
Global Ecol Biogeogr. 2023;32:695–706.	﻿�   | 695wileyonlinelibrary.com/journal/geb

Received: 18 February 2022  | Revised: 7 December 2022  | Accepted: 4 January 2023

DOI: 10.1111/geb.13644  

R E S E A R C H  A R T I C L E

Traits of dominant plant species drive normalized difference 
vegetation index in grasslands globally

Thore Engel1,2,3,4,5  |   Helge Bruelheide4,6  |   Daniela Hoss4,5  |    
Francesco M. Sabatini4,6,7,8  |   Jan Altman9,10  |   Mohammed A. S. Arfin-Khan11  |   
Erwin Bergmeier12  |   Tomáš Černý10  |   Milan Chytrý13  |   Matteo Dainese14  |   
Jürgen Dengler4,15,16  |   Jiri Dolezal17,18  |   Richard Field19  |   Felícia M. Fischer20  |   
Dries Huygens21  |   Ute Jandt4,6  |   Florian Jansen22  |   Anke Jentsch23  |    
Dirk N. Karger24  |   Jens Kattge4,25  |   Jonathan Lenoir26  |   Frederic Lens27,28  |   
Jaqueline Loos29  |   Ülo Niinemets30,31  |   Gerhard E. Overbeck32  |    
Wim A. Ozinga33  |   Josep Penuelas34,35  |   Gwendolyn Peyre36  |   Oliver Phillips37  |   
Peter B. Reich38,39,40  |   Christine Römermann4,41  |   Brody Sandel42  |   
Marco Schmidt43  |   Franziska Schrodt19  |   Eduardo Velez-Martin5  |   
Cyrille Violle44  |   Valério Pillar5

1Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
2Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
3Department of Ecosystem Services, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
4German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
5Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
6Institute of Biology/Geobotany and Botanical Garden, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
7BIOME Lab, Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum University of Bologna, Bologna, Italy
8Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Praha, Czech Republic
9Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
10Faculty of Forestry and Wood Science, Department of Forest Ecology, Czech University of Life Sciences, Suchdol, Czech Republic
11Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, Bangladesh
12Vegetation and Phytodiversity Analysis, University of Göttingen, Göttingen, Germany
13Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
14Eurac Research, Institute for Alpine Environment, Bozen/Bolzano, Italy
15Vegetation Ecology Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
16Plant Ecology, Bayreuth Center of Ecology and Environmental Researcher (BayCEER), University of Bayreuth, Bayreuth, Germany
17Department of Functional Ecology, Institute of Botany, The Czech Academy of Sciences, Trebon, Czech Republic
18Faculty of Science, Department of Botany, University of South Bohemia, Ceske Budejovice, Czech Republic
19School of Geography, University of Nottingham, Nottingham, UK
20Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), Valencia, Spain
21Isotope Bioscience Laboratory, Ghent University, Ghent, Belgium
22Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
23Disturbance Ecology, University of Bayreuth, Bayreuth, Germany
24Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd.



696  |    ENGEL et al.

25Functional Biogeography, Max Planck Institute for Biogeochemistry, Jena, Germany
26UMR CNRS 7058, Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN), Université de Picardie Jules Verne, Amiens, France
27Naturalis Biodiversity Center, Functional Traits, Leiden, The Netherlands
28Institute of Biology Leiden, Plant Sciences, Leiden University, Leiden, The Netherlands
29Institute of Ecology, Leuphana University, Lüneburg, Germany
30Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
31Estonian Academy of Sciences, Tallinn, Estonia
32Department of Botany, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
33Team Vegetation, Forest and Landscape Ecology, Wageningen University & Research, Wageningen, The Netherlands
34CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
35CREAF, Bellaterra, Spain
36Civil and Environmental Engineering, University of the Andes, Bogotá, Colombia
37School of Geography, University of Leeds, Leeds, UK
38Forest Resources, University of Minnesota, Minnesota, St. Paul, USA
39Hawkesbury Institute for the Environment, Western Sydney University, New South Wales, Penrith, Australia
40Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Michigan, Ann Arbor, USA
41Plant Biodiversity, Institute of Ecology & Evolution, Friedrich Schiller University Jena, Jena, Germany
42Department of Biology, Santa Clara University, California, Santa Clara, USA
43Palmengarten der Stadt Frankfurt am Main, Wissenschaftlicher Dienst, Frankfurt am Main, Germany
44CEFE, Univ Montpellier, CNRS, EPHE, IRD, Campus du CNRS, Montpellier, France

Correspondence
Thore Engel, Institute of Biodiversity, 
Friedrich Schiller University Jena, 
Dornburger Straße 159, 07743 Jena, 
Germany.
Email: thore.engel@idiv.de

Funding information
Deutsche Forschungsgemeinschaft, 
Grant/Award Number: FZT 118

Handling Editor: Jason Pither 

Abstract
Aim: Theoretical, experimental and observational studies have shown that 
biodiversity–ecosystem functioning (BEF) relationships are influenced by functional 
community structure through two mutually non-exclusive mechanisms: (1) the 
dominance effect (which relates to the traits of the dominant species); and (2) the 
niche partitioning effect [which relates to functional diversity (FD)]. Although both 
mechanisms have been studied in plant communities and experiments at small spatial 
extents, it remains unclear whether evidence from small-extent case studies translates 
into a generalizable macroecological pattern. Here, we evaluate dominance and niche 
partitioning effects simultaneously in grassland systems world-wide.
Location: Two thousand nine hundred and forty-one grassland plots globally.
Time period: 2000–2014.
Major taxa studied: Vascular plants.
Methods: We obtained plot-based data on functional community structure from the 
global vegetation plot database “sPlot”, which combines species composition with 
plant trait data from the “TRY” database. We used data on the community-weighted 
mean (CWM) and FD for 18 ecologically relevant plant traits. As an indicator of primary 
productivity, we extracted the satellite-derived normalized difference vegetation index 
(NDVI) from MODIS. Using generalized additive models and deviation partitioning, we 
estimated the contributions of trait CWM and FD to the variation in annual maximum 
NDVI, while controlling for climatic variables and spatial structure.
Results: Grassland communities dominated by relatively tall species with acquisitive 
traits had higher NDVI values, suggesting the prevalence of dominance effects for 
BEF relationships. We found no support for niche partitioning for the functional traits 
analysed, because NDVI remained unaffected by FD. Most of the predictive power 
of traits was shared by climatic predictors and spatial coordinates. This highlights 
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1  |  INTRODUC TION

The question of how biodiversity influences ecosystem functions, 
such as biomass production and biogeochemical cycling, has been 
discussed for decades (Cardinale et al., 2011; Hooper et al., 2005; 
Schulze & Mooney, 1993; Tilman et al., 1996; van der Plas, 2019). 
The biodiversity–ecosystem functioning (BEF) debate has become 
even more relevant recently, given that the ongoing global biodiver-
sity crisis (Ceballos et al., 2015; Díaz et al., 2019; McGill et al., 2015) 
requires us to understand how changes in the diversity and compo-
sition of biological communities (especially plants) will affect ecosys-
tem processes and services (Pillar et al., 2018).

Over recent decades, the focus of BEF research has shifted 
from considering species richness alone to investigating how plant 
functional community structure (i.e., the distribution of trait values 
measured in a given community; Garnier et al., 2016) affects ecosys-
tem processes (Cadotte et al., 2011, 2013; Dias et al., 2013; Fischer 
et al.,  2016; Grigulis et al.,  2013; Kröber et al.,  2015). Such trait-
based approaches have offered two main hypotheses for a mech-
anistic explanation of BEF relationships. The dominance hypothesis 
(also known as the mass ratio hypothesis) states that ecosystem pro-
cesses are determined primarily by the traits of the dominant species 
in a community (Grime, 1998). It suggests that ecosystem function-
ing is linked to the community-weighted mean (CWM) of relevant 
traits (Garnier et al.,  2004). The niche partitioning hypothesis, in 
contrast, refers to the variation of a trait value within a community. 
It suggests that a higher range of trait values [i.e., functional diver-
sity] reflects niche differences, allowing for enhanced use of biotope 
space, better resource use efficiency and, ultimately, enhanced eco-
system functioning (Petchey & Gaston, 2002).

