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Abstract

Aim: Theoretical, experimental and observational studies have shown that
biodiversity-ecosystem functioning (BEF) relationships are influenced by functional
community structure through two mutually non-exclusive mechanisms: (1) the
dominance effect (which relates to the traits of the dominant species); and (2) the
niche partitioning effect [which relates to functional diversity (FD)]. Although both
mechanisms have been studied in plant communities and experiments at small spatial
extents, it remains unclear whether evidence from small-extent case studies translates
into a generalizable macroecological pattern. Here, we evaluate dominance and niche
partitioning effects simultaneously in grassland systems world-wide.

Location: Two thousand nine hundred and forty-one grassland plots globally.

Time period: 2000-2014.

Major taxa studied: Vascular plants.

Methods: We obtained plot-based data on functional community structure from the
global vegetation plot database “sPlot”, which combines species composition with
plant trait data from the “TRY” database. We used data on the community-weighted
mean (CWM) and FD for 18 ecologically relevant plant traits. As an indicator of primary
productivity, we extracted the satellite-derived normalized difference vegetation index
(NDVI) from MODIS. Using generalized additive models and deviation partitioning, we
estimated the contributions of trait CWM and FD to the variation in annual maximum
NDVI, while controlling for climatic variables and spatial structure.

Results: Grassland communities dominated by relatively tall species with acquisitive
traits had higher NDVI values, suggesting the prevalence of dominance effects for
BEF relationships. We found no support for niche partitioning for the functional traits
analysed, because NDVI remained unaffected by FD. Most of the predictive power

of traits was shared by climatic predictors and spatial coordinates. This highlights
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communities.
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1 | INTRODUCTION

The question of how biodiversity influences ecosystem functions,
such as biomass production and biogeochemical cycling, has been
discussed for decades (Cardinale et al., 2011; Hooper et al., 2005;
Schulze & Mooney, 1993; Tilman et al., 1996; van der Plas, 2019).
The biodiversity-ecosystem functioning (BEF) debate has become
even more relevant recently, given that the ongoing global biodiver-
sity crisis (Ceballos et al., 2015; Diaz et al., 2019; McGill et al., 2015)
requires us to understand how changes in the diversity and compo-
sition of biological communities (especially plants) will affect ecosys-
tem processes and services (Pillar et al., 2018).

Over recent decades, the focus of BEF research has shifted
from considering species richness alone to investigating how plant
functional community structure (i.e., the distribution of trait values
measured in a given community; Garnier et al., 2016) affects ecosys-
tem processes (Cadotte et al., 2011, 2013; Dias et al., 2013; Fischer
et al., 2016; Grigulis et al., 2013; Krober et al., 2015). Such trait-
based approaches have offered two main hypotheses for a mech-
anistic explanation of BEF relationships. The dominance hypothesis
(also known as the mass ratio hypothesis) states that ecosystem pro-
cesses are determined primarily by the traits of the dominant species
in a community (Grime, 1998). It suggests that ecosystem function-
ing is linked to the community-weighted mean (CWM) of relevant
traits (Garnier et al., 2004). The niche partitioning hypothesis, in
contrast, refers to the variation of a trait value within a community.
It suggests that a higher range of trait values [i.e., functional diver-
sity] reflects niche differences, allowing for enhanced use of biotope
space, better resource use efficiency and, ultimately, enhanced eco-
system functioning (Petchey & Gaston, 2002).

Dominance and niche partitioning effects are not mutually
exclusive, and disentangling them has proved difficult. For exam-
ple, it is challenging to manipulate functional community structure
experimentally such that functional diversity and CWM vary inde-
pendently of each other (Dias et al., 2013; Ricotta & Moretti, 2011).
Furthermore, in natural assemblages, both plant traits and ecosys-
tem functioning are strongly influenced by environmental drivers,
such as climate, and exhibit strong spatial autocorrelation. Traditional
experimental approaches have tried to keep abiotic factors constant
and have therefore been restricted to small spatial and temporal

and Biogeography Macoechogy

the importance of community assembly processes for BEF relationships in natural

Main conclusions: Our analysis provides empirical evidence that plant functional
community structure and global patterns in primary productivity are linked through
the resource economics and size traits of the dominant species. This is an important

test of the hypotheses underlying BEF relationships at the global scale.

