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Abstract

Since the surge of data in materials-science research and the advancement in machine learning methods, an increasing
number of researchers are introducing machine learning techniques into the next generation of materials discovery, ranging
from neural-network learned potentials to automated characterization techniques for experimental images. In this snapshot
review, we first summarize the landscape of techniques for soft materials assembly design that do not employ machine
learning or artificial intelligence and then discuss specific machine learning and artificial-intelligence-based methods that
enhance the design pipeline, such as high-throughput crystal-structure characterization and the inverse design of building
blocks for materials assembly and properties. Additionally, we survey the landscape of current developments of scientific
software, especially in the context of their compatibility with traditional molecular-dynamics engines such as LAMMPS

and HOOMD-blue.

Introduction

The design of soft materials assemblies with targeted struc-
tures and properties requires the engineering of building
blocks and interactions that can spontaneously assemble a
target material. Before the upsurge of computational capa-
bilities, many studies of soft materials assemblies followed
a similar framework: identify a few parameters (building-
block properties, densities, etc.), run forward simulations
varying the parameters, outline phase diagrams based on
these parameters, and iterate. This “forward approach” has
provided researchers with valuable insights and tools for
exploring soft materials systems: phase diagrams for sys-
tems of hard spheres, anisotropic particles with polyhedral
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shapes, and block copolymers; rare-event sampling tech-
niques; and local bond-order parameters to identify crystal
motifs and structures. In recent decades, the exponential
growth of computational power has widened the parameter
space that can feasibly be searched, and researchers are
incorporating machine learning and artificial intelligence
(ML/AI) techniques to enhance their materials assembly
pipelines (Fig. 1). Not only do these advanced tools enable
us to more thoroughly probe broad questions and challenges
in the field—for example, the competing nature of enthalpy
and entropy in determining structure formation, dynamics,
and materials properties in physical systems—but they also
allow for the pursuit of reverse- or inverse-design approaches
enabled by numerical optimization. Moreover, the study
of soft materials (i.e., composed of mesoscopic building
blocks, e.g., nanoparticles, colloids, or block copolymers)
serves as a coarse-grained version of nano- or atomic-scale
phenomena and can aid in understanding how to manipulate
and design significantly more complicated building blocks
(e.g., macromolecules, such as proteins).

Many prior review articles provide an overview of dif-
ferent ML/AI techniques that have been applied in soft
materials design, such as active and transfer learning [1]
or neural networks for structural representation [2] and
property design [3]. These reviews focus heavily on novel
ML algorithms and their application to soft matter. By
contrast, this snapshot review will discuss the physical
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Fig.1 Soft materials design pipeline. Input parameters for building
blocks can be patchy particles, sphere unions, and polyhedral shapes
with any arbitrary pair potential functions. To quantify materials
structures and properties, a variety of descriptors can be used. Here,

we depict bond-order parameters and OVITO’s adaptive-CNA for
local descriptors, radial distribution functions, and bond-orientational
order diagrams (BOODs) as examples for global descriptors
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Fig.2 Overview of different forward and inverse methods for soft materials design

inspiration and insights that can be gleaned from adding
ML/AI approaches to the quest for designing self-assem-
bled soft materials. Given the modular nature of the soft-
matter design pipeline, various ML/AI strategies can be
applied to different stages of the process, and a combina-
tion of ML/AI and ML/Al-free strategies can be used to
strike a balance between high predictive power and limited
computational resources.

Firstly, we discuss the current state of ML-free tech-
niques developed over many decades to study soft matter
in both simulation and experiment. Secondly, we describe
ML/AI-aided methods for different facets of materials
assembly (also shown in Fig. 2): novel descriptors for
quantifying local or global structure, an inverse-design
framework aided by automatic differentiation, and mate-
rials property design aided by ML/AI. Lastly, we discuss
the capabilities of various molecular-dynamics (MD)
engines in incorporating ML tools and summarize exist-
ing ML-based descriptors by their software, methods, and
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their accessibility to researchers based on the computing
resources needed. We intend to elucidate the state of the
available methods in the field, give context for the devel-
opment of the plethora of new tools created in the last few
decades, and chart out how we can use these in the study
of soft materials design in the future.

ML/Al-free materials design
Crystal structure prediction

In computer simulations of soft materials assembly, an
approximation of interparticle interactions is created and
employed to predict the structure and properties of the
materials system. In such forward approaches, building
blocks and interactions may also be tuned experimentally.
While interactions among all components in a system can be
well-defined, a-priori knowledge of the stable or metastable
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crystal structures that form is not straightforwardly obtained.
Crystal structure prediction stands as one of the central chal-
lenges in materials systems and is necessary for controlling
polymorphism in, for example, pharmaceutical research [4].
Here, we discuss general structure-prediction methods used
in modeling—not only of atomistic systems—but in particu-
lar of soft-matter systems.