Dominance and niche partitioning effects are not mutually 
exclusive, and disentangling them has proved difficult. For exam-
ple, it is challenging to manipulate functional community structure 
experimentally such that functional diversity and CWM vary inde-
pendently of each other (Dias et al., 2013; Ricotta & Moretti, 2011). 
Furthermore, in natural assemblages, both plant traits and ecosys-
tem functioning are strongly influenced by environmental drivers, 
such as climate, and exhibit strong spatial autocorrelation. Traditional 
experimental approaches have tried to keep abiotic factors constant 
and have therefore been restricted to small spatial and temporal 

scales, whereas more recent approaches have specifically included 
or manipulated environmental variation, such as climate and nutrient 
supply (Chollet et al., 2014; Craven et al., 2016; Roscher et al., 2013; 
Zhou et al., 2017). Overall, experimental and observational studies 
tend to find dominance effects more frequently and with stronger 
evidence than niche partitioning effects (Chollet et al., 2014; Kröber 
et al., 2015; Lavorel, 2013; Mokany et al., 2008; Mouillot et al., 2011; 
van der Plas, 2019). In particular, plant traits related to the trade-off 
between resource acquisition and conservation show strong domi-
nance effects on productivity (Díaz et al., 2004; Grigulis et al., 2013; 
Lavorel,  2013). Recent studies, however, have shown that both 
niche partitioning and dominance effects contribute to ecosys-
tem multifunctionality (i.e., providing multiple functions; Hector 
& Bagchi, 2007; Mouillot et al., 2011; Valencia et al., 2015) and to 
biomass production outside the peak productivity season (Chollet 
et al., 2014). Despite these advances, there continues to be a lack 
of studies and syntheses focusing on  large spatial scales (but see 
Cornwell et al., 2008), and we know little about how dominance and 
niche partitioning effects interplay with climatic factors to shape 
biomass production along larger biogeographical gradients.

Remote sensing observations might allow this knowledge gap 
to be closed (Franklin et al.,  2017; Polley et al.,  2020; Rocchini 
et al.,  2021). Remote Earth observation products have become 
widely available and allow the assessment of ecosystem function-
ality and biodiversity (Lausch et al., 2016; Schmidtlein et al., 2012). 
Satellite-derived normalized difference vegetation index (NDVI), 
for instance, can be used to measure surface greenness over wide 
extents as a proxy of primary productivity (Paruelo et al.,  1997; 
Running, 1990) and other ecosystem processes (Ustin et al., 2004), 
including the stability of productivity (White et al., 2020). As such, 
NDVI has been used in ecological studies to evaluate ecosys-
tem responses to environmental changes (reviewed by Pettorelli 
et al.,  2005), to measure ecosystem stability (De Keersmaecker 
et al., 2014) and to study the effect of plant functional community 
structure on resilience (Spasojevic et al., 2016). Yet, no study to date 
has linked NDVI to plant functional community structure over large 
extents to disentangle the relative contributions of the dominance 
and niche partitioning effects.

Here, we investigate the BEF relationship in grassland systems 
at the global scale. We rely on the world's most comprehensive 

the importance of community assembly processes for BEF relationships in natural 
communities.
Main conclusions: Our analysis provides empirical evidence that plant functional 
community structure and global patterns in primary productivity are linked through 
the resource economics and size traits of the dominant species. This is an important 
test of the hypotheses underlying BEF relationships at the global scale.

K E Y W O R D S
biodiversity–ecosystem functioning, biodiversity, community-weighted mean, ecosystem 
functioning, functional diversity, sPlot, traits, vegetation
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repository of plant community data, sPlot (Bruelheide et al., 2019), 
coupled with the plant trait database TRY (Kattge et al., 2011), to 
quantify plant functional community structure in grassland commu-
nities around the globe. We used maximum annual NDVI as a proxy 
for primary productivity and modelled it using plant functional com-
munity data and climatic variables. Specifically, we were interested in 
the role of CWM (as a proxy for dominance) and functional diversity 
(as a proxy for niche partitioning) for predicting the biogeographical 
patterns of NDVI. In addition, we discerned the unique and shared 
contributions of our functional and climatic predictors using a devi-
ance partitioning approach.

2  |  MATERIAL S AND METHODS

2.1  |  Datasets

We based this study on the integration of data compiled from 
three global initiatives: (1) the vegetation plot database sPlot, v.2.1 
(Bruelheide et al., 2019), combined with (2) the TRY database of plant 
functional traits (Kattge et al.,  2011) and (3) MODIS satellite data 
providing NDVI time series (Didan, 2015). Additionally, we used the 
land cover map GlobCover 2009 (Arino et al., 2012) and temperature 
and precipitation data from the CHELSA project (Karger et al., 2016).

2.2  |  Filtering of sPlot

The sPlot database, v.2.1, contains information on plant community 
composition in >1.1  million vegetation plots contributed by >100 
vegetation plot databases. In line with a long tradition of BEF research 
in grassland ecosystems (Fraser et al.,  2015; Hooper et al.,  2005; 
Tilman et al., 1996), we chose grasslands as a model system for this 
analysis. We screened the database for vegetation plots in grass-
land communities. Any selected plot had to satisfy at least one of 

the following criteria: (1) the plot was marked as “grassland” by the 
vegetation survey that provided the sPlot entry; and (2) ≥90% of the 
plot was covered by species that were not trees or shrubs or that had 
a plant height >2 m (according to the TRY database). We excluded 
plots that were labelled as “forest”, “shrubland” or “wetland”, ob-
servations before the year 2000 (launch of the MODIS programme) 
and plots with high location uncertainty (>100 m) and imprecise GPS 
coordinates (less than four decimal places in decimal degrees). We 
used the land cover map GlobCover 2009 to identify and exclude 
plots on heterogeneous MODIS pixels that contained non-grassland 
land cover types. In total, 2941 grassland plots fulfilled the selection 
criteria and were included in the analysis (Figure 1). The median size 
plot size was 78.5 m2, with an interquartile range from 20 to 80 m2. 
Species richness ranged from 1 to 105 species (median: 22).

2.3  |  Annual maximum NDVI

We used annual maximum NDVI as a proxy for primary productivity 
at the selected grassland plots. This value corresponds to the yearly 
maximum photosynthetic activity of the vegetation and is consid-
ered an indicator for ecosystem productivity (Pettorelli et al., 2005). 
We obtained the annual maximum NDVI values from the MODIS 
product MOD13Q1, which has global coverage, a spatial resolu-
tion of 250 m and a temporal resolution of 16 days  (Didan,  2015). 
Furthermore, owing to the high image frequency of MODIS, its NDVI 
product has a relatively low susceptibility to cloud cover, which is 
why we chose it over Landsat. For each of the selected vegetation 
plots, we retrieved NDVI time series covering the period 2000–2016 
using Google Earth Engine (Google Earth Engine Team, 2015) and 
averaged the maximum annual NDVI values of the year when the 
vegetation plot was sampled and the following year. This averag-
ing across two consecutive years was done to reduce the effect of 
anomalies and noise in the NDVI values and bearing in mind that the 
growing season in the Southern Hemisphere starts in one calendar 

F I G U R E  1  Locations of included 
vegetation plots coloured by annual 
maximum normalized difference 
vegetation index (NDVI).
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    |  699ENGEL et al.

year and ends in the next one. In cases where an NDVI pixel con-
tained more than one vegetation plot, surveys from different years 
were treated as independent observations. Whenever there were 
multiple vegetation plots per year and NDVI pixel, one plot was se-
lected at random.

2.4  |  Functional community structure

We selected 18 ecologically relevant plant traits to characterize the 
functional community structure at all selected plots (Figure 2). The 
same set of traits has already been used by Bruelheide et al. (2018) 
and Testolin et al.  (2021) to analyse global trait–environment as-
sociations. These traits represent different ecological trade-offs 
and plant strategies, such as the leaf economics spectrum (Wright 
et al., 2004), plant size and reproduction (Moles & Westoby, 2006). 
Although our trait selection was ultimately driven by data availabil-
ity, we note that most of the selected traits relate to the leaf eco-
nomics spectrum of a plant (i.e., to its carbon gain strategy; Wright 
et al., 2004). We considered these traits as “effect traits” because of 
their role for biomass production (Suding et al., 2008). We acknowl-
edge that other important aspects of plant physiology, particularly 
those related to C3/C4 photosynthetic pathways, belowground traits 

and, among them, those associated with symbionts such as mycor-
rhiza or nitrogen-fixing bacteria, are underrepresented in our trait 
selection, although these traits have long been known to be related 
strongly to productivity in grasslands (Cadotte et al., 2009; Díaz & 
Cabido,  2001; Weigelt et al.,  2021). For more information on the 
selected traits and their ecological relevance, see the Supporting 
Information (Appendix S1). Species mean traits were retrieved from 
TRY (Kattge et al., 2011) and gap-filled using Bayesian hierarchical 
probabilistic matrix factorization (Schrodt et al.,  2015). The gap-
filled trait data were available for 88.7% of all species occurrences in 
sPlot (Bruelheide et al., 2018). We ln-transformed all trait values for 
downstream analysis.

We calculated the CWM for all traits using the following 
equation:

where nk is the number of species in plot k, pi,k is the relative cover of 
species i in plot k, and ti,l is the mean value of species i for trait l. The 
CWM is an abundance-weighted trait mean value, which is most af-
fected by the dominant species in the community. Accordingly, CWMs 
are often linked to the mass ratio effect and dominance hypothesis 
(Garnier et al., 2004).

(1)CWMl,k =

∑nk

i=1
pi,kti,l

F I G U R E  2  Variables factor map on the first two principal components analysis (PCA) axes for community-weighted mean (CWM) traits. 
Arrows indicate the strength and direction of correlation between the trait CWM and the axes. We interpret CWM axis 1 as a resource 
economics spectrum (acquisitive vs. conservative) axis and CWM axis 2 as a plant size axis. Traits are as follows: specific leaf area (SLA), 
leaf P concentration (Leaf.P), leaf N concentration (Leaf.N), leaf area (Leaf.A), number of seeds of the reproductive unit (Rel.seed.num), leaf 
fresh mass (Leaf.fr.mass), stem conduit density (Stem.cond.dens), leaf δ15N (dN15), plant height (Height), dispersal unit length (Disp.u.l), wood 
vessel length (Vessel.l), seed length (Seed.l), leaf C per dry mass (Leaf.Cpmass), seed mass (Seed.m), leaf N/P ratio (NpP), leaf N per area (Leaf.
NpA), leaf dry matter content (LDMC) and stem specific density (Stem.Dens).
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To reduce the functional trait space described by the 18 CWM 
variables, we performed a principal components analysis (PCA) 
on the CWM values of the selected sPlot communities using the 
R package FactoMineR (Lê et al., 2008). The first two PCA axes of 
the CWM space captured 27.42% (CWM axis 1) and 20.88% (CWM 
axis 2) of the total variance in the data (Figure 2). Communities that 
had negative scores on CWM axis 1 were dominated by species 
with “acquisitive” traits, such as high specific leaf area and high leaf 
concentrations of nitrogen and phosphorus. Positive values on this 
axis were accompanied by a dominance of species with “conserva-
tive” traits, such as high leaf dry matter content and stem density 
(Supporting Information Appendix S2). This axis corresponds to the 
resource economics spectrum described by many studies (i.e., leaf 
economics spectrum, fast–slow spectrum; Díaz et al.,  2016; Reich 
et al.,  1997; Wright et al.,  2004). The CWM axis 2 was related to 
overall plant size: communities with high scores on this axis were 
characterized by relatively tall species, with both large and heavy 
leaves and seeds. This corresponds to a plant size spectrum that is 
commonly found in plants (Díaz et al., 2016). We used the two axes 
as composite variables characterizing the community position along 
the resource economics and plant size spectrum. In the subsequent 
analysis, we interpreted associations between the CWM axes and 
NDVI as evidence for dominance effects.

To quantify functional diversity across all 18 traits, we calcu-
lated functional dispersion (hereafter, FD) using the R package FD 
(Laliberté et al., 2014) and taking Gower's distance as the dissimilar-
ity measure (Podani, 1999). FD has the advantage of accommodating 
multiple traits in addition to species abundances. Furthermore, it is 
independent of species richness and relatively unaffected by outliers 

(Laliberté & Legendre,  2010). Here, we interpret associations be-
tween FD and NDVI as evidence for niche partitioning effects.

2.5  |  Data analysis

We modelled annual maximum NDVI using a number of nested gen-
eralized additive models (GAMs; Wood, 2017) with subsets of pre-
dictors relating to traits (CWM axis 1, CWM axis 2 and FD), climate 
(temperature and precipitation) and space (latitude and longitude) 
(Table 1). We chose the GAM framework because it allowed us to 
include the spatial coordinates as smooth spherical splines, which 
accounts for the spatial structure of the NDVI response variable and 
spatial autocorrelation in the residuals. All other predictors were in-
cluded as simple linear terms. As climatic variables, we included mean 
annual temperature (Temp) and the precipitation of the driest quar-
ter (Prec). With the response variable NDVI ranging between zero 
and one, we specified the models using the beta-regression family 
and a logit link function, using the mgcv R package (Wood, 2017). All 
linear predictors were scaled and centred before entering the model.

