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Abstract
Since the surge of data in materials-science research and the advancement in machine learning methods, an increasing 
number of researchers are introducing machine learning techniques into the next generation of materials discovery, ranging 
from neural-network learned potentials to automated characterization techniques for experimental images. In this snapshot 
review, we first summarize the landscape of techniques for soft materials assembly design that do not employ machine 
learning or artificial intelligence and then discuss specific machine learning and artificial-intelligence-based methods that 
enhance the design pipeline, such as high-throughput crystal-structure characterization and the inverse design of building 
blocks for materials assembly and properties. Additionally, we survey the landscape of current developments of scientific 
software, especially in the context of their compatibility with traditional molecular-dynamics engines such as LAMMPS 
and HOOMD-blue.

Introduction

The design of soft materials assemblies with targeted struc-
tures and properties requires the engineering of building 
blocks and interactions that can spontaneously assemble a 
target material. Before the upsurge of computational capa-
bilities, many studies of soft materials assemblies followed 
a similar framework: identify a few parameters (building-
block properties, densities, etc.), run forward simulations 
varying the parameters, outline phase diagrams based on 
these parameters, and iterate. This “forward approach” has 
provided researchers with valuable insights and tools for 
exploring soft materials systems: phase diagrams for sys-
tems of hard spheres, anisotropic particles with polyhedral 

shapes, and block copolymers; rare-event sampling tech-
niques; and local bond-order parameters to identify crystal 
motifs and structures. In recent decades, the exponential 
growth of computational power has widened the parameter 
space that can feasibly be searched, and researchers are 
incorporating machine learning and artificial intelligence 
(ML/AI) techniques to enhance their materials assembly 
pipelines (Fig. 1). Not only do these advanced tools enable 
us to more thoroughly probe broad questions and challenges 
in the field—for example, the competing nature of enthalpy 
and entropy in determining structure formation, dynamics, 
and materials properties in physical systems—but they also 
allow for the pursuit of reverse- or inverse-design approaches 
enabled by numerical optimization. Moreover, the study 
of soft materials (i.e., composed of mesoscopic building 
blocks, e.g., nanoparticles, colloids, or block copolymers) 
serves as a coarse-grained version of nano- or atomic-scale 
phenomena and can aid in understanding how to manipulate 
and design significantly more complicated building blocks 
(e.g., macromolecules, such as proteins).

Many prior review articles provide an overview of dif-
ferent ML/AI techniques that have been applied in soft 
materials design, such as active and transfer learning [1] 
or neural networks for structural representation [2] and 
property design [3]. These reviews focus heavily on novel 
ML algorithms and their application to soft matter. By 
contrast, this snapshot review will discuss the physical 
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inspiration and insights that can be gleaned from adding 
ML/AI approaches to the quest for designing self-assem-
bled soft materials. Given the modular nature of the soft-
matter design pipeline, various ML/AI strategies can be 
applied to different stages of the process, and a combina-
tion of ML/AI and ML/AI-free strategies can be used to 
strike a balance between high predictive power and limited 
computational resources.

Firstly, we discuss the current state of ML-free tech-
niques developed over many decades to study soft matter 
in both simulation and experiment. Secondly, we describe 
ML/AI-aided methods for different facets of materials 
assembly (also shown in Fig. 2): novel descriptors for 
quantifying local or global structure, an inverse-design 
framework aided by automatic differentiation, and mate-
rials property design aided by ML/AI. Lastly, we discuss 
the capabilities of various molecular-dynamics (MD) 
engines in incorporating ML tools and summarize exist-
ing ML-based descriptors by their software, methods, and 

their accessibility to researchers based on the computing 
resources needed. We intend to elucidate the state of the 
available methods in the field, give context for the devel-
opment of the plethora of new tools created in the last few 
decades, and chart out how we can use these in the study 
of soft materials design in the future.

ML/AI‑free materials design

Crystal structure prediction

In computer simulations of soft materials assembly, an 
approximation of interparticle interactions is created and 
employed to predict the structure and properties of the 
materials system. In such forward approaches, building 
blocks and interactions may also be tuned experimentally. 
While interactions among all components in a system can be 
well-defined, a-priori knowledge of the stable or metastable 
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Fig. 1   Soft materials design pipeline. Input parameters for building 
blocks can be patchy particles, sphere unions, and polyhedral shapes 
with any arbitrary pair potential functions. To quantify materials 
structures and properties, a variety of descriptors can be used. Here, 

we depict bond-order parameters and OVITO’s adaptive-CNA for 
local descriptors, radial distribution functions, and bond-orientational 
order diagrams (BOODs) as examples for global descriptors
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Fig. 2   Overview of different forward and inverse methods for soft materials design
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crystal structures that form is not straightforwardly obtained. 
Crystal structure prediction stands as one of the central chal-
lenges in materials systems and is necessary for controlling 
polymorphism in, for example, pharmaceutical research [4]. 
Here, we discuss general structure-prediction methods used 
in modeling—not only of atomistic systems—but in particu-
lar of soft-matter systems.

Systems explore their free-energy landscape through 
dynamics, yet despite the ergodic hypothesis, molecular 
simulations may not be able to access the entirety of their 
phase space within a finite time frame. Several methods—
simulated annealing, genetic algorithms, and enhanced 
sampling—have been utilized to answer questions about 
the global minimum (i.e., stable) structures that may be 
difficult to access via computational methods.