biodiversity-ecosystem functioning, biodiversity, community-weighted mean, ecosystem
functioning, functional diversity, sPlot, traits, vegetation

scales, whereas more recent approaches have specifically included
or manipulated environmental variation, such as climate and nutrient
supply (Chollet et al., 2014; Craven et al., 2016; Roscher et al., 2013;
Zhou et al.,, 2017). Overall, experimental and observational studies
tend to find dominance effects more frequently and with stronger
evidence than niche partitioning effects (Chollet et al., 2014; Kréber
etal., 2015; Lavorel, 2013; Mokany et al., 2008; Mouillot et al., 2011;
van der Plas, 2019). In particular, plant traits related to the trade-off
between resource acquisition and conservation show strong domi-
nance effects on productivity (Diaz et al., 2004; Grigulis et al., 2013;
Lavorel, 2013). Recent studies, however, have shown that both
niche partitioning and dominance effects contribute to ecosys-
tem multifunctionality (i.e., providing multiple functions; Hector
& Bagchi, 2007; Mouillot et al., 2011; Valencia et al., 2015) and to
biomass production outside the peak productivity season (Chollet
et al., 2014). Despite these advances, there continues to be a lack
of studies and syntheses focusing on large spatial scales (but see
Cornwell et al., 2008), and we know little about how dominance and
niche partitioning effects interplay with climatic factors to shape
biomass production along larger biogeographical gradients.

Remote sensing observations might allow this knowledge gap
to be closed (Franklin et al., 2017; Polley et al., 2020; Rocchini
et al., 2021). Remote Earth observation products have become
widely available and allow the assessment of ecosystem function-
ality and biodiversity (Lausch et al., 2016; Schmidtlein et al., 2012).
Satellite-derived normalized difference vegetation index (NDVI),
for instance, can be used to measure surface greenness over wide
extents as a proxy of primary productivity (Paruelo et al., 1997,
Running, 1990) and other ecosystem processes (Ustin et al., 2004),
including the stability of productivity (White et al., 2020). As such,
NDVI has been used in ecological studies to evaluate ecosys-
tem responses to environmental changes (reviewed by Pettorelli
et al., 2005), to measure ecosystem stability (De Keersmaecker
et al., 2014) and to study the effect of plant functional community
structure on resilience (Spasojevic et al., 2016). Yet, no study to date
has linked NDVI to plant functional community structure over large
extents to disentangle the relative contributions of the dominance
and niche partitioning effects.

Here, we investigate the BEF relationship in grassland systems
at the global scale. We rely on the world's most comprehensive
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repository of plant community data, sPlot (Bruelheide et al., 2019),
coupled with the plant trait database TRY (Kattge et al., 2011), to
quantify plant functional community structure in grassland commu-
nities around the globe. We used maximum annual NDVI as a proxy
for primary productivity and modelled it using plant functional com-
munity data and climatic variables. Specifically, we were interested in
the role of CWM (as a proxy for dominance) and functional diversity
(as a proxy for niche partitioning) for predicting the biogeographical
patterns of NDVI. In addition, we discerned the unique and shared
contributions of our functional and climatic predictors using a devi-
ance partitioning approach.

2 | MATERIALS AND METHODS

2.1 | Datasets

We based this study on the integration of data compiled from
three global initiatives: (1) the vegetation plot database sPlot, v.2.1
(Bruelheide et al., 2019), combined with (2) the TRY database of plant
functional traits (Kattge et al., 2011) and (3) MODIS satellite data
providing NDVI time series (Didan, 2015). Additionally, we used the
land cover map GlobCover 2009 (Arino et al., 2012) and temperature
and precipitation data from the CHELSA project (Karger et al., 2016).

2.2 | Filtering of sPlot

The sPlot database, v.2.1, contains information on plant community
composition in >1.1 million vegetation plots contributed by >100
vegetation plot databases. Inline with along tradition of BEF research
in grassland ecosystems (Fraser et al., 2015; Hooper et al., 2005;
Tilman et al., 1996), we chose grasslands as a model system for this
analysis. We screened the database for vegetation plots in grass-
land communities. Any selected plot had to satisfy at least one of

the following criteria: (1) the plot was marked as “grassland” by the
vegetation survey that provided the sPlot entry; and (2) 290% of the
plot was covered by species that were not trees or shrubs or that had
a plant height >2 m (according to the TRY database). We excluded
plots that were labelled as “forest”, “shrubland” or “wetland”, ob-
servations before the year 2000 (launch of the MODIS programme)
and plots with high location uncertainty (>100m) and imprecise GPS
coordinates (less than four decimal places in decimal degrees). We
used the land cover map GlobCover 2009 to identify and exclude
plots on heterogeneous MODIS pixels that contained non-grassland
land cover types. In total, 2941 grassland plots fulfilled the selection
criteria and were included in the analysis (Figure 1). The median size
plot size was 78.5 m?, with an interquartile range from 20 to 80 m?.

Species richness ranged from 1 to 105 species (median: 22).

2.3 | Annual maximum NDVI

We used annual maximum NDVI as a proxy for primary productivity
at the selected grassland plots. This value corresponds to the yearly
maximum photosynthetic activity of the vegetation and is consid-
ered an indicator for ecosystem productivity (Pettorelli et al., 2005).
We obtained the annual maximum NDVI values from the MODIS
product MOD13Q1, which has global coverage, a spatial resolu-
tion of 250m and a temporal resolution of 16days (Didan, 2015).
Furthermore, owing to the high image frequency of MODIS, its NDVI
product has a relatively low susceptibility to cloud cover, which is
why we chose it over Landsat. For each of the selected vegetation
plots, we retrieved NDVI time series covering the period 2000-2016
using Google Earth Engine (Google Earth Engine Team, 2015) and
averaged the maximum annual NDVI values of the year when the
vegetation plot was sampled and the following year. This averag-
ing across two consecutive years was done to reduce the effect of
anomalies and noise in the NDVI values and bearing in mind that the
growing season in the Southern Hemisphere starts in one calendar
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FIGURE 1 Locations of included
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year and ends in the next one. In cases where an NDVI pixel con-
tained more than one vegetation plot, surveys from different years
were treated as independent observations. Whenever there were
multiple vegetation plots per year and NDVI pixel, one plot was se-
lected at random.

2.4 | Functional community structure

We selected 18 ecologically relevant plant traits to characterize the
functional community structure at all selected plots (Figure 2). The
same set of traits has already been used by Bruelheide et al. (2018)
and Testolin et al. (2021) to analyse global trait-environment as-
sociations. These traits represent different ecological trade-offs
and plant strategies, such as the leaf economics spectrum (Wright
et al., 2004), plant size and reproduction (Moles & Westoby, 2006).
Although our trait selection was ultimately driven by data availabil-
ity, we note that most of the selected traits relate to the leaf eco-
nomics spectrum of a plant (i.e., to its carbon gain strategy; Wright
et al., 2004). We considered these traits as “effect traits” because of
their role for biomass production (Suding et al., 2008). We acknowl-
edge that other important aspects of plant physiology, particularly
those related to C,/C, photosynthetic pathways, belowground traits

and Biogeography Macoechogy

and, among them, those associated with symbionts such as mycor-
rhiza or nitrogen-fixing bacteria, are underrepresented in our trait
selection, although these traits have long been known to be related
strongly to productivity in grasslands (Cadotte et al., 2009; Diaz &
Cabido, 2001; Weigelt et al., 2021). For more information on the
selected traits and their ecological relevance, see the Supporting
Information (Appendix S1). Species mean traits were retrieved from
TRY (Kattge et al., 2011) and gap-filled using Bayesian hierarchical
probabilistic matrix factorization (Schrodt et al., 2015). The gap-
filled trait data were available for 88.7% of all species occurrences in
sPlot (Bruelheide et al., 2018). We In-transformed all trait values for
downstream analysis.

