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Empirical evidence suggests that for a variety of overparameterized nonlinear models, most notably in
neural network training, the growth of the loss around a minimizer strongly impacts its performance. Flat
minima—those around which the loss grows slowly—appear to generalize well. This work takes a step
towards understanding this phenomenon by focusing on the simplest class of overparameterized nonlinear
models: those arising in low-rank matrix recovery. We analyse overparameterized matrix and bilinear
sensing, robust principal component analysis, covariance matrix estimation and single hidden layer neural
networks with quadratic activation functions. In all cases, we show that flat minima, measured by the
trace of the Hessian, exactly recover the ground truth under standard statistical assumptions. For matrix
completion, we establish weak recovery, although empirical evidence suggests exact recovery holds here
as well. We complete the paper with synthetic experiments that illustrate our findings.
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1. Introduction

Recent advances in machine learning and artificial intelligence have relied on fitting highly overparam-
eterized models, notably deep neural networks, to observed data [28,32,54,58]. In such settings, the
number of parameters of the model is much greater than the number of data samples, thereby resulting
in models that achieve near-zero training error. Although classical learning paradigms caution against
overfitting, recent work suggests ubiquity of the ‘double descent’ phenomenon [4], wherein signif-
icant overparameterization actually improves generalization. There is an important caveat, however.
There is typically a continuum of models with zero training error; some of these models generalize
well and some do not. Reassuringly, there is evidence that basic algorithms, such as the stochastic
gradient method, are implicitly biased towards finding models that do generalize; see for example
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[18,22,23,25,27,30,31,38,39,41,50,52]. Other seminal works [2,3,40] seeking to explain generalization
have focused on quantifying stability, capacity and margin bounds. Understanding generalization of
overparameterized models remains an active area of research, and is the topic of our work.

Existing literature highlights two intriguing properties—small norm and flat landscape—that
correlate with generalization [17,19,40]. Indeed, it has long been known that the magnitude of the
weights plays an important role for neural network training. As a result, one typically incorporates
a squared ¢,-penalty on the weights—called weight decay—when applying iterative methods. One
intuitive explanation is that minimizing the square Frobenius norm of the factors in matrix factorization
problems is equivalent to minimizing the nuclear norm—a well-known regularizer for inducing low-
rank structure. Far-reaching generalizations of this phenomenon for various neural network architectures
have been recently pursued in [44,45,48]. In parallel, empirical evidence [26,33,42] strongly suggests
that those models around which the landscape is flat—meaning the function grows slowly—generalize
well. See Fig. 1 for an illustration of flat and sharp minima. Inspired by this observation, a variety of
algorithms have been proposed to explicitly bias the iterates towards flat solutions [12,20,29,43], with
impressive observed performance. In contrast to the magnitude of the weights, the theoretic basis for
flatness is much less clear even for simple overparameterized nonlinear problems. The goal of our work
is to answer the following question:

Do flat minimizers generalize for a broad family of overparameterized problems?

Putting generalization aside, one would hope that flat solutions are in some sense regular, occurring
in a benign region where algorithms perform well. For example, numerical methods for neural network
training are strongly influenced by how balanced the parameters appear. Namely, the set of interpolating
neural networks contains models with consecutive weight matrices that are poorly scaled relative to
each other [18,49]. It has recently been shown that gradient descent in continuous time keeps the factors
balanced [37,57] for matrix factorization and for deep learning [18,39]. Despite ubiquity of the three
notions discussed so far—small norm, flatness and balancedness—the exact relationship between them
is unclear. Thus our secondary question is

Are flat minimizers nearly norm-minimal and nearly balanced
for a broad family of overparameterized problems?
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1.1 Problem setting: overparameterized matrix factorization

We answer both questions in the setting of low-rank matrix factorization—a prototypical problem class
often used to gain insight into more general deep learning models [18,34,57]. Setting the stage, consider a
ground truth matrix M, € R%1 %% wyith rank ry- The goal is to recover M, from the observed measurements
b = /(M) under a linear measurement map .<7: R4*d _, R™ A common approach to this task is
through the non-convex optimization problem:

T 2 dy xk dyxck
min  f(L.R) = H,Q%(LR )—sz with L € Rk and R e R%K, (1.1)

The set of minimizers of £, which we denote by ., consists of all solutions to the equation /(LR ") = b.
In order to model overparameterization, we focus on the rank-overparameterized setting k > ry indeed k
can be arbitrarily large. The three notions discussed so for can be formally defined for pairs (L,R) € .#
as follows.

¢ (L,R) is norm-minimal if it minimizes over ./ the square Frobenius norm ||L||f + ||R||f.
e (L, R) is balanced if it satisfies LTL = RTR.
e (L, R) is flat if it minimizes over ./ the ‘scaled trace’ of the Hessian str(D?*f(L, R)).

Thus being norm-minimal means that (L, R) is the closest pair from . to the origin in the Frobenius
norm. Being balanced amounts to requiring L and R to have the same singular values and right-singular
vectors. Flat solutions are defined using the ‘scaled trace’ of the quadratic form D?f(L, R) defined as

str(D*f(L, R)) =7 > sz(L,R)[e,-ejT]JrU,—l2 > DLB)ee] ], (1.2)

i<dy jelk] i>dyjelk]

where ¢; and e; are the unit coordinate vectors in R4+ and R¥, respectively. ! In the square setting
d, = d, = d, the scaled trace reduces to the usual trace divided by d. The scaled trace appears to have
not been used previously in the literature, but is important in order to account for a possible mismatch
in the dimension of the L and R factors. A number of recent papers use the trace of the Hessian to
measure flatness (e.g. [17]). Other alternatives are possible, such as the maximal eigenvalue [17,39] or
the condition number [36], but we do not focus on them here. Our main contribution can be succinctly
summarized as follows:

For various statistical models, flat solutions of (1.1) exactly recover M, .

Moreover, flat solutions have nearly minimal norm and are almost balanced.

The exact recovery guarantee may be striking at first because flat solutions are distinct from minimal
norm solutions, and thus do not correspond to nuclear norm minimization over .Z. Yet, our main result
shows that flat solutions do exactly recover the ground truth M, under standard statistical assumptions.
The precise statistical models for which this is the case are matrix and bilinear sensing, robust principal
component analysis (PCA), covariance matrix estimation and single hidden layer neural networks with

! The input space of f is viewed as R@1142) %k by stacking the two matrices space R4 %K and R4k,
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quadratic activation functions. Moreover, we prove weak recovery for the matrix completion problem,
though our numerical experiments suggest that exact recovery holds here as well.

Note that we use flat solutions to mean those points that are global minimizers of (1.1) with the
smallest scaled trace. One can extend our results to solutions in . that is only approximately minimal
in scaled trace and achieve approximate recovery results. It would be of great theoretical and practical
interests in extending the result here to local minimizers of (1.1), as algorithms are not guaranteed to
find a global one a priori. However, we note that in neither case, exact recovery is possible. We restrict
our attention to solutions in .# with smallest trace for simplicity and crisp statement of flat solutions.

One may interpret our results in three ways: (1) in terms of regularization and generalization property,
our result suggests that the measure of flatness, the scaled trace, could be a reasonable regularizer for
some learning tasks, due to the generalization power and near norm minimalitly property of flat solutions
in overparametrized matrix factorization; (2) algorithmically, our result serves as a theoretical basis for
methods favouring flat solutions such as those in [12,20,29,43]; (3) in terms of optimization landscape
of (1.1), due to near balancedness, the objective function is well-behaved near flat solutions, meaning the
Lipschitz constant of the gradient is small [18]. This implies stable and quicker convergence behaviour
of first-order methods near flat solutions.

1.2 Main results and outline of the paper

We next outline our main results. We begin in Section 2 with the idealized ‘population level” setting where
7 is the identity map; see Figure 2 for an illustration. In this case, we show that there is no distinction
between flat, norm-minimal and balanced solutions. As soon as <7 deviates from the identity, however,
all three notions become distinct in general.

An immediate difficulty with analysing flat solutions of the problem (1.1) with a general measure-
ment map <7is that flat solutions are defined as minimizers of a highly non-convex optimization problem
corresponding to minimizing the scaled trace over the solution set. In Section 3, we derive a simple
convex relaxation of flat minimizers. Setting the notation, letus write &@/as #AX) = ({(4;,X), ..., (4,,,X))
for some matrices A; € R%*42 and define the ‘rescaling’ matrices

1 1

2 m

1 Zm 1 S
Dl = W AlAlT and D2 = W AZTAI . (13)
2 j=1 L j=1

We will show in Theorem 3.1 that flat solutions can be identified with minimizers of the problem

min |D,XD,|,  subjectto  @AX)=Db. (1.4)
XeRU*%: rank(X) <k
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It is worthwhile to note that without the D, and D, matrices, the problem (3.6) is classically known to
characterize norm-minimal solutions and is known as nuclear norm minimization. Herein, we already see
the distinction between the two solution concepts. A natural convex relaxation for flat solutions simply
drops the rank constraint:

min |D,XD,|, subjectto  .@/AX) = b. (1.5)

XeRdl xdy

Summarizing, verifying that flat solutions exactly recover M, is reduced to showing that M, (which has
rank rj) is the unique solution of the convex problem (1.5).

In Section 4, we will show that if the map .o/ satisfies €, /£, or £, /¢, restricted isometry properties
(RIPs) and the rescaling matrices D, and D, are sufficiently close to the identity, then M, is the unique
solution of (1.5). As a consequence, we deduce that flat solutions exactly recover M, for matrix sensing
[8,47] and bilinear sensing [1,35] problems with Gaussian design. The former corresponds to the setting
where the entries of A, are i.i.d. standard Gaussian, while the latter corresponds to the setting A; = a;b;,
where a; € RY! and b; € R are independent standard Gaussian vectors. The end result is the following

theorem. Simplifying notation, we setd, ., . = max{d;,d,} and d,;, = min{d,,d,}.

TueoreM 1.1 (Matrix and bilinear sensing (Informal)) Suppose that .o/ is generated according to a
Gaussian matrix sensing or bilinear sensing model. Then as long as we are in the regime m 2 r,d
and d;,, 2 logm, with high probability, any flat solution (Ly, Ry) satisfies leR,T = M, and is nearly
norm-minimal and nearly balanced.

max

2 1.d . matches the known regime for exact
recovery with nuclear norm minimization [5,8]. Since we are interested in the high-dimensional regime,
the extra condition d;,, 2 log(m) can be assumed without harm. Appendix A presents a generalization
of this result when the measurements b are corrupted by noise.

