
Article https://doi.org/10.1038/s41467-023-39572-5

Leaf-level coordination principles propagate
to the ecosystem scale
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Fundamental axes of variation in plant traits result from trade-offs between
costs and benefits of resource-use strategies at the leaf scale. However, it is
unclear whether similar trade-offs propagate to the ecosystem level. Here, we
test whether trait correlation patterns predicted by three well-known leaf- and
plant-level coordination theories – the leaf economics spectrum, the global
spectrum of plant form and function, and the least-cost hypothesis – are also
observed between community mean traits and ecosystem processes. We
combined ecosystem functional properties from FLUXNET sites, vegetation
properties, and community mean plant traits into three corresponding prin-
cipal component analyses. We find that the leaf economics spectrum (90
sites), the global spectrum of plant form and function (89 sites), and the least-
cost hypothesis (82 sites) all propagate at the ecosystem level. However, we
also find evidence of additional scale-emergent properties. Evaluating the
coordination of ecosystem functional properties may aid the development of
more realistic global dynamic vegetation models with critical empirical data,
reducing the uncertainty of climate change projections.

Decades of research have identified trade-offs and coordination
between functional traits at the plant and organ levels that are
explained through the concept of eco-evolutionary optimality1–8.
Optimality assumes that natural selection and environmental fil-
tering shape predictable and general patterns in traits, leading to
specific trait combinations that favor the economic efficiency of

processes as a necessary condition of plant growth, survival, and
reproduction9. For instance, the leaf economics spectrum uncovers
plant resource harvesting strategies, with underlying trade-offs in
the investment and utilization of resources depending on leaf
longevity8. High structural investments in leaves (high leaf mass per
area) translate to slow but long-term carbon gain (high leaf
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longevity), while the inverse, mutually exclusive strategy is char-
acterized by high nutrient investments (low leaf mass per area, high
leaf nitrogen content per leaf mass) that compensate for short leaf
lifespan through increased leaf-level productivity5,8. We refer to this
as the performance-persistence trade-off, because resource acqui-
sition costs can either be directed toward resource conservation
and leaf persistence10, or fast growth and photosynthetic perfor-
mance. The global spectrum of plant form and function explores
evolutionary strategies related to plant growth, survival, and
reproduction by describing two key dimensions related to the size
of whole plants and organs, and the performance-persistence trade-
off related to the leaf economics spectrum1. Another example of
trait coordination is the least-cost hypothesis, which describes a
continuum in plant economic strategies aimed at optimizing the
input mix of two or more key limiting resources. The same eco-
nomic theory can be applied to resource acquisition and utilization
in plants: a decreasing acquisition and retention cost of one of two
limited resources (e.g., water) is generally accompanied by an
increased cost of the other limiting resource (e.g., nitrogen)7,11.
While optimality principles and patterns in trait coordination have
been widely studied and confirmed at the leaf and plant scale, and
some studies at the community scale exist12, it is unclear how these
relationships translate to the ecosystem scale.

Ecosystems are intricate mixtures of different species that com-
pete for resources such as energy, water, and nutrients13, and abiotic
drivers affect biological processes and ecological interactions.
Ecosystem-level processes are intrinsically linked to canopy archi-
tecture (arrangement of leaves, shoots, etc.)14,15, and are determined by
species composition, but are also influenced by disturbance and
management. Consequently, ecosystems feature scale-emergent
properties16–18, i.e., properties that are only manifested at a certain
scale. For instance, light interception is largely dependent on canopy
architecture due to the amount of light that can penetrate the canopy
space19,20: whereas light-use efficiency responses observed at the leaf
level depend on rather homogenous small-scale conditions, complex
gradients of light penetration and light-use efficiencies need to be
considered at the canopy scale21. In essence, the coordination between
ecosystem functional properties at the canopy scale can contrast with
the theory of optimization in leaves or plant organs.

Understanding the coordination among functional properties
within ecosystems has major implications for the refinement of
parameterization and evaluation of terrestrial biosphere models.
Several ongoing initiatives are proposing more realism in the
coordination of plant functional traits9,22. For more realistic pre-
dictions of how ecosystems will respond to global environmental
changes, the upscaling from leaf or plant to ecosystem-level pro-
cesses needs to consider whether the coordination observed at leaf-
and plant-level is conserved at the ecosystem scale, or, conversely,
whether scale-emergent behaviors occur and need to be explicitly
implemented in the models21. Evidence for ecosystem-level coor-
dination would support the upscaling from simulated leaf-level
processes to the ecosystem scale. Concurrently, insight into scale-
emergent properties could improve the upscaling algorithms used
in dynamic vegetation models and serve to validate the functional
response from models.

Here, we ask whether well-established coordination principles
that apply to the leaf and plant scales can be used to approximate
ecosystem-scale coordination among community mean traits and
ecosystem processes. Based on an extensive dataset from 98 global
eddy covariance flux measurement sites, and vegetation data col-
lected in-situ and from global databases of plant traits, we explore
ecosystem-scale analogs to the relationships between functional
traits identified by (i) the leaf economics spectrum5,8, (ii) the global
spectrum of plant form and function1, and (iii) the least-cost
hypothesis7,11.