We calculated the CWM for all traits using the following

equation:
n,
CWM, = Zi=k1 Piktiy 1)

where n, is the number of species in plot k, Pik is the relative cover of
species i in plot k, and t,is the mean value of species i for trait I. The
CWM is an abundance-weighted trait mean value, which is most af-
fected by the dominant species in the community. Accordingly, CWMs
are often linked to the mass ratio effect and dominance hypothesis
(Garnier et al., 2004).
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FIGURE 2 Variables factor map on the first two principal components analysis (PCA) axes for community-weighted mean (CWM) traits.
Arrows indicate the strength and direction of correlation between the trait CWM and the axes. We interpret CWM axis 1 as a resource
economics spectrum (acquisitive vs. conservative) axis and CWM axis 2 as a plant size axis. Traits are as follows: specific leaf area (SLA),

leaf P concentration (Leaf.P), leaf N concentration (Leaf.N), leaf area (Leaf.A), number of seeds of the reproductive unit (Rel.seed.num), leaf
fresh mass (Leaf.fr.mass), stem conduit density (Stem.cond.dens), leaf SN (dN15), plant height (Height), dispersal unit length (Disp.u.l), wood
vessel length (Vessel.l), seed length (Seed.l), leaf C per dry mass (Leaf.Cpmass), seed mass (Seed.m), leaf N/P ratio (NpP), leaf N per area (Leaf.
NpA), leaf dry matter content (LDMC) and stem specific density (Stem.Dens).
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To reduce the functional trait space described by the 18 CWM
variables, we performed a principal components analysis (PCA)
on the CWM values of the selected sPlot communities using the
R package FactoMineER (Lé et al., 2008). The first two PCA axes of
the CWM space captured 27.42% (CWM axis 1) and 20.88% (CWM
axis 2) of the total variance in the data (Figure 2). Communities that
had negative scores on CWM axis 1 were dominated by species
with “acquisitive” traits, such as high specific leaf area and high leaf
concentrations of nitrogen and phosphorus. Positive values on this
axis were accompanied by a dominance of species with “conserva-
tive” traits, such as high leaf dry matter content and stem density
(Supporting Information Appendix S2). This axis corresponds to the
resource economics spectrum described by many studies (i.e., leaf
economics spectrum, fast-slow spectrum; Diaz et al., 2016; Reich
et al., 1997; Wright et al., 2004). The CWM axis 2 was related to
overall plant size: communities with high scores on this axis were
characterized by relatively tall species, with both large and heavy
leaves and seeds. This corresponds to a plant size spectrum that is
commonly found in plants (Diaz et al., 2016). We used the two axes
as composite variables characterizing the community position along
the resource economics and plant size spectrum. In the subsequent
analysis, we interpreted associations between the CWM axes and
NDVI as evidence for dominance effects.

To quantify functional diversity across all 18 traits, we calcu-
lated functional dispersion (hereafter, FD) using the R package FD
(Laliberté et al., 2014) and taking Gower's distance as the dissimilar-
ity measure (Podani, 1999). FD has the advantage of accommodating
multiple traits in addition to species abundances. Furthermore, it is
independent of species richness and relatively unaffected by outliers

Model name
Full CWM axis 1+ CWM axis 2+ 0
FD+Prec+Temp+s(Lat, Lon)

Traits and space CWM axis 1+ CWM axis 2+ FD+s(Lat, 16

Predictors AAIC

Lon)
Climate and space Prec+Temp+s(Lat, Lon) 42
Only space s(Lat, Lon) 64
Climate and traits CWM axis 1+ CWM axis 2+ 2383

FD+Prec+Temp
Only traits CWM axis 1+ CWM axis 2+ FD 3133
Only climate Prec+Temp 3257
CWM1 and FD CWM axis 1+ FD 3353
Only CWM CWM axis 1+ CWM axis 2 3521
Only CWM1 CWM axis 1 3648
CWM2 and FD CWM axis 2+ FD 4467
Only FD FD 4617
Only CWM2 CWM axis 2 5035

(Laliberté & Legendre, 2010). Here, we interpret associations be-

tween FD and NDVI as evidence for niche partitioning effects.