Simulated annealing [5]—derived from the analogy 
to physical annealing—is a computational technique that 
aims to locate the global minimum of a cost (or energy) 
function and was developed as one of the earliest global 
optimization techniques. This is achieved through a grad-
ual cooling that leads the system from an initially random 
configuration to an equilibrium crystal structure. An exam-
ple of its application to soft materials is the prediction of 
binary crystal structures of oppositely charged spherical 
colloids [6].

The Monte-Carlo-based basin hopping method [7, 8] 
explores rugged energy landscapes by hopping among the 
local minima (i.e., basins) using a Metropolis criterion, 
and it has been employed to determine the global energy 
minimum of size-selected clusters in two distinct hierar-
chical self-assemblies of triblock patchy particles [9].

The genetic algorithm used for atomistic structure pre-
diction [10, 11] mimics concepts from Darwinian evolu-
tion and selects an optimal structure from a set of can-
didates through a process akin to procreation: structural 
features from pairs of candidate structures are combined 
through a crossover algorithm, and new features are intro-
duced to individual structures with a mutation algorithm. 
Eventually, good features are preserved during ‘procrea-
tion’ through a defined cost function. Genetic algorithms 
have also been used to predict stable candidate structures 
of patchy particles [12] and DNA-grafted particles [13]. 
There are many other global optimization algorithms, such 
as metadynamics, particle swarm optimization, and land-
scape paving, that we do not address here.

Coarse‑grained models

Coarse-grained (CG) models are developed as reduced-
resolution descriptions of a system to perform simula-
tions on a larger time- and length-scale at the cost of fine-
grained details. Upon treating groups of atoms as single 

CG particles, the subsequent challenge is to model interac-
tions between these CG particles. Generally, CG potentials 
can be derived by: (1) fitting parameters of given potential 
functions to reproduce target structures or thermodynamic 
properties, derived from atomistic simulations or empiri-
cal measurements; (2) calculating them from the direct 
interactions between the grouped atoms [14]. Coarse 
graining has wide applications in studying soft-matter 
systems (with relevant reviews included in the SI). Below 
we briefly review three categories of coarse-graining tech-
niques, serving as essential conceptual foundations that 
underpin the development of ML-based approaches in 
optimization and parameterization.

Iterative Boltzmann inversion & inverse Monte Carlo

Both the iterative Boltzmann inversion (IBI) [15] and inverse 
Monte Carlo (IMC) [16] methods use a figure of merit com-
puted directly from the structure to iteratively refine the 
free-energy surface of the system. The radial distribution 
function (RDF) of pairwise interparticle distances is a com-
mon method in materials science for fingerprinting a crystal 
structure and can serve as a figure of merit for both IBI 
and IMC. IBI iteratively refines the potential of mean force 
(PMF) using Boltzmann inversion until the RDF measured 
in the system converges to that of the target structure. IMC 
(or reverse Monte Carlo—RMC) is an iterative procedure 
that is very similar to IBI, but derives pair potentials differ-
ently during the iteration using an exact update scheme with 
the Jacobian matrix of the RDF with respect to the poten-
tial, instead of the empirical update scheme used in IBI. 
Since IMC takes into account correlations of observables in 
multi-component systems, it has a higher computational cost 
than IBI which can lead to convergence problems. Detailed 
comparisons of these two methods are discussed elsewhere 
[17]. Note that the Henderson theorem states that only one 
pair potential is uniquely determined by a given RDF under 
given conditions of temperature and density [18], yet the 
accuracy required to distinguish RDFs produced by two dif-
ferent pair potentials is beyond what is needed in practical 
use. Therefore, additional thermodynamic properties (such 
as pressure [19]) can be integrated into the optimization pro-
cess alongside the RDF.

Force matching & multiscale coarse graining

In contrast to the aforementioned structure-based methods 
(IBI, IMC), the force matching (FM) method does not aim 
at reproducing target distributions of structural descriptors 
such as the RDF. Instead it fits potentials by minimizing 
the difference between the CG forces and the forces in the 
underlying fine-grained system [20]. The parameterization 
of the CG model is realized in a non-iterative way: the force 



	 M. M. Martirossyan et al.

1 3

of each atom in a CG particle is taken into account in calcu-
lating the force on that CG particle, and the minimization of 
force difference can be described as a least-squares problem 
given a sufficiently large number of snapshots (i.e., configu-
rations) from the atomistic trajectory. Force matching was 
further extended to the multiscale coarse-graining method, 
wherein the multibody potential of mean force is approxi-
mated by deriving effective pair potentials directly from the 
underlying atomistic potentials [21].