Results and discussion
Leaf economics spectrum at the ecosystem scale
To analyze whether the leaf economics spectrum8 propagates to the
ecosystem scale, we conducted a principal component (PC) analysis
based on five ecosystem functional properties and vegetation prop-
erties analogous to the leaf scale (i.e., representing the same or similar
process). In our results, each variable is represented by eigenvectors
that show their direction and strength in the hyperspace between PCs
(Fig. 1a). As in the leaf economic spectrum, we identified the key
dimensions, or PCs, that explain themost variance in the data (Fig. 1b).
Then, we assessed the projections of the eigenvectors (i.e., loadings)
on the PCs and the relative contribution of each variable in defining
each PC. We used the community-weighted means of nitrogen per
mass (wNmass), leaf longevity (wLL), leaf mass per area (wLMA), the
photosynthetic capacity of the whole ecosystem (GPPsat), and the
maximum ecosystem respiration (RECOmax, Supplementary Table 1).
Two retained PCs cumulatively explained 82.3 ± 4.7% of the variance in
the dataset (Fig. 1). The ecosystem-scale economics spectrum was
apparent from the loadings of the PC analysis (PCA) (Fig. 1c). In par-
ticular, thefirst PC showed strongnegative loadings of the community-
weighted means of leaf mass per area and leaf longevity (wLMA:
−0.83 ±0.04, wLL: −0.67 ±0.06), and positive loadings of nitrogen
content, photosynthetic capacity, and respiration (wNmass:
0.85 ± 0.03, GPPsat: 0.79 ±0.04, and RECOmax: 0.69 ±0.07, Fig. 1d
and Supplementary Data 1). This greatly substantiates the trade-offs
between performance and persistence of the leaf economics spectrum
at the ecosystem scale. On the second PC, all variables other than
wNmass loaded positively, highlighting scale-emergent positive asso-
ciations between respiration, photosynthetic capacity, and leaf long-
evity. Plant functional types (based on the IGBP classification) differed
strongly along the axis expressed by the community-weighted mean
plant traits. In contrast, the variation within plant functional types was
better described by the direction of the GPPsat and RECOmax eigen-
vectors, with the two sets of variables being nearly orthogonal to one
another (Fig. 1a).

Restricting the analysis to forest sites, or evergreen needleleaf
forest sites, produced similar results on PC1 as for the overall casewith
all sites. This hints at the importance of the leaf economics spectrum
both within and across plant functional types (Supplementary Fig. 1,
Supplementary Data 1).

Results of multi-model inference with different explanatory vari-
ables for GPPsat showed higher importance of wNmass compared to
wNarea and better model performance when including wNmass and
wLMA compared to wNarea, which is one of the reasons why we used
wNmass in the PCA (Supplementary Fig. 2).

The results of our first analysis show that the most important
dimension of ecosystem functional properties describes the trade-off
between performance (productivity) and persistence. This reflects the
relationships described in the leaf economics spectrum8. At the high
productivity side of the spectrum, sites characterized by high photo-
synthetic capacity, ecosystem respiration, and leaf nitrogen con-
centration are generally associated with low structural investments for
single leaves in the form of low leaf mass per area (i.e., leaf thickness
and/or leaf density) and leaf longevity. Low leaf longevity translates to
a faster leaf turnover, i.e., possibly higher overall nutrient investments
throughout the lifespan of the plant. In contrast, low photosynthetic
capacity and respiration rates are associated with lower nitrogen
content, extended leaf longevity, and increased leaf thickness/density
(i.e., higher wLMA, Fig. 1, Supplementary Data 1).

Osnas et al.23 criticized the original formulation of the leaf eco-
nomics spectrum based on mass-normalized traits and leaf mass per
area. Here, we used mass-based traits to be coherent with the leaf
economics spectrum. Based on the results of the relative importance
analysis (Supplementary Fig. 2), we argue thatmass-based estimates of
nitrogen might be better suited for analyses on ecosystem-level
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processes, which is in line with previous studies24. We also tested the
same concept with area-based nitrogen estimates, and we observed
very similar results (Supplementary Fig. 3, Supplementary Data 1).

While in the leaf economics spectrum described by Wright et al.8,
the first component explains up to 74% of the variability of the data,
the analogous axis at the ecosystem scale explains a lower proportion
of variance (59.2 ± 3.9%). However, the additional information shown
on the second component at the ecosystem scale adds up to a higher
overall explained variance (82.3 ± 4.7%) and suggests higher com-
plexity at the ecosystem scale. The second dimension likely represents
scale-emergent properties (i.e., only found at the ecosystem scale) that
are not evident with the limited set of variables analogous to the leaf
economics spectrum. Finally, we show that additional dimensions are
important at the ecosystem scale. In the following sections, we inves-
tigate the possibility that this second component is connected with
secondary coordination principles (i.e., vegetation size axis of the
global spectrum, or least-cost hypothesis component).

Ecosystem global spectrum of plant form and function
We investigated the role of additional properties related to ecosystem
structure by testing, when available, a set of variables analog to the
global spectrum of plant form and function1 at the ecosystem scale. In
addition to the variables characterizing the ecosystem-scale econom-
ics spectrum (wNmass, wLMA, GPPsat), we included community-
weighted stem specific density (wSSD), maximum leaf area index
(LAImax), and canopy height (Hc, Supplementary Table 1). Six sig-
nificant PCs were retained based on the Dray method25, (Supplemen-
tary Data 2). However, we concentrate our interpretation on the first
three PCs, as the limited number of sites (n = 89) undermines our

capacity to disentangle a large number of dimensions from potential
noise in the data. These three components cumulatively explained
82.7 ± 4.3% of the variance in the dataset (Fig. 2).