2.5 | Data analysis
We modelled annual maximum NDVI using a number of nested gen-
eralized additive models (GAMs; Wood, 2017) with subsets of pre-
dictors relating to traits (CWM axis 1, CWM axis 2 and FD), climate
(temperature and precipitation) and space (latitude and longitude)
(Table 1). We chose the GAM framework because it allowed us to
include the spatial coordinates as smooth spherical splines, which
accounts for the spatial structure of the NDVI response variable and
spatial autocorrelation in the residuals. All other predictors were in-
cluded as simple linear terms. As climatic variables, we included mean
annual temperature (Temp) and the precipitation of the driest quar-
ter (Prec). With the response variable NDVI ranging between zero
and one, we specified the models using the beta-regression family
and a logit link function, using the mgcv R package (Wood, 2017). All
linear predictors were scaled and centred before entering the model.
After fitting all models, we used a deviance partitioning ap-
proach to disentangle the predictive effects of climate, traits and
space on NDVI. To obtain the unique fraction explained by a set of
predictors, we calculated the difference in model deviance of nested
models with and without the given set of predictors and expressed
it as a percentage of the total deviation of the full model. Shared
fractions between two predictor sets were calculated by subtracting
their unique contributions from the joint model deviance. Taking the
same approach, we also partitioned the contribution of traits further

TABLE 1 Fitted models predicting
annual maximum normalized difference
vegetation index (NDVI)

Deviance
explained (%)

85.97

85.90

85.74
85.63
63.52

51.95
49.77
47.85
44.53
41.83
21.30
16.77
3.04

Abbreviations: AAIC, difference in Akaike information criterion; CWM, community-weighted mean;
FD, functional dispersion; Lat, latitude; Lon, longitude; Prec, precipitation of the driest quarter;
Temp, mean annual temperature.
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into the joint and unique effects of the two CWM axes and FD. All

analyses were run in R v.3.5.3 (R Core Team, 2019).

3 | RESULTS

The full model explained 86% of the deviance in the NDVI and had
an adjusted R? of 0.87 (Table 1). All linear predictors except FD were
significant (Figure 3a). Temperature and precipitation had positive
effects on annual maximum NDVI. CWM axis 1 had a negative effect
on annual maximum NDVI (i.e., communities dominated by species
with acquisitive traits tended to have higher NDVI than those domi-
nated by species with conservative traits), and CWM axis 2 (i.e., plant
size) had a positive effect (Figure 3a). The model coefficients and sig-
nificance were similar across the different nested models, and the ef-
fect of FD was significant only when no spatial term was included in
the model (Supporting Information Appendix S3). All models includ-
ing the spatial term showed by far the best fit (Table 1). Generally,
the spatial term was highest in mid- to high latitudes of Eurasia and
lowest in parts of Africa and Australia (Figure 3b). The importance of
space was also reflected by the “space only” model, which explained
nearly as much deviance as the full model. The largest fraction of the
explained model deviance was shared between the three variable
sets of climate, traits and space (38.16%), followed by the unique
fraction of space (22.44%), the shared fractions of space and traits
(13.52%) and space and climate (11.50%). The unique and shared
fractions of climate and traits were relatively small, but traits had a
larger unique importance than climate. Most of the unique fraction
of traits was linked to the CWM (especially axis 1) and not to FD
(Figure 4a). Notably, even the “only traits” and “only climate” models
showed relatively high predictive power, with R? values of 0.54 and
0.55, respectively. Most of total deviance explained by traits was
associated with the unique fraction of CWM axis 1, whereas FD and
CWM axis 2 made smaller contributions to the trait effect. There
also was a sizeable fraction shared between CWM axis 1 and FD
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(Figure 4b). For the pairwise correlations between all model vari-

ables, see the Supporting Information (Appendix S4).

4 | DISCUSSION

A large body of research revolves around the question of how traits
contribute to ecosystem functioning. Using data from grasslands all
over the globe, we found strong support for a dominance effect for
peak season productivity (i.e., dominant plant species contribute
disproportionately to ecosystem productivity). At the same time,
our findings failed to provide evidence for the niche partitioning hy-
pothesis. For the large spatial extent and the traits covered by our
study, we did not find that higher trait diversity resulted in enhanced
biomass production.

