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For many years now, modern software is known to be developed in multiple languages (hence termed asmultilingual ormulti-language

software). Yet to this date we still only have very limited knowledge about how multilingual software systems are constructed. For
instance, it is not yet really clear how different languages are used, selected together, and why they have been so in multilingual software
development. Given the fact that using multiple languages in a single software project has become a norm, understanding language
use and selection (i.e, language profile) as a basic element of the multilingual construction in contemporary software engineering is an
essential first step.

In this paper, we set out to fill this gap with a large-scale characterization study on language use and selection in open-source
multilingual software. We start with presenting an updated overview of language use in 7,113 GitHub projects spanning five past
years by characterizing overall statistics of language profiles, followed by a deeper look into the functionality relevance/justification
of language selection in these projects through association rule mining. We proceed with an evolutionary characterization of 1,000
GitHub projects for each of 10 past years to provide a longitudinal view of how language use and selection have changed over the
years, as well as how the association between functionality and language selection has been evolving.

Among many other findings, our study revealed a growing trend of using 3 to 5 languages in one multilingual software project
and noticeable stableness of top language selections. We found a non-trivial association between language selection and certain
functionality domains, which was less stable than that with individual languages over time. In a historical context, we also have
observed major shifts in these characteristics of multilingual systems both in contrast to earlier peer studies and along the evolutionary
timeline. Our findings offer essential knowledge on the multilingual construction in modern software development. Based on our
results, we also provide insights and actionable suggestions for both researchers and developers of multilingual systems.
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1 INTRODUCTION

A number of studies have suggested that software written in multiple languages1 (i.e.,multilingual software—as opposed
to single-language software which is developed solely in one language) is prevalent. For instance, 20% of the 9,997
projects sampled on SourceForge [35] used two languages while 12% of them used three [13]. A later, industrial report
found that most of applications developed by top companies were written in 2 to 15 languages [23]. This is consistent
with more recent studies finding that more than half of the randomly sampled open-source projects on GitHub were
developed in two or more languages, despite the largely varying sample sizes (e.g., 729 [43], 1,150 [33], and 15,000 [44]).

Intuitively, the prevalence and dominance of multilingual software is justifiable given the impetus (e.g., benefits or
even necessity) of using multiple languages in a single software project [1, 49]. Indeed, different languages have their
own peculiar strengths and weaknesses [10, 36]. Thus, combining various languages could be a natural consideration
by developers for building software that requires capabilities each best offered by one of the selected languages. For
example, a web application may use Python, a general-purpose language (GPL), and HTML, a domain-specific language
(DSL), to combine their productivity and presentation merits, respectively. Similarly, an IoT software developer may
use Java for plug-in development to exploