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Thermal conductivity of monolayer graphene: Convergent and lower than diamond
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The thermal conductivity of monolayer graphene is widely believed to surpass that of diamond even for
few-micron-size samples and was proposed to diverge with system size. Here, we predict the thermal con-
ductivity from first principles by considering four-phonon scattering, phonon renormalization, an exact solution
to the phonon Boltzmann transport equation (BTE), and a dense enough sampling grid. We show that at room
temperature, the thermal conductivity saturates at 10 µm system size and converges to 1300 W/(m K), which
is lower than that of diamond. This indicates that four-phonon scattering overall contributes 57% to the total
thermal resistance and becomes the leading phonon scattering mechanism over three-phonon scattering. On the
contrary, considering three-phonon scattering only yields higher-than-diamond values and divergence with size
due to the momentum-conserving normal processes of flexural phonons.
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Graphene is a subject of extensive research due to its
unique properties and observed exotic transport phenomena
[1–6]. Among them, many experimental and theoretical stud-
ies have shown that the thermal conductivity (κ) of graphene
surpasses that of diamond, even for small samples of few-
micron size [7–11], and some suggest that it diverges with
the system size [12]. Several other experiments reported lower
thermal conductivity values, which were commonly attributed
to defects and impurities [13–15]. Moreover, the uncertainty
of these measurements is usually too large to conclusively as-
sess whether or not κ is higher than that of diamond. Sources
of uncertainty include optical absorption [13], strong nonequi-
librium among different phonon modes [16,17], and others.

The studies of thermal transport in graphene have yielded
several new insights associated with two-dimensional (2D)
materials, supporting graphene’s high and divergent thermal
conductivity. By coupling the linearized phonon Boltzmann
transport equation (BTE) with empirical potential [8] or first
principles [9] at the three-phonon (3ph) level, it was found
that the flexural phonons (ZA) [18] contribute significantly to
κ and their 3ph scattering is greatly suppressed by a selec-
tion rule [8]. Due to strong momentum-conserving scattering
(normal process), thermal conductivity did not converge for a
system size of 50 µm, and the value for the 10 µm size with
boundary scattering at room temperature [∼3000 W/(m K)]
is in accordance with another theoretical study at the 3ph
level [10] that reports ∼2500 W/(m K) for a 10 µm sample.
On the other hand, while acknowledging the out-of-plane vi-
brations, it has been proposed [12] that graphene resembles
a 2D nonlinear lattice that was extended from the Fermi-
Pasta-Ulam-Tsingou (FPUT) model [19]. Therefore, the heat
transport is non-Fourier [20] and κ should diverge with system
size as κ2D ∝ log10(L) [21,22].
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However, questions were recently raised regarding whether
these insights represent the complete physics of thermal
transport in graphene. In particular, can higher-order phonon
scattering be neglected in graphene, considering that the 3ph
scattering is restricted in graphene and four-phonon (4ph)
scattering has been found to be important in other solids
[23–26]? Also, is it sufficient to explain the behavior of
graphene in terms of the 2D lattice model considering that
it is actually only a quasi-2D system with out-of-plane atomic
vibrations? To answer these questions, Feng and Ruan [27]
computed 4ph scattering rates with empirical potential and
showed a strong 4ph effect in the ZA mode and, consequently,
obtained a system size convergent and greatly reduced κ of
around 800 W/(m K). The sampling grid that was accessible
there was relatively coarse. Gu et al. further incorporated
phonon renormalization into this calculation with empirical
potential and argued that ZA scattering rates are reduced by
temperature modification [28]. However, the empirical in-
teratomic potentials used in these studies do not accurately
represent chemical bonds, and the exact role of four-phonon
scattering and the value of κ remain elusive. Another main-
stream approach is molecular dynamics (MD), with two
different flavors in equilibrium (EMD) and nonequilibrium
(NEMD) treatments. In theory, the MD approach is expected
to capture all orders of anharmonicity. However, the EMD
simulations show size-converged κ ranging from 1000 to
2000 W/(m K) [29–31], while the NEMD simulations show
logarithm length dependence up to several microns [12,32].
Interestingly, one MD study presents a saturation of κ when L
is extended to 100 µm [33]. Besides these inconsistencies, MD
simulations also suffer from the classical phonon statistics and
empirical potentials; hence, the results can only be interpreted
qualitatively.

Summarizing all existing studies, the thermal conductiv-
ity of pristine suspended monolayer graphene is currently
widely perceived, both experimentally and theoretically, to
be around 3000 W/(m K), even for samples of few-micron
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FIG. 1. Phonon self-energy in graphene. (a) Phonon dispersion at finite temperatures by the TDEP method. Dispersion at 0 K is obtained
by density functional perturbation theory. The right panel is a zoom-in plot of the ZA mode dispersion from � to M in the Brillouin zone.
The schematic of ZA out-of-plane vibrations is created by an online visualization tool [34]. (b) Spectral phonon scattering rates at 300 K. The
scattering rate in the y axis is presented in logarithm scale. Three-phonon (τ−1

3ph) and four-phonon (τ−1
4ph) scattering rates are shown as hollow

and filled circles, respectively. The scattering rates of the ZA mode are marked in red and zoomed-in in the inset.

size and higher than that of diamond and graphite. On the
other hand, the lower values, as seen in some other exper-
iments and simulations, were thought to be due to defects
or impurities, or considered as inconclusive due to large
uncertainty in the experiments and inaccuracies in the sim-
ulations. In this Letter, we revisit the thermal conductivity of
graphene with first-principles-computed four-phonon scatter-
ing, phonon renormalization, an exact solution to the phonon
Boltzmann transport equation (BTE), and a dense enough
sampling grid. We show that the thermal conductivity, con-
trary to popular perception, saturates at 10 µm and converges
at a room temperature value of 1300 W/(m K), which is
lower than that of diamond. This represents a factor of 2.31
reduction from 3000 W/(m K) and indicates that four-phonon
scattering becomes the leading phonon scattering mechanism.
The considerations of both four-phonon scattering [23,24]
and phonon renormalization [35–38], which form the uni-
fied approach [39,40], have successfully explained the Raman
linewidth of suspended graphene in our prior work [41]. Here,
we extend the methodology to all phonon modes for thermal
conductivity prediction. The phonon BTE is exactly solved
by an iterative scheme [42] incorporating both three-phonon
and four-phonon scattering after we manage to store the itera-
tive processes within one terabyte memory space accessible
in modern supercomputer architecture. We compute, from
first principles, that the ZA mode has strong four-phonon
scattering rates which are comparable to their three-phonon
counterpart. The sampling grid (q mesh) is carefully checked
for κ convergence of an infinitely long graphene sample and
we see convergence of thermal conductivity after including
four-phonon scattering (κ3ph+4ph), but not with three-phonon
scattering (κ3ph) only. Our findings challenge the perception
of graphene being a better heat conductor than diamond, and
will motivate future experimental validation efforts.

Our first-principles calculations are based on density
functional theory as implemented in the VASP package
[43]. The phonon renormalization effect is included by a

temperature-dependent effective potential (TDEP) method
[36] to compute temperature-dependent phonon dispersions
and interatomic force constants (IFCs) [38]. Phonon scattering
rates, summed up by Matthiessen’s rule [44] τ−1

λ = τ−1
λ,3ph +

τ−1
λ,4ph + τ−1

λ,iso, are computed by our FOURPHONON code [45],
an extension module to the SHENGBTE package [46]. The exact
solution of the BTE is implemented in the same solver by a
shared-memory parallel computing strategy [47].

The computed phonon dispersion and phonon scattering
rates are presented in Figs. 1(a) and 1(b), respectively. Overall,
graphene is quite rigid, as shown by the very small change
of phonon frequency at finite temperatures [see Fig. 1(a)].
The frequency of in-plane optical phonons decreases with
increasing temperature, a signature that has been analyzed
and experimentally verified in our prior work [41]. Contrary
to the decreasing trend of frequency shift for in-plane optical
phonons, we find that the flexural phonons are hardened with
rising temperature [see Fig. 1(a), right panel]. This is a result
of the coupling between flexural phonons and in-plane de-
grees of freedom in freestanding graphene [18]. Renormalized
flexural phonons do not have a strictly quadratic dispersion.
With the renormalized phonon dispersion and temperature-
dependent IFCs, one can then compute the spectral phonon
scattering rates τ−1

λ using Fermi’s golden rule, as shown
in Fig. 1(b). Interestingly, the optical phonons and flexural
phonons show comparable or even higher four-phonon scat-
tering rates (τ−1

4ph) with their three-phonon counterpart (τ−1
3ph),

while the rest of the phonon modes are dominated by three-
phonon scattering. Optical phonons having large τ−1

4ph are
understood as they easily satisfy the energy conservation in
the recombination scattering events: λ1 + λ2 → λ3 + λ4 [48].
On a different ground, the reason for the flexural phonons lies
in the selection rule for general quasi-2D systems [8] in which
only even numbers of flexural phonons can be involved in
a phonon scattering event due to reflection symmetry. As a
result, the phase space for three-phonon scattering is much
smaller than that of four-phonon scattering [27]. The ZA

L121412-2



THERMAL CONDUCTIVITY OF MONOLAYER GRAPHENE: … PHYSICAL REVIEW B 108, L121412 (2023)

FIG. 2. Convergence of thermal conductivity of graphene at
room temperature. (a) Convergence with respect to mesh size without
boundary scattering. Mesh size in the x axis is presented in logarithm
scale. The inset shows the ratio of ZA mode scattering rates from
normal (τ−1

N ) and Umklapp (τ−1
U ) processes for both 3ph (hollow blue

dots) and 4ph channels (filled orange dots). (b) Size-dependent ther-
mal conductivity with boundary scattering under 3ph and 3ph+4ph
theories.

mode was considered as the major heat carrier in graphene
under the 3ph scattering picture [8,9,49]; this statement needs
to be reexamined after its strong τ−1

4ph is included.
We next solve for the intrinsic thermal conductivity by an

iterative scheme [42] to account for the collective phonon
excitations. This approach distinguishes the normal processes
(N) that are momentum conserving and Umklapp processes
(U) that are resistive. Such a treatment is important for
graphene since it has a strong normal scattering process as-
sociated with its phonon hydrodynamics nature [50,51]. The
coupled equations are presented in the Supplemental Material
[52]. For the BTE solution to generate meaningful results,
one has to check the convergence of κ with respect to the
sampling grid in the Brillouin zone (q mesh). An infinitely
large system has finite thermal conductivity if a convergence
can be reached. Figure 2 shows our test of convergence when
3ph or 3ph+4ph is included in the calculations. Mesh size
N × N × 1 is uniform in-plane. In all these calculations, the
energy broadening factor is unity to ensure the accuracy
within our computational power. We find that with four-
phonon scattering, κ3ph+4ph converges around a mesh size
of N = 40, and further increasing the mesh to N = 52 does
not change the value of κ . In contrast, κ3ph does not reach
convergence up to N = 240 and scales logarithmically with
mesh size N . Note that the prior work [10] used N = 128 for
3ph. To illustrate the impact on practical samples of finite size,
we plot the size-dependent thermal conductivity in Fig. 2(b)
by adding a boundary scattering term [9,10]: τ−1

λ,b = |vλ|/L,
where vλ is the group velocity of phonon mode λ and L is the
disk diameter. The 3ph and 3ph+4ph results start to show a
considerable difference when the size is larger than 0.1 µm.
At the 3ph+4ph level, κ would reach the intrinsic limit at
around 10 µm, while the 3ph curve does not converge even for
50 µm. To inspect the origin of this behavior, we decompose
the N/U scattering for the ZA mode and plot the ratio of two
types of scattering events, τ−1

N /τ−1
U , in the inset of Fig. 2(a).

Apart from the dominant role of the normal process for both

scattering channels, it is, to a lesser degree, for four-phonon
scattering of flexural phonons at low frequencies. Given the
fact that τ−1

N decreases when ω → 0, we conclude that 3ph
of long-wavelength flexural phonons is almost entirely con-
tributed by normal processes. The extreme case is the heat
conduction in a 2D nonlinear lattice, where all scattering
processes are momentum conserving [22] and the thermal
conductivity is logarithmic divergent. Thus, we explain the
finite intrinsic thermal conductivity of graphene from two
related arguments: (i) four-phonon scattering provides an ad-
ditional scattering channel; (ii) for long-wavelength phonons,
four-phonon scattering has a considerable number of resistive
U scattering events, but three-phonon processes are nearly all
N scattering events, implying a divergence. Our numerical
results share similarities with a theoretical work on a car-
bon nanotube (CNT) [53], where the authors estimated that
third-order anharmonicity leads to a divergence of thermal
conductivity due to vanishing scattering of long-wavelength
phonons. They empirically showed that a higher-order process
can remove such divergence. While the study on CNT is worth
further investigations [54–56], we show here that four-phonon
scattering converges the thermal conductivity of graphene
from first principles.

The above arguments can further be seen in the spectral
κ [Fig. 3(a)], where we find a singularity for near-zero fre-
quency phonons at the 3ph level, but not at the 4ph level.
The 3ph and 3ph+4ph pictures have a distinct spectral trend
for low-frequency phonons. While the 3ph+4ph calculation
can saturate the spectral κ when ω → 0, the 3ph-only cal-
culation shows an up-soaring spectral trend. In addition,
we analyze the ZA mode contribution to κ , as shown in
Fig. 3(b). At the 3ph level with N = 180, the ZA contribution
is 2833W/(m K) and 85%. After including 4ph scattering, the
ZA contribution becomes 949 W/(m K) and the percentage
reduces to 73% for intrinsic graphene. The argument that ZA
modes are the major heat carriers in graphene [8,9] still holds.
Note that our first-principles result is different from previous
MDwork [29]. Despite the fact that MD gives a total κ around
1000 W/(m K), it estimates the ZA mode contribution to be
only one-third of total κ . This could be due to the classical
statistics that overpopulates the non-ZA phonon branches.

Finally, we present the calculated thermal conductivity of
graphene as a function of temperature and some comparisons
to other carbon allotropes in Fig. 4. Our results κL at the 3ph
level for 10-µm-size graphene with boundary scattering are
consistent with prior first-principles studies [9,10] and we see
a small impact from phonon renormalization (see Supplemen-
tal Material [52] for a comparison without renormalization).
The comparison in Fig. 4(a) shows that incorporating 4ph
in the calculation significantly reduces κ3ph. Nevertheless,
our results of κ3ph+4ph are significantly higher than the pre-
vious simulation with empirical potential at moderate mesh
size [27]. This indicates that the optimized Tersoff potential
probably overestimates the fourth-order anharmonicity of the
ZA phonons. At room temperature and without boundary
scattering, we predict that κ3ph+4ph = 1298 W/(m K). This
represents a factor of 2.31 reduction from 3000 W/(m K)
and indicates that 4ph scattering overall contributes 57%
to the total thermal resistance and becomes the leading
phonon scattering mechanism over 3ph scattering. As a

L121412-3



ZHERUI HAN AND XIULIN RUAN PHYSICAL REVIEW B 108, L121412 (2023)