Systems explore their free-energy landscape through
dynamics, yet despite the ergodic hypothesis, molecular
simulations may not be able to access the entirety of their
phase space within a finite time frame. Several methods—
simulated annealing, genetic algorithms, and enhanced
sampling—have been utilized to answer questions about
the global minimum (i.e., stable) structures that may be
difficult to access via computational methods.

Simulated annealing [S]—derived from the analogy
to physical annealing—is a computational technique that
aims to locate the global minimum of a cost (or energy)
function and was developed as one of the earliest global
optimization techniques. This is achieved through a grad-
ual cooling that leads the system from an initially random
configuration to an equilibrium crystal structure. An exam-
ple of its application to soft materials is the prediction of
binary crystal structures of oppositely charged spherical
colloids [6].

The Monte-Carlo-based basin hopping method [7, 8]
explores rugged energy landscapes by hopping among the
local minima (i.e., basins) using a Metropolis criterion,
and it has been employed to determine the global energy
minimum of size-selected clusters in two distinct hierar-
chical self-assemblies of triblock patchy particles [9].

The genetic algorithm used for atomistic structure pre-
diction [10, 11] mimics concepts from Darwinian evolu-
tion and selects an optimal structure from a set of can-
didates through a process akin to procreation: structural
features from pairs of candidate structures are combined
through a crossover algorithm, and new features are intro-
duced to individual structures with a mutation algorithm.
Eventually, good features are preserved during ‘procrea-
tion’ through a defined cost function. Genetic algorithms
have also been used to predict stable candidate structures
of patchy particles [12] and DNA-grafted particles [13].
There are many other global optimization algorithms, such
as metadynamics, particle swarm optimization, and land-
scape paving, that we do not address here.

Coarse-grained models

Coarse-grained (CG) models are developed as reduced-
resolution descriptions of a system to perform simula-
tions on a larger time- and length-scale at the cost of fine-
grained details. Upon treating groups of atoms as single

CG particles, the subsequent challenge is to model interac-
tions between these CG particles. Generally, CG potentials
can be derived by: (1) fitting parameters of given potential
functions to reproduce target structures or thermodynamic
properties, derived from atomistic simulations or empiri-
cal measurements; (2) calculating them from the direct
interactions between the grouped atoms [14]. Coarse
graining has wide applications in studying soft-matter
systems (with relevant reviews included in the SI). Below
we briefly review three categories of coarse-graining tech-
niques, serving as essential conceptual foundations that
underpin the development of ML-based approaches in
optimization and parameterization.

Iterative Boltzmann inversion & inverse Monte Carlo

Both the iterative Boltzmann inversion (IBI) [15] and inverse
Monte Carlo (IMC) [16] methods use a figure of merit com-
puted directly from the structure to iteratively refine the
free-energy surface of the system. The radial distribution
function (RDF) of pairwise interparticle distances is a com-
mon method in materials science for fingerprinting a crystal
structure and can serve as a figure of merit for both IBI
and IMC. IBI iteratively refines the potential of mean force
(PMF) using Boltzmann inversion until the RDF measured
in the system converges to that of the target structure. IMC
(or reverse Monte Carlo—RMC) is an iterative procedure
that is very similar to IBI, but derives pair potentials differ-
ently during the iteration using an exact update scheme with
the Jacobian matrix of the RDF with respect to the poten-
tial, instead of the empirical update scheme used in IBI.
Since IMC takes into account correlations of observables in
multi-component systems, it has a higher computational cost
than IBI which can lead to convergence problems. Detailed
comparisons of these two methods are discussed elsewhere
[17]. Note that the Henderson theorem states that only one
pair potential is uniquely determined by a given RDF under
given conditions of temperature and density [18], yet the
accuracy required to distinguish RDFs produced by two dif-
ferent pair potentials is beyond what is needed in practical
use. Therefore, additional thermodynamic properties (such
as pressure [19]) can be integrated into the optimization pro-
cess alongside the RDF.

Force matching & multiscale coarse graining

In contrast to the aforementioned structure-based methods
(IBI, IMC), the force matching (FM) method does not aim
at reproducing target distributions of structural descriptors
such as the RDF. Instead it fits potentials by minimizing
the difference between the CG forces and the forces in the
underlying fine-grained system [20]. The parameterization
of the CG model is realized in a non-iterative way: the force
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of each atom in a CG particle is taken into account in calcu-
lating the force on that CG particle, and the minimization of
force difference can be described as a least-squares problem
given a sufficiently large number of snapshots (i.e., configu-
rations) from the atomistic trajectory. Force matching was
further extended to the multiscale coarse-graining method,
wherein the multibody potential of mean force is approxi-
mated by deriving effective pair potentials directly from the
underlying atomistic potentials [21].