‘We next move on to analysing the matrix completion problem in Section 5. We focus on the Bernoulli
model, wherein each matrix A; takes the form A; = El-jel-ejT, where e; and ¢ denote the i’th and j’th
coordinate vectors in R? and §;; are independent Bernoulli random variables with success probability
p € (0,1). The main difficulty with analysing the matrix completion problem is that the linear map .o/
does not have good RIPs. Moreover, the existing techniques for analysing the nuclear norm relaxation
of the matrix completion problem [9,46] do not directly apply to the problem (1.5) because of the
dependence between the rescaling matrices Dy, D,, and the observation map <. Consequently, we settle

for an approximate recovery guarantee.

Note that our requirement on the sample size m > ryd

THEOREM 1.2 (Matrix completion (Informal)) Suppose that o7 is generated from the Bernoulli matrix
completion model with success probability p > 0 and let i > 0 be an incoherence parameter of M, 1.2

. . . 1 /r;log(dmax)
Then provided we are in the regime p 2> v ”d—

satisfies HLfR;— - M, i} <y HMu

, with high probability, any flat solution (L, Ry)

and is nearly norm-minimal and nearly balanced.
3

Hence according to this theorem, in order to conclude that flat solutions achieve a constant relative

. . 1 .. . .
error, we must be in the regime p 2> ,/ r”;gﬂ. This is a stronger requirement than is needed
min
for exact recovery of the ground truth matrix by nuclear norm minimization [13], which is p 2

2 See (5.2) for the definition of the incoherence parameter (L.
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Wry log(,u,ru)log(d—“‘a") We stress, however, that our numerical results suggest that flat solutions exactly
recovery the ground truth matrix in this wider parameter regime.

We next focus on the problem of robust PCA in Section 6. Though this problem is not of the form
(1.1), we will see that flat solutions (appropriately defined) exactly recover the ground truth under
reasonable assumptions. Specifically, following [7,11], the robust PCA problem asks to find a low-rank
matrix M, € R %4 that has been corrupted by sparse noise S;- Thus, we observe a matrix Y € R xd2
of the form

where the matrix S, is assumed to have at most /;, non-zero entries in any column and in any row. A
popular formulation of the problem (see [24, Eqn. (19)], [21, Eqn. (6)]) takes the form

minf(L,R) := disth, (Y — LR"), 1.7)

where dist?z is the square Frobenius distance to the sparsity-inducing set £2 := {S | [|S]|; ; < HSD H | }

The objective function f is C!-smooth but not C2-smooth. Therefore, in order to measure flatness, we
approximate f near a basepoint (L,S) by a certain C2-smooth local model fL #(L, R), introduced in [24,
Section 4.2], [21, Section 4.3]. See Section 6 for a precise definition of fL (L, R). We define a minimizer

of (1.7) to be flat if it minimizes the scaled trace str(szL’R(L, R)) over all (L,R) € .#. We will prove
the following theorem, which largely follows from the results of [15].

TueorREM 1.3 (Robust PCA (Informal)) Let u be the strong incoherence parameter of M, 1.3 Then, in the
regime UABS < d"““ , any flat minimizer (Lf,Rf) satisfies Lf = M,.

Section 7 analyses the last problem class of the paper, motivated by the problems of covariance matrix
estimation and training of shallow neural networks. Setting the stage, consider a ground truth matrix M,
satisfying

_ T T
M, =U, U, —U,, Uy,

for some matrices U, ; € RY*" and U, ; € RY¥"2_ The goal is to recover M , from the observations

by = x{ M.x;, (1.8)

id
where x;,...,x, X N(0,1,). Note that in the special case r, = 0, this problem reduces to covariance
matrix estimation [14] and further reduces to phase retrieval when r; = 1 [10]. The added generality

allows to also model shallow neural networks with quadratic activation functions; see details below. A

3 See (6.1) for the definition of the strong incoherence parameter .
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natural optimization formulation of the problem takes the form

. 1 T T 2
vrerti D) g U VD =2 | uT - v,0] _Mﬂ)Hz’ (1.9)

where the sensing matrices are A; = xx] and k; > r, for i = 1,2. It is straightforward to verify the
equality str(D*f (U LU)) =d tr(D*f (Uy, U,)), and therefore we declare a minimizer (U, U to be
flat if it has minimal trace tr(sz (U, U,)) among all minimizers of (1.9).

THEOREM 1.4 (Exact recovery) In the regime m 2 C(r; + ry)d and d 2, Clogm, with high probability,

any flat solution (Uf,p Uf’z) of (1.9) satisfies U_ﬁl U;l — Uf,zUJ],—z = MU'

Here, our requirement on the sample size m 2 C(r| +r,)d coincides with the known requirement for
exact recovery by nuclear norm minimization [14] in terms of r and d. An interesting example of (1.9)
arises from a model of shallow neural networks, analysed in [34,51] for the purpose of studying energy
landscape around saddle points. Namely, suppose that given an input vector x € R? a response vector
y(x) is generated by the ‘teacher neural network’

y(U,.x) = v q(U] %),

where the output weight vector v € R" has r| positive entries and r, negative entries, the hidden layer
weight matrix U, has dimensions d x r,, and we use a quadratic activation g(s) = s applied coordinate-

. . id
wise. We get to observe a set of m pairs (x;,y;) € RY x R, where the features x; are drawn as x; ~ N, 1 )
and the output values are y; = y(x;). The goal is to fit the data with an overparameterized ‘student neural
network’

(U, x) =u' q(U"x),

with hidden weights U € R¥*k and output layer weights u = (X4,» —1,), where ky > rj, and ky > rp. It
is straightforward to see that by partitioning the matrix U = [U{, U,], this problem is exactly equivalent
to recovering the matrix M, .= Uy diag(v) UDT from the observations (1.8).

Notation. Throughout, we let R? denote the d-dimensional Euclidean space, equipped with the usual
dot-product (x,y) = x'y and the induced Euclidean norm || - l,. More generally, the symbol || - || »
will denote the £, norm on R¥. Given two numbers d; and d,, which will be clear from context, we set
d oy = max{d,,d,} and d,;,, := min{d,,d,}. The Euclidean space of d; x d, real matrices R%1*%
will always be equipped with the trace inner product (X, Y) = t#(X " Y) and the induced Frobenius norm
[X]l, = +/(X,X). The nuclear norm [|X||, of any matrix X € R%*% is the sum of its singular values.
We will often use the characterization of the nuclear norm [53, Lemma 1]:

— o o1 2 2
X1, = Jin_ ILI, IRIl, = Juin_ 5 (IILIIF + |R IIF) : (1.10)
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2. Norm-minimal, flat and balanced solutions with an identity measurement map

In this section, we focus on the idealized objective (1.1) where the measurement map .<7is the identity:

min f(L R) = HLR

LeR41 *k ReRd2xk

@2.1)

Recall that Mu e R9*4 jg 3 rank r matrix, k > r, is arbitrary and the set of minimizers .# of

(2.1) coincides with the solution set of the equation LRT = M;. We will show in this section that
in this setting there is no distinction between norm-minimal, flat and balanced solutions. As soon as
the measurement map 7 is not the identity, the three notions become distinct; this remains true even
under standard statistical models as our numerical experiments show. Nonetheless, the simplified setting
o/ = ¥ explored in this section will serve as motivation for the rest of the paper.

We begin with the following lemma that provides a convenient expression for str(D?f(L, R)).

Lemma 2.1 (Scaled trace) The second-order derivative of the function f atany (L, R) € ./ is the quadratic
form, D2f (L,R)[U,V]=2 ||LVT + URT ||§ . Consequently, the scaled trace is simply

ste(D*f(L, R)) = 2(IILII? + IRI?). 2.2)

Proof. The claimed expression for D?f (L, R) follows from elementary algebraic manipulations. To see

the expression for the scaled trace, let ¢; € R4+ and e € R¥ be the i’th and j’th coordinate vectors.
2 2

A quick computation shows D2f(L, R) [eiejT] =2 HR]” fori < d; and sz(L, R))[el-ejT] =2 ”L/H for
F

i > d;. Therefore, from the definition (1.2), the scaled Erace becomes

st(D’f(L,R) = 7= D~ D D (LR)ee] 1+ 7 D D" D’fL,Rleje] 1=2(ILI7 + IRI?),

i<d jelk] i>dj jelk]

as claimed. 0
We are now ready to prove the claimed equivalence between the three properties.

LemMma 2.2 (Equivalence) Norm-minimal, flat and balanced solutions of (2.1) all coincide.

Proof. The equivalence of flat and norm-minimal solutions follows directly from (2.2). Next, we prove
the equivalence between minimal norm and balanced solutions. Suppose (L, R) € . is balanced. The
equality LTL = R'R implies that L and R have the same singular values and right singular vectors.
Therefore, we may form compact singular value decompositions L = U X Viand R = U22VT.
Since equality LRT = M, holds, we see that U lZJZU;r = M,. Hence, the nuclear norm of M, is

simply HMu H = tr(X?). Noting the equality % (IILIIE + ||R||§) = tr(X?) along with (1.10), we deduce
%

that (L, R) is a minimal norm solution, as claimed. Conversely, suppose that (L, R) is a minimal norm

solution. Define the function ¢(B) = % ||LB||§ + % ||RB , over the open set of k x k invertible

matrices B. Clearly B = I; is a local minimizer of ¢ and therefore V¢(/,) must be the zero matrix. A

quick computation yields the expression Vo([;) = LTL — RTR, and therefore (L, R) is balanced, as
claimed. O
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3. Convex relaxation and regularity of flat solutions

In this section, we begin investigating flat minimizers of the problem (1.1) with general linear measure-
ment maps <7 It will be convenient to write the linear map 2/(X) in coordinates as

AX) = (A1, X), (A3, X) ..., (A, X)),

where A; € R41*% are some matrices. As always, .2 denotes the set of solutions to the equation
SALR") = b. We will make use of the following two ‘rescaling’ matrices:

1
2

1
m 2 m
D=L aaT) and =L S aTa,) 3.1)
md, o v md, py Lo

The section presents two main results: Theorems 3.1 and 3.2. The former presents a convex relaxation
for verifying that a solution is flat, while the latter shows that flat solutions are nearly balanced and
nearly norm-minimal, whenever the matrices D, and D, are well-conditioned. These two results suggest
a two-part strategy in achieving our goals: exact recovery and regularity of flat solutions. We detail the
strategy in Section 3.3 and discuss how it is used in the following sections.

3.1 A convex relaxation for flat solutions

Flat solutions are by definition minimizers of the highly non-convex problem min (LR)e %Str(sz (L,R)).
The main result of this section is to present an appealing convex relaxation of this problem. We begin
with a convenient expression for the scaled trace str(sz (L, R)). Namely, recall that Lemma 2.1 showed
the equality str(sz (L,R)) =2 ||L||% +2 ||R||g in the simplified setting & = .#. Lemma 3.1 provides an
analogous statement for general maps %/ up to rescaling the factors by D, and D,.

LemMa 3.1 (Scaled trace and the Frobenius norm) The second-order derivative of the function f at any
(L,R) € . is the quadratic form, D*f (L, R)[U, V] = 2| ALV + URT)||%. Moreover, the scaled trace
can be written as

SO (L R) = 2m( [ Dy} + [ DR} ). (3.2)

Proof. The claimed expression for D*f(L, R) follows from elementary algebraic manipulations. Next,
we verify (3.2). To this end, the definition of the scaled trace (1.2) yields the expression
) dy  k 5 ) dy k 2
_ TpT T
AL R) = o >y H;z%e,q R ) H2 t o Z Zl H%Leje[ ) H2 . (3.3)

i=1 j=1 i=1 j=

Note that here ¢ is a basis vector in R4 in the first summand and a basis vector in R%2 for the second
summand.
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Let us analyse the second term on the right. Letting A, ; denote the i’th column of A;, we compute

ZZH%(Lee )H ZZZ<AZ,L6’6 >

i=1 j=1 i=1 j=1 I=1

34
d k m
T T
- Z Z <Al,iAl i LiLy >
i=1 j=1 I=1
m dy k m
SDNDIIS VYD IV BT
I=1 \i=1 j=1 =1
A similar argument shows ”DzR”f = del Z Z] 1 ng{(e e; completing the proof. 0
In particular, Lemma 3.1 implies that flat solutions are exactly the minimizers of the problem
min 5 ( |DIL]} + [D,R[7)  subjectto ALRT) =b. (3.5)

In turn, it follows directly from (1.10) that so long as D, D, are invertible, the problem (3.5) is equivalent
to minimizing the nuclear norm over rank constrained matrices:

min I1X11, subject to  @AD;'XDy") =b. (3.6)
XeR4 %42 rank (X) <k

Therefore, a natural convex relaxation for finding the flattest solution drops the rank constraint:

min [IX],  subjectto  @AD;'XD;') =b. 3.7)
XeRd1*xdy

These observations are summarized in the following theorem.

THeorEM 3.1 (Convex relaxation) Suppose the matrices D, and D, are invertible. Then the problems

(3.5) are (3.6) are equivalent in the following sense. Let [ = min(k, d ;).

1. the optimal values of (3.5) and (3.6) are equal.
2. if L, R solves (3.5), then X = DILRTD2 is a minimizer of (3.6).

3. if a solution X of (3.6) has a singular value decomposition X = UX VT for some diagonal matrix
> e R™! with non-negative entries, then the matrices L = DI_IU\/E and R = Dy v/
are minimizers of (3.5) when [ > k, and the matrices L = [DI_IU\/E, Odl’(kfl)] and R =
[D;lvﬁ, Odz’(k_l)] are minimizers of (3.5) when / < k.
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Moreover, if X = D;M,D, is the unique minimizer of the problem (3.7), then any flat solution (L, R)
satisfies LR = M,.

Section 4 will verify that the convex relaxation (3.7) indeed recovers M, under RIPs on the
measurement map <7 and therefore flat solutions exactly recover M,.
3.2 Regularity of flat solutions

In this section, we show that the condition numbers of the rescaling matrices D and D, determine
balancedness and norm minimality of flat solutions. The main result is the following theorem.

Tueorem 3.2 (Regularity of flat solutions) Suppose that there exist constants ay,a, > 0 satisfying
ayl < D; < a,l for each i € {1,2}. Define the constant x := g—? Then any flat solution (Lf,Rf) of (1.1)
satisfies the following properties.

1. Norm-minimal: the pair (L, Ry) is approximately norm-minimal:

? R
ﬁ”f

2 2 : 2 2
HLf oo min GLIE 4RI ). (3.8)

GHALRT )=

2. Balanced: The pair (L, Ry) is approximately balanced:

T T
”%%_&&

<2 1) o
k

(3.9)

*

The proof of Theorem 3.2 relies on the following linear algebraic lemma, proved in Appendix B.1.

Lemma 3.2 Consider two symmetric matrices Q; € R%>4 and 0, € R%“2*%_Suppose that there exist
constants oy, > 0 satisfying oy < Q; < a,[ for each i € {1,2}. Define the constant x = Z—f Then

given any matrix X € R%*% any minimizer (L, R) of the problem

1 ) -2
min -O@¢-ﬂ&R), (3.10)
LR: Q1LRT Q=X 2 F F
satisfies the inequality:
HLTL “R'R| < (1 — K_Z) (||L||§ + ||R||§) . 3.11)
*

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. We first prove inequality (3.8). To this end, for any (L, R) € .#, we successively

estimate:
of 2 2\ 1 2 1 5 N , )
2 (HLf g1l ) =3 (HDlLf +|oary ) < 5 (IDiL? + [DoRI7) = 52 (1L02 + 0RIZ):
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where the second inequality follows from the characterization (3.5) of flat solutions. Taking the infimum
over pairs (L, R) € .# completes the proof of (3.8).
Next, define the matrix X := DlLfR];r D,. Then clearly (Lg, Ry) is a minimizer of the problem

1 -
min - (HDIL
iR D{IRTDy=X 2

2 -2

n HDZRH ) (3.12)
F F
Lemma 3.2 together with the already established estimate (3.8) implies

HLfTLf —RfTRf = (K2 - 1) (IILIIE + IIRIIE),

for all (L, R) € .. In particular, minimizing the right-hand side over L, R satisfying M, = LR" yields
an upper bound of 2 HM: H . The proof is complete. 0
*

3.3 Proof strategy for exact recovery and regularity of flat solutions

The previous two sections, Section 3.1 and Section 3.2, motivate a two-part strategy for achieving our
two goals:

1. Exactrecovery of flat solutions: via Theorem 3.1, we only need to argue that the convex relaxation
(3.7) admits D, M, D, as its unique minimizer.

2. Regularity of flat solutions: via Theorem 3.2, we only need to show that the condition numbers
of the scaling matrices D, and D, are close to one.

We implement this strategy in Section 4 based on the RIP # of < with two applications: matrix and
bilinear sensing. In Sections 5, 6 and 7, we again follow this strategy. However, each of the problems
instances needs a different argument than the one in Section 4 based on RIP. The specific reasons and
the way we deal with each problem are listed below:

* Matrix completion: due to lacking RIP, we settle for a weak recovery result. We first establish
regularity by checking the condition number of D; and D, directly in Lemma 5.1. Note that this result
tells us that the product of the pair in flat solutions is near optimal for the nuclear norm minimization
problem (8.2). See Lemma 5.2 for detail. We then utilize this observation and a sharp growth result,
formalized in Lemma 5.3, to achieve a weak recovery result.

* Robust PCA: the objective in (1.7) differs from (1.1) and it lacks smoothness. We deal with this issue
by redefining the flat solution using a smooth surrogate. We then achieve exact recovery result by
analysing the convex relaxation (6.9) (different from (3.7) ) using [15, Theorem 3]. The regularity
property follows directly as D and D, are identity in this case.

* Neural network with quadratic activations: its formulation (1.9) is different from (1.1), hence
we need to redefine the flat solution using the trace of the Hessian. It also requires a technical
lemma, Lemma 7.3, which mimics the characterization of nuclear norm (1.10) for a symmetric
decomposition of symmetric matrices. This lemma then allows us to analyse a different convex
relaxation (7.11) and utilize results in Section 4 for exact recovery.

4 RIP is formally defined in Definition 4.1
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We do not further discuss regularity of flat solution for the last case since the definition of minimal norm
and balance of solution do not directly apply to this problem. However, we believe they can be properly
defined and proved using the analysis in Section 7. We omit the details for simplicity.

4. Flat minima under RIP conditions: matrix and bilinear sensing

In this section, we follow our recipe in Section 3.3 using the restricted isometry property and achieve
our goals for flat solutions of the two examples: matrix and bilinear sensing. Specifically, in Section 4.1,
we formally define RIP and show in Lemma 4.2 that exact recovery of flat solution is implied by RIP
and well conditioning of D; and D,. In Section 4.2, we validate the RIP property and well conditioning
of D, and D, of two important applications: matrix and bilinear sensing. We then apply Lemma 4.2 and
Theorem 3.2 to the two examples to achieve our goals: exact recovery and regularity of flat solutions.

4.1 Exact recovery via RIP and well conditioning of scaling matrices
We begin by formally defining the restricted isometry property of a measurement map .@-).

DEerINITION 4.1 (Restricted isometry property) A linear map «7: R4*% — R™ satisfies an £,/¢, RIP
with parameters (r, 8y, 8,) if the estimate

Sy X1, =

1A,
W <& IIXIl; 4.1

holds for all matrices X € R9*92 with rank at most .

We will mainly focus on the p = 1 and p = 2 in this paper. Recall that our goal is to show that under
RIP conditions, with well conditioning of D and D,, flat solutions exactly recover the M. We will need
the following lemma, whose proof is immediate from definitions.

Lemma 4.1 Let </(-) be a linear map satisfying an €, /¢, RIP with parameters (r,§;,4,). Let @}, Q, be
two positive definite matrices satisfying o/ < Q; < a,/ forall i € {1, 2} for some o}, 5 > 0. Then the
map ,Q%(Qfl . Q;l) satisfies an £,,/¢, RIP with parameters (r, a;zcﬁl, afzéz).