Our results show that grasslands dominated by species with ac-
quisitive traits have higher productivity than those dominated by
species with conservative traits. This is in line with existing evidence
from observational studies of smaller extents and experiments that
point out the role of dominant species for determining ecosystem-
level primary productivity through their resource economics traits
(Lavorel, 2013; Mokany et al., 2008). Acquisitive species with high
specific leaf area and leaf nutrient concentrations generally exhibit
rapid carbon and nitrogen turnover, which entails high ecosystem-
level rates of, for instance, biomass accumulation, decomposition
and evapotranspiration (Reich, 2014). Our study suggests that this
relationship also holds at a larger spatial scale, because we found this
resource axis to be an important predictor of NDVI, which is a proxy
for primary productivity. Traits related to overall plant, leaf and seed
size were also positively associated with productivity. This shows that
the NDVI signal is not captured fully by leaf economics traits alone
but also requires a second trait dimension as an estimation of stand
biomass (Chave et al., 2005). This axis is captured by plant height and
seed size, which are allometrically linked (Moles & Westoby, 2006;
Rees & Venable, 2007; Thompson & Rabinowitz, 1989).
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FIGURE 3 Estimates of the full model. (a) Standardized effect sizes of linear predictors (mean and confidence intervals). Negative values
are red; positive values are blue. (b) Estimated smooth spatial term at the plot locations. Abbreviations: CWM, community-weighted mean;

FD, functional dispersion.
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Although ecological theory and many experiments show that
niche partitioning can enhance ecosystem functions (Hooper
et al., 2005; Petchey & Gaston, 2002; van der Plas, 2019), we found
no association between functional diversity and grassland produc-
tivity at the global scale, at least for the traits we used. Overall, the
recent literature suggests that the effect of plant functional diversity
on ecosystem processes is varied and subtle, especially in naturally
assembled communities (van der Plas, 2019). Although a majority of
studies report positive relationships (Cardinale et al., 2011; Mouillot
etal, 2011; Petchey & Gaston, 2006; van der Plas, 2019), it is not un-
common to find negative (Thompson et al., 2005) or no associations
(Chollet et al., 2014) between functional diversity and ecosystem
functions. The effect of functional diversity is also known to vary
among traits (Petchey et al., 2004). Although we covered the major
plant trait axes identified by Diaz et al. (2016), we cannot exclude
the possibility that some other traits would lead to a stronger as-
sociation between functional diversity and NDVI. For example, we
did not have data on nitrogen use (e.g., N fixation) strategies and
photosynthetic pathways that are known to play a role for comple-
mentarity in grasslands (Cadotte et al., 2009). The selection of the
functional traits affecting an ecosystem function remains difficult,
because different traits might play different roles across communi-
ties or biomes. A new methodology has recently been published to
select those traits that contribute to functional community assembly
(Pillar et al., 2021). Whether this technique can prove useful also for
selecting those traits related to a specific ecosystem function, how-
ever, remains to be tested. To test the sensitivity of our results to the
choice of the functional diversity metric, we also performed a sup-
plementary analysis using a functional diversity measure based on
Rao's quadratic entropy (Rao, 1982) rather than FD. Overall, those
results were qualitatively consistent with the findings presented
here in the main text, but the effect of functional diversity was even
smaller (Supporting Information Appendix S5).

Another possible explanation of our results relates to the use of
annual maximum NDVI as a response variable. This value represents
the high-productivity season, when resource turnover is expected to
be at its maximum (Pettorelli et al., 2005). Previous work shows that
niche partitioning effects in plant communities might be stronger
outside the high-productivity season (Chollet et al., 2014; Dolezal

FIGURE 4 Venn diagram partitioning
total explained model deviance (i.e.,
85.99%) among sets of predictors.

(a) Partitioning total deviance among
climate (mean annual temperature and
precipitation of the driest quarter), traits
(i.e., CWM axis 1, CWM axis 2 and FD)
and space (i.e., smooth term using spatial
coordinates). (b) Partitioning the total
fraction of traits [i.e., yellow circle in (a)]
between CWM axis 1, CWM axis 2 and
FD. Values are expressed as percentages.

30.65

CWM axis 1

et al., 2019). Possibly, the role of functional diversity might be more
substantial when quantifying productivity as an integrated measure
over the whole vegetative season, rather than a snapshot at the peak
of the vegetation season (Chi et al., 2017).