After fitting all models, we used a deviance partitioning ap-
proach to disentangle the predictive effects of climate, traits and 
space on NDVI. To obtain the unique fraction explained by a set of 
predictors, we calculated the difference in model deviance of nested 
models with and without the given set of predictors and expressed 
it as a percentage of the total deviation of the full model. Shared 
fractions between two predictor sets were calculated by subtracting 
their unique contributions from the joint model deviance. Taking the 
same approach, we also partitioned the contribution of traits further 

Model name Predictors ΔAIC
Deviance 
explained (%)

Full CWM axis 1+ CWM axis 2+ 
FD + Prec + Temp + s(Lat, Lon)

0 85.97

Traits and space CWM axis 1+ CWM axis 2+ FD + s(Lat, 
Lon)

16 85.90

Climate and space Prec + Temp + s(Lat, Lon) 42 85.74

Only space s(Lat, Lon) 64 85.63

Climate and traits CWM axis 1+ CWM axis 2+ 
FD + Prec + Temp

2383 63.52

Only traits CWM axis 1+ CWM axis 2+ FD 3133 51.95

Only climate Prec + Temp 3257 49.77

CWM1 and FD CWM axis 1+ FD 3353 47.85

Only CWM CWM axis 1+ CWM axis 2 3521 44.53

Only CWM1 CWM axis 1 3648 41.83

CWM2 and FD CWM axis 2+ FD 4467 21.30

Only FD FD 4617 16.77

Only CWM2 CWM axis 2 5035 3.04

Abbreviations: ΔAIC, difference in Akaike information criterion; CWM, community-weighted mean; 
FD, functional dispersion; Lat, latitude; Lon, longitude; Prec, precipitation of the driest quarter; 
Temp, mean annual temperature.

TA B L E  1  Fitted models predicting 
annual maximum normalized difference 
vegetation index (NDVI)
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    |  701ENGEL et al.

into the joint and unique effects of the two CWM axes and FD. All 
analyses were run in R v.3.5.3 (R Core Team, 2019).

3  |  RESULTS

The full model explained 86% of the deviance in the NDVI and had 
an adjusted R2 of 0.87 (Table 1). All linear predictors except FD were 
significant (Figure  3a). Temperature and precipitation had positive 
effects on annual maximum NDVI. CWM axis 1 had a negative effect 
on annual maximum NDVI (i.e., communities dominated by species 
with acquisitive traits tended to have higher NDVI than those domi-
nated by species with conservative traits), and CWM axis 2 (i.e., plant 
size) had a positive effect (Figure 3a). The model coefficients and sig-
nificance were similar across the different nested models, and the ef-
fect of FD was significant only when no spatial term was included in 
the model (Supporting Information Appendix S3). All models includ-
ing the spatial term showed by far the best fit (Table 1). Generally, 
the spatial term was highest in mid- to high latitudes of Eurasia and 
lowest in parts of Africa and Australia (Figure 3b). The importance of 
space was also reflected by the “space only” model, which explained 
nearly as much deviance as the full model. The largest fraction of the 
explained model deviance was shared between the three variable 
sets of climate, traits and space (38.16%), followed by the unique 
fraction of space (22.44%), the shared fractions of space and traits 
(13.52%) and space and climate (11.50%). The unique and shared 
fractions of climate and traits were relatively small, but traits had a 
larger unique importance than climate. Most of the unique fraction 
of traits was linked to the CWM (especially axis 1) and not to FD 
(Figure 4a). Notably, even the “only traits” and “only climate” models 
showed relatively high predictive power, with R2 values of 0.54 and 
0.55, respectively. Most of total deviance explained by traits was 
associated with the unique fraction of CWM axis 1, whereas FD and 
CWM axis 2 made smaller contributions to the trait effect. There 
also was a sizeable fraction shared between CWM axis 1 and FD 

(Figure  4b). For the pairwise correlations between all model vari-
ables, see the Supporting Information (Appendix S4).

4  |  DISCUSSION

A large body of research revolves around the question of how traits 
contribute to ecosystem functioning. Using data from grasslands all 
over the globe, we found strong support for a dominance effect for 
peak season productivity (i.e., dominant plant species contribute 
disproportionately to ecosystem productivity). At the same time, 
our findings failed to provide evidence for the niche partitioning hy-
pothesis. For the large spatial extent and the traits covered by our 
study, we did not find that higher trait diversity resulted in enhanced 
biomass production.

