of training (black) or testing (red) regardless of the classifiers. The acronyms 
of the classification algorithms are described in Table 1. 

Fig. 5. Spatial performance by tiles (900 
km2) of the predicting model to discriminate 
between conditions of oak trees (healthy, 
symptomatic to oak wilt, and dead) on met
rics derived from land surface phenology. 
Decreases in latitude (North-South) are 
described by increases in ‘Y’. Points of 
different shapes represent the mean, while 
the error bars are the standard deviation of 
the iterative models (n = 100). Vertical 
dotted lines describe the average per condi
tion regardless of the tile. The spatial distri
bution of the tiles can be seen in Fig. S3.   
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could be attributed to the reduced number of clear sky observations for 
that phenological year (e.g., Fig. S2). 

5. Discussion 

Our results demonstrate a viable approach for classifying, mapping, 
and monitoring the presence of oak wilt using phenological observations 
from space. This approach targets changes in physiological symptoms of 
disease in oak trees using the chlorophyll carotenoid index (CCI) and 
examining the mechanistic basis for the temporal behavior of the oak 

trees with and without symptoms of oak wilt. We developed predictive 
machine learning models and assessed the approach spatially and 
temporally showing congruent and accurate classification of oak tree 
condition. We further unpack and highlight key aspects of the approach 
and offer insights into the future application of phenological observa
tions to detect diseases at a large scale. 

5.1. Spatial and temporal detection of oak wilt 

Spatial and temporal evaluations showed that discrimination of 

Fig. 6. Spatial comparison of the Receiver 
Operating Characteristic (ROC) curves among 
tiles for each oak tree condition (healthy, symp
tomatic of oak wilt, and dead) and multiclass 
classification (macro and micro). Each line rep
resents the mean of the iterative models (n =

100). The probability of cutoff among conditions 
and the Area Under the ROC Curve (AUC) de
scribes the iterative models’ average (± SD) (n =
100) regardless of the tile. The gray dotted line 
represents the 1:1 relationship. The spatial dis
tribution of the tiles can be seen in Fig. S3.   

Fig. 7. Temporal comparisons of model performance for predicting oak tree conditions (healthy, symptomatic of oak wilt, and dead) on metrics derived from land 
surface phenology. Points of different shapes represent the mean, and error bars are the standard deviations of the iterative models (n = 100). Vertical dotted lines 
describe the mean value per condition for all years. 
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symptomatic oak trees from healthy or dead trees reached values of 
accuracy comparable to those from airborne hyperspectral observations 
(~ 80%) (Sapes et al., 2022). These discrimination results show that LSP 
metrics, which take advantage of physiological changes in tree canopies 
through time, are indirect and robust descriptors of disease. These de
scriptions appear to be coherent among classification algorithms during 
the training process, and robust spatially and temporally during the 
testing of the selected algorithm. The performance on testing datasets 
appeared to be slightly higher than training datasets which could be due 
to the balance sample selection from conditions during the training of 
the algorithms which is lacking in testing datasets. The iteration 

procedure selecting 80% of the samples during the training of the al
gorithms could also cause a large variability of performance on training 
datasets in comparison with testing datasets. 

Although our results are promising for monitoring oak wilt, chal
lenges associated with class confusion, local geography, edge effects, 
and data availability must be considered. First, symptomatic and dead 
oak trees are frequently confused. Overlapping values between condi
tions in the LPS metrics (i.e., Fig. 2 or Fig. S3) indicate that this likely 
results from spectral mixing, possibly combined with low temporal 
variability in signals of the disease symptoms. If an affected oak crown 
does not fully occupy a pixel the resulting signal will be mixed with 

Fig. 8. Temporal comparisons of the Receiver Operating Characteristic (ROC) curve across observations years for oak tree conditions (healthy, symptomatic of oak 
wilt, and dead) and multiclass classification (macro and micro). Each line represents the mean of the iterative models (n = 100). The probability of cutoff among 
conditions and the Area Under the ROC Curve (AUC) describes the iterative models’ average (± SD) (n = 100) regardless of the year. The gray dotted line represents 
the 1:1 relationship. 