FIG. 3. Spectral and mode contribution. (a) Spectral contributions to κ of graphene at room temperature without boundary scattering. The
inset shows the cumulative thermal conductivity as a function of phonon frequency. (b) ZA phonons’ contribution to κ and its percentage
at room temperature, and comparison to first principles at 3ph (renorm. stands for phonon renormalization that was not included before) [9]
and MD work [29]. In both plots, the 3ph case presented here is calculated at N = 180 without boundary scattering, and note that it is not
converged with N .

result, the thermal conductivity of graphene is lower than
that of diamond from 300 to 800 K. The first-principles re-
sults for diamond [green and black lines in Fig. 4(a)] are
from Refs. [24,39], where similar methodologies were ap-
plied, including 3ph/4ph scattering, phonon renormalization,

and iterative solution to BTE. The comparisons show that
both 4ph scattering and the phonon renormalization effect
are not significant in diamond. Note that the thermal con-
ductivity of diamond is well received, with good agreements
between simulations and experiments [57–59,62]. In contrast,

FIG. 4. Thermal conductivity of graphene as a function of temperature. (a) Prior theoretical work with empirical potential (EP) and four-
phonon scattering [27] is presented as a red solid line. Our results are presented in connected solid lines with orange (3ph+4ph) and blue (3ph
scattering only and a boundary scattering of L = 10 µm). Also, a prior first-principles 3ph work with boundary scattering [9] is shown as a
dashed blue line. Computational results for diamond without renormalization [24] and with renormalization [39] are presented in green and
black lines, respectively (3ph results in dashed lines and 3ph+4ph results in solid lines). Several experiments on diamond are also plotted here
(right-pointing triangles [57], triangles [58], inverted triangles [59]). (b) Our results compared to a recent Raman measurement on suspended
graphene [17] (filled orange circles) and other previous Raman measurements (green filled circles [13], open squares [14], filled squares [15]),
and experiments on graphite [60,61] (black diamonds).
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the measured thermal conductivity values of graphene so far
have shown a large spread. While our finding challenges a
popular perception that graphene is a better heat conductor
than diamond, the numerical results are self-consistent with
advancements in theories and computational power. Under
current computational formalism, a plausible reason for this
observation is that diamond does not have strong four-phonon
scattering for acoustic modes [24,39], but flexural phonons
in graphene do have large four-phonon scattering rates orig-
inated from its 2D nature. In this sense, the reduction of κ

from diamond to graphene is understandable. Interestingly,
the comparison between diamond and graphene singles out
the effect of the dimensionality, which contributes through
flexural phonons. Going from a 3D (bulk) to quasi-2D case,
one of the transverse acoustic vibrations shifts from a linear
to a quadratic dispersion relation and its 3ph scattering is
restricted by the selection rule, while 4ph scattering becomes
significant. Also, because of this selection rule, the fifth-order
term as an odd term should also be restricted. Since the higher-
order term generally has smaller coupling matrices, we also
expect the sixth-order term and all other even-order terms to
be negligible for the case of graphene.

In Fig. 4(b), we also cautiously compare our results to a
recent Raman measurement on a suspended graphene sam-
ple (in orange) [17] that is based on the apparent phonon
temperature, and show the estimated κ from previous Raman
measurements (in green) [13–15]. Large spread and uncer-
tainty of the measured data are observed. It should be noted
that some experimental data in Fig. 4(b) appear to agree with
our results in a certain temperature range. However, they
cannot be considered as having supported our prediction over
the entire temperature range yet because the uncertainty is
too large to draw a conclusion as to whether κ is higher or
lower than that of diamond, and/or the measurements were
performed on nonpristine graphene. Future measurements on

pristine graphene with significantly reduced uncertainty are
needed to test our prediction. Another consequence of our
results is that the predicted graphene thermal conductivity is
lower than the experimentally reported κ of graphite [60,61]
[Fig. 4(b)]. Theoretical study of graphite considering both
four-phonon scattering and phonon renormalization is not yet
seen in the literature. Future studies could be focusing on
the layer-dependent transport behavior of multilayer graphene
and graphite. We expect such comparison may motivate fur-
ther experimental efforts to fully resolve the intriguing finding
here. A tentative explanation might be that in bulk-phase
graphite, the four-phonon scattering of the ZA mode is sup-
pressed by interlayer interactions. Also, the previous 4ph
modeling [27] suggests that in graphite, four-ZA scattering
phase space is reduced by 16 times compared to graphene and
one may expect 4ph scattering to be weak.