The following lemma will be our main technical tool; it establishes that if .#(-) satisfies RIP, then so
does the perturbed map /Q, - Q,), provided that the condition numbers of the positive definite matrices

0, and Q, are sufficiently close to one. We shall apply this lemma in the next section by setting Q; = D,
fori=1,2.

Lemma 4.2 Consider two positive definite matrices Q;, 0, and constants «, o, > 0 satisfying a;/ <
0; < a,l foreach i € {1,2}. Define k = «,/cr; and let &) be a linear map satisfying one of the
following conditions.

1. The map o/ satisfies £, /¢, RIP with parameters (5r,, 8;,4,), where §; > % and 8,2 < %
2. The map o satisfies ¢, /¢, RIP with parameters (Ir;, 8,,4,), where % < I

Then QO M, Q, is the unique solution of the following convex program:

min [IX|,  subject to  <AQ;'X0;") =b. 4.2)
XeR41xdy
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Proof. Define the map #(Z) = a%d(QI_IZQZ_ !). Then Lemma 4.1 implies that Z in the first case
satisfies £,/¢, RIP with parameters (5rn,81,82x2) and in the second case satisfies £;/¢, RIP with

parameters (lru, 81, 82K2). An application of [47, Theorem 3.3] in the first case and [5, Theorem 2.1]
in the second guarantees that Q) M, 0, is the unique solution of (4.2), as claimed. O

4.2 Applications: matrix and bilinear sensing
Let us introduce the random ensembles of the two applications: matrix and bilinear sensing.

DEerINITION 4.2 (Matrix and bilinear sensing) We introduce the following definitions.

1. We say that &7is a Gaussian ensemble if the entries of A; are i.i.d standard normal N (0, 1).

2. We say that &/is a Gaussian bilinear ensemble if the matrices A; take the form A; = aib;r where
the entries of a; and b; are i.i.d. standard normal random variables N (0, 1)

As mentioned earlier, in this paper we will be primarily interested in £,/¢, and ¢, /¢, RIPs. In
particular, the two random measurement models satisfy these two properties. The following two lemmas
are from [8, Theorem 2.3], [47, Theorem 4.2] and [5, Theorem 2.2].

LemmA 4.3 (£,/£, RIP in matrix sensing) Let </ be a Gaussian ensemble. Then for any § € (0, 1), there
exist constants ¢, C > 0 depending only on § such that as long as m > cr(d; + d,), with probability at
least 1 — exp(—Cm), the map o7 satisfies ¢, /¢, RIP with parameters (2r,1 — 8,1 + 8).

LemmaA 4.4 (¢£,/€, RIP in bilinear sensing) Let .27 be a Gaussian bilinear ensemble. For any positive
integer k > 2, there exist constants ¢, C > 0 depending only on k and numerical constants §;,6, > 0
and such that in the regime m > cr(d; + d,), with probability at least 1 — exp(—Cm), the measurement
map &/ satisfies £, /¢, RIP with parameters (kr,§;,5,).

In order to apply Lemma 4.2 and Theorem 3.2, it remains to estimate the condition number « of the
matrices D and D, under RIP (or statistical assumptions). The following lemma shows that D; are well
conditioned under £, /£, RIP.

Lemma 4.5 (Conditioning of D; under ¢,/¢, RIP) Suppose that the linear map .7 satisfies £, /£, RIP
with parameters (1,8;,8,). Then the relation 6,1, < D; < 8,1, holds for all i € {1,2}

Proof. In the proof of Lemma 3.1 (equation (3.4)), we actually showed the expression:

dy k )
>3 |otreeD| =may|pi2]} vLera
im1 j—=1

Now for any vector v € R?!, we can take the matrix L = [v, 0,4, x—11 in the above equation. Appealing

to the ¢, /¢, RIP condition on <, we deduce 8% ||v||% < ||D1v”§ < 6% ||v||§ . A similar argument shows

that D, satisfies the analogous inequality with v € R%, O

The £, /£, RIP property does not in general imply a good bound on the condition numbers of D; and
D,. Instead we will directly show that under the Gaussian design for bilinear sensing, the matrices D,
and D, are well-conditioned. This is the content of the following lemma.
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Lemma 4.6 (Conditioning of D; for bilinear sensing) Let «/be a Gaussian bilinear ensemble. Then there
exist constants ¢y, ¢,, ¢3, ¢4 > 0 such that for any § € (0, 1) as long as we are in the regime m > 03‘2%

and log(m) < c482d the estimate holds:

min>

P{(1 =8I, <D; < (1 + I, Vi € {1,2}} = 1 — cye 14mind”,

Proof. First observe AiAl.T = ||b,-||%aia;r for each index i. Hoeffding inequality implies

1
IP’Hd—HbiH% —1] > 5] < 2exp(—c,d,8%) V8 > 0,Vie [m].
2

Taking a union bound, we see that with probability at least 1 — m exp(—c1d282) the estimate 1 — § <

112
”Z% < 1 4 6 holds simultaneously for all i = 1,...,m. In this event, we estimate

1
(1 —8aa] < zA,A,.T < (1 +8)a,a]

Therefore, after summing fori = 1, ..., m we deduce

| — 1
(1= > aal <D} = ~|—82)E2aia?—.
i=1

i=1

Concentration of covariance matrices [55, Exercise 4.7.3] in turn implies that the estimate

d1+u d1+u
=o\W T T

holds with probability at least 1 — 2 exp(—u). Taking a union bound, we therefore deduce

d1+u d1+u 2 d1+u d1+l/l
(1—8)(1—c2(,/7+7))ldl < Dy < (1+62)(1+c2(,/7+ - 1,

holds with probability at least 1 — meXp(—c1d282) — 2exp(—u). Setting u = d;, we see that there is a
max{d;,ds}
52

LT
|Lara,

op

constant ¢3 such that as long as m > ¢3 , we have

(1 =81, <D} < (1481,

with probability at least 1 —m exp(—c1d282) — 2 exp(—dy). The result follows. U

The following are the two main results of the section as applications of our Lemma 4.2 and
Theorem 3.2.
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TueoreM 4.3 (Exact recovery in matrix sensing) Suppose that <7 is a Gaussian ensemble. Then there
exists a constant ¢ such that the following hold for any § € (0, cy). There exist constants ¢,C > 0
depending only on § such that in the regime m > cr(d; + d,), with probability at least 1 — exp(—Cm),

any flat solution (Lf,Rf) of (1.1) satisfies LfRfT = Mu and is automatically nearly norm-minimal and

nearly balanced:
2 (1+68)° .
- (_) A min IZI2 + IRIZ
F 1-96 GALRT)=b

1468\
<2 (L2 —IHM
. -3 g

Proof. Lemma 4.3 shows that for any § € (0, 1), there exist constants ¢;, C; > 0 depending only on
8 such that as long as m > c¢,r(d, + d,), with probability at least 1 — exp(—C,m), the map o7 satisfies
£, /£, RIP with parameters (r, 1 — 8, 1 4 §). In this event, Lemma 4.5 ensures that the condition number

2
k of Dy and D, is bounded by % Setr = 5ry and choose any § < 0.1 satisfying (1 +6) (%) < %.

An application of Lemma 4.2 and Theorem 3.2 completes the proof. g

? R
F+”f

HLf

T T
H%%—@@

*

TrEOREM 4.4 (Exact recovery in bilinear sensing) Suppose that .27is a Gaussian bilinear ensemble. Then
for any § € (0, 1) there exist numerical constants ¢, C, ¢y, ¢,, ¢3, ¢, > 0 depending only on § such that in
the regime m > cr,(d) + d,) and log(m) < c4d,y;,, with probability at least 1 — ¢3 exp(—Cd,;;,) any
flat solution (Lf,Rf) of (1.1) satisfies LfR;— = M, and is automatically nearly norm-minimal and nearly

balanced:
2 (1+6)\? .
- (_) A min L2+ R
F 1-36 GHALRT)=b

*52((1—1:%)2—1)“1\4J

Proof. For any integer k € N, Lemma 4.4 ensures that there exist numerical constants §;,8, > 0 and
constants ¢, C; > 0 depending only on / such that in the regime m > cyr(d, + d,), with probability at
least 1 — exp(—Cym), the measurement map < satisfies £, /¢, RIP with parameters (/r;, 8}, 8,). Lemma
4.6 in turn ensures there exist constants cs, ¢g, ¢, cg > 0 such that for any § € (0, 1) as long as we are
the estimate holds:

2
R
ﬁ”f

”Lf

T T
Mﬂf_@Rf

*

in the regime, m > ‘37‘;'+a" and log(m) < cg8%d, iy,

Pﬂl—&%:gzg(y+®%wE{Ln}z1—%5“%Mf

Therefore in this regime, we may upper bound the condition number « of D; and D, by % In light of
Lemma 4.2, in order to ensure exact recovery, it remains to simply choose a large enough / such that the
inequality g—f . (%)2 < /I holds (recall 1,8, are numerical constants). An application of Lemma 4.2
and Theorem 3.2 completes the proof. 0

Appendix A generalizes the material in this section to the noisy observation setting, wherein b =
AM,) + e with e ~ N(0,51) for some 62 > 0.
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5. Matrix completion and approximate recovery

In this section, we focus on the matrix completion problem [9,46]. This is an instance of (1.1) where
the measurement map «7is generated as follows. For each i € [d,] and j € [d,], let &;; be independent
Bernoulli random variables with success probability p. The linear map o: RY1*% — R%1*% g then
defined by the relation

(A =Z;6;  forany (i) € [dy]  [dy]. (5.1

i

The difficulty of recovering the matrix M, is typically measured by an incoherence parameter, which we

now define. Given a singular value decomposition M, = U, X, VnT with X\, € R'%*t, the incoherence
parameter is the smallest > 0 satisfying

nry nry
U H < JZ5 and HV H < =5 5.2
H b 2,00 dl an : 2,00 d2 ( )

Here ||A||2’oo denotes the maximal ¢,-norm of the rows of the matrix A. The strategies outlined in
the previous section do not directly apply for analysing flat minima of the matrix completion problem
because the linear map ;zf(Dl_l Dy 1) does not satisfy RIP type conditions. More precisely, even though
D, and D, are well-conditioned diagonal matrices as shown in Lemma 5.1, the linear map .2/'in matrix
completion does not satisfy RIP condition in general by considering matrices with only one non-zero
entry.