The first component reflected properties related to themaximum
rates of ecosystem processes. Photosynthetic capacity was the main
variable contributing positively to PC1, with further strong contribu-
tions and positive loadings from all other variables with the exception
of wSSD and wLMA (Fig. 2c and Fig. 2d). The only strong negative
loading on the first component was the leaf mass per area (wLMA,
−0.61 ± 0.11). This reflects the performance-persistence trade-off
expected by the leaf economics spectrum, with a clear trade-off
between process rates and nutrient investments aimed at maximizing
productivity, and properties related to long-lived strategies. This
shows that the leaf economics spectrum dominates the variability
among ecosystem functional properties. The second PC was primarily
defined by variables connected to structure and/or foliar chemistry:
nitrogen content and stem-specific density loaded negatively
(wNmass: −0.66 ±0.58, wSSD: −0.52 ± 0.56), while leaf area index and
leaf mass per area had strong positive loadings on PC2 (LAImax:
0.60 ±0.50, and wLMA: 0.44 ±0.37). This second component resem-
bled the size axis of the global spectrum of plant form and function,
with structural properties related to total leaf area in the canopy and
canopy height. Together, these two axes generate a plane that is
strikingly similar to the one described in the study by Díaz et al.1,
confirming the hypothesis that the global spectrum propagates to the
ecosystem scale. However, when looking at the direction of the
eigenvectors relative to one another, GPPsat falls between the axis of
leaf economics (wNmass, wLMA), and the axis of size (LAImax speci-
fically). This suggests that the leaf economics spectrum and the size
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Fig. 1 | Principal component analysis on variables representing the leaf eco-
nomics spectrum at the ecosystem scale (90 sites). a Biplot resulting from PCA;
point colors represent plant functional types following the IGBP classification: CSH
(Closed Shrubland), DBF (Deciduous Broadleaf Forest), EBF (Evergreen Broadleaf
Forest), ENF (Evergreen Needleleaf Forest), GRA (Grassland), MF (Mixed Forest),
OSH (Open Shrubland), SAV (Savannah), WET (Wetland), WSA (Woody Savannah).
Bigger points represent the centroid of the distribution for each habitat type.
b Explained variance for the retained principal components (PCs). c Barplot for the
loadings, and d contributions for each variable on the retained PCs. The full circles

in b and the bars in c, d show the pertinent estimate based on the full dataset. In
b–d, the error bars are centered on the estimates and represent the standard error
estimated with the bootstrap procedure (n = 499 bootstrap iterations); the small
gray diamonds show the estimates of each bootstrap iteration, and the big gray
diamonds represent themedian of all bootstrap iteration. Variable acronyms: gross
primary productivity at light saturation (GPPsat), maximum ecosystem respiration
(RECOmax), community-weightedmean leaf longevity (wLL), community-weighted
mean leaf mass per area (wLMA), community-weighted mean nitrogen per leaf
mass (wNmass).
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dimension of vegetation combined likely explain the photosynthetic
performance of the ecosystems. This would also explain why the
eigenvectors of photosynthetic capacity and ecosystem respiration in
Fig. 1 are not aligned with the eigenvectors of nitrogen content, leaf
longevity, and leaf mass per area, characteristic of the leaf economics
spectrum. The fact that size and structural elements such as leaf area
index and canopy height also contribute to PC1 highlights how eco-
system processes are affected by vegetation biomass. The leaf eco-
nomics spectrum represented by wNmass and wLMA is a trade-off
between photosynthetic performance and structural persistence.
Accordingly, the contributions of wNmass and wLMA are equally dis-
tributed between PC1 and PC2. The third PC was dominated by stem-
specific density, with a 56.1 ± 24.3% contribution and a strong positive
loading (0.79 ±0.33, Fig. 2, Supplementary Data 2). Canopy height and
leaf mass per area also had important positive effects on PC3, under-
lying the importance of structural variables as important properties
that emerge at the scale of ecosystems even beyond the plane of the
global spectrum.

In the results basedon the forest sites, the number of retained PCs
was two, and only one when considering exclusively evergreen nee-
dleleaf forest sites. In these subcases, the plane between the
performance-persistence trade, and the size axis, was less pronounced
(Supplementary Fig. 4, Supplementary Data 2).

Considering that we could not include measures related to seed
mass among the variables in our study and that we included the pho-
tosynthetic capacity to represent the ecosystem-level properties, we
founda remarkable resemblance to theglobal spectrumstudyat the leaf
scale1. However, we highlight one main difference: the effect of stem-
specific density is partitioned between the second and especially the

third component. This difference could result from a bias in the domi-
nant vegetation type. In particular, several dominant conifer species at
some sites can have particularly low reported values of stem-specific
density, and thus help shape a gradient from low-SSD grasslands and
evergreen needleleaf forests, to high-SSD savannas, woody savannas,
deciduous and evergreen broadleaf forests. However, wSSD is a
weighted measure among all available species at a site, while canopy
height is based on the maximum values of single individuals. Thus, the
relationship between stem-specific density and plant height, character-
istic of the size axis described by Díaz et al. might break down, with the
community-weighted measure of stem-specific density having poten-
tially a less clear ecological meaning than its plant-level counterpart.

The high number of retained axes (6) shows that multiple
dimensions need to be considered when performing such analyses at
the ecosystem scale. In particular, additional dimensions (beyond the
second component) could hint at secondary effects of e.g., water
transport within the soil–plant–atmosphere continuum, or water sto-
rage. In fact, canopy height and stem-specific density are indirectly
linked to plant hydraulics, especially in trees. For instance, canopy
height relates to the water potentials in the plant and is inversely
proportional to the transpiration rate in Darcy’s law26. At the same
time, canopy height and stem-specific density in trees are constrained
by hydraulic limitations such as cavitation risk27. The additional rela-
tionships uncovered by the third component could characterize how
water is transported through the plant vessels and stored in wood
tissues. In the following section related to the least-cost hypothesis, we
show that the dimension related to water is indeed important. Other
hidden mechanisms that are not apparent with this set of variables,
such as soil chemical and physical characteristics, likely play an
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Fig. 2 | Principal component analysis on the global spectrumof plant form and
function at the ecosystem scale (89 sites). a Biplot resulting from PCA; point
colors represent plant functional types following the IGBP classification: CSH
(Closed Shrubland), DBF (Deciduous Broadleaf Forest), EBF (Evergreen Broadleaf
Forest), ENF (Evergreen Needleleaf Forest), GRA (Grassland), MF (Mixed Forest),
OSH (Open Shrubland), SAV (Savannah), WET (Wetland), WSA (Woody Savannah).
Bigger points represent the centroid of the distribution for each vegetation type.
b Explained variance for the retained principal components (PCs). c Barplot for the
loadings, and d contributions for each variable on the retained PCs. The full circles