In summary, we conduct a first-principles study on the
thermal conductivity of monolayer graphene. Our calcula-
tions include four-phonon scattering, phonon renormalization
effect, and the exact solution to BTE, all of which are state-
of-the-art computational formalism. Our methods can reveal
both phonon properties, their detailed scatterings, and eventu-
ally the thermal conductivity of graphene over a wide range
of temperature. Our results in this work provide a strong
computational evidence of κ convergence to date. We expect
our study to inspire further experimental efforts on graphene
and theoretical understanding of general low-dimensional sys-
tems.
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COMPUTATIONAL DETAILS

We consider naturally occurring, monolayer graphene in our simulation with a vacuum space of 14 Å between
periodic graphene layers. We employ VASP package [1] and use Perdew-Burke-Ernzerhof (PBE) parameterization of
the generalized gradient approximation (GGA) for exchange and correlation functionals [2]. The plane wave cutoff is
600 eV. For the ground state, we construct 8× 8× 1 supercells and use 3× 3× 1 k-mesh to calculate interatomic force
constants (IFCs) and consider the tenth and second nearest neighboring atoms for third-order IFCs and fourth-order
IFCs, respectively.

To consider the phonon renormalization at finite temperatures in graphene, we choose TDEP developed by Hellman
et al., since it is compatible with ab initio calculations and can simulate thermal displacements of atoms using
Bose–Einstein distribution [3–5]. The key of this method is to obtain effective IFCs at finite-temperatures that can
fit into forces-displacements data. We employ a 10 × 10 × 1 supercell of graphene and iterate the calculations using
100 thermally perturbed snapshots. At each temperature, the last iteration is done using 400 snapshots to ensure
convergence and three iterations are sufficient in our calculations. Anharmonic temperature-dependent IFCs have
the same number of many-body interactions as the ground-state IFCs. These IFCs are the same as what we have
calculated in our prior work [6].

ITERATIVE SCHEME TO PHONON BTE

The linearized phonon Boltzmann transport equation with three-phonon scattering has been extensively studied in
the literature [7], and the formalism on four-phonon scattering has also been well documented in several preceding
papers [8–12]. In this section we cover our implementation of iterative scheme to phonon BTE, which has been
discussed in our previous work [12]. At steady state, the rate of change of phonon distribution function due to
diffusion and scattering should be balanced out for a certain phonon mode λ:

∂nλ

∂t
=

∂nλ

∂t

∣∣∣∣
diff

+
∂nλ

∂t

∣∣∣∣
scatt

≡ 0. (S.1)

Using the relaxation time approximation (RTA), the scattering term is expressed as: ∂nλ

∂t

∣∣
scatt

=
nλ−n0

λ

τλ
, where n0

λ

and τλ are the equilibrium Bose-Einstein distribution and the relaxation time for phonon mode λ. The diffusion term
is ∂nλ

∂t

∣∣
diff

= −∂nλ

∂T ∇T · vλ with vλ being the group velocity. It is convenient to write the equation in terms of the

deviation from of nλ = n0
λ − Fλ · ∂nλ

∂T ∇T − ..., and only keep the linear terms with Fλ in the scattering term.
Then, for a certain mode λ, the linearized BTE [13] is expressed as:

Fλ = τ0λ(vλ +∆λ), (S.2)

where τ0λ is the relaxation time for mode λ under RTA. ∆λ works for iterative scheme and is a quantity showing
the phonon population deviation from the RTA scheme. With the inclusion of four-phonon scattering, ∆λ and τ0λ (0
represents zeroth-order in iterations) are computed as:

∆λ =
1

Nq

(+)∑
λ′λ′′

Γ
(+)
λλ′λ′′(ξλλ′′Fλ′′ − ξλλ′Fλ′) +

1

Nq

(−)∑
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2
Γ
(−)
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+ 1
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(++)∑
λ′λ′′λ′′′
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1
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+
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(S.3)
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1
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four-phonon scattering terms

,
(S.4)

where Nq is the total grid of q points. ξλλ′ = ωλ′/ωλ′′ . The superscripts (±) or (±±) represent the three-phonon
(3ph) and four-phonon (4ph) processes, namely q′′ = q ± q′ + Q and q′′′ = q ± q′ ± q′′ + Q, respectively. Q is a
reciprocal lattice vector with Q = 0 implying normal process. Inspecting the expression of Eq. S.3 along with Eq. S.2,
we find that the solution of Fλ requires the self-consistent solutions of the same quantity of all other phonon modes
since they appear in the right-hand-side of Eq. S.2. Our iterative scheme then takes F0

λ = τ0λvλ as initial guess and
solves Eq. S.2 iteratively.

Γ(iso) is the isotope scattering rates. Other Γ with superscripts denote the scattering rates for 3ph and 4ph processes,
and the scattering probability matrices are [8, 14]:

Γ
(+)
λλ′λ′′ =

ℏπ
4

n0
λ′ − n0

λ′′

ωλωλ′ωλ′′
|V (+)

λλ′λ′′ |2δ(ωλ + ωλ′ − ωλ′′)

Γ
(−)
λλ′λ′′ =

ℏπ
4

n0
λ′ + n0

λ′′ + 1

ωλωλ′ωλ′′
|V (−)

λλ′λ′′ |2δ(ωλ − ωλ′ − ωλ′′),

(S.5)
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ωλωλ′ωλ′′ωλ′′′

Γ
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8Nq

n0
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λ′′n0
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λλ′λ′′λ′′′ |2

δ(ωλ − ωλ′ − ωλ′′ − ωλ′′′)
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(S.6)

where Eq. (S.5) is for three-phonon processes and Eq. (S.6) for the four-phonon processes, with n0
λ being the phonon

Bose-Einstein distribution at equilibrium, ωλ being the phonon frequency for a certain mode λ. Conservation of
energy is enforced by the Dirac delta function δ and is approximated by an adaptive Gaussian broadening [12]. In
Eqs. (S.5) and (S.6), the matrix elements V are given by the Fourier transformation of force constants, or transition
probability matrices:

V
(±)
λλ′λ′′ =

∑
ijk

∑
αβγ

Φαβγ
ijk

eλα(i)e
±λ′

β (j)e−λ′′

γ (k)√
M̄iM̄jM̄k

e±iq′·rje−iq′′·rk , (S.7)

V
(±±)
λλ′λ′′λ′′′ =

∑
ijkl

∑
αβγθ

Φαβγθ
ijkl

eλα(i)e
±λ′

β (j)e±λ′′

γ (k)e−λ′′′

θ (l)√
M̄iM̄jM̄kM̄l

e±iq′·rje±iq′′·rke−iq′′′·rl , (S.8)

where i, j, k, l denote the atomic indices and α, β, γ, θ denote the Cartesian dimensions x, y or z. Φαβγ
ijk and Φαβγθ

ijkl are

the third-order and fourth-order force constants, respectively. eλα(i) is the eigenvector component for a mode. rj is
the position vector of the unit cell where jth atom lies, and Mj is its mass.