Our results show that grasslands dominated by species with ac-
quisitive traits have higher productivity than those dominated by 
species with conservative traits. This is in line with existing evidence 
from observational studies of smaller extents and experiments that 
point out the role of dominant species for determining ecosystem-
level primary productivity through their resource economics traits 
(Lavorel, 2013; Mokany et al., 2008). Acquisitive species with high 
specific leaf area and leaf nutrient concentrations generally exhibit 
rapid carbon and nitrogen turnover, which entails high ecosystem-
level rates of, for instance, biomass accumulation, decomposition 
and evapotranspiration (Reich, 2014). Our study suggests that this 
relationship also holds at a larger spatial scale, because we found this 
resource axis to be an important predictor of NDVI, which is a proxy 
for primary productivity. Traits related to overall plant, leaf and seed 
size were also positively associated with productivity. This shows that 
the NDVI signal is not captured fully by leaf economics traits alone 
but also requires a second trait dimension as an estimation of stand 
biomass (Chave et al., 2005). This axis is captured by plant height and 
seed size, which are allometrically linked (Moles & Westoby, 2006; 
Rees & Venable, 2007; Thompson & Rabinowitz, 1989).

F I G U R E  3  Estimates of the full model. (a) Standardized effect sizes of linear predictors (mean and confidence intervals). Negative values 
are red; positive values are blue. (b) Estimated smooth spatial term at the plot locations. Abbreviations: CWM, community-weighted mean; 
FD, functional dispersion.
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Although ecological theory and many experiments show that 
niche partitioning can enhance ecosystem functions (Hooper 
et al., 2005; Petchey & Gaston, 2002; van der Plas, 2019), we found 
no association between functional diversity and grassland produc-
tivity at the global scale, at least for the traits we used. Overall, the 
recent literature suggests that the effect of plant functional diversity 
on ecosystem processes is varied and subtle, especially in naturally 
assembled communities (van der Plas, 2019). Although a majority of 
studies report positive relationships (Cardinale et al., 2011; Mouillot 
et al., 2011; Petchey & Gaston, 2006; van der Plas, 2019), it is not un-
common to find negative (Thompson et al., 2005) or no associations 
(Chollet et al.,  2014) between functional diversity and ecosystem 
functions. The effect of functional diversity is also known to vary 
among traits (Petchey et al., 2004). Although we covered the major 
plant trait axes identified by Díaz et al.  (2016), we cannot exclude 
the possibility that some other traits would lead to a stronger as-
sociation between functional diversity and NDVI. For example, we 
did not have data on nitrogen use (e.g., N fixation) strategies and 
photosynthetic pathways that are known to play a role for comple-
mentarity in grasslands (Cadotte et al., 2009). The selection of the 
functional traits affecting an ecosystem function remains difficult, 
because different traits might play different roles across communi-
ties or biomes. A new methodology has recently been published to 
select those traits that contribute to functional community assembly 
(Pillar et al., 2021). Whether this technique can prove useful also for 
selecting those traits related to a specific ecosystem function, how-
ever, remains to be tested. To test the sensitivity of our results to the 
choice of the functional diversity metric, we also performed a sup-
plementary analysis using a functional diversity measure based on 
Rao's quadratic entropy (Rao, 1982) rather than FD. Overall, those 
results were qualitatively consistent with the findings presented 
here in the main text, but the effect of functional diversity was even 
smaller (Supporting Information Appendix S5).

Another possible explanation of our results relates to the use of 
annual maximum NDVI as a response variable. This value represents 
the high-productivity season, when resource turnover is expected to 
be at its maximum (Pettorelli et al., 2005). Previous work shows that 
niche partitioning effects in plant communities might be stronger 
outside the high-productivity season (Chollet et al., 2014; Doležal 

et al., 2019). Possibly, the role of functional diversity might be more 
substantial when quantifying productivity as an integrated measure 
over the whole vegetative season, rather than a snapshot at the peak 
of the vegetation season (Chi et al., 2017).