inb and the bars in c and d show the pertinent estimate based on the full dataset. In
b–d, the error bars are centered on the estimates and represent the standard error
estimated with the bootstrap procedure (n = 499 bootstrap iterations); the small
gray diamonds show the estimates of each bootstrap iteration, and the big gray
diamonds represent themedian of all bootstrap iteration. Variable acronyms: gross
primary productivity at light saturation (GPPsat), canopy height (Hc), maximum
leaf area index (LAImax), community-weighted mean leaf mass per area (wLMA),
community-weighted mean nitrogen per leaf mass (wNmass), community-
weighted mean stem specific density (wSSD).
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important role in defining PCs beyond the first two dimensions. Still,
we would need consistent measurements across the network to
resolve such limitations28,29.

Our results are partly in linewith recent literature describing three
main components related to productivity, water, and carbon use30.
Compared to Migliavacca et al., we include additional structural and
chemical variables, and we find similar components for productivity
and water properties in our analog of the global spectrum of plant
form and function. Additionally, we explain a higher proportion of
variance over the first three components and highlight the importance
of the structure and size of vegetation within the ecosystem as a sec-
ondary but crucial component.

Theexclusionofnon-forest sites leadsonly tominor changes toour
results, in line with a recent study that expands on trait coordination at
the leaf scale and compares woody and non-woody species31.

While previous studies already highlighted the striking similarity of
community-level relationships compared to the plant-level trade-offs of
Díaz’s global spectrum12, we find that the same is true for whole-
ecosystem relationships between community-weighted averages of
plant traits and ecosystem functions inferred using surface–atmosphere
measurements.We conclude that the same eco-evolutionary constraints
affecting individual plant fitness and community assemblages also apply
to whole ecosystems.

Least-cost hypothesis at the ecosystem scale
For the analyses of the least-cost hypothesis7,11 at the ecosystem scale,
we focused primarily on the expected trade-off between the costs in
the acquisition, retention, and use-efficiencies of nitrogen and water.
Therefore, we considered variables directly or indirectly related to the

costs of nitrogen (photosynthetic nitrogen use-efficiency—PNUE), and
water (directly related: water use-efficiency—WUEt, maximum stoma-
tal conductance—Gsmax, evaporative fraction—EF; indirectly: air tem-
perature—Ta, canopy height—Hc, Supplementary Table 1). Results of
the PCA showed strong positive loadings on the first component for
almost all variables (Fig. 3). In fact, PC1 represented the dimension of
the maximum rates of processes, i.e., the performance dimension that
we identify with properties related to productivity andmetabolic rates
(e.g., photosynthesis, respiration, water and gas exchange). This was
consistent when including GPPsat or different metrics related to pro-
ductivity and photosynthetic nitrogen use efficiency (e.g., Supple-
mentary Fig. 5, Supplementary Fig. 6). The fact that variables such as
canopy height, maximum surface conductance, evaporative fraction,
and water use-efficiency have positive loadings on PC1 indicates that
this component reflects the gradient between low stature vegetation
with limited available resources and low maximum surface con-
ductance (e.g., water-limited, or low temperature) to high stature
vegetation with high water availability. The effect of PNUE is inversely
related to the other variables, in linewith the least-cost hypothesis, but
hardly relevant on PC1 (Fig. 3). The dimension of maximum rates
consistently emerges at the ecosystem scale, regardless of the set of
chosen variables (Supplementary Fig. 5, Supplementary Fig. 6). The
second PC explained 29 ± 1.8% of the variance (Fig. 3b) and uncovered
the trade-offs expected by the least-cost hypothesis: a negative rela-
tionship between the loadings of water use-efficiency and canopy
height on one side (WUEt: −0.54 ± 0.55, and Hc: −0.39 ±0.51), and
evaporative fraction, photosynthetic nitrogen use-efficiency, and sur-
face conductance on the other side (EF: 0.74 ±0.32, PNUE: 0.65 ± 0.47,
and Gsmax: 0.54 ±0.26, Fig. 3c, d, Supplementary Data 3).
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Fig. 3 | Principal component analysis on analogous variables of the least-cost
hypothesis (82 sites). a Biplot resulting from PCA; point colors represent plant
functional types following the IGBP classification: CSH (Closed Shrubland), DBF
(Deciduous Broadleaf Forest), EBF (Evergreen Broadleaf Forest), ENF (Evergreen
Needleleaf Forest), GRA (Grassland), MF (Mixed Forest), OSH (Open Shrubland),
SAV (Savannah), WET (Wetland), WSA (Woody Savannah). Bigger points represent
the centroid of the distribution for each habitat type. b Explained variance for the
retained principal components (PCs). c Barplot for the loadings, and
d contributions for each variable on the retained PCs. The full circles in b and the

bars in c and d show the pertinent estimate based on the full dataset. In b–d, the
error bars are centered on the estimates and represent the standard error esti-
mated with the bootstrap procedure (n = 499 bootstrap iterations); the small gray
diamonds show the estimates of each bootstrap iteration, and the big gray dia-
monds represent the median of all bootstrap iteration. Variable acronyms: eva-
porative fraction (EF), maximum surface conductance (Gsmax), canopy height
(Hc), maximum leaf area index (LAImax), ecosystem-scale photosynthetic nitrogen
use-efficiency (PNUE), air temperature (Ta), water use-efficiency based on tran-
spiration (WUEt).
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Tests with alternative metrics of water use-efficiency and photo-
synthetic nitrogen use-efficiency confirmed the negative relationship
between these two ecosystem properties on the second PC of varia-
bility (Supplementary Fig. 5, Supplementary Fig. 6, and Supplementary
Data 3). However, the difference in R2 for PC1 and PC2 increased sub-
stantially when using alternative formulations of the two ecosystem
properties, or different subsets of the data, suggesting that the first
component related to performance dominates the functional space of
ecosystem properties (Supplementary Figs. 5–8). Differences between
the full estimates and the median of the bootstrap iterations could be
related to dataset biases in terms of a disproportionate number of
forest sites, and in particular evergreen needleleaf forests, so we again
repeated the analysis on these subsets of sites. However, our analysis
on all forest sites or evergreen needleleaf forests produced similar
results as for the overall case with all sites. The directionality of the
relationships between variableswas similar to the overall results, albeit
less pronounced (Supplementary Fig. 9, Supplementary Data 3).

The first component is consistent with earlier leaf-level studies
showing a positive relationship between the maximum rates of pro-
cesses (e.g., surface conductance, or net photosynthesis), structural
variables (e.g., leaf area index, or specific leaf area, the inverse of leaf
mass per area), and foliar chemistry (leaf nitrogen)4,32. At the ecosys-
tem scale, PNUE and Gsmax feature a positive directionality in the first
component, in line with the notion that these two variables positively
affect productivity in the context of the leaf economics spectrum33.
Our results also show the negative relationship between PNUE and
WUEt on the second dimension of the PCA, as expected from leaf-level
field studies and theory2,7,11,34–36. Additionally, other expected trade-offs
are present on this component, such as the negative relationship
between surface conductance and water use-efficiency37, or a negative
relationship between WUEt and evaporative fraction, which is low at
more arid sites and higher at wet sites. This is in line with the expected
increase in the efficiency of plants in using water along aridity gra-
dients, as shown with leaf-level measurements of leaf-internal to
ambient CO2 ratio as a proxy of intrinsic water use-efficiency38,39. In
sum, the second component in our third and final analysis unravels the
axis of the least-cost hypothesis. The coordination between the vari-
ables of the least-cost hypothesis covers a range of sites from wet
conditionswith high efficiency of photosynthetic nitrogenuse, but low
water use-efficiency, to arid conditions with high efficiency of water
use, but low photosynthetic nitrogen use-efficiency. Measures of leaf-
internal and ambient CO2 mole fraction, or stable carbon isotope sig-
natures measured at the sites would help to strengthen our claims
related to the least-cost hypothesis, but these measurements were
unavailable for the large majority of sites.

Overall, we argue that the maximum rates related to productivity
dominate ecosystem functioning, while the least-cost hypothesis only
emerges as a secondary, yet still important, trade-off. In this context,
the dimension of productivity could be described as a scale-emergent
property at the ecosystem level. Furthermore, our definition of some
ecosystem-levelmetrics included aspects that are not required or even
appropriate at the leaf or plant scale. For instance, the distinction
between transpiration and evaporation needs to be considered when
computing the water use-efficiency from eddy covariance fluxes at the
ecosystem scale. Consequently, the leaf area index needs to be inclu-
ded in the calculation of photosynthetic nitrogen use-efficiency. These
effects are scale-emergent properties, meaning that evaporation or
leaf area index are not prominent properties for leaf-level processes,
but they are key at the ecosystem scale. At this scale, scale-emergent
properties weaken the relationship between the variables connected
to the least-cost hypothesis, when not properly accounted for.

The relationships underlying the least-cost hypothesis might
therefore not always be conserved at the ecosystem scale, which can
be explained by multiple reasons. First, some of the previous studies
on the least-cost hypothesis generally focused on limited geographical

ranges7,11,38. Our dataset displays much stronger variation in plant
resource use patterns along axes of nutrient availability and dis-
turbance. However, global-scale evidence for the least-cost hypothesis
also exists based onmodeling40,41, or globalmeasurements of leaf-level
carbon isotopes42. In our analysis, this optimality principle might be
more elusive at the global scale, because we simultaneously char-
acterize other trade-offs on the main axis—the component of max-
imum rates—which dominates the gradient in average ecosystem
functional properties30,32. The least-cost hypothesis is only observed
when this effect is removed, which is not evident in leaf-level studies,
and which could be considered a scale-emergent behavior at the
ecosystem scale. Second, ecosystems are amix of different individuals
and species, with different phenologies and different physiological
statuses due to biotic and abiotic effects. This mix could limit the
strength of the signal of leaf-level coordination theories at the eco-
system scale since optimization for one individual might not coincide
with an averaged optimization for the whole ecosystem. For instance,
Medlyn et al.43 showed that it is difficult to reconcile leaf-level and
ecosystem-scale estimates of water use-efficiency. Regardless of our
different computations of WUEt based on transpiration, this suggests
that a simple averaging or sumof the ecosystem components does not
guarantee capturing the whole ecosystem response. Third, intraspe-
cific variability might confound the ecosystem response. We did not
explicitly account for intraspecific variation and aggregated our
metrics to a unique average (or maximum) value at each site. For
instance, Dong et al.38 demonstrated that most variation in the ratio of
intracellular to atmospheric CO2 concentration is expressed within
species. In general, plant strategies are species-specific, and quite
plastic to changes in environmental drivers. We argue that a combi-
nation of species with different life histories at globally distributed
sites may not necessarily average to a single common trade-off of
water and nitrogen cost minimization.