Relative entropy

The relative entropy S,.—also known as the Kullback—Lei-
bler (KL) divergence—is adopted from information theory
and is a type of statistical distance that measures the dispar-
ity—or relative entropy—between two probability distribu-
tions. For coarse graining, S,.; measures the information loss
using the probability density distributions of atomistic (P,)

and CG models (Pqg): Sy = X, Poln ;A((i?), where P(i) is
oGl

the probability of configuration i in a given ensemble. The
minimization of the relative entropy has been applied to the
quantification of phase-space overlap between two molecular
ensembles [22], CG model development [23, 24], calculation
of free-energy differences [25], and inverse design of iso-
tropic interactions that promote self-assembly of structures
including multi-component crystals [26] and colloidal
strings [27]. The relative entropy formalism is connected to
other coarse-graining approaches insofar as they can lead to
the same results depending on how potentials are modeled
[24]. While IBI and IMC are limited to optimizing pair
potentials, relative entropy provides a more general frame-
work for handling many-body CG potentials [14].

Inverse Design

Coarse graining and inverse methods share the goal of iden-
tifying a set of parameters of a model that best reproduces
the target distribution. In fact, we can view the develop-
ment of CG models as solving an inverse-design problem
where the target properties are the forces from the respec-
tive fine-grained systems. Furthermore, both coarse graining
and inverse methods are fundamentally rooted in the pursuit
of a more systematic framework for materials design and
discovery.

A multitude of inverse methods for soft-matter self-
assembly and design have been discussed in a recent review
[28]. In particular, here we highlight the methods used in
the inverse design of isotropic pair potentials that define
short-ranged forces only by interparticle distance. Coun-
terintuitively, the simplicity of these interactions does not
compromise the structural diversity exhibited by systems
that interact with such forces [29], and they can provide
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insight into the underlying mechanisms of self-assembly.
Isotropic interactions are experimentally realizable by tun-
ing, for example, the interactions of the isotropic DNA shell
of functionalized nanoparticles [30].

The concept of tailoring potentials to maximize the dif-
ference in the ground-state energy between the target struc-
ture and its competitors has been successfully applied to the
inverse design of structures in multiple systems, including
the square and honeycomb lattices in 2D [31, 32], and sim-
ple cubic [33], diamond [34], and wurtzite structures [35].

Relative entropy minimization [23, 24] has also been
used as a design principle for isotropic pair potentials to
control the formation of pores for the assembly of porous
mesophases [36], and to promote self-assembly of 2D and
3D crystals [26, 37], colloidal strings [27], as well as size-
specific cluster fluids [38]. This “on-the-fly” approach uses
structures generated during each optimization step of the
particle interactions, thereby promoting the self-assembly
of the target structure from a disordered state. This opti-
mization process was also employed in combination with
Fourier-space filters to design simple interactions that could
be more experimentally feasible [39].

All these approaches to modifying interactions or build-
ing blocks can be encompassed by “digital alchemy,” which
was first introduced as a statistical-thermodynamics method
to inversely design anisotropic particle shapes that favor the
self-assembly of a target structure with Monte Carlo simu-
lations [40]. The general framework of describing particle
attributes as thermodynamic variables—allowing them to
fluctuate, and as a result identifying attributes crucial for
controlling self-assembly—has also been extended to MD
simulations with success for a handful of structures [41, 42].

Enhanced sampling

Enhanced sampling encompasses a class of methods that
enables the simulation of hard-to-reach states. There are
many different flavors of enhanced-sampling methods:
umbrella sampling, replica exchange, metadynamics, and
simulated annealing, to name a few. Most enhanced-sam-
pling methods apply a bias force or potential to drive the
system to explore the region of phase space containing states
of interest. These states are often described by a set of col-
lective variables (also referred to as reaction coordinates,
order parameters, or structural descriptors in other contexts).
We refer the reader to the SI for many in-depth reviews on
different aspects of enhanced sampling.
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Descriptors for self-assembly studies

There is a rich history of using order parameters to define
and study phase transitions in physical systems, allowing
for the most important variables or degrees of freedom to
be captured. Reducing a physical system’s 3N spatial dimen-
sions to a more “natural” low-dimensional representation
extracts the most relevant characteristics of the system’s
behavior. In the study of self-assembly and growth, order
parameters—i.e., structural descriptors—vary widely in
their physical basis and in the behavior of interest of the
physical system for whose study they are being used.

Specific variable choices are often necessary to define
an order metric, but they can also prove limiting or insuf-
ficiently descriptive when confronted with an increas-
ing variety of behaviors or motifs in a single system. For
example, how can a descriptor be designed to study a
growing crystal with multiple crystalline environments,
each with a different kind of crystalline symmetry?