Fig. 9. Relationships between the predicted probabilities of oak tree conditions and the crown area or pixel cover of oak trees symptomatic to oak wilt disease. Each 
line represents a linear regression (n = 470 trees). 
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surrounding elements (e.g., healthy or dead crowns). This effect is most 
likely to occur when only a single oak crown in a forest is affected (i.e., a 
crown is smaller than a 10 × 10 m pixel or does not fully occupy a single 
pixel), or if the oak trees are small and their crowns are partially covered 
by other trees. The pixel-level assessment helps to explain the spectral 
mixing effect given that large crown areas or high coverage of a pixel 
with symptomatic oak trees leads to improvements in classification 
probabilities. Spectral mixing can also occur when oak wilt symptoms 
are discontinuous within a crown of a tree, as is common with white 
oaks. As such, our maps are likely more accurate for mapping oak wilt on 
red oaks than white oaks species; however, we have not explicitly tested 
this. In addition, the effect of spectral mixing also appears to be common 
at the edges of forest patches where tree crowns can mix their signals 
with other elements in the landscape. Observations within the interior of 
forest patches are therefore likely to have higher accuracy. Moreover, 

low temporal variability in signals of disease symptoms could be influ
enced by how the disease is expressed in the canopy or the number of 
observations through time. For instance, an early wilting before senes
cence and low vegetation beneath a diseased oak tree may favor the 
detection of a symptomatic signal. Similarly, a large number of obser
vations during the phenological cycle might result in better differenti
ation of symptomatic oak trees from healthy or dead trees. 
Consequently, it is likely that the reduced number of available obser
vations for 2017 (i.e., Fig. S2) makes predictions of that year more prone 
to high uncertainties (e.g., Fig. 11g) compared to years with higher 
numbers of available observations. In addition, the spatial assessment 
showed that classification in three tiles had low performance compared 
to the average across all times for the three tree health conditions. This 
pattern may be attributable to the relatively few training samples that 
come from those tiles or the heterogeneous topography where these 

Fig. 10. Mapping of oak wilt disease from healthy and dead oak trees across East Wisconsin. Panels a, d, and g are NAIP imagery from 2019 and 2020. Panels b, e, 
and h represent the predicted probability for healthy, symptomatic, and dead oak trees for the same years, while panels c, f, and i describe their overall uncertainty. 
The values of predicted probabilities were truncated between 0.3 and 0.6 for better visualization. 
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samples were collected (e.g., Fig. S1). 

5.2. Mechanisms for detection of symptomatic trees to the disease 

Three factors contribute to the accurate mapping of trees symp
tomatic of oak wilt in the approach we have presented: i) the sensitivity 
of the spectral index, ii) the phenological signal of the symptoms that are 
crucial to differentiation among oak tree conditions, and iii) the spatial 
resolution of the satellite imagery. The chlorophyll/carotenoid index 
(CCI) was used to target regions of the spectrum (i.e., red and green 
regions of the visible spectrum) that are associated with photochemical 
pigments that are influenced by the disease (Fallon et al., 2020). 
Although water absorption regions may also inform the presence of 
symptoms (Fallon et al., 2020; Sapes et al., 2022), changes in water 
stress on single tree crowns could be difficult to detect from spaceborne 
observations given both spectral contaminations in these regions with 
the atmospheric column and the typically coarse pixel size of bands at 
higher wavelengths. Other spectral indices have been tested to infer 
wilting-like diseases such as Normalized Difference Vegetation or Water 
Index (NDVI and NDWI, respectively) (De Castro et al., 2015; Kim et al., 
2018; Sapes et al., 2022), and may be appropriate for other applications, 
but CCI likely performed best for oak wilt because of its direct rela
tionship to the physiological effects of the disease. In general, the use of 
spectral indices (rather than all bands) to target spectral regions in 
conjunction with LSP metrics reduces data volume, which is critical to 
the feasibility of the workflow at a large scale. As well, spectral indices 
such as CCI from airborne sensors have also been shown to be quite 
promising for differentiating healthy trees from those with oak wilt in 
single time-point observations (Sapes et al., 2022). 