Although grassland productivity ultimately depends on plants,
our models highlighted the existence of important confounding
variables, namely climate and other unmeasured factors that are
spatially structured. It is well known that precipitation (La Pierre
etal.,2011; Sala et al., 1988) and temperature (Briggs & Knapp, 1995)
are important determinants of grassland productivity and often out-
weigh the pure effect of biodiversity (van der Plas, 2019). Although
substantial, the deviance explained by climate was mostly shared
with plant traits, highlighting the importance of climate as an en-
vironmental filter shaping the functional structure of vegetation
assemblages (Bruelheide et al., 2018). Indeed, the resource econom-
ics axis described by CWM axis 1 is known to be linked to drought-
tolerance strategies (Reich, 2014). Both climate and vegetation are
spatially structured and therefore expected to be collinear (Currie
et al., 2020). In fact, the largest fraction of the explained model
deviance was shared between space, climate and traits, following
Tobler's well-known first law of geography: “everything is related to
everything else, but near things are more related than distant things”
(Tobler, 1970). Nonetheless, even when we included the smooth
spatial term in the model, the effect of the functional structure (i.e.,
CWM) of vegetation assemblages remained significant, which sug-
gests that the relationship between plant traits and productivity
goes beyond the mere spatial covariation in abiotic conditions and
local species pools.

There is no doubt that the approach adopted in this study has
some limitations. Not only does the use of trait databases lead to a
very rough approximation of functional community structure (e.g.,
neglecting intraspecific and site-specific trait variation) but also
the vegetation plot database had vast gaps in its global coverage,
which was partly attributable to the strict filtering criteria applied
here. South America and Africa are particularly underrepresented
in our compilation. Nevertheless, our analysis has an unprecedented
spatial coverage, and spans more than nine of the ten sPlot biomes
(sensu Bruelheide et al., 2018). Furthermore, by explicitly including
geographical coordinates in our models, we mitigated as much as
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possible the bias deriving from the uneven distribution of plots,
besides partly controlling for other spatially structured drivers of
productivity, such as soil fertility and management. Moreover, there
was a substantial scale mismatch between the vegetation surveys
and the NDVI measure. Even though the MODIS images have a pixel
size of 250m, which is roughly two orders of magnitude coarser than
a typical grassland plot, this was the best possible compromise in
the trade-off between temporal coverage and spatial resolution.
The fact that we limited our analysis only to vegetation plots lo-
cated within MODIS pixels representing uniform land cover classes,
however, is expected to mitigate the negative consequences of this
scale mismatch. Furthermore, NDVI, like other vegetation indices, is
known to saturate in highly productive systems, which means that it
might not correctly discern productivity differences in those areas
(e.g., the tropics). However, this mostly concerns forests with high
leaf area index values and should not be a major issue for our sites in
open grasslands (Haboudane et al., 2004). Finally, although the se-
lected functional traits account for two of the main trait dimensions
in plants (leaf economics and size), data coverage was limited for
other important aspects, such as photosynthetic pathways and as-
sociation with nitrogen-fixing bacteria. We agree that it would have
been very desirable to have more specific traits, example, on C,/C,
photosynthetic pathways or bacterial associations. More impor-
tantly, we missed belowground traits in general. We cannot exclude,
therefore, that such traits could increase the relative contribution of
niche partitioning mechanisms to ecosystem productivity patterns.

In conclusion, our analysis provides empirical evidence that plant
functional community structure and global patterns in primary pro-
ductivity are mostly linked through the resource economics and size
traits of the dominant species. Over large extents, the dominance
hypothesis received substantially more support than the niche par-
titioning hypothesis, at least based on the functional traits included
in the present study. This is consistent with the hypothesis that
productivity mostly relates to the functional profile of dominant
species, rather than to the functional diversity of a community. Our
results also provide an empirical justification for focusing on dom-
inant plant species when running Earth system models simulating
the response of vegetation to changing conditions. Identifying the
dominant traits and species and assessing their susceptibility to en-
vironmental change then becomes crucial to improve our ability to
foresee, and possibly mitigate negative consequences on the provi-
sioning of plant biomass by grasslands.
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