Instead, we will settle for a weak recovery result.

TreoreM 5.1 (Recovery error of flat solution) Suppose that .o7is generated from the matrix completion
problem. Then there exist numerical constants ¢, C > 0 such that the following is true. Given any y €
(0, 1), provided we are in the regime

> Cmax l /Ty log(dmax), ury log(ur,) log(dy,ay) ’ (5.3)
14 dmin dmin

with probability at least 1 — cd 3

min’

any flat solution (Lf, Rf) satisfies

.
HLfRf — M,

=y HMu
*

(5.4)

*

Hence according to Theorem 5.1, in order to conclude that flat solutions achieve a constant relative
. . log dmax .. . .
error, we must be in the regime p 2 ,/ %. This is a stronger requirement than is needed for

exact recovery of the ground truth matrix [13], which is p 2 Wry log(uru)bgd(i%x). Our numerical
experiments, however, suggest that flat solutions exactly recover the ground truth.

As the first step towards proving Theorem 5.1, we estimate the condition numbers of Dy, D,. Note
this lemmas implies that flat solutions are near norm minimal and balanced due to Theorem 3.2.
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Lemma 5.1 (Condition number) For any 6 € (0,1) and ¢ > 1, as long as p > W’M, with

2‘Szdmin
probability at least 1 — 4d_¢ , the estimate
1-8I; <D; < |—1+81I, holds fori =1, 2. 5.5
1ldldz( i, = /dldz(—i-)dl olds for i (5.5)
Proof. Let m = d,d, and set the sensing matrices A;; = §;¢;e; T for all pairs i € [d;] andj € [d,].
Therefore the equality AijA;jr Sue,el holds, and we can write
1 m dy
2
Di=—m 2. &l —ddzdlag ZEUW-,Z% - (5.6)
172 ield)].jelda] =1

Hoeffding inequality implies for each index i € [d,] the estimate

dy

P p%zz;,.j—l > 8 526Xp(—2pd252) V8 > 0.

Taking the union bound over i € [d;] we deduce that the condition

P _a—sr=< D? < _(1 +8)I
dld2 dl 2

fails with probability at most d, exp (—2pd262) < exp(— 2pdy8% + log(d))) < exp ( pdﬁz) <d;“.
Using the same argument for D, and taking a union bound completes the proof. 0

Next, we will show that flat solutions are almost optimal for the standard convex relaxation of the
matrix completion problem, min AX)=A M) X1,

Lemma 5.2 (Flat minima and nuclear norm minimization) Suppose that M, solves the nuclear-norm
minimization problem min AX)=AMy) IX|l,. and suppose that the condition numbers of D, and D, are

upper bounded by some constant « > 0. Then any flat solution (Ly, Ry) of (1.1) satisfies:
Proof. We successively estimate

( )SKZ min ||L|| + = ||R|| =i
ALRT)= MM)Z

where the first and last inequalities follow from (1.10) and the second inequality follows from Theorem
3.2. We therefore deduce ) — ‘

(5.7)

HLJ

R as claimed. m
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It remains to translate the suboptimality gap (5.7) into an estimate on HLfRfT - M, H . This is the
h *
content of the following lemma, whose proof appears in Appendix B.2.

LeEmma 5.3 (Sharp growth in matrix completion) Suppose that the linear map <7is generated according
to the matrix completion model. Then there exist constants ¢,c;,C > 0 such that in the regime p >

Cuur; log(ury) log@max) i probability at least 1 — ¢;d_> , any matrix X with #/(X) = A(M,) satisfies:

dmin min’

L= (1) (b1 ] ). 58

Putting all the lemmas together, we can now prove Theorem 5.1.

|x - m,

cHr log(pry) log(dmax)

dmin

Proof of Theorem 5.1. Lemma 5.3 ensures that in the regime p >

, with probability

5 .
at least 1 — Cldmin’ the estimate

HX — M,

=81+ ) axi. - |m| )
* I3 *

holds for all X satisfying #AX) = /AM,). In this event, Lemma 5.2 ensures that the matrix X := LfR}r
satisfies

11, — |,

=@ w

>
*

where « is an upper bound on the condition numbers of D and D,. Lemma 5.1 in turn ensures that

3 IOg(dmax) 1 111 —5
g e, with probability at least 1 — 4d_ ,

for any § € (0, 1), in the regime p > the upper bound

Kk < 148 §¢ valid. Algebraic manipulations therefore yield, within these events, the estimate

=
ry

< cs /=,
. P

for a some numerical constant C > 0. To summarize, there exist numerical constants ¢y, ¢;, C > 0 such
that the following is true. Given any § € (0, 1), provided we are in the regime

T
HLfRf - M,

(5.9)

B
*

log(d,ay) (5.10)
d ’ ’

min

p > ¢ max{ur, log(ur,),8 2} -

with probability at least 1 — czd_5

min’

any flat solution (Lf, Rf) satisfies (5.9). Let us now try to set
) C?r,
§ “=max11, Wry log(,uru), T .
vop

This choice is consistent with the requirement (5.10) as long as (5.3) holds. With this choice of §, the
estimate (5.9) becomes HLfRJT -M,| <y HM”
k

, as claimed. O
k
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6. Robust PCA

In this section, we focus on the problem of PCA with outliers, also known as ‘robust PCA’, following
the approach in [7,11]. Though this problem is not of the form (1.1), we will see that flat solutions
(appropriately defined) exactly recover the ground truth under reasonable assumptions. The robust PCA
problem asks to find a matrix M, € R91*42 that has been corrupted by sparse noise S,. More precisely,

we observe a matrix ¥ € R91*% of the form

The matrix S, is assumed to have at most /, many non-zero entries in any column and in any row, and M,
has rank r,. Moreover, following existing literature we assume that the matrix M, is strongly incoherent

with parameter ju. That is, given a singular value decomposition M, = U, X, VuT with X, € R, we
let 4 > 0 denote the smallest constant satisfying

. o, - )
ST Y VR R
H tl2,c><>_ d; n2,00_ d2 an 1 oo = dldz ©.1)

where ||-||, denotes the entrywise sup-norm.
One common approach for recovering M, is to solve the problem

2
min min HLRT +S-Y| , (6.2)
LR Se F
where we define the set 2 = {S | ||S||1’1 < HS: 11}, and ||-||1’1 is entry-wise £;-norm used to

promote sparsity. The factors L and R vary over R >k and R%** respectively. As usual, we focus
on the overparameterized setting k > r,. Note that the optimal value of (6.2) is clearly zero.
Observe that we may express the problem (6.2) more compactly as

minf(L,R) := disth (Y — LR"), (6.3)

where distf? denotes the square Frobenius distance to £2. This is the overparameterized problem that we

will focus on. As usual, we let .# denote the set of minimizers of f; note that .# is simply the set of pairs

(L, R) satisfying Y — LR € £2. Observe that f is C' but not C> smooth. Therefore, in order to measure

flatness, we proceed via a smoothing technique introduced in [24, Section 4.2] and [21, Section 4.3].
Namely, we approximate f near a basepoint (L, ) by the local model:
|12

i aLR) = ” Y —LRT — Po(Y — LRT)‘ , (6.4)

where P, denotes the nearest point projection onto £2. It is straightforward to see that the C%-smooth
function f; (-, -) majorizes f and agrees with f(-, ) up to first order at (L, R). We may therefore define a
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minimizer of (6.3) to be flat if it solves the problem:

min _str(D*f; x(L,R)). (6.5)
(LR)eM ’
The following is the main result of the section.

THEOREM 6.1 (Exact recovery in Robust PCA) There is a numerical constant ¢ > 0 such that in the
regime lu < d;f—riq", any flat minimizer (Lf,Rf) of (6.3) satisfies LfR)I = Mu. Moreover, any flat solution
(Ly, Ry) is norm-minimal and balanced.

Proof. Let (Ly,R)) € .# be a solution of (6.3). Since we have f(L;,R)) = 0, the equality

2
fLo,Ro (Lg>Ry) = 0 holds. In particular, we may write fLO’R0 (L,R) = HLRT — Wu‘ , where we define
F

W, =Y —Po(¥Y - LOR(—)r ). Therefore appealing to Lemma 2.1, we may write

str(D2fL0,R0(Lo,Ro)) = 2(HL0”§ + ”RO Hi)

Thus any flat solution (Lf,Rf) of (6.3) solves the problem:

min ILIZ + |IRI?>  subjectto Y —LR" € £2. (6.6)

Equivalently, the characterization (1.10) implies that the matrix X, = Lij;r solves the problem

min || X|l,  subjectto ¥ —X € £2,rank(X) < k. 6.7)

On the other hand, [15, Theorem 3]° shows that M, is the unique minimizer of the convex relaxation
min || X]|, subjectto Y —X € £2. (6.9)
Hence, we know M, also uniquely solves (6.7) and we conclude M, = X, = LfRfT, as claimed. That

(Lf,Rf) is norm minimal and balanced follow from Lemma 3.2 by setting Q; = Ifori = 1,2 and
X=M.. O
f

5 The result [15, Theorem 3] actually shows that (My, Sy) uniquely solves

minimize [ Xl + A IS/l (6.8)
subjectto Y =X+, .

for some A > 0. Now for any solution X} to (6.9), the pair (X1, ¥ — X}) is feasible for (6.8) and satisfies [ Xyl +A IY — X1 <
||Mt ||* + A ”Sb ||1 1> by definition of £2. Hence by the uniqueness of (6.8), we know X = Mj.
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7. Neural networks with quadratic activations and covariance matrix estimation

In this section, we investigate flat minimizers of a one hidden layer neural network, considered in the
work [34,51] for the purpose of analysing the energy landscape around saddle points. Though this
problem is not in the form (1.1), we will see that flat minimizers (naturally defined) exactly recover
the ground truth under reasonable statistical assumptions. As a special case, we will obtain guarantees
for flat minimizers of the overparameterized covariance matrix estimation problem.

The problem set-up, following [34,51], is as follows. We suppose that given an input vector x € R?
a response vector y(x) is given by the function

YU, x) = v q(U] x).