Relative entropy

The relative entropy S
rel

—also known as the Kullback–Lei-
bler (KL) divergence—is adopted from information theory 
and is a type of statistical distance that measures the dispar-
ity—or relative entropy—between two probability distribu-
tions. For coarse graining, S

rel
 measures the information loss 

using the probability density distributions of atomistic ( P
A
 ) 

and CG models ( P
CG

 ): S
rel

=
∑

i PA
ln

P
A
(i)

P
CG

(i)
 , where P(i) is 

the probability of configuration i in a given ensemble. The 
minimization of the relative entropy has been applied to the 
quantification of phase-space overlap between two molecular 
ensembles [22], CG model development [23, 24], calculation 
of free-energy differences [25], and inverse design of iso-
tropic interactions that promote self-assembly of structures 
including multi-component crystals [26] and colloidal 
strings [27]. The relative entropy formalism is connected to 
other coarse-graining approaches insofar as they can lead to 
the same results depending on how potentials are modeled 
[24]. While IBI and IMC are limited to optimizing pair 
potentials, relative entropy provides a more general frame-
work for handling many-body CG potentials [14].

Inverse Design

Coarse graining and inverse methods share the goal of iden-
tifying a set of parameters of a model that best reproduces 
the target distribution. In fact, we can view the develop-
ment of CG models as solving an inverse-design problem 
where the target properties are the forces from the respec-
tive fine-grained systems. Furthermore, both coarse graining 
and inverse methods are fundamentally rooted in the pursuit 
of a more systematic framework for materials design and 
discovery.

A multitude of inverse methods for soft-matter self-
assembly and design have been discussed in a recent review 
[28]. In particular, here we highlight the methods used in 
the inverse design of isotropic pair potentials that define 
short-ranged forces only by interparticle distance. Coun-
terintuitively, the simplicity of these interactions does not 
compromise the structural diversity exhibited by systems 
that interact with such forces [29], and they can provide 

insight into the underlying mechanisms of self-assembly. 
Isotropic interactions are experimentally realizable by tun-
ing, for example, the interactions of the isotropic DNA shell 
of functionalized nanoparticles [30].

The concept of tailoring potentials to maximize the dif-
ference in the ground-state energy between the target struc-
ture and its competitors has been successfully applied to the 
inverse design of structures in multiple systems, including 
the square and honeycomb lattices in 2D [31, 32], and sim-
ple cubic [33], diamond [34], and wurtzite structures [35].

Relative entropy minimization [23, 24] has also been 
used as a design principle for isotropic pair potentials to 
control the formation of pores for the assembly of porous 
mesophases [36], and to promote self-assembly of 2D and 
3D crystals [26, 37], colloidal strings [27], as well as size-
specific cluster fluids [38]. This “on-the-fly” approach uses 
structures generated during each optimization step of the 
particle interactions, thereby promoting the self-assembly 
of the target structure from a disordered state. This opti-
mization process was also employed in combination with 
Fourier-space filters to design simple interactions that could 
be more experimentally feasible [39].

All these approaches to modifying interactions or build-
ing blocks can be encompassed by “digital alchemy,” which 
was first introduced as a statistical-thermodynamics method 
to inversely design anisotropic particle shapes that favor the 
self-assembly of a target structure with Monte Carlo simu-
lations [40]. The general framework of describing particle 
attributes as thermodynamic variables—allowing them to 
fluctuate, and as a result identifying attributes crucial for 
controlling self-assembly—has also been extended to MD 
simulations with success for a handful of structures [41, 42].

Enhanced sampling

Enhanced sampling encompasses a class of methods that 
enables the simulation of hard-to-reach states. There are 
many different flavors of enhanced-sampling methods: 
umbrella sampling, replica exchange, metadynamics, and 
simulated annealing, to name a few. Most enhanced-sam-
pling methods apply a bias force or potential to drive the 
system to explore the region of phase space containing states 
of interest. These states are often described by a set of col-
lective variables (also referred to as reaction coordinates, 
order parameters, or structural descriptors in other contexts). 
We refer the reader to the SI for many in-depth reviews on 
different aspects of enhanced sampling.
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Descriptors for self‑assembly studies

There is a rich history of using order parameters to define 
and study phase transitions in physical systems, allowing 
for the most important variables or degrees of freedom to 
be captured. Reducing a physical system’s 3N spatial dimen-
sions to a more “natural” low-dimensional representation 
extracts the most relevant characteristics of the system’s 
behavior. In the study of self-assembly and growth, order 
parameters—i.e., structural descriptors—vary widely in 
their physical basis and in the behavior of interest of the 
physical system for whose study they are being used.

Specific variable choices are often necessary to define 
an order metric, but they can also prove limiting or insuf-
ficiently descriptive when confronted with an increas-
ing variety of behaviors or motifs in a single system. For 
example, how can a descriptor be designed to study a 
growing crystal with multiple crystalline environments, 
each with a different kind of crystalline symmetry?

Here, we highlight conventional approaches using 
physically inspired descriptors and how coupling these 
methods with machine learning techniques—well-suited 
for leveraging and interpreting high-dimensional data—
allows for a more complete picture of self-assembly to 
emerge across a variety of physical systems. In our dis-
cussion, we place significant emphasis on the physical 
basis of descriptors rather than on the specific ML tools 
utilized, in part because these physical descriptors should 
be tailored to the given system or behavior being studied, 
and in part because of evidence suggesting that the opti-
mization schema used does not significantly change the 
outcome of an ML-based analysis approach [43]. Later, 
in Sect. “Software and methods overview for descriptors”, 
we highlight the technical ML specifics for many of the 
methods discussed in this section.