Although it is essential to use a spectral index that is sensitive to a 
symptom, the phenological behavior of such a spectral index is critical 
for the discrimination among oak tree conditions. Seasonal changes in 
CCI have been associated with the regulation of photosynthetic activity 
via light harvesting and photoprotective processes (Springer et al., 2017; 
Wong et al., 2020). The CCI seasonality has been considered a reliable 
indicator of productivity in evergreen and broadleaf species (Gamon 
et al., 2016; Wong et al., 2020). In the context of oak wilt, where disease 
progression influences physiological processes across the season, met
rics that capture temporal variation in CCI are powerful indicators of the 
disease (e.g., Fig. 1a). However, oak wilt may not be unique in its CCI 
temporal signal. For example, seasonal drought coupled with increased 
infestations by the Two-lined chestnut borer beetle (Agrilus bilineatus) 
could trigger phenological and physiological responses similar to oak 
wilt, resulting in an inability to distinguish between disease and climatic 
droughts or insect attacks. For the case of climatic droughts, however, 
the spatial pattern of drought-wilting is likely to be different from oak 
wilt disease. Climatic droughts tend to impact trees regionally, while the 
oak wilt mainly affects tree individuals or clumps of trees locally, often 
referred to as “oak wilt pockets”. On the other hand, wilting or mortality 
on oak trees due to outbreaks of the two-lined chestnut borer are also 
associated with reduced tree vigor due to drought, diseases, or defolia
tion (Haack and Acciavatti, 1992). Susceptible oak trees attacked by this 
beetle tend to wilt their leaves on scattered branches during late summer 
but keep them attached for several weeks or months before dropping 
(Haack and Acciavatti, 1992) in contrast to the early dropping of oak 
wilt symptomatic leaves. In addition, oak wilt-affected trees may also be 
infested with two-lined chestnut borer thus further complicating both 
“on-site” as well as remote detection. Attention to spatial and temporal 

Fig. 11. Temporal comparisons of the predicted probabilities of a pixel of being healthy, symptomatic of oak wilt disease, and dead in a forest patch at Buckhorn 
State Park, Wisconsin. Panels a, b, and c are NAIP images from 2017, 2018, and 2020. Panels d, e, and f represent the predicted probability for healthy, symptomatic, 
and dead oak trees for the same years, while panels g, h, and i describe their overall uncertainty. The values of the predicted probabilities were truncated between 0.3 
and 0.6 for better visualization. 
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differences in the impacts of regional drought or pest outbreaks is likely 
to help infer true positives for oak wilt. 

Finally, spatial resolution is essential to detect disease on a single 
tree. This is relevant because the detection of single trees or pockets of 
disease is a critical need for forest managers looking to identify and 
contain outbreaks. A 10 m pixel size —as used in this research— can 
encapsulate or cover a proportion of a single crown, helping to reduce 
spectral mixing and thus providing a true wilting signal (e.g., Fig. 9). 
However, it is more likely that in the case of a single-tree pocket, the 
crown will be distributed across two or more pixels, reducing the like
lihood of detection (which can be further confounded by variation in 
pixel registration). Similarly, small oak trees will mix their signal with 
healthy or dead vegetation, hindering their detection. Other satellite 
imagery with higher spatial resolution such as those from the Dove 
constellation of PlanetScope or WorldView from Maxar can cover a 
proportion of tree crowns within a pixel with the potential to provide 
fine mapping of the disease. However, variable viewing geometry of 
these scenes, poorer signal-to-noise ratio, and the temporal harmoni
zation of observations from different sensors might pose challenges to 
their application on a large scale (Teillet et al., 2007). Accessibility of 
this data (i.e., cost) may also pose issues for different stakeholders. 
Consequently, a coarse pixel size with better data quality could be more 
valuable than fine-resolution imagery for deriving LSP metrics (Helman, 
2018), particularly if these data are readily available at high temporal 
frequency. 

Our analyses focused on targeting and mapping symptomatic trees of 
oak wilt. However, because other diseases or disturbances may present 
temporal patterns in CCI similar to those that are symptomatic of oak 
wilt, identifying species or tree groups (lineages) will be a useful first 
step to diagnosing oak wilt. Differentiation among lineages of oak trees, 
for instance, is powerful for identifying oaks more susceptible to oak wilt 
(i.e., red oak species) using airborne hyperspectral imagery (Sapes et al., 
2022). In comparison to high spatial resolution (<1 m) hyperspectral 
observations (Sapes et al., 2022), however, multispectral satellite ob
servations (10 m) do not provide accurate lineage identity information 
sufficient to classify susceptible red oaks. Nevertheless, the discrimina
tion of oak trees from other tree groups may help to isolate false posi
tives of disease and prioritize areas with signs of new infection or areas 
of high infection density that pose risks of further spread. We emphasize 
that, to be useful, the predicted maps presented here still require expert 
knowledge from forest health specialists to validate symptomatic pixels 
to determine whether treatment is appropriate. 