Here, we highlight conventional approaches using
physically inspired descriptors and how coupling these
methods with machine learning techniques—well-suited
for leveraging and interpreting high-dimensional data—
allows for a more complete picture of self-assembly to
emerge across a variety of physical systems. In our dis-
cussion, we place significant emphasis on the physical
basis of descriptors rather than on the specific ML tools
utilized, in part because these physical descriptors should
be tailored to the given system or behavior being studied,
and in part because of evidence suggesting that the opti-
mization schema used does not significantly change the
outcome of an ML-based analysis approach [43]. Later,
in Sect. “Software and methods overview for descriptors”,
we highlight the technical ML specifics for many of the
methods discussed in this section.

Local descriptors that accurately quantify structural
motifs have been used to develop atomistic machine-
learned interatomic potentials (MLIAPs) and led to marked
improvements over potentials calculated from electronic
structure alone [44]. The difference in applying descrip-
tors to soft matter is the lack of atomic or energetic data
to train on, in order to predict resultant properties; this,
in part, explains why solving the inverse-design question
represents such a “holy grail” for the field. Consequently,
good structural descriptors are critical for capturing and
optimizing system behavior.

As is true for MLIAPs, a good descriptor should be
immutable upon equivalent configurations generated by
translations, rotations, and permutations to a motif or crys-
tal structure. This mathematical property with respect to
a symmetry operation is referred to as invariance (equiv-
ariance or covariance also satisfy the required criteria).

While not required, differentiability is particularly useful
for applications utilizing automatic differentiation methods
such as JAX-MD [45] (see Sect. “JAX-MD” for a detailed
description).

We discuss several structural descriptors, broadly grouped
according to their physical basis (as shown in Fig. 3): (1)
structure-only parameters including RDF-based, position-
based, as well as “descriptor-free” (featureless) parameters
that are exclusively machine-learned; (2) bond-orienta-
tional features utilizing spherical harmonics in a variety of
approaches; and (3) graph-based or topological features. We
aim to provide a comprehensive overview of the featuriza-
tions in the field, although inevitably we will be unable to
cover all relevant work in the scope of this snapshot review.

We include in the SI an additional summary on thermo-
dynamics-inspired features and methods, although these are
less commonly used and not as effective compared to struc-
ture-based approaches. We will sidestep a common problem
lurking among many of the discussed methods, which is
exactly how neighbors or radial cutoffs are chosen—han-
dled differently by each method. Finally, we largely ignore
informatics approaches (for example, the Polymer Genome
platform [46]) as they use hundreds of descriptors in a hier-
archical manner to train models that target properties. This
section will focus on work that uses a specific choice of
descriptor and its appropriate use cases.

RDF-based and position-based features

Using positional data with minimal manipulation is a logi-
cal choice for a structural descriptor. The oldest criterion
for melting is the Lindemann order parameter [47]—based
on particle mean-squared displacement from equilibrium
position—utilized in soft-matter studies of nucleation and
growth dynamics [48]. In hard-disk or sphere systems, phase
transitions were commonly detected using only sorted neigh-
bor distances (i.e., in the first shell of the RDF) as features
with unsupervised learning [49].

Behler and Parrinello [50] introduced radial and angular
symmetry functions—representing potential-energy surfaces
in atomic systems—that also bear similarity to the RDF but
are localized to a particle’s environment. Such symmetry
functions have been utilized in the development of ML-
based structural identification methods for complex phases
in polymorphic systems such as ice [51] or the ML-based
order metric “softness” for identifying particle susceptibility
to rearrangements [52]. Softness has been used to predict
glass dynamics [53] as well as to identify grain boundaries
[54] and improve growth models [55] in atomistic MD simu-
lations. Other position-based features include using bond
angle, bond length, and interparticle separation distance as
inputs for an unsupervised crystal-structure identification
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Fig.3 The three broad classes
of descriptors: position-/RDF-
based and featureless descrip-
tors, bond-orientational features,
and graph-based features
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method [56], defining a loss function based on a “stencil”
used to target assembly of a specific polymorph using JAX-
MD [57], or utilizing particle positions and particle-level
features to build geometric algebra-based representations of
structure with deep learning [58].

Featureless order parameters

“Descriptor-free” or featureless order parameters can be
conceptualized as a subcategory of position-based features,
but they differ in that they use entirely unmanipulated data
that must be interpreted using statistical or machine-learned
methods. Because these descriptors do not use representa-
tions that are invariant to translations, rotations, and per-
mutations, they instead rely on data augmentation—that is,
the model must learn these symmetries from an abundance
of data in a variety of configurations, rather than invariance
being built into the inputs for training.

Featureless unsupervised learning methods have so far
been used to identify magnetization phase transitions in the
canonical two-dimensional Ising model [59, 60] using entire
Ising spin matrices as inputs. Unlike in the Ising model,
a “descriptor-free” approach is more difficult to apply to
systems where particle positions are variable, but this has
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been accomplished [61, 62] relying on sophisticated model
architectures such as PointNet [63] in order to perform fea-
ture extraction. Other frameworks that use deep learning
approaches with particle positions [64] (or, combined with
atomic-level features as inputs [65]) could be extended to
target properties in soft-matter systems.