We assume that the output weight vector v € R” has r| positive entries and r, negative entries, the
hidden layer weight matrix U, has dimensions d x r,, and we use a quadratic activation g(s) = s

applied coordinatewise. We get to observe a set of m pairs (x;,y;) € R¢ x R, where the features Xx; are
i
drawn as x; <N (0,1,) and the output values y; are given by
v, = y(x;) Vi=1,...,m.
We aim to fit the data with an overparameterized neural network with a single hidden layer with weights

U € R¥k and an output layer with weights u = (1;,, —1;,), where k; > ry, and k, > r,. The prediction
y of the neural network on input x is thus given by

S, x) =u"q(U"x). (7.1)

Thus the overparameterized problem we aim to solve is

UeRdxk

1 m
min f(U) = — > (U, x) = y)* (7.2)
i=1

As usual, we define the solution set .2 = {U € Rk : f(U) = 0}. We will see shortly that .# is non-
empty and therefore coincides with the set of minimizers of f. Naturally, we declare a matrix Uy € M

to be flat if it solves the problem min,_ %tr(sz (U)). In this section, we aim to show

,,,,,

achieve zero generalization error, that is, E, _y ;) (U, x) — (U, x)) = 0.

Indeed, we will prove a stronger result by relating the problem (7.2) to low-rank matrix factorization.
To see this, we can write y(U, x) — y(U,, x) as

YU, x) —y(Uy,x) = u'q(U x) —vTqU,] x)
= Udiag( U, xx") — ( U, diag() U] xx7)
—_— —_— (1.3)
Uiy -, Uy =:M

_ <Ul vl — u,U7 —Mu,xxT>.
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Here, we write U = [U}, U,] with U; € R®**1 and U, € R¥*_ Note that the matrix M, is symmetric.
Using (7.3), we may rewrite the objective of (7.2) as

F(U,.Uy) = n% Hmf(ul ul - u,U] —MD)HE, (7.4)

where the linear map «7is defined as .«7: R4*¢ — R™ with

[AZ)]; = <Z,xixl-T> for any Z € R4, (7.5)

In particular, from the second equation in (7.3) and our assumption on v, there always exists a matrix
U = [U,, U,] satisfying U, U] — U,U;] = M,. Therefore, the set of minimizers of f is non-empty and
it coincides with .Z. Note that in the special case r, = k, = 0, the problem (7.4) becomes covariance
matrix estimation [14] and further reduces to phase retrieval when k; = r; =1 [10].

Summarizing, finding a matrix U with a small generalization error, |Ex~N(O,1)B’(U ,X) — y(Un,x)]|,
amounts to implicitly recovering the symmetric matrix M, but with the parameterization U, U ;r -U, U;
instead of the usual LR parameterization. The following is the main theorem of the section.

THeorReM 7.1 (Exactrecovery) There exist numerical constant ¢, C > 0, such that in the regime m > C rud
and d > Clogm, with probability at least 1 — Cexp(—cd), any flattest solution Uy = (Uy ;, Uy,) of
(7.2) satisfies

Uf,lU; - UmUEZ =M, (7.6)

and achieves zero generalization error, E,_y I)G(Uf,x) —y(U,;,x) =0.

The rest of the section is devoted to the proof of Theorem 7.1. The general strategy is very similar
to the one pursued in Section 4. We begin with the following lemma (whose proof can be found in
Section B.3) that expresses the trace of the Hessian in the same spirit as Lemma 3.1. With this in mind,
we define the matrix

1

1 m 2
. T
Dy = (m—d ;AIAZ- ) . (7.7)

Lemma 7.1 (Trace) For any matrix [U,, U,] € ., the trace of D*f (U, U,) can be written as

tr(D* (U, Uy)) = 4d | DyU, |2 +4d | Dy Us |- (7.8)

In particular, Lemma 7.1 implies that flat solutions are exactly the minimizers of the problem

min % (IDoti [+ [DoUs]7)  suchthat AU, U] = UyU]) =AMy (1.9)
1,V2
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We would like to next rewrite this problem in terms of minimizing a nuclear norm of a d x d matrix.
With this in mind, we will require the following two lemmas that are in the spirit of (1.10). Their proofs
can be found in Section B.3.

Lemma 7.2 (Decompositions and pos/neg eigenvalues) The following two statements are equivalent for
any symmetric matrix X € R4*¢,

1. X admits a decomposition X = U, U, — U, U, for some matrices U; € R¥*i,

2. X has at most k; non-negative eigenvalues and k, non-positive eigenvalues.

Lemma 7.3 If a symmetric matrix X € R?*¢ admits a decomposition X = U, U — U,U, for some
matrices U; € Rk then equality holds:

. 2 2
X, = .
Xl = o7 o |0, ]2+ sl

Lemmas 7.2-7.3 imply that the problem (7.9), characterizing flat solutions, is equivalent to:

minimize || X||,
subject to AD™'XD™! = A M,), X is symmetric, (7.10)

X has at most k; positive eigenvalues and k, negative eigenvalues.
Therefore a natural convex relaxation simply drops the requirements on the eigenvalues:

minimize || X, subjectto  AD~'XD™') = AM,),X € R is symmetric. (7.11)

The following theorem summarizes these observations.

THEOREM 7.2 (Convex relaxation) Suppose that the matrix D is invertible. Then the problems (7.9) and
(7.10) are equivalent in the following sense.

1. The optimal values of (7.9) and (7.10) are equal.
2. If [U,, U,] solves (7.9), then X = D(U, U, — U,U, )D is optimal for (7.10).

3. If a minimizer X of (7.10) has an eigenvalue decomposition X = P;AP] — P,A,P;
for some diagonal matrices A; € R’ with positive entries, then the matrices U; =
[D~'P/Z;. 04t y]- i = 1,2 are minimizers of (7.9).

Moreover, if X = DMDD is the unique minimizer of the problem (7.11), then any flat solution [U;, U,]
satisfies U, U — U,U, = M,.

Next, we aim to understand when the problem (7.11) exactly recovers D™ M, ,D. The difficulty is that
even in the case k, = 0, the linear map .o/ satisfies £, /¢, RIP only if m - rgd [14], which is suboptimal
by a factor of r,. We will sidestep this issue by relating the program (7.10) to one with a different linear
map that does satisfy the £, /¢,-RIP condition over all rank r, matrices in the optimal regime m e ryd.
The reduction we use is inspired by [6, Equation (0.36)].
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LemMA 7.4 Define the linear map 7, : R¥*¢ — RU™I/2 by

T — .
L, (2)]; = (x”i/;r xz") z(x”\l/E xz’), fori=1,...,|m}/2 (7.12)

and consider the convex optimization program

min X, - (7.13)
2 (D~XD~V)=; (My)

If DM, D is the unique solution of (7.13), then it is also the unique solution of (7.11).

Proof. We first note the equalities

(Lt 1 (D] — [,(2))) . (7.14)

N =

[ (2)]; = %{xzi_1x2_1,2> - %( 2ix2Ti’Z> -

Consequently, any X that is feasible for (7.11) is feasible for (7.13). Thus, if DM, D is a unique minimizer
of (7.13), then it must also be a unique minimizer of (7.11). This completes the proof. [l

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. Notice that the two vectors, x”’j{‘” and x2i—1;X2i’ are jointly normal and
uncorrelated, and therefore are independent. Consequently, the map .27 defined in (7.12) follows the
bilinear sensing model (Definition 4.2). Therefore Lemma 4.4 implies that for any positive integer
k > 2, there exist constants ¢, C > 0 depending only on k and numerical constants §;,6, > 0 and
such that in the regime m > cr,d, with probability at least 1 — exp(—Cm), the measurement map .27
satisfies £, /¢, RIP with parameters (kr,,§;,8,). In this event, Lemma 4.1 with Q) = 0, = D~ ! implies
that <7, (D! - D™!) satisfies £, /¢, RIP with parameters (krn,oc2_281 ,ocl_282), where o; > 01is a lower
bound on the minimal eigenvalue of D and o, > 0 is an upper-bound on the maximal eigenvalue of D.
In order to estimate k, we may write D* = mld STIAA = mid > lIx;l2xx . The same proof as
that of Lemma 4.6 ensures that there exist constants ¢y, ¢,, ¢z, ¢4 > 0 such in the regime, m > c3d and

log(m) < c,d, the estimate P {%Id <D< %Id} >1- cze_cld holds. Consequently, in this regime we
may upper bound the condition number « of D by 3. In light of Lemma 4.2, in order to ensure that DM, D

is the unique minimizer of (7.13), it remains to simply choose k such that the inequality % < vk holds.
Using Lemmas 7.2-7.4 completes the proof. (I

8. Numerical experiments

Recall that we have proved that for a variety of overparameterized problems, (1) flat solutions recover
the ground truth and (2) flat solutions are nearly norm-minimal and nearly balanced (but not exactly). In
this section, we numerically validate both of the claims, in order. Note that finding flat solutions in these
examples amounts to solving a convex optimization problem as long as the number of measurements is
sufficiently large.

Experiment set-up. We consider three problems described earlier in the paper: (a) matrix sensing,
(b) matrix completion and (c) neural networks with quadratic activation. For each setting, we consider
different combinations of the dimension d = d; = d, and the number of measurements m (p for matrix
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completion). For each combination, we randomly generate a rank 2 ground truth unit Frobenius norm
matrix M, (rank 3 for the setting of neural network with quadratic activation), then we take 10 samples of
&/ from the corresponding random ensemble, and for each .7 solve two problems: the convex relaxation
associated with being a flat solution, and the nuclear norm minimization problem. More precisely, the
convex relaxation associated with being a flat solution for (a) matrix sensing, (b) matrix completion and
(c) neural networks with quadratic activation is of the form

minimize,_ g | X|, subjectto  AD;'XD;') = b. (8.1)

For (a) matrix sensing, (b) matrix completion and (c¢) neural networks, the nuclear norm minimization is
of the form

minimizey e |1 X]|, subjectto  AX) = HAM,). 8.2)

Here 7is defined in Definition 4.2, Equation (5.1) and Equation (7.5), respectively. The Euclidean space
&is RU1*% for (a) matrix sensing and (b) matrix completion, and is the set of symmetric matrices of
size d x d for (c) neural networks with quadratic activation. Finally we check their solutions against the
ground truth.