5.3. Future perspectives for disease detection using land surface phenology 

Continuous satellite observations are valuable tools for assessing 
seasonal patterns. Deriving LSP metrics from such dense observations 
helps to characterize ecosystem function and the responses of forests to 
spatial and temporal stresses. Remote sensing of LSP has been exten
sively used in the literature to explore the mechanistic drivers of 
ecosystem phenology at spatial and temporal scales unfeasible in 
ground-based field surveys (Dronova and Taddeo, 2022). However, 
these kinds of approaches have rarely been applied to disease detection, 
despite their strong potential to advance forest pathogen monitoring. 

Unlike detecting mortality, disease detection relies on the observa
tion of visual (broad electromagnetic spectrum) symptoms (e.g., wilting, 
loss of leaves, reduction in pigments) that may enable the detection of 
the presence of a pathogen in advance of mortality. Monitoring and 
rapid detection at large spatial scales are critical first step to manage
ment efforts aimed at halting the spread of pathogens below- or above- 
ground. The temporal progression of symptoms of a disease is likely to 
be better represented by LSP metrics than a single or series of snapshots 
in time. LSP metrics leverage reductions in short-term signal variation 
(e.g., clouds, shadows, smoke) and data gaps imposed by single or bi- 
temporal observations (Scheffler and Frantz, 2022). Although the 
application of LSP metrics is slightly more computationally demanding, 

they can help to reduce the data volumes inherent in the use of 
continuous time series observations (e.g., average monthly observations 
as in Long et al. (2023)); speeding up the application of predictive 
models. 

Dozens of phenological metrics that may inform a disease’s pro
gression can be computed in a phenological cycle from spectral bands or 
indices (e.g., Jönsson and Eklundh, 2004). However, disease detection 
needs to be focused on bands/indices and metrics that are meaningfully 
connected to the symptoms to avoid artifacts that will hinder their 
discrimination and misinterpretation of the observed signals (Helman, 
2018). Therefore, efforts to decipher how disease progression and its 
changing symptoms over time drive the spectral properties in diseased 
vegetation are crucial and a first step for disease detection (Fallon et al., 
2020). In addition, the selection of LSP metrics for detecting disease at 
large scales should also consider variation in phenology across latitudes. 
For instance, many LSP metrics may indicate the progression of oak wilt 
symptoms, including the cumulative value of CCI during the annual 
cycle or length of the growing period, but these metrics are likely to vary 
among latitudes (Bolton et al., 2020; Brooks et al., 2020). 

We anticipate that the workflow and approach presented here could 
no doubt be leveraged for mapping other diseases and forest health at 
large scales, particularly on those diseases that show rapid progression 
within a single season. As such, future efforts focused on LSP metrics 
should include other pathogens and tree species. 

6. Conclusion 

This study demonstrates that it is feasible to detect and map the 
presence of oak wilt using phenological observations from space. Tem
poral changes in pigment composition caused by oak wilt fungus 
infection are key targets for discriminating symptomatic oak trees from 
healthy or dead trees using phenological metrics from satellite data. 
Discrimination is spatially and temporally coherent, indicating that it 
can be applied at large scales spanning multiple years. Challenges 
associated with spectral mixing, local geography, and data availability 
remain, but the approach and workflow provided will contribute to the 
efforts of stakeholders and managers in locating putative hotspots of 
disease, decreasing time to detection, and increasing management effi
ciency to slow the spread of this devastating tree disease. We anticipate 
that the approach presented here will leveraged for mapping other 
diseases at large scales, especially those with symptoms that can be 
tracked using vegetation indices. As high-frequency satellite-based CCI 
observations are becoming more readily available, phenological changes 
in disease-related physiology promise powerful applications for assess
ing tree diseases at large scales. 
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coregistered high-resolution RGB images are available at DRYAD 
(https://doi.org/10.5061/dryad.gtht76hs8). The code for processing 
the satellite data is available through GitHub (https://github. 
com/davidfrantz/force), while the code for the z-score normalization 
of scenes and the development and prediction of the machine learning 
models is available also at GitHub (https://github. 
com/ASCEND-BII/Oak-wilt.git) and archived at Zenodo under version 
1.0 (https://doi.org/10.5281/zenodo.8275122). The LSP metrics 
computed across states is available at https://app.globus. 
org/file-manager? 
origin_id=d5f9b461-7d6e-442b-87ed-be8aa2ca6763&origin_path=% 
2F, while the predicted maps at https://app.globus.org/file-manager? 
origin_id=2ad70821-cc5a-424e-aa72-8553d2bb45eb&origin_path=% 
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Cescatti, A., Mahecha, M.D., Muñoz-Marí, J., García-Haro, F.J., Guanter, L., 
Jung, M., Gamon, J.A., Reichstein, M., Running, S.W., 2021. A unified vegetation 
index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447. https://doi. 
org/10.1126/sciadv.abc7447. 