Bond-orientational features

Bond-orientational features differ from those described
above in that they enforce spherical symmetry in their rep-
resentations of local structure. For two-dimensional struc-
tures, the ¥, order parameter is defined by the expectation
of n-fold symmetry in the crystalline phase, and it has been
utilized in the study of colloidal crystallization experi-
ments [66]. The Steinhardt Q, order parameter [67] and its
neighbor-averaged version @, [68]—which are rotationally
invariant representations of a particle’s neighborhood using
summations of spherical harmonics—have been used to
identify local motifs or differentiate phases of matter, dis-
tinguish between simple sphere packings (bcc, ccp, hep)
[69], and study quasicrystal growth [70] in simulations of
three-dimensional systems. Steinhardt’s W, parameter has
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also been utilized to identify motifs in computational studies
of pre-crystallization fluids [71].

The addition of machine learning methods to these bond-
orientational approaches has allowed for the extension of
order parameters to more complex crystal structures, poly-
disperse packings, and non-close-packed local environments
in crystalline solids (i.e., expanding beyond icosahedral,
fee, hep, or bece local environments). Spherical harmonics-
based descriptors have been used with unsupervised learning
approaches to distinguish highly similar, complex structures
[72], as well as to distinguish between local environments
and phases during the self-assembly of structures with one
or more crystalline motifs [73, 74]. Supervised approaches
using spherical harmonics [72] or Steinhardt-based features
have also successfully identified crystalline motifs in binary
systems [75], and unsupervised approaches have similarly
been employed with Steinhardt-based features to study
local order in glasses and liquids [76] or at crystalline grain
boundaries and binary systems [77].

A handful of other approaches using spherical harmon-
ics-based descriptors have been formulated for the study of
atomic materials and extended to the study of phase transi-
tions or soft and molecular systems. The Smooth Overlap
of Atomic Positions (SOAP) descriptor [78]—which utilizes
spherical harmonics to represent Gaussian-smeared particle
densities—has also been adapted for ML-based studies of
materials: a Gaussian process with a SOAP kernel [79] or
unsupervised methods with a SOAP descriptor [80] have
been used to study the formation of (supra)molecular mate-
rials. Euclidean neural networks (e3nn) [81] use spherical
harmonics to create irreducible representations that lever-
age equivariance to learn symmetry-based translations and
rotations, and they can be used to define order parameters
that identify the breaking of these symmetries (e.g., during
a phase transition) [82].

Graph-based features

Yet another intuitive way to featurize inter-particle bonding
structure is through graph-based features—not to be con-
flated with graph neural networks, although they can appear
together. Graph-based features include particle connections,
bond lengths and angles, and local neighborhood geometry
in their representation of local structure. The most popu-
lar graph-based feature is referred to as Common Neighbor
Analysis (CNA) [83, 84], a tool which classifies simple 3D
motifs by the topology of particle neighborhoods and which
is integrated (along with its variants) into the “Open Visuali-
zation Tool” (OVITO)'. CNA has been applied to numerous
studies of crystallization, such as the simulation study of

! https://www.ovito.org.

charge-stabilized colloidal suspensions [85]. Another com-
monly used method for simple crystal-structure or motif
identification is polyhedral template matching (PTM) [86],
which uses the convex hull of neighbors around a particle
to create a planar graph and performs template matching
to identify motifs. Given the success of these approaches,
the addition of machine learning methods is highly sensible
and allows a larger variety of local structures to be repre-
sented and identified as compared to CNA and PTM, par-
ticularly for systems where atom- or particle-level features
are important (such as having two different particle sizes or
components).

Graph neural networks (GNNs) are designed to take in
graphs as inputs and perform convolutions to create embed-
dings of local structure. Crystals lend themselves naturally
to representations as planar graphs, where nodes and edges
represent particles and bonds. For example, a GNN is used
to build local descriptors from graph-based features that can
identify disorder such as in grain boundaries or interfaces
[87]. GNNs have also been used with ‘crystal edge graphs’
rather than crystal graphs, where nodes represent bonds
in the crystal and edges represent bond pairs (i.e., angles
between bonds). Recent work has identified phase transi-
tions by building global descriptors [88] with the Atomistic
Line Graph Neural Network (ALIGNN) [89], which uses a
GNN to create latent representations using message-pass-
ing between the crystal graph (interatomic bond graph) and
the crystal edge graph (line graph corresponding to bond
angles). In a similar vein, crystal edge graphs have been
used to perform crystal identification tasks on individual
particles [90].