Exact recovery. To measure the success rate for exact recovery, for a solution X from the convex
relaxation of the scaled trace problem (or from the nuclear norm minimization), we measure the

Frobenius norm error HD;IJA(DEI - M, H (or H)A( - M, H for the nuclear norm minimization). Our
F F

criterion for exact recovery is whether this error is smaller than 1076 or not. Figure 3 shows the empirical
probability of successful recovery (averaging over ten times) for each combination of dimension and
number of measurements. The figure is in grey scale and the whiter colour indicates higher success
probability. We observe that the frequency of exact recovery by flat solutions almost matches the
frequency of exact recovery by nuclear norm minimization. Notice moreover that flat solutions exactly
recover the ground truth matrix, though we are only able to show weak recovery.

Regularity. Next we test the regularity of flat solutions for the (a) matrix sensing, (b) bilinear sensing
(c) matrix completlon problems. We only consider the pairs (d, m) such that the matrices DI,DZ are
non-singular. Let X be the solution of the convex relaxation for being a flat solution and let Xnuc be
the solution to the nuclear norm minimization problem. We compute the factors Lf =Dy 'WVE and

R; = D;'V/ using the full SVD of X = USV. We then use the quantity (|L, | —i—HRfH )/2|X,

to measure how norm-minimality of the flat solutions, and the quantity ||Lf Ly — Rf Ry ||* / HMu ”*
measure balancedness. The result (in log 10 scale) is shown in Fig. 4. We observe that whenever flat
solutions exactly recover the ground truth, both measures are small but not exactly zero. In particular,
the norm-minimal and flat solutions are distinct.

o |«

9. Conclusion and discussion on depth

In this paper, we analysed a variety of low-rank matrix recovery problems in rank-overparameterized
settings. We considered overparameterized matrix and bilinear sensing, robust PCA, covariance matrix
estimation and single hidden layer neural networks with quadratic activation functions. In all cases, we
showed that flat minima, measured by the scaled trace of the Hessian, exactly recover the ground truth
under standard statistical assumptions. For matrix completion, we established weak recovery, although
empirical evidence suggests exact recovery holds here as well.
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Convex relaxation of scaled trace minimization Convex relaxation of scaled trace minimization . Convex relaxation of scaled trace minimization
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(a) Matrix Sensing (b) Matrix Completion (c) NNQA

Fic. 3. The empirical probability of successful recovery of My for different combinations of dimension d and number of
measurements m. The whiter colour indicates higher probability of success. NNQA stands for neural network with quadratic
activation.

Matrix factorization problems are suggestive of the behaviour one may expect for two layer
neural networks. Therefore, an appealing question is to consider the effect that depth may have on
generalization properties of flat solutions. In this section, we argue that depth may not bode well for
generalization of flat solutions. As a simple model, we consider the setting of sparse recovery under a
‘deep’ overparameterization. Namely, consider a ground truth vector x, € R? with at most r, NON-zero
coordinates. The goal is to recover x; from the observed measurements b = Ax, under a linear map

A: R? — R™. We assume that A satisfies the RIP: there exist (8;, 8,) such that

8ylxlly < = llAxly < 85 xll, 9.1

for all x € R that have at most 2r non-zero coordinates. The simple least square formulation for finding
consistent dense signals is

1
min  g(x) := — JAx — b|3. 9.2)
R4 m

Xe

We introduce overparameterization by parameterizing the variable x as the Hadamard product © of k
factors x = v; ©@ v, © - - @ v, with v; € R?. Thus, the problem (9.2) becomes

1
min - f0) = — A, ©0---Ov) — b3 withv, eRY, i=1,... k. (9.3)
m

ViseeoVk
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2 2
L R
Fic. 4. The empirical average (over 10 trials) of the regularity measure: (1) minimal norm, "f”fM — 1, and (2) balance,

Kev|
.

|* . Both measures are presented in log 10 scales. Whenever one of the D; is singular, we set both measures to be

The flat solutions are naturally defined as those (vi){.‘: | solving the following problem:

min  tr(D*f(vy,...,v;)) subjectto A(v; @---Ov) = b. 9.4)
k

v,‘E]Rd,i=l,4..,

To compute the Hessian tr(D*f (1, ...,v)), leta; be the i-th column of A. Following a similar calculation
as in Lemma 3.1 yields the expression

2

. 9.5)

r (D (i) = Zk: H\/B("l O Vil OVigy - OV H
i=1
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for any (vl-)f.‘:l € R9*k where |
D= —diag(alTal, ... ,a;ad). (9.6)
m

The following lemma shows that D is close to the identity matrix.

Lemma 9.1 Suppose that the linear map A satisfies (1 — §,1 + §) RIP for some 6 € (0, 1). Then the
matrix D satisfies

(1-82 <D= (1+57L
Proof. Indeed, since D is diagonal, we only need to show %a?ai € [(1 —8)2, (14 8)?] for each index i.
Note that % ||Aei ”; = %a?ai. Since e; is a sparse vector with only one non-zero, using the (1 —§,1+6)
RIP, we have LaTa; = LA, | € [(1-8)? |le;], . (1482 |le;]|21 = [(1 = )% (1 +8)2] and our proof
is complete. u

The next lemma shows that the following optimization problem is equivalent to the optimization
problem defining flat solutions (9.4).

d
2
min D.||x.|> % st Ax=b. 9.7)
min ; il il

Denote by v, ; the j-th component of the vector variable v, for I < h < k.
Lemma 9.2 Problem (9.4) is equivalent to Problem (9.7) in the following sense:

* If xsolves (9.7), then any v; satisfyingx =v; © --- © v; and |v1J| =...= |ka-| forany 1 <j<d
solves (9.4).

e Ifv,...,vs0lves (9.4),thenx =v; © - - O v solves (9.7).
Proof. According to (9.5), the trace of the Hessian is

k
e 1) = X VD @ vy @y 0w Hz
i=1
k d
SHIn 0

i=1 j=1 h#i

d
= Z Djj 2 H vi‘i (9.8)
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FiG. 5. The effect of depth for different choice of sparsity ry.

In the step (a), we use the well-known AM-GM inequality. The equality holds if and only if |v, ;| =
- = |l forany 1 < j < d. The rest follows by lettingx =v; © -+ © ;. O

For the case k = 2, the objective is Z?:l |D;;11x;] = 1|Dx||; which is the rescaled £; norm for a near-
identity matrix D. Hence, an argument similar to those in Section 4 reveals the minimizer is uniquely x,.
We state this result formally below.

Lemma 9.3 There is a universal constant ¢ > 0 such that if the linear map A satisfies (1 — §, 1 + §) RIP
with 0 < 8 < ¢, then for k = 2, any solution (v, v,) to (9.4) satisfies x, = v; © v,.

On the other hand, higher values of k do not encourage sparsity. In the extreme case k — 00, the
objective function in (9.7) is close to ||x||%, which should give a dense solution in general. Indeed, in Fig. 5,
we plot the solution performance of (9.7) for different values k = {2,3,...,10} and r, = {1,2,3,4,5}

measured by the relative error M 6 Indeed, exact recovery is observed for k = 2, while the relative

llx21l,
error degrades significantly as k increases.
Data Availability Statement

The data underlying this article are available in the article and in its online supplementary material.
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A. Extension to noisy observation

This section considers an extension of the flat solution concept to the setting where the observations are
corrupted by noise:

b=(M,)+e, e~N©O01L,), (A1)
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where o > 0 is the noise level and N(0,1,,) is the standard m-dimensional Gaussian. Our discussion
in the rest of the paper focused on the simpler case 0 = 0. We define the flat solution in this setting
as follows. We continue to use the scaled trace str(D*f(L, R)) as the flatness measure of the objective
function. However, instead of considering all solutions (L, R) that interpolate the data, we consider those
pairs (L, R) that are in the sublevel set:

[@r 1| = 5] <el). (A2)

The reason for this choice is that in the noisy observation setting, the global solution of (1.1) (with
k = min{d,, d,}) has the potential of overfitting no matter what regularization has been enforced. Indeed,
consider the simplest case /' = ., i.e. the map .«is the identity map. In this setting, any global minimizer
LR is simply the observation b = M, , + e itself. With the above preparation, we define the flat solutions
to be the minimizers of the following problem.

min  st(D*f(L,R)) subject to H ALRT) — bH < llell, . (A3)
LER‘II ><k’ RE]Rdz xk 2
The goal of the section is to prove the following.

Theorem A.1 (Noisy matrix sensing) Suppose that <7 is a Gaussian ensemble and the noise follows e ~
N(O, ozlm). Then there exists universal constants ¢, C such that for any m > Cr.d, ., with probability
atleast 1 — C exp(—c(d; + d,)), any solution (Lf,Rf) of (A.3) satisfies

d d
< Co | TD) (Ad)
F m

Note that the bound o/ w is minimax optimal according to [8].

.
HLfRf — M,

A.1  Proof of Theorem A.1

Following (3.5) and (3.6) in Section 3.1, we see that (A.3) is equivalent to (in the sense of Theorem 3.1)
minimizing the nuclear norm over rank constrained matrices so long as D, D, matrices are invertible’ :

min I1X11, subjectto  [leAD] XDy — b|| < |le]l. (A.5)
XeR41%42; rank(X) <k

Let ¥ be any minimizer of (A.5). Also denote the scaled linear map o ) = ffzf(Dl_1 -Dy 1), the scaled

ground truth Y, = DM, D,, and the difference A = Y — Y, Our task is to show [|All, < o4/ W.

The bound (A.4) then immediately follows using D;LR"D, = X and the fact that D, and D, are near
identity from Lemma 4.5.

7 Note that the condition M(LRT) = b is not needed for (3.2) to hold, which is critical for the step (3.5) to hold in the noisy case.
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A.1.1 Bound || All, Our proof is based on the argument in [47]. Starting with the feasibility of Y, we
have

e o I I P RN P ] [ P Y
(A.6)

— % HMA)HZ < —n—1<A,@%* )“’) HM Al

Here the step (a) is due to expanding the square for the left-hand side, and the step (b) is due to Holder’s

inequality. We next try to lower bound 5 - H A(A) H and upper bound H o*e and Aajl,.