Although grassland productivity ultimately depends on plants, 
our models highlighted the existence of important confounding 
variables, namely climate and other unmeasured factors that are 
spatially structured. It is well known that precipitation (La Pierre 
et al., 2011; Sala et al., 1988) and temperature (Briggs & Knapp, 1995) 
are important determinants of grassland productivity and often out-
weigh the pure effect of biodiversity (van der Plas, 2019). Although 
substantial, the deviance explained by climate was mostly shared 
with plant traits, highlighting the importance of climate as an en-
vironmental filter shaping the functional structure of vegetation 
assemblages (Bruelheide et al., 2018). Indeed, the resource econom-
ics axis described by CWM axis 1 is known to be linked to drought-
tolerance strategies (Reich, 2014). Both climate and vegetation are 
spatially structured and therefore expected to be collinear (Currie 
et al.,  2020). In fact, the largest fraction of the explained model 
deviance was shared between space, climate and traits, following 
Tobler's well-known first law of geography: “everything is related to 
everything else, but near things are more related than distant things” 
(Tobler,  1970). Nonetheless, even when we included the smooth 
spatial term in the model, the effect of the functional structure (i.e., 
CWM) of vegetation assemblages remained significant, which sug-
gests that the relationship between plant traits and productivity 
goes beyond the mere spatial covariation in abiotic conditions and 
local species pools.

There is no doubt that the approach adopted in this study has 
some limitations. Not only does the use of trait databases lead to a 
very rough approximation of functional community structure (e.g., 
neglecting intraspecific and site-specific trait variation) but also 
the vegetation plot database had vast gaps in its global coverage, 
which was partly attributable to the strict filtering criteria applied 
here. South America and Africa are particularly underrepresented 
in our compilation. Nevertheless, our analysis has an unprecedented 
spatial coverage, and spans more than nine of the ten sPlot biomes 
(sensu Bruelheide et al., 2018). Furthermore, by explicitly including 
geographical coordinates in our models, we mitigated as much as 

F I G U R E  4  Venn diagram partitioning 
total explained model deviance (i.e., 
85.99%) among sets of predictors. 
(a) Partitioning total deviance among 
climate (mean annual temperature and 
precipitation of the driest quarter), traits 
(i.e., CWM axis 1, CWM axis 2 and FD) 
and space (i.e., smooth term using spatial 
coordinates). (b) Partitioning the total 
fraction of traits [i.e., yellow circle in (a)] 
between CWM axis 1, CWM axis 2 and 
FD. Values are expressed as percentages.
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possible the bias deriving from the uneven distribution of plots, 
besides partly controlling for other spatially structured drivers of 
productivity, such as soil fertility and management. Moreover, there 
was a substantial scale mismatch between the vegetation surveys 
and the NDVI measure. Even though the MODIS images have a pixel 
size of 250 m, which is roughly two orders of magnitude coarser than 
a typical grassland plot, this was the best possible compromise in 
the trade-off between temporal coverage and spatial resolution. 
The fact that we limited our analysis only to vegetation plots lo-
cated within MODIS pixels representing uniform land cover classes, 
however, is expected to mitigate the negative consequences of this 
scale mismatch. Furthermore, NDVI, like other vegetation indices, is 
known to saturate in highly productive systems, which means that it 
might not correctly discern productivity differences in those areas 
(e.g., the tropics). However, this mostly concerns forests with high 
leaf area index values and should not be a major issue for our sites in 
open grasslands (Haboudane et al., 2004). Finally, although the se-
lected functional traits account for two of the main trait dimensions 
in plants (leaf economics and size), data coverage was limited for 
other important aspects, such as photosynthetic pathways and as-
sociation with nitrogen-fixing bacteria. We agree that it would have 
been very desirable to have more specific traits, example, on C3/C4  
photosynthetic pathways or bacterial associations. More impor-
tantly, we missed belowground traits in general. We cannot exclude, 
therefore, that such traits could increase the relative contribution of 
niche partitioning mechanisms to ecosystem productivity patterns.

In conclusion, our analysis provides empirical evidence that plant 
functional community structure and global patterns in primary pro-
ductivity are mostly linked through the resource economics and size 
traits of the dominant species. Over large extents, the dominance 
hypothesis received substantially more support than the niche par-
titioning hypothesis, at least based on the functional traits included 
in the present study. This is consistent with the hypothesis that 
productivity mostly relates to the functional profile of dominant 
species, rather than to the functional diversity of a community. Our 
results also provide an empirical justification for focusing on dom-
inant plant species when running Earth system models simulating 
the response of vegetation to changing conditions. Identifying the 
dominant traits and species and assessing their susceptibility to en-
vironmental change then becomes crucial to improve our ability to 
foresee, and possibly mitigate negative consequences on the provi-
sioning of plant biomass by grasslands.
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