However, GNNss are not the only types of ML approaches
utilized with graph-based features. Convolutional neural net-
works have been applied to graph-based features for mol-
ecules [91], atomic structures [92], and glasses [93]. Other
ML methods have also been applied with graph-based fea-
tures—for example, diffusion maps for local environment
identification including both amorphous and crystalline
structures [94], or for building representations of chemi-
cal ordering in multi-component alloys for use in a relative
entropy-based order metric [95].

Designing for properties

Frequently, the design of materials with specific properties
has been handled separately from the design of assembly
pathways to target particular structures [28]. Inverse design
for the properties of a material requires the use of the prop-
erty itself as the figure of merit of the computation, enabling
the use of any property that can be computed from a mate-
rial’s structure. Machine learning facilitates the accelerated
evaluation of complex structure—property relationships that
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would otherwise be prohibitive as a computational figure of
merit [28]. This can be done by reducing the dimensionality
of the order parameter or by applying supervised machine
learning directly to the structure—property relationship [3].

Many advances have been made in the field of atomistic
(“hard”) materials such as alloys, and electronic materials,
in which atomic structure can directly be related to bulk
properties of a material [89, 92]. In this snapshot review,
we concentrate on mesoscopic (“soft”) matter. While bulk
properties can often be computed directly in hard-matter
systems—because the relevant structural features occur on
only one length scale—soft-matter systems exhibit multiple
salient length scales, making predictive modeling of a vari-
ety of properties more challenging. For length consideration,
we provide our discussion on soft materials properties in
the SI, where we discuss five different kinds of materials
properties: (1) mechanical properties, (2) thermodynamic
and phase properties, (3) electronic and optical properties,
(4) transport properties, and (5) chemical properties.

Software developments

Many well-known MD packages were developed before the
popularity of ML-enhanced materials research, so integrat-
ing ML methods with traditional MD simulations can prove
challenging. In this section, we briefly review the compat-
ibility of current MD engines with ML methods, how soft-
ware for descriptors can be used, and we showcase a new
MD engine that is intrinsically compatible with the current
ML/AI software packages.

Integration with ML methods for traditional MD
engines

Traditional MD packages such as LAMMPS? and HOOMD-
blue? are extremely powerful engines that can perform MD
simulations very effectively. Although primarily written in
C++, there are now tools available to integrate ML methods
with these MD platforms.

LAMMPS hosts a well-documented webpage* provid-
ing a list of software packages that are either external—and
built on top of LAMMPS—or standalone—either provid-
ing input parameters for LAMMPS or other MD engines,

2 https://www.lammps.org.

3 https://glotzerlab.engin.umich.edu/hoomd-blue.

4 https://www.lammps.org/external.html.
3 https://github.com/ur-whitelab/hoomd-tf.

6 A—to-date unmerged—branch exists on the HOOMD-TF GitHub
page, allowing to make the code compatible with HOOMD-blue 3.x.

7 http://github.com/google/jax.
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or incorporating LAMMPS as one of their MD engines to
produce simulation trajectories. Within the list, there are
packages linking PyTorch with LAMMPS and several pack-
ages for ML-based interaction potentials.

Similarly, HOOMD-TF® was developed to link Ten-
sorFlow with HOOMD-blue (currently compatible with
HOOMD-blue 2.6+ but not 3.x, etc., due to a major API
change®).

Software and methods overview for descriptors

There is a large variety of methods for quantifying structural
order that are applied to study crystal growth and assem-
bly—which are equally as diverse as the open questions in
the field. With many ML-based methods being developed
for different use cases and specific physical systems, we
highlight methods in Table 1 with the most important soft-
ware and architecture details as well as computing resources
needed for each.

JAX-MD

Computing derivatives or gradients is a crucial component
of many machine learning techniques. Utilizing general-
purpose automatic differentiation [96] implementations is
standard in many different machine learning packages such
as PyTorch, JuliaDiff, and MatLab’s Deep Learning Tool-
box. Similarly, various materials-science applications also
require the computation of gradients ranging from force
computation in MD to evaluating stress tenors for materials
properties.

Following the release of JAX’ in 2018—a Python-based
software package that enables end-to-end differentiation—
various packages were developed utilizing JAX’s new ability
to differentiate through complicated functions. JAX-based
materials-science software packages are not limited to JAX-
MD, and include JAX-AM?, JAX-FEM”, and GradDFT'’.
Given the scope of this snapshot review, which concentrates
on assembly design, we will only highlight work related to
JAX-MD.