Upper bound || A||, First, let us 1ntr0duce a lemma that decomposes A.
Lemma A.1 [47, Lemma 2.3 and 3.4] For any A,B € R9>4_ there exists B,,B, such that (1) B =
B, + B,, (2) rank(B,) < rank(A), 3)AB] =0andATB, =0, (4) |A + B, |, = llAll, + | B, ||, and (5)

<Bl,Bz> =0.
Using Lemma A.1, we can decompose A = R, + R, such that YORCT =0, Y(—)'—RC =0,R) < ZVH’
<R0, > 0,and | Yy +R.|, = ||Y,], + [ R.],- Hence, we have

7], =1%o+ Al = 1% + Rl = IRl = Yol + I&]L = %], (A7)

we have that

Using the optimality of H)A’H <%l
*

IRl = [Rol.- (A8)
Using the fact that R, has rank no more than 2rJ and <R0, RC> = 0, we have
(b) (©)
1Al < R, + [Roll, = 2|Ro, = 2y/2r |Ro|l, = 2,/2r, 1Al (A.9)

Here in the first step, we use the triangle inequality for || A||,. This finishes the upper bound of ||A]],.

. 2
Lower bound on% Hd(A) H2 Next we partition R, into a sum of matrices R, R,, ... each of rank

at most 3r, as in [47, Theorem 3.3]. Let R, = Udiag(o)V’ be the singular value decomposition of R,.
For each i > 1 define the index set ; = {3r,(i — 1) + 1,...,3r;i}, and let R; := U,l_diag(oli)vl/i. Using

the fact that <RC, R0> = 0 and the construction of R;, i > 1, we also have

<R,.,Rj> —0, Vi#jij>0. (A.10)
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By construction, we have

0k<—Zaj Vjel,,, (A.11)

which implies ||R; 1% 7 < 3rt IR; ||2 We can then compute the following bound:

;”RJ‘”F—\/»ugllRll*—\/» FRO*“J‘/:

where the step (a) is due to (A.7), and the step (b) is due to the fact that rank(R;) < 2ru. From this
inequality, we also have

IR, II* <

(A.12)

1al, < [Ro 4+ Rl + 2 |R[ < IRo+ Rl +20Ro], <3[R+ R, A1)
Jj=2

The last equality is due to that <RO, R]> = 0. Hence, we have that

1 -
ﬁnmmnz_f||d(Ro+R1>||2 ];fnd(mnz
(1= 8) [Ry+ Ry, = (1 +8) D[R]

Jj=2
(A.14)
(b)

2 (1= 8) [Ry+ Ry [, =21 +8) Ry,

(©)
zey Ry + Ry |,

@
=cp 1Al

Here, in the step (a), we use the reversed triangle inequality. In the step (b), we use (A.12). In the step
(c), we use <R0,R1> = 0 and the choice of §. The last step (d) is due to (A.13). This finishes the lower

1 7, 2
bound on \/—%Hd(A)HZ.

. Note that &7* (e) = Dfl (,Qf*e)Dgz. Hence HJZZ* <
op

op

Estimating H o e

= HD;lﬂ*(e)Df

—1
|

”‘/Qﬁ e”O B
P
op

} . From [56, Proof of Corollary 10.10], we know that with probability at least
op

1 — cexp(—c(d; + d,)), the inequality % |.«/*ell,, < Co % holds. Since 0.91 < D; < 1.11, we

have
1~ d,+d
- | <Co [DTh (A.15)
m op m
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Nuclear norm minimization Convex relaxation of scaled trace minimization

Fic. A6. Matrix sensing with nuclear norm minimization (left) and the convex relaxation (or k = d) of Problem (A.5) (right) for
different configurations of (ry,0).

Combining (A.6), (A.9), (A.14) and (A.15), we conclude [|A]l, < o/ Z9F2E a5 claimed.

A.2 A numerical demonstration

Finally, we validate Theorem A.l via a numerical experiments. We compare the performance of the
minimizer X of Problem (A.5) for the case k = min{d;,d,} and the solution )A('nuc of the nuclear norm
minimization (Problem (A.5) with D, D, being the identity).

Experiment set-up We set d = d; = d, = 25 and m = 1000. We generate the underlying unit
Frobenius norm ground truth matrix Mu randomly with rank r, = {1,2,3,...,10}. We vary the noise
level 0 = {0.1,0.2,...,1.3,1.4,1.5}. For each rank ry, We generate the sensing Gaussian ensemble o7
with m = 1000 and use the same one for different noise levels. Then for each noise level, we generate 25
realization of the noise e following N (0, o21), and solve the corresponding Problem (A.5) and the nuclear

norm minimization problem. We then average the error ”Dl_l)?Dz_ r_ M;| and HX — M, | over the 25
F F

trials for each configuration of r, and 0.

Recovery Performance We plot the error in Fig. A6. The white colour indicates small error and
the dark colour indicates large error. It can be seen that it is hard to differentiate the performance of
the solution to the nuclear norm minimization problem and the solution to Problem (A.5). This result
validates our theoretical results in Theorem A.1.

B. Missing proofs
B.1  Proof of Lemma 3.2

Proof of Lemma 3.2 Lemma 2.2 implies that the pair (Q;L, Q,R) is balanced, that is LT Q%L =R" Q%R.
Hence, we may decompose LT L — RT R in the following way:

LT 2L RT 2R
LTL—RTRz(LTL—#)+( % —R'R). (B.1)

a;
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We bound the first term on the right as follows:

LTO%L 1 (@) 1
Ay LT(I__ZQ%)L < LT(I——ZQ%) LI,
3 o ®
* * F
(B.2)
() 1 —
= 1= =0t 1= (1« 72) L.
o
2

op

Here, (a) and (b) follow, respectively, from the basic inequalities: [|FG|, < [|F|, |Gl and |[FG|p <
IFIl,, IGIl., which hold for all matrices F and G with compatible dimensions. A similar argument yields

RTQ2R
RTR— —*

the inequality -
2

< (1 — K’z) ||R||§. The estimate (3.11) follows immediately. 0
%

B.2  Proof of Lemma 5.3

Proof of Lemma 5.3. LetM, = U, X, VDT be a singular value decomposition of M;, where X, € R" §x7y
is a diagonal matrix of singular values. Define the matrix R := X — M, and define the map P by

PyZ):=UUZ+2zv,V] —U U zV,V/], (B.3)

Set PﬁL (2) := Z — P (Z). Observe that we may bound ||R], as follows:

IRIL = [P 2 (B + P 5(R) 1P, 2 [P p®]| + o [P o)

=l

F’

(B.4)

where the step (a) is due to the fact that P 5(R) has rank no more than 3r,. We now bound ”P 7 (R) H
3

and ||P HAR) ||F separately. As verified in [16, Section 6], the premise in [13, Proposition 2] is satisfied

with probability at least 1 — c3d1_5 — c3dy 3 for some universal ¢z > 0 under the condition p >
Cury lOg(IUJ) log(dmax)
dmin

at least 1 — c3d1_5 —c3dy 3, the inequality

. Hence, the result [13, Proposition 2 and its proof]® shows that with probability

P @®)| =8(IXI, — M| ) (B.5)
|p @], I,

holds. Moreover, the premise in [13, Lemma 5] is satisfied with probability at least 1 — c4d1_5 —cydy >
for some universal constant ¢, > 0 as verified in [9, Lemma 4.1] or in [15, Lemma 11]. Hence, [13,

8 Specifically, the first displayed equation above [13, Lemma 5]
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Lemma 5 and its proof]® shows that with probability at least 1 — c4d1_5 - c4d_5, the inequality
V2
PR, = =P @) B.6
P50l = %2 [P )] ®6)

holds. Combining (B.4), (B.5) and (B.6) yields the desired inequality (5.8). Il

B.3  Missing proofs in Section 7
Proof of Lemma 7.1. Elementary algebraic manipulations show the expression for the trace:
r(D*f (U}, Uy)

ZZH.Q/(Ulee + ¢je; UT)H +— ZZH%@ U2 —i—Uze )Hj

i=1 j=I i=1 j=1

(B.7)

Here e; is a standard basis vector in R4 and e; is a standard basis vector in R¥. Using the symmetry of
the matrices A;, the first term can be written as

m

ZZH%(UIM +ee; UIT)HE =2iiZ<A,, Ulejejf_ (B.8)

i=1 j=1 i=1 j=1 I=1

Following exactly the same computation as (3.4) completes the proof. (]

Proof of Lemma 7.2. The implication 2 = 1 follows from an eigenvalue decomposition of X. Conversely,
suppose | holds. Observe that | clearly is equivalent to being able to write X = A — B with A, B > 0,

rank(A) < k; and rank(B) < k,. Let r; be the number of strictly positive eigenvalues of X and let
r, be the number of strictly negative eigenvalues of X. We now prove r; < k; by contradiction. A
similar arguments yields r, < k,. Suppose indeed r; > k; and consider the matrix A := X + B. Let
be the span of eigenspaces corresponding to the top r; eigenvalues of X. Note that %/has dimension r,.
Cauchy’s interlacing theorem implies that the r|-th largest eigenvalue of X + B satisfies that A, (X+B) >

T T T
mlnve%\{o} (f{';B)V Since B > 0, for any v € %\ {0} we estimate * (5({3)" = X"+" By > "?XV >

A, (X) > 0. We conclude that that rank of A is at least r;, which is a contradiction smce A has rank at
most k. O

Proof of Lemma 7.3. First, using triangle inequality, for any (U;, U,) such that X = U] UlT - U, U2T ,
2
we have X1, = [0, — 0] |, < 0,07 |, + V20 |, = v o)) + v w,ud) = o+
|| U, ||§ Conversely, suppose that we may write X = U, UI'— -U, U2T for some Uy, U,. Then Lemma 7.2
implies that X has at most k; non-negative eigenvalues and k, non-positive eigenvalues. Thus, we may

% In the displayed equation in the statement of the lemma, one can simply replace w by % and set Z = R.
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write any eigenvalue decomposition of X as X = P, A]PlT -P, Ang, where the diagonal matrices A; €

R’i*"i have positive entries. By taking U; = [P;,/A,, O, —, 1, we see that equality || X]|, = H U, Hf+ ” U, ”f
holds. O
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