Local descriptors that accurately quantify structural 
motifs have been used to develop atomistic machine-
learned interatomic potentials (MLIAPs) and led to marked 
improvements over potentials calculated from electronic 
structure alone [44]. The difference in applying descrip-
tors to soft matter is the lack of atomic or energetic data 
to train on, in order to predict resultant properties; this, 
in part, explains why solving the inverse-design question 
represents such a “holy grail” for the field. Consequently, 
good structural descriptors are critical for capturing and 
optimizing system behavior.

As is true for MLIAPs, a good descriptor should be 
immutable upon equivalent configurations generated by 
translations, rotations, and permutations to a motif or crys-
tal structure. This mathematical property with respect to 
a symmetry operation is referred to as invariance (equiv-
ariance or covariance also satisfy the required criteria). 

While not required, differentiability is particularly useful 
for applications utilizing automatic differentiation methods 
such as JAX-MD [45] (see Sect. “JAX-MD” for a detailed 
description).

We discuss several structural descriptors, broadly grouped 
according to their physical basis (as shown in Fig. 3): (1) 
structure-only parameters including RDF-based, position-
based, as well as “descriptor-free” (featureless) parameters 
that are exclusively machine-learned; (2) bond-orienta-
tional features utilizing spherical harmonics in a variety of 
approaches; and (3) graph-based or topological features. We 
aim to provide a comprehensive overview of the featuriza-
tions in the field, although inevitably we will be unable to 
cover all relevant work in the scope of this snapshot review.

We include in the SI an additional summary on thermo-
dynamics-inspired features and methods, although these are 
less commonly used and not as effective compared to struc-
ture-based approaches. We will sidestep a common problem 
lurking among many of the discussed methods, which is 
exactly how neighbors or radial cutoffs are chosen—han-
dled differently by each method. Finally, we largely ignore 
informatics approaches (for example, the Polymer Genome 
platform [46]) as they use hundreds of descriptors in a hier-
archical manner to train models that target properties. This 
section will focus on work that uses a specific choice of 
descriptor and its appropriate use cases.

RDF‑based and position‑based features

Using positional data with minimal manipulation is a logi-
cal choice for a structural descriptor. The oldest criterion 
for melting is the Lindemann order parameter [47]—based 
on particle mean-squared displacement from equilibrium 
position—utilized in soft-matter studies of nucleation and 
growth dynamics [48]. In hard-disk or sphere systems, phase 
transitions were commonly detected using only sorted neigh-
bor distances (i.e., in the first shell of the RDF) as features 
with unsupervised learning [49].

Behler and Parrinello [50] introduced radial and angular 
symmetry functions—representing potential-energy surfaces 
in atomic systems—that also bear similarity to the RDF but 
are localized to a particle’s environment. Such symmetry 
functions have been utilized in the development of ML-
based structural identification methods for complex phases 
in polymorphic systems such as ice [51] or the ML-based 
order metric “softness” for identifying particle susceptibility 
to rearrangements [52]. Softness has been used to predict 
glass dynamics [53] as well as to identify grain boundaries 
[54] and improve growth models [55] in atomistic MD simu-
lations. Other position-based features include using bond 
angle, bond length, and interparticle separation distance as 
inputs for an unsupervised crystal-structure identification 



	 M. M. Martirossyan et al.

1 3

method [56], defining a loss function based on a “stencil” 
used to target assembly of a specific polymorph using JAX-
MD [57], or utilizing particle positions and particle-level 
features to build geometric algebra-based representations of 
structure with deep learning [58].

Featureless order parameters

“Descriptor-free” or featureless order parameters can be 
conceptualized as a subcategory of position-based features, 
but they differ in that they use entirely unmanipulated data 
that must be interpreted using statistical or machine-learned 
methods. Because these descriptors do not use representa-
tions that are invariant to translations, rotations, and per-
mutations, they instead rely on data augmentation—that is, 
the model must learn these symmetries from an abundance 
of data in a variety of configurations, rather than invariance 
being built into the inputs for training.

Featureless unsupervised learning methods have so far 
been used to identify magnetization phase transitions in the 
canonical two-dimensional Ising model [59, 60] using entire 
Ising spin matrices as inputs. Unlike in the Ising model, 
a “descriptor-free” approach is more difficult to apply to 
systems where particle positions are variable, but this has 

been accomplished [61, 62] relying on sophisticated model 
architectures such as PointNet [63] in order to perform fea-
ture extraction. Other frameworks that use deep learning 
approaches with particle positions [64] (or, combined with 
atomic-level features as inputs [65]) could be extended to 
target properties in soft-matter systems.

Bond‑orientational features

Bond-orientational features differ from those described 
above in that they enforce spherical symmetry in their rep-
resentations of local structure. For two-dimensional struc-
tures, the Ψn order parameter is defined by the expectation 
of n-fold symmetry in the crystalline phase, and it has been 
utilized in the study of colloidal crystallization experi-
ments [66]. The Steinhardt Ql order parameter [67] and its 
neighbor-averaged version Ql [68]—which are rotationally 
invariant representations of a particle’s neighborhood using 
summations of spherical harmonics—have been used to 
identify local motifs or differentiate phases of matter, dis-
tinguish between simple sphere packings (bcc, ccp, hcp) 
[69], and study quasicrystal growth [70] in simulations of 
three-dimensional systems. Steinhardt’s Ŵl parameter has 

Fig. 3   The three broad classes 
of descriptors: position-/RDF-
based and featureless descrip-
tors, bond-orientational features, 
and graph-based features
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also been utilized to identify motifs in computational studies 
of pre-crystallization fluids [71].