The molecular-dynamics engine JAX-MD currently fea-
tures simulation environments to model isotropic pair poten-
tials and anisotropic particles using rigid-body constructions
with standard integrators such as NVE, NVT, NVP, Brown-
ian dynamics, and Langevin dynamics. As JAX-MD is writ-
ten fully in Python, the overhead for any user to define a

8 https://github.com/tianjuxue/jax-am.
° https://github.com/deepmodeling/jax-fem.
10 https://github.com/XanaduAI/GradDFT.
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Table 1 ML-based descriptors for materials assembly and design

References Features Models Software Compute

Geiger and Dellago [51] Symmetry functions ANN - GPU

Cubuk et al. [52] Symmetry functions SVM LIBSVM! -

Wang [59] Ising spin matrix PCA +k-means clustering - -

Wetzel [60] Ising spin matrix kernel PCA/DBSCAN/vari- - -
ational autoencoder

Jadrich et al. [49] Sorted neighbor distances Incremental PCA Sklearn -

Reinhart [56]

DeFever et al. [61]

Wang et al. [62]
Schiitt et al. [65]

Swanson et al. [64]

Spellings [58]

Spellings and Glotzer [72]

Adorf et al. [73]

Boattini et al. [77]
Coli and Dijkstra [75]
Grisafi et al. [79]
Gardin et al. [80]

Geiger and Smidt [81]
Duvenaud et al. [91]
Bapst et al. [93]

Chapman et al. [87]
Choudhary and DeCost [89]

Aroboto et al. [88]
Reinhart et al. [94]

Xie and Grossman [92]

Banik et al. [90]
Sheriff et al. [95]

Neighbor distances, bond angles
& lengths, particle-level
features

Particle positions
Particle positions

Atomic nuclear charges & posi-
tions

Particle positions

Multivectors (geometric products
of particle positions) &
particle-level features

Spherical harmonics (pythia) 6

Bispectrum spherical harmonics
(pythia)®

Steinhardt parameters

Steinhardt parameters

SOAP’

SOAP’

Irreps (tensor products of spheri-
cal harmonics)

Molecular graphs
Crystal graphs

Crystal graphs

Crystal/line graphs-+radial basis
functions

ALIGNN!
CNA-based crystal graph

Atom-level features & crystal
graphs
Crystal edge graphs

Crystal graphs & particle-level
features

UMAP+Random Forest Clas-
sifier

PointNet?
Autoencoder+GMM

Filter-generating network

CNN/message-passing neural
network

Attention mechanism

PCA+GMM/ANN
PCA+UMAP+HDBSCAN*

Autoencoder+GMM
ANN
Gaussian process

PCA+PAMM/Hierarchical
clustering

CNN

CNN

GNN

GNN
Message-passing GNN

UMAP+GNN

Diffusion maps
CNN

Attention mechanism

UMAP, Sklearn

TensorFlow
TensorFlow, Sklearn

TensorFlow, SchNet?

TensorFlow/PyTorch,
“glassML"*

Keras, TensorFlow, GAIA °

Sklearn/ Keras
Sklearn, UMAP, HDBSCAN*

Sklearn

Keras, TensorFlow
SciPy, SA-GPR®
Sklearn, PAMM®

JAX/PyTorch, e3nn!?

SciPy, Autograd, “Neural finger-
print””

TensorFlow/TF-Replicator, JAX,
“Glassy dynamics™?

PyTorch, SODAS/graphite!?
ALIGNN'

UMAP, PyTorch, SODAS++

Neighborhood Graph Analysis
(NGA)

Sklearn, PyTorch, CGCNN!®

PyTorch, Sklearn, CEGANN!7

e3nn'?

CPU-intensive/GPU

GPU

GPU

CPU

CPU-intensive

GPU

GPU
GPU

GPU

Compute resources reflect those used or reported by the respective authors

SVM support vector machine, PCA principal component analysis, DBSCAN density-based spatial clustering of applications with noise, GMM

Gaussian mixture model, ANN artificial neural network, CNN convolutional neural network, GNN graph neural network

U https://github.com/cjlin1/libsvm
2 https://github.com/charlesq34/pointnet

3 https://github.com/atomistic-machine-learning/SchNet
4 https://github.com/ks8/glassML

3 https://github.com/klarh/geometric_algebra_attention
® https://github.com/glotzerlab/pythia

7 https://singroup.github.io/dscribe/latest/
8 https://github.com/lab-cosmo/SA-GPR
% https://github.com/lab-cosmo/pamm
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Table 1 (continued)

10 htps://github.com/e3nn
1 https://github.com/HIPS/neural-fingerprint

12 https://github.com/google-deepmind/deepmind-research/tree/master/glassy_dynamics

13 https://github.com/LLNL/graphite

14 https://github.com/usnistgov/alignn

15 https://github.com/Materials-Informatics-Laboratory/SODAS
16 https://github.com/txie-93/cgcnn

17 https://github.com/sbanik2/CEGANN

new pair potential or external field—or interface with other
ML/AI methods—is minimal. Moreover, when implement-
ing a new pair potential, no additional force implementation
is needed as gradients (i.e., derivatives) of the interaction
potential can be retrieved directly to update quantities such
as particle velocity and acceleration.