Cavender-Bares, J., 2019. Diversification, adaptation, and community assembly of the 
American oaks ( Quercus ), a model clade for integrating ecology and evolution. New 
Phytol. 221, 669–692. https://doi.org/10.1111/nph.15450. 

Cavender-Bares, J., Holbrook, N.M., 2001. Hydraulic properties and freezing-induced 
cavitation in sympatric evergreen and deciduous oaks with contrasting habitats: 
hydraulic properties of oaks. Plant Cell Environ. 24, 1243–1256. https://doi.org/ 
10.1046/j.1365-3040.2001.00797.x. 

Cavender-Bares, J.M., Nelson, E., Meireles, J.E., Lasky, J.R., Miteva, D.A., Nowak, D.J., 
Pearse, W.D., Helmus, M.R., Zanne, A.E., Fagan, W.F., Mihiar, C., Muller, N.Z., 

Kraft, N.J.B., Polasky, S., 2022. The hidden value of trees: quantifying the ecosystem 
services of tree lineages and their major threats across the contiguous US. PLOS 
Sustain Transform 1, e0000010. https://doi.org/10.1371/journal.pstr.0000010. 

de Beer, Z.W., Marincowitz, S., Duong, T.A., Wingfield, M.J., 2017. Bretziella, a new 
genus to accommodate the oak wilt fungus, ceratocystis fagacearum (Microascales, 
Ascomycota). MC 27, 1–19. https://doi.org/10.3897/mycokeys.27.20657. 

De Castro, A.I., Ehsani, R., Ploetz, R., Crane, J.H., Abdulridha, J., 2015. Optimum 
spectral and geometric parameters for early detection of laurel wilt disease in 
avocado. Remote Sens. Environ. 171, 33–44. https://doi.org/10.1016/j. 
rse.2015.09.011. 

Department of Natural Resources, 2021. Forest Health Annual Reports. Deparment of 
Natural Resources Minnesota. 

Dronova, I., Taddeo, S., 2022. Remote sensing of phenology: towards the comprehensive 
indicators of plant community dynamics from species to regional scales. J. Ecol. 110, 
1460–1484. https://doi.org/10.1111/1365-2745.13897. 

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., 
Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., 
Bargellini, P., 2012. Sentinel-2: ESA’s optical high-resolution Mission for GMES 
operational services. Remote Sens. Environ. 120, 25–36. https://doi.org/10.1016/j. 
rse.2011.11.026. 

Fallon, B., Yang, A., Lapadat, C., Armour, I., Juzwik, J., Montgomery, R.A., Cavender- 
Bares, J., 2020. Spectral differentiation of oak wilt from foliar fungal disease and 
drought is correlated with physiological changes. Tree Physiol. 40, 377–390. 
https://doi.org/10.1093/treephys/tpaa005. 

Frantz, D., 2019. FORCE—Landsat + Sentinel-2 analysis ready data and beyond. Remote 
Sens. 11, 1124. https://doi.org/10.3390/rs11091124. 

Frantz, D., Haß, E., Uhl, A., Stoffels, J., Hill, J., 2018. Improvement of the fmask 
algorithm for Sentinel-2 images: separating clouds from bright surfaces based on 
parallax effects. Remote Sens. Environ. 215, 471–481. https://doi.org/10.1016/j. 
rse.2018.04.046. 

Frantz, D., Hostert, P., Rufin, P., Ernst, S., Röder, A., van der Linden, S., 2022. Revisiting 
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