The addition of machine learning methods to these bond-
orientational approaches has allowed for the extension of 
order parameters to more complex crystal structures, poly-
disperse packings, and non-close-packed local environments 
in crystalline solids (i.e., expanding beyond icosahedral, 
fcc, hcp, or bcc local environments). Spherical harmonics-
based descriptors have been used with unsupervised learning 
approaches to distinguish highly similar, complex structures 
[72], as well as to distinguish between local environments 
and phases during the self-assembly of structures with one 
or more crystalline motifs [73, 74]. Supervised approaches 
using spherical harmonics [72] or Steinhardt-based features 
have also successfully identified crystalline motifs in binary 
systems [75], and unsupervised approaches have similarly 
been employed with Steinhardt-based features to study 
local order in glasses and liquids [76] or at crystalline grain 
boundaries and binary systems [77].

A handful of other approaches using spherical harmon-
ics-based descriptors have been formulated for the study of 
atomic materials and extended to the study of phase transi-
tions or soft and molecular systems. The Smooth Overlap 
of Atomic Positions (SOAP) descriptor [78]—which utilizes 
spherical harmonics to represent Gaussian-smeared particle 
densities—has also been adapted for ML-based studies of 
materials: a Gaussian process with a SOAP kernel [79] or 
unsupervised methods with a SOAP descriptor [80] have 
been used to study the formation of (supra)molecular mate-
rials. Euclidean neural networks (e3nn) [81] use spherical 
harmonics to create irreducible representations that lever-
age equivariance to learn symmetry-based translations and 
rotations, and they can be used to define order parameters 
that identify the breaking of these symmetries (e.g., during 
a phase transition) [82].

Graph‑based features

Yet another intuitive way to featurize inter-particle bonding 
structure is through graph-based features—not to be con-
flated with graph neural networks, although they can appear 
together. Graph-based features include particle connections, 
bond lengths and angles, and local neighborhood geometry 
in their representation of local structure. The most popu-
lar graph-based feature is referred to as Common Neighbor 
Analysis (CNA) [83, 84], a tool which classifies simple 3D 
motifs by the topology of particle neighborhoods and which 
is integrated (along with its variants) into the “Open Visuali-
zation Tool” (OVITO)1. CNA has been applied to numerous 
studies of crystallization, such as the simulation study of 

charge-stabilized colloidal suspensions [85]. Another com-
monly used method for simple crystal-structure or motif 
identification is polyhedral template matching (PTM) [86], 
which uses the convex hull of neighbors around a particle 
to create a planar graph and performs template matching 
to identify motifs. Given the success of these approaches, 
the addition of machine learning methods is highly sensible 
and allows a larger variety of local structures to be repre-
sented and identified as compared to CNA and PTM, par-
ticularly for systems where atom- or particle-level features 
are important (such as having two different particle sizes or 
components).

Graph neural networks (GNNs) are designed to take in 
graphs as inputs and perform convolutions to create embed-
dings of local structure. Crystals lend themselves naturally 
to representations as planar graphs, where nodes and edges 
represent particles and bonds. For example, a GNN is used 
to build local descriptors from graph-based features that can 
identify disorder such as in grain boundaries or interfaces 
[87]. GNNs have also been used with ‘crystal edge graphs’ 
rather than crystal graphs, where nodes represent bonds 
in the crystal and edges represent bond pairs (i.e., angles 
between bonds). Recent work has identified phase transi-
tions by building global descriptors [88] with the Atomistic 
Line Graph Neural Network (ALIGNN) [89], which uses a 
GNN to create latent representations using message-pass-
ing between the crystal graph (interatomic bond graph) and 
the crystal edge graph (line graph corresponding to bond 
angles). In a similar vein, crystal edge graphs have been 
used to perform crystal identification tasks on individual 
particles [90].

However, GNNs are not the only types of ML approaches 
utilized with graph-based features. Convolutional neural net-
works have been applied to graph-based features for mol-
ecules [91], atomic structures [92], and glasses [93]. Other 
ML methods have also been applied with graph-based fea-
tures—for example, diffusion maps for local environment 
identification including both amorphous and crystalline 
structures [94], or for building representations of chemi-
cal ordering in multi-component alloys for use in a relative 
entropy-based order metric [95].

Designing for properties

Frequently, the design of materials with specific properties 
has been handled separately from the design of assembly 
pathways to target particular structures [28]. Inverse design 
for the properties of a material requires the use of the prop-
erty itself as the figure of merit of the computation, enabling 
the use of any property that can be computed from a mate-
rial’s structure. Machine learning facilitates the accelerated 
evaluation of complex structure–property relationships that 1  https://​www.​ovito.​org.

https://www.ovito.org
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would otherwise be prohibitive as a computational figure of 
merit [28]. This can be done by reducing the dimensionality 
of the order parameter or by applying supervised machine 
learning directly to the structure–property relationship [3].