Finally, the lattice thermal conductivity tensor is computed as [7, 15]:

καβ =
1

kBT 2ΩNq

∑
λ

n0
(
n0 + 1

)
(ℏωλ)

2
vαλF

β
λ , (S.9)

where Ω is the volume of the unit cell and in the case of monolayer graphene, Ω should be 2D area times the separation
of carbon sheets in graphite (d = 3.35 Å) [16]. The component in this expression is the self-consistent solution Fλ.
The stopping criterion is that the norm of κ tensor differs from the last iteration within 10−5.
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To iteratively solve BTE with 4ph scattering, one needs to store the scattering matrix and phonon information which
consume a great amount of memory space. We use a shared-memory parallel computing strategy under OpenMP
architecture. The empirical scaling of memory M with respect to mesh size N is plotted in Fig. S1. If the allowable
memory is 1 TB which is accessible in some supercomputer clusters equipped with flat nodes, then the maximum
mesh size is 54× 54× 1.

FIG. S1. Scaling relation of memory consumption M and mesh size N .

COMPARISON OF THE RELAXATION TIME APPROXIMATION AND ITERATIVE SOLUTION

The exact solution of phonon BTE through the iterative scheme naturally capture the collective phonon excitations.
Compared to RTA where phonons behave independently after the scattering events, in the exact BTE the phonon
populations are coupled with each other. For graphene, a large portion of scattering events is normal processes
that contribute indirectly to thermal resistance. Thus, phonons expect to have strong deviations from RTA-rendered
populations and the iterative result of κ is different from RTA solution.

• •

�

�

• •

�

�

FIG. S2. Comparison of RTA (iteration step equals zero) and iterative results for κ3ph (left) and κ3ph+4ph (right) of naturally
occurring graphene. In this figure, renorm. stands for renormalization. The x−axis is the number of iteration step in the
self-consistent solver.

Figure S2 shows that for both 3ph and 4ph scattering, thermal conductivity from iterative result has about six folds
increase compared to RTA. The collective phonon excitation in graphene cannot be neglected. Another observation
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is that the phonon renormalization effect impacts κ3ph+4ph more than κ3ph. The renormalization increases κ3ph while
decreases κ3ph+4ph. This is primarily due to the impact of renormalization on ZA phonons scattering rates at room
temperature. After renormalization, 4ph scattering rates of ZA modes are higher while 3ph scattering rates are not
much affected.

COMPARISON OF OUR THREE-PHONON RESULTS AND THE LITERATURE

Since the previous first-principles results did not include higher-order anharmonicity or the phonon renormalization,
a fair comparison should be between their results and our DFT results at 3ph level without phonon renormalization.
The sample size is chosen to be finite (L = 10 μm) to ensure convergence. The temperature-dependent thermal
conductivity from prior DFT studies [16, 17] is presented with our results in Fig. S3. Our results somewhat lie
between these two reports.

•

FIG. S3. Comparison of our 3ph scattering results with the previous DFT simulations at 3ph level. In this work, the energy
broadening factor is unity.

PHONON MEAN FREE PATH ACCUMULATION IN GRAPHENE

The thermal conductivity accumulation as a function of mean free path is presented in Fig. S4. This quantity
has implications in length-dependent thermal conductivity that may be measured in experiments. It is also useful to
estimate the length scale of thermal conductivity to reach the diffusive limit [17]. Our simulation results indicate that
this diffusive limit may be reached around 10 μm. For 3ph theory, thermal conductivity does not converge with mesh
size. In the plot Fig. S4, with greater mesh size N phonons with larger mean free path keep contributing to thermal
conductivity.

We further calculate the length-dependent thermal conductivity of graphene with four-phonon scattering considered.
The boundary scattering term is described in the main text. Distinct with prior theoretical reports [16, 18], our results
show a converged length dependence. At L = 10 μm, thermal conductivity is 1247 W/(m·K), only 4% different
compared to the intrinsic value.
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•

FIG. S4. Room temperature thermal conductivity as a function of phonon mean free path at 3ph and 3ph+4ph level. The
x−axis is presented in logrithm scale. The dotted line shows the converged thermal conductivity without boundary. Curves
with different blue colors represent the results from different mesh size. Clearly κ converges with system (mesh) size and mean
free path under 3ph+4ph picture, but does not converge under 3ph picture.
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