The potential confounding factors outlined above apply to all
parts of our analysis. However, these confounding factors might only
be worth considering when the signal of the relationships between
variables is already overshadowed by a more dominant component.
For instance, the trade-offs underlying the least-cost hypothesis are
eclipsed by the dimension of maximum rates of ecosystem processes.

Caveats and implications
Leaf-level coordination principles propagate to the ecosystem scale. In
particular, we show strong evidence supporting the hypothesis that
the leaf economics spectrum is conserved at the ecosystem level. The
global spectrum of plant form and function and the least-cost
hypothesis are also evident for whole ecosystems, despite embody-
ing secondary mechanisms at the ecosystem scale.

However, by upscaling the leaf-level coordination principles to
the ecosystem scale, we also observe higher complexity, as suggested
by an increase in significant PCs compared to those identified by the
original theories at the leaf scale1,8. Certain aspects of trait coordina-
tion are conserved at the ecosystem scale (e.g., the relationship
between photosynthetic performance and leaf persistence of the
leaf economics spectrum8). Conversely, other trade-offs might be
more elusive due to a set of potential issues underlying the data, due to
scale-emergent properties (e.g., structure or evaporation), or due to
properties intrinsic to ecosystem-level processes (e.g., optimization of
nitrogen use and water use is a secondary dimension). Therefore,
accounting for potential confounding factors such as canopy struc-
ture, leaf area index, or processes such as evaporation is important for
an accurate representation of ecosystem-level processes and rela-
tionships in ecological theory and dynamic global vegetation models
(DGVMs). DGVMs usually rely on constant vegetation parameters (e.g.,
mean traits) to simulate changes in carbon stocks (e.g., LAI) and eco-
system processes and fluxes. The DGVMs parameters are constant per
plant functional type: for example, LMA or N content in leaves are
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parameterized as the mean values for large plant functional type
classes such as deciduous, or evergreen forests. This parameterization
typically neglects the variation in traits and the coordination between
traits and functions observed in nature. Instead, ecosystem functions
(e.g., GPPsat, RECOmax) are simulated as a response to foliage density
(related to LAImax). This current paradigm is not flexible enough to
represent the variability and coordination between traits and functions
and therefore can lead tobiases inmodeling30. For instance, for the leaf
economics spectrum, we can use a linear mixed model to test the
relationship between GPPsat or RECOmax, the foliar traits (wLMA,
wNmass, wLL), and the covariation between the variables once
accounted for vegetation class and leaf area index as random effects.
With this test, we showed that some of the fixed effects resembling the
trade-offs in the leaf economics spectrum at the ecosystem scale are
important even when accounting for leaf area index and plant func-
tional type, and should therefore not be overlooked (Supplementary
Table 2). Recent studies focusing onDGVMsdevelopment are focusing
on further including coordination principles, with explicit covariation
of trait and functional parameters within vegetation cover classes22. In
this sense, our analysis can help to indicate which traits and functions
can be helpful in supporting the current developments.

We acknowledge some potential shortcomings in our study.
First, a mismatch between site-level conditions and plant traits from
secondary data sources is possible, since plant trait values from
databases do not necessarily represent adaptations to the local site
conditions (e.g., LL, LMA, SSD). However, some encouraging results
indicate that this may not be a major issue. In the case of leaf nitro-
gen, a recent study showed that it is possible to use the TRY database
and maintain robust relationships with ecosystem-scale GPPsat24.
Moreover, for European forests, it is possible to use traits from the
TRY database and obtain very similar community-weighted means
compared to the in-situ data44. Second, the different lengths of flux
measurements available at the site level impact the calculation of the
ecosystem functional properties, particularly for sites with extreme
weather conditions and few years of data. We accounted for this
shortcoming by selecting the maximum (or potential) value of eco-
system functional properties (e.g., GPPsat, Gsmax) within the mea-
surement period. Within the relatively short study periods of most
eddy covariance sites, this should minimize the mismatches in spe-
cies representativeness of plant traits and the effects of meteor-
ological variability on the fluxes.

Our results demonstrate that fundamental leaf- and plant-level
coordination principles propagate to the ecosystem scale. The same
drivers forcing plant trait expression also shape the functioning of
whole ecosystems. However, scale-emergent properties should be
carefully considered when looking at ecosystem-level phenomena,
because they can partly mask the scaling of leaf-level coordination
principles. Additionally, even though coordination principles are
important for whole ecosystems, they might be masked by more
dominant relationships, such as the dimension of the maximum rates
of processes. Future studies on ecosystem-level optimality should
focus on increasing the number of sites, prioritizing underrepresented
bioclimatic regions (e.g., tropics), and on the refinement of vegetation
properties and other important stand characteristics, including soil
properties31. In this context, our original hypothesis that the known
leaf-level coordination of functional traits is conserved at the ecosys-
tem level should be further investigated with additional case studies.
Furthermore, dynamic global vegetationmodels should be testedwith
and without optimality included9,22,41,45. Considering the increasing
effort to include optimality principles in the land surface scheme of
Earth system models, we suggest using our approach and results as a
benchmark for model runs. The validation of established optimality
principles at different scales would support more accurate imple-
mentation of the notions learned from leaf-level theories in models
across scales.

Methods
Eddy covariance FLUXNET sites
We used data from the global network of eddy covariance flux tower
stations (FLUXNET), integrating the LaThuile dataset46 with the
FLUXNET2015 dataset47. In case of overlap of sites in the two datasets,
the FLUXNET2015 dataset was used. We excluded cropland sites in
order to avoid the influence of intense management practices (irriga-
tion, plowing, fertilization, etc.). The dataset used for the analysis
included sites with more than 3 years of data and the availability of
ancillary data described below. The selected 98 sites cover different
biomes and climate zones: from tropical, Mediterranean, temperate,
and boreal to arctic sites, including major forest types, grasslands,
savannas, shrublands, and wetlands (Supplementary Data 4, Supple-
mentary Table 3).