Many advances have been made in the field of atomistic 
(“hard”) materials such as alloys, and electronic materials, 
in which atomic structure can directly be related to bulk 
properties of a material [89, 92]. In this snapshot review, 
we concentrate on mesoscopic (“soft”) matter. While bulk 
properties can often be computed directly in hard-matter 
systems—because the relevant structural features occur on 
only one length scale—soft-matter systems exhibit multiple 
salient length scales, making predictive modeling of a vari-
ety of properties more challenging. For length consideration, 
we provide our discussion on soft materials properties in 
the SI, where we discuss five different kinds of materials 
properties: (1) mechanical properties, (2) thermodynamic 
and phase properties, (3) electronic and optical properties, 
(4) transport properties, and (5) chemical properties.

Software developments

Many well-known MD packages were developed before the 
popularity of ML-enhanced materials research, so integrat-
ing ML methods with traditional MD simulations can prove 
challenging. In this section, we briefly review the compat-
ibility of current MD engines with ML methods, how soft-
ware for descriptors can be used, and we showcase a new 
MD engine that is intrinsically compatible with the current 
ML/AI software packages.

Integration with ML methods for traditional MD 
engines

Traditional MD packages such as LAMMPS2 and HOOMD-
blue3 are extremely powerful engines that can perform MD 
simulations very effectively. Although primarily written in 
C++, there are now tools available to integrate ML methods 
with these MD platforms.

LAMMPS hosts a well-documented webpage4 provid-
ing a list of software packages that are either external—and 
built on top of LAMMPS—or standalone—either provid-
ing input parameters for LAMMPS or other MD engines, 

or incorporating LAMMPS as one of their MD engines to 
produce simulation trajectories. Within the list, there are 
packages linking PyTorch with LAMMPS and several pack-
ages for ML-based interaction potentials.

Similarly, HOOMD-TF5 was developed to link Ten-
sorFlow with HOOMD-blue (currently compatible with 
HOOMD-blue 2.6+ but not 3.x, etc., due to a major API 
change6).

Software and methods overview for descriptors

There is a large variety of methods for quantifying structural 
order that are applied to study crystal growth and assem-
bly—which are equally as diverse as the open questions in 
the field. With many ML-based methods being developed 
for different use cases and specific physical systems, we 
highlight methods in Table 1 with the most important soft-
ware and architecture details as well as computing resources 
needed for each.

JAX‑MD

Computing derivatives or gradients is a crucial component 
of many machine learning techniques. Utilizing general-
purpose automatic differentiation [96] implementations is 
standard in many different machine learning packages such 
as PyTorch, JuliaDiff, and MatLab’s Deep Learning Tool-
box. Similarly, various materials-science applications also 
require the computation of gradients ranging from force 
computation in MD to evaluating stress tenors for materials 
properties.

Following the release of JAX7 in 2018—a Python-based 
software package that enables end-to-end differentiation—
various packages were developed utilizing JAX’s new ability 
to differentiate through complicated functions. JAX-based 
materials-science software packages are not limited to JAX-
MD, and include JAX-AM8, JAX-FEM9, and GradDFT10. 
Given the scope of this snapshot review, which concentrates 
on assembly design, we will only highlight work related to 
JAX-MD.

The molecular-dynamics engine JAX-MD currently fea-
tures simulation environments to model isotropic pair poten-
tials and anisotropic particles using rigid-body constructions 
with standard integrators such as NVE, NVT, NVP, Brown-
ian dynamics, and Langevin dynamics. As JAX-MD is writ-
ten fully in Python, the overhead for any user to define a 

2  https://​www.​lammps.​org.
3  https://​glotz​erlab.​engin.​umich.​edu/​hoomd-​blue.
4  https://​www.​lammps.​org/​exter​nal.​html.
5  https://​github.​com/​ur-​white​lab/​hoomd-​tf.
6  A—to-date unmerged—branch exists on the HOOMD-TF GitHub 
page, allowing to make the code compatible with HOOMD-blue 3.x.
7  http://​github.​com/​google/​jax.

8  https://​github.​com/​tianj​uxue/​jax-​am.
9  https://​github.​com/​deepm​odeli​ng/​jax-​fem.
10  https://​github.​com/​Xanad​uAI/​GradD​FT.

https://www.lammps.org
https://glotzerlab.engin.umich.edu/hoomd-blue
https://www.lammps.org/external.html
https://github.com/ur-whitelab/hoomd-tf
http://github.com/google/jax
https://github.com/tianjuxue/jax-am
https://github.com/deepmodeling/jax-fem
https://github.com/XanaduAI/GradDFT
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Table 1   ML-based descriptors for materials assembly and design

Compute resources reflect those used or reported by the respective authors
SVM support vector machine, PCA principal component analysis, DBSCAN density-based spatial clustering of applications with noise, GMM  
Gaussian mixture model, ANN artificial neural network, CNN convolutional neural network, GNN graph neural network
1 https://​github.​com/​cjlin1/​libsvm
2 https://​github.​com/​charl​esq34/​point​net
3 https://​github.​com/​atomi​stic-​machi​ne-​learn​ing/​SchNet
4 https://​github.​com/​ks8/​glass​ML
5 https://​github.​com/​klarh/​geome​tric_​algeb​ra_​atten​tion
6 https://​github.​com/​glotz​erlab/​pythia
7 https://​singr​oup.​github.​io/​dscri​be/​latest/
8 https://​github.​com/​lab-​cosmo/​SA-​GPR
9 https://​github.​com/​lab-​cosmo/​pamm