So far, JAX-MD has been used to design assembly and
transition rates for colloidal systems [57], anisotropic build-
ing blocks for bulk and finite assembly [97], controlled
disassembly of colloidal clusters [98], error-free polymer
growth [99], and minimal-work pathways in non-equilibrium
systems [100]. These papers showcase the breadth and ver-
satility of the physical systems and properties that JAX-MD
can model and design. Generally, the optimization regime in
JAX-MD is system-agnostic as long as the user can provide
a loss function / order parameter with meaningful gradients
to describe the simulated system.

Figure 4 illustrates a schema for the use of JAX-MD for
inverse design, but this is not the only way to implement
such a workflow. For example, one can update building-
block properties after a fixed number of simulation steps
instead of at the end of one round of forward simulation.
Here, we want to provide a working example as a starting
point for interested researchers to explore. Apart from using
JAX-MD to inversely design assembly, yet another unex-
plored territory for JAX-MD is to combine it with enhanced-
sampling methods. Computing forces for a bias potential in
MD can be challenging to implement, but with the help of
automatic differentiation, no explicit force implementation
would be needed.'!

Accessibility

In this section, we highlight a few barriers to accessing some
of the methods discussed in this snapshot review. Computing
resources are vital to those who may want to train models
or utilize inverse-design methods for their research. Meth-
ods that run on GPUs can be run on CPUs as well, but the

' See https://colab.research.google.com/drive/1eOBqUIRxhUvPsx
fl9hGcVwHTIeN2GNBIJ for an example.
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difference in wall time can amount to orders of magnitude—
especially for tasks that require backpropagation. Moreover,
tasks that require backpropagation or automatic differentia-
tion can be GPU-memory intensive, sometimes requiring the
most advanced GPUs with 80 GB of memory. Therefore, we
encourage including computational resources either used (or
utilizable) for training models and describing the associated
computational costs for new methods being published. In
a similar vein, sharing code on open-source platforms like
GitHub is increasingly common and can function as a “plug
and play” tool for non-experts to utilize.

Another possible barrier is the need to transmute train-
ing data (from simulation or experiment) into the expected
data format for a specific method. For example, many of the
approaches highlighted in Table 1 rely on specific file for-
mats (typically only used for data output by a particular MD
engine). Tools such as the garnett software'? can help with
reading/writing to/from different simulation file formats,
although not all common formats are included (e.g., the
.xyz file format). A similar issue arises with ML-specific
backends: often methods are developed for only one of the
three—Keras/TensorFlow, JAX, or PyTorch. These are just
a few of the “language barriers” that arise from the diversity
of computing tools that researchers use.

Finally, access to large volumes of data for training mod-
els is usually straightforward for simulators, and there are
already databases hosting services for more various mate-
rials datasets'>—but this is not necessarily the case for
soft-matter experimentalists. While we do not necessarily
endorse the publishing of trained models as a solution, we
urge consideration of how models can behave for low data-
volume cases. These considerations could be especially
important in developing simulation—experiment pipelines
for training models or inverse-design approaches.

12 https://garnett.readthedocs.io
13 https://www.materialsdatafacility.org
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Conclusion

In this snapshot review, we discuss many approaches used
in the optimization and design of soft materials such as
structure prediction, coarse-graining, enhanced sampling,
and how these approaches are not only compatible with but
enhanced by ML methods, as well as a variety of software
that can be used to target specific structures or materials
properties. We discuss both forward approaches—critical
for the study of phase behavior and self-assembly—as well
as more targeted inverse approaches that are used specifi-
cally for design.

Through our survey of methods in the field, we emphasize
the importance of the physical basis of methods and features.
We also include relevant methods that are developed for
atomic systems as these approaches can be extended to soft
or mesoscale materials. We hope that this snapshot review
can serve as a guide for those looking to apply (or create)
ML.-based methods for scientific questions.

We also offer a few reflections on how we believe the
methods we review can be best used going forward. Given
the multitude of descriptors and inverse-design tools devel-
oped in just the last decade, the fields of both atomistic and
soft materials are ripe for employing new methods to con-
duct scientific research. That is, the “low-hanging fruit” of
ML-based approaches are being or have been picked, and
further development or use of methods should be tailored to
answering open questions in the field or addressing specific
design principles. Bridging the gap between the tool-makers
and tool-users will be imperative in order to address open
scientific questions and to connect theory, simulation, and
experiments: these range from the need for robust descrip-
tors that can handle particle-locating in experiments, to more
fundamental questions such as the effect of interaction and
structure in particle-based systems. We are optimistic that
with the newly available avenues—provided by the power of
machine learning and the multitude of new computational

a ;

approaches built upon decades of progress—we can answer
fundamental questions regarding structure formation and
design of matter across various length scales in the future.
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