Plant traits and vegetation properties
For each FLUXNET site, we collected a set of plant traits for constituent
species or site means (leaf longevity, leaf mass per area, nitrogen per
leaf area, nitrogen per leaf mass, and stem-specific density), and site-
level vegetation characteristics (canopy height, maximum leaf area
index) from the FLUXNET or Ameriflux ancillary data, or, if not
reported, directly from site principal investigators. Where site mea-
surements were unavailable, we included information from the TRY
database48 (a full list of plant traits data sources can be found in Sup-
plementary Data 5) or data from the literature for the specific
sites30,49,50. We obtained site constituent species and species abun-
dances at the sites (percentage of area covered by each species) from
the literature49–53, and by consulting site principal investigators. We
assumed homogeneous distribution for species with missing abun-
dance information, following the approach described in previous
studies51,52. We excluded sites where the total sum of known species
abundances was below 50% of the total site area.

For each site, we computed the community mean weighted by
species fractional cover54 for the following plant traits: leaf longevity
(wLL, months), leaf dry mass per area (wLMA, mgmm−2), stem specific
density (wSSD, g cm−3, with SSD defined as stem dry mass per stem
fresh volume), and nitrogen per leafmass (wNmass, %). For some sites,
site principal investigators provided site-level estimates of plant traits
upscaledwith similarmethodologies, whichwereprioritized over TRY-
derived estimates. Regarding leaf longevity, we could not account for
different leaf age groups because of a lack of data.

We calculated weighted nitrogen per leaf area as the product of
wNmass and wLMA (wNarea, g Nm leaf−2). We collected canopy height
(Hc,m) andmaximum leaf area index (LAImax, m2m−2) from FLUXNET
or Ameriflux ancillary data products, site principal investigators, and
the literature30,50.

Eddy covariance fluxes and ecosystem functional properties
We calculated ecosystem functional properties from carbon, water,
energy fluxes, and meteorological data measured or estimated at half-
hourly/hourly time steps at the selected FLUXNET sites. Supplemen-
tary Table 1 provides a comparison between leaf- and plant-level traits
and the analogous ecosystem functional properties and vegetation
properties used in this study, while Supplementary Table 4 lists all the
variables used in the computations of ecosystem functional proper-
ties. We used gross primary production (GPP) and ecosystem
respiration (RECO) estimated frommeasured net ecosystem exchange
(NEE) using the night-time partitioning method55. The methodology
for the calculation of each ecosystem’s functional properties used in
this study is described below.

We retained data with good quality (quality check 0—measured
data, and 1—good quality gap-filled data), and, additionally, we
retained the data measured during the active growing season, deter-
mined as the period when daily GPP is above the 30% of the difference
between maximum and minimum daily GPP. For each site, we
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aggregated the filtered half-hourly/hourly data to mean yearly values
for air temperature, vapor pressure deficit, and incoming shortwave
radiation (SWin, Wm−2), and mean yearly cumulative values for pre-
cipitation. Transpiration flux estimates were calculated following the
methodology in Nelson et al.56. We collected elevation information for
each site from the FLUXNET or Ameriflux Biological, Ancillary, Dis-
turbance, and Metadata (hereafter: ancillary data), FLUXNET websites,
and the OzFlux website for one Australian site.

Photosynthetic capacity (GPPsat). We filtered half-hourly/hourly flux
data based on SWin to exclude night-time values (SWin > 100Wm−2).
We fitted GPP and SWin to a hyperbolic light response curve with a
moving window of 5 days, with the values assigned as the center of the
moving window30. For each moving window, we extracted the photo-
synthetic capacity at light saturation (GPPsat, µmolCO2m

−2 s−1)24,53,57,58

as the value of the fitted functions at a saturating photosynthetic
photon flux density of 2000μmolm−2 s−1. The photosynthetic photon
flux density wasderived as SWin * 2.1159.We excludedGPPsat estimates
above a threshold of 60 µmolCO2m

−2 s−1 to omit unrealistic values of
GPPsat according to the distribution of GPPsat. For each year and
growing season, we extracted the 95th percentile from the GPPsat
estimates. The 95th percentile was chosen because the calculation of
GPPsat based on a fitted model had less noise than other ecosystem
functional properties. For each site, we used GPPsat as the average
over the yearly 95th GPPsat percentiles.

Maximum ecosystem respiration (RECOmax). We filtered half-
hourly/hourly flux data based on SWin to exclude day-time values
(SWin <50Wm−2). For each site, we considered the 90th percentile of
night-time net ecosystem exchange as a measure of maximum eco-
system respiration (RECOmax, µmol CO2m

−2 s−1).

Evaporative fraction (EF). From the half-hourly/hourly flux data, we
removed periods with precipitation events and the following 48 h
(where available, P <0.1mm). We also excluded night-time values
(SWin > 200Wm−2). We included a filter based on friction velocity
(u* > 0.20m s−1)60 to minimize the use of records potentially affected
by flux underestimation. We computed EF (unitless) as the ratio of
latent heat flux (Wm−2) to the available energy flux which was
approximated by the sum of latent and sensible heat fluxes (Wm−2)61.
For each site, we used the median of EF over the available measure-
ment period.

Maximum surface conductance (Gsmax). We retained half-hourly/
hourly flux data with the same filters described for the calculation of
EF, and we additionally excluded noisy measurements with negative
values of vapor pressure deficit. We computed the aerodynamic con-
ductance for heat transfer (Ga, m s−1), and calculated the surface con-
ductance (Gs, m s−1) by inverting the Penman–Monteith equation,
using the bigleaf R package60 and following the methodology in
Migliavacca et al.30. For each site, we computed the maximum surface
conductance (Gsmax, m s−1) as the 90th percentile of Gs values over
the available measurement period.