References Features Models Software Compute

Geiger and Dellago [51] Symmetry functions ANN – GPU
Cubuk et al. [52] Symmetry functions SVM LIBSVM1  –

Wang [59] Ising spin matrix PCA+k-means clustering  –  –
Wetzel [60] Ising spin matrix kernel PCA/DBSCAN/vari-

ational autoencoder
 –  –

Jadrich et al. [49] Sorted neighbor distances Incremental PCA Sklearn  –
Reinhart [56] Neighbor distances, bond angles 

& lengths, particle-level 
features

UMAP+Random Forest Clas-
sifier

UMAP, Sklearn  –

DeFever et al. [61] Particle positions PointNet2 TensorFlow  –

Wang et al. [62] Particle positions Autoencoder+GMM TensorFlow, Sklearn  –
Schütt et al. [65] Atomic nuclear charges & posi-

tions
Filter-generating network TensorFlow, SchNet3 CPU-intensive/GPU

Swanson et al. [64] Particle positions CNN/message-passing neural 
network

TensorFlow/PyTorch, 
“glassML”4

GPU

Spellings [58] Multivectors (geometric products 
of particle positions) & 
particle-level features

Attention mechanism Keras, TensorFlow, GAlA 5 GPU

Spellings and Glotzer [72] Spherical harmonics (pythia) 6 PCA+GMM/ANN Sklearn/ Keras CPU

Adorf et al. [73] Bispectrum spherical harmonics 
(pythia)6

PCA+UMAP+HDBSCAN∗ Sklearn, UMAP, HDBSCAN∗  –

Boattini et al. [77] Steinhardt parameters Autoencoder+GMM Sklearn  –
Coli and Dijkstra [75] Steinhardt parameters ANN Keras, TensorFlow  –
Grisafi et al. [79] SOAP7 Gaussian process SciPy, SA-GPR8 CPU-intensive

Gardin et al. [80] SOAP7 PCA+PAMM/Hierarchical 
clustering

Sklearn, PAMM9  –

Geiger and Smidt [81] Irreps (tensor products of spheri-
cal harmonics)

CNN JAX/PyTorch, e3nn10 GPU

Duvenaud et al. [91] Molecular graphs CNN SciPy, Autograd, “Neural finger-
print”11

 –

Bapst et al. [93] Crystal graphs GNN TensorFlow/TF-Replicator, JAX, 
“Glassy dynamics”12

 –

Chapman et al. [87] Crystal graphs GNN PyTorch, SODAS/graphite13 GPU

Choudhary and DeCost [89] Crystal/line graphs+radial basis 
functions

Message-passing GNN ALIGNN14 GPU

Aroboto et al. [88] ALIGNN14 UMAP+GNN UMAP, PyTorch, SODAS++15  –

Reinhart et al. [94] CNA-based crystal graph Diffusion maps Neighborhood Graph Analysis 
(NGA)

 –

Xie and Grossman [92] Atom-level features & crystal 
graphs

CNN Sklearn, PyTorch, CGCNN16  –

Banik et al. [90] Crystal edge graphs Attention mechanism PyTorch, Sklearn, CEGANN17 GPU

Sheriff et al. [95] Crystal graphs & particle-level 
features

 – e3nn10  –

https://github.com/cjlin1/libsvm
https://github.com/charlesq34/pointnet
https://github.com/atomistic-machine-learning/SchNet
https://github.com/ks8/glassML
https://github.com/klarh/geometric_algebra_attention
https://github.com/glotzerlab/pythia
https://singroup.github.io/dscribe/latest/
https://github.com/lab-cosmo/SA-GPR
https://github.com/lab-cosmo/pamm
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new pair potential or external field—or interface with other 
ML/AI methods—is minimal. Moreover, when implement-
ing a new pair potential, no additional force implementation 
is needed as gradients (i.e., derivatives) of the interaction 
potential can be retrieved directly to update quantities such 
as particle velocity and acceleration.

So far, JAX-MD has been used to design assembly and 
transition rates for colloidal systems [57], anisotropic build-
ing blocks for bulk and finite assembly [97], controlled 
disassembly of colloidal clusters [98], error-free polymer 
growth [99], and minimal-work pathways in non-equilibrium 
systems [100]. These papers showcase the breadth and ver-
satility of the physical systems and properties that JAX-MD 
can model and design. Generally, the optimization regime in 
JAX-MD is system-agnostic as long as the user can provide 
a loss function / order parameter with meaningful gradients 
to describe the simulated system.

Figure 4 illustrates a schema for the use of JAX-MD for 
inverse design, but this is not the only way to implement 
such a workflow. For example, one can update building-
block properties after a fixed number of simulation steps 
instead of at the end of one round of forward simulation. 
Here, we want to provide a working example as a starting 
point for interested researchers to explore. Apart from using 
JAX-MD to inversely design assembly, yet another unex-
plored territory for JAX-MD is to combine it with enhanced-
sampling methods. Computing forces for a bias potential in 
MD can be challenging to implement, but with the help of 
automatic differentiation, no explicit force implementation 
would be needed.11

Accessibility

In this section, we highlight a few barriers to accessing some 
of the methods discussed in this snapshot review. Computing 
resources are vital to those who may want to train models 
or utilize inverse-design methods for their research. Meth-
ods that run on GPUs can be run on CPUs as well, but the 

difference in wall time can amount to orders of magnitude—
especially for tasks that require backpropagation. Moreover, 
tasks that require backpropagation or automatic differentia-
tion can be GPU-memory intensive, sometimes requiring the 
most advanced GPUs with 80 GB of memory. Therefore, we 
encourage including computational resources either used (or 
utilizable) for training models and describing the associated 
computational costs for new methods being published. In 
a similar vein, sharing code on open-source platforms like 
GitHub is increasingly common and can function as a “plug 
and play” tool for non-experts to utilize.

Another possible barrier is the need to transmute train-
ing data (from simulation or experiment) into the expected 
data format for a specific method. For example, many of the 
approaches highlighted in Table 1 rely on specific file for-
mats (typically only used for data output by a particular MD 
engine). Tools such as the garnett software12 can help with 
reading/writing to/from different simulation file formats, 
although not all common formats are included (e.g., the 
.xyz file format). A similar issue arises with ML-specific 
backends: often methods are developed for only one of the 
three—Keras/TensorFlow, JAX, or PyTorch. These are just 
a few of the “language barriers” that arise from the diversity 
of computing tools that researchers use.

Finally, access to large volumes of data for training mod-
els is usually straightforward for simulators, and there are 
already databases hosting services for more various mate-
rials datasets13—but this is not necessarily the case for 
soft-matter experimentalists. While we do not necessarily 
endorse the publishing of trained models as a solution, we 
urge consideration of how models can behave for low data-
volume cases. These considerations could be especially 
important in developing simulation–experiment pipelines 
for training models or inverse-design approaches.

10 https://​github.​com/​e3nn
11 https://​github.​com/​HIPS/​neural-​finge​rprint
12 https://​github.​com/​google-​deepm​ind/​deepm​ind-​resea​rch/​tree/​master/​glassy_​dynam​ics
13 https://​github.​com/​LLNL/​graph​ite
14 https://​github.​com/​usnis​tgov/​alignn
15 https://​github.​com/​Mater​ials-​Infor​matics-​Labor​atory/​SODAS
16 https://​github.​com/​txie-​93/​cgcnn
17 https://​github.​com/​sbani​k2/​CEGANN

Table 1   (continued)

11  See https://​colab.​resea​rch.​google.​com/​drive/​1eOBq​UlRxh​UvPsx​
fl9hG​cVwHT​leN2G​NBJ for an example.

12  https://​garne​tt.​readt​hedocs.​io
13  https://​www.​mater​ialsd​atafa​cility.​org

https://github.com/e3nn
https://github.com/HIPS/neural-fingerprint
https://github.com/google-deepmind/deepmind-research/tree/master/glassy_dynamics
https://github.com/LLNL/graphite
https://github.com/usnistgov/alignn
https://github.com/Materials-Informatics-Laboratory/SODAS
https://github.com/txie-93/cgcnn
https://github.com/sbanik2/CEGANN
https://colab.research.google.com/drive/1eOBqUlRxhUvPsxfl9hGcVwHTleN2GNBJ
https://colab.research.google.com/drive/1eOBqUlRxhUvPsxfl9hGcVwHTleN2GNBJ
https://garnett.readthedocs.io
https://www.materialsdatafacility.org
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Conclusion

In this snapshot review, we discuss many approaches used 
in the optimization and design of soft materials such as 
structure prediction, coarse-graining, enhanced sampling, 
and how these approaches are not only compatible with but 
enhanced by ML methods, as well as a variety of software 
that can be used to target specific structures or materials 
properties. We discuss both forward approaches—critical 
for the study of phase behavior and self-assembly—as well 
as more targeted inverse approaches that are used specifi-
cally for design.

Through our survey of methods in the field, we emphasize 
the importance of the physical basis of methods and features. 
We also include relevant methods that are developed for 
atomic systems as these approaches can be extended to soft 
or mesoscale materials. We hope that this snapshot review 
can serve as a guide for those looking to apply (or create) 
ML-based methods for scientific questions.

We also offer a few reflections on how we believe the 
methods we review can be best used going forward. Given 
the multitude of descriptors and inverse-design tools devel-
oped in just the last decade, the fields of both atomistic and 
soft materials are ripe for employing new methods to con-
duct scientific research. That is, the “low-hanging fruit” of 
ML-based approaches are being or have been picked, and 
further development or use of methods should be tailored to 
answering open questions in the field or addressing specific 
design principles. Bridging the gap between the tool-makers 
and tool-users will be imperative in order to address open 
scientific questions and to connect theory, simulation, and 
experiments: these range from the need for robust descrip-
tors that can handle particle-locating in experiments, to more 
fundamental questions such as the effect of interaction and 
structure in particle-based systems. We are optimistic that 
with the newly available avenues—provided by the power of 
machine learning and the multitude of new computational 

approaches built upon decades of progress—we can answer 
fundamental questions regarding structure formation and 
design of matter across various length scales in the future.
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