Photosynthetic nitrogen use-efficiency (PNUE). We computed pho-
tosynthetic nitrogen use-efficiency (µmolCO2 gN−1 s−1) as PNUE =
GPPsat/(wNarea * LAImax), based on the formulation from the
literature2,7. We accounted for the scaling to the ecosystem level by
including LAImax.

Water-use efficiency (WUEt). We filtered half-hourly/hourly flux data
based on potential incoming shortwave radiation to exclude night-
time values (SWin_pot > 200Wm−2). We then aggregated the data to
daily values. We filtered the daily-aggregated flux data based on
the fraction of good quality data (fraction >0.8 of NEE quality check

0—measured data, and 1—good quality gap-filled data47. We excluded
entries where the daily ratio of GPP to T exceeded the site mean by
three times the standard deviation, where T refers to the transpiration
estimates provided by the TEA algorithm56. We calculated the water-
use efficiency based on transpiration in order to avoid confounding
effects from evaporation (WUEt, µmol CO2mmolH2O

−1). For each site,
we computed WUEt as the ratio of cumulative GPP to cumulative T
over the period of available filtered data.

Statistical analysis
For each of the three hypotheses examined, we conducted PCA on
selected variables, in order to avoid clustering of a priori known strong
correlations, reduce the dimensionality of the datasets, and thereby
increase the interpretability of the data62. In the PCA results, the sign
and direction of the eigenvectors denote relationships and trade-offs
between the variables (arrows in panels a of Figs. 1–3). Eigenvectors
that are orthogonal to one another suggest trade-offs between the
corresponding variables, while parallel eigenvectors indicate correla-
tions. The same concept applies to the loadings, which represent the
projections of the eigenvectors on each PC: loadings with a different
sign highlight potential trade-offs between variables, and equal signs
indicate potential correlations (panels c in Figs. 1–3). A highly
explained variance assures that the selected variables are appro-
priately capturing the variance in the data for each PC and as a whole
(panels b of Figs. 1–3). Finally, the contributions describe howvariables
define each PC (panels d of Figs. 1–3). We used the PCA function in the
FactoMineR R package63. For standardization, we applied
z-transformation to each variable. For each section of the analysis, we
tested the number of significant PCs to be retained following Dray’s
method25, using the ade4 R package64,65, in order to minimize redun-
dancy as well as loss of information.

For each section of the analysis, we obtained subsets of the
dataset via substitution bootstrapping using the bootstrap function
in themodelr R Package66 (499 replicates). We repeated the PCA on
the bootstrapped datasets and then computed the standard devia-
tion from the bootstrapped outputs to obtain the bootstrap stan-
dard error for the explained variance, contributions, and loadings.
For all analyses, we repeated the test for (1) all available sites in our
dataset, (2) forest sites only, and (3) evergreen needleleaf forest
sites only.

Based on the output models of multi-model inference67 via the
dredge function in the MuMIn68 R package, we conducted relative
importance analysis using the calc.relimp function of the relaimpo69 R
package. This was done to evaluate the importance of predictors of
GPPsat.

Finally, we used the lmer function in the lme470 R package to fit a
linear mixed model to predict GPPsat and RECOmax based on wLMA,
wNmass, and wLL as fixed effects, and adding a random slope on the
predictor, i.e., the (random) effect of LAImax, for each vegetation class
(IGBP). This was fed to the model function as: y ~wNmass +wLMA+
wLL + (LAImax | IGBP), on a sample size of 87 sites.

Inclusion and ethics
All relevant data contributors have been invited to participate in the
manuscript preparation, and given co-authorship where appropriate,
or have otherwise been appropriately acknowledged.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed eddy covariance data—the LaThuile dataset (https://
fluxnet.fluxdata.org/data/la-thuile-dataset/) and the FLUXNET2015
dataset (https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/)—are
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available on the FLUXNET website. Biological, Ancillary, Disturbance,
and Metadata for the sites are available in the respective databases
(https://fluxnet.org/data/fluxnet2015-dataset/, https://fluxnet.org/
data/la-thuile-dataset/, https://ameriflux.lbl.gov/data/badm/, https://
ameriflux.lbl.gov/sites/site-search/, and https://www.ozflux.org.au/
monitoringsites/calperum/calperum_dem.html) and in the cited lit-
erature. The plant traits measurements data are available on the TRY
database (https://www.try-db.org/TryWeb/Home.php) either publicly
or under restricted access due to embargo and can be obtained via
request on the TRY platform. The data necessary to interpret, verify,
and extend the research in this article are available in the Zenodo
database under the accession code https://doi.org/10.5281/zenodo.
7984734.

Code availability
All the analyses were conducted with R 4.1.0 for Windows (64-bit).
The R package used for the calculation of the ecosystem functional
properties is already described in the literature and freely available
on CRAN: bigleaf v0.8.2 (https://cran.r-project.org/web/packages/
bigleaf/). The R code used for the statistical analyses uses packages
available on CRAN: FactoMineR v2.6 (https://cran.r-project.org/web/
packages/FactoMineR/), ade4 v1.7-20 (https://cran.r-project.org/
web/packages/ade4/), modelr v0.1.9 (https://cran.r-project.org/
web/packages/modelr/), MuMIn v1.43.17 (https://cran.r-project.org/
web/packages/MuMIn/), relaimpo v2.2-6 (https://cran.r-project.org/
web/packages/relaimpo/), and lme4 v1.1-31 (https://cran.r-project.
org/web/packages/lme4/). The TEA algorithm v1.1 is available at
https://doi.org/10.5281/zenodo.3921923. The R codes used for this
analysis are available on Zenodo at https://doi.org/10.5281/zenodo.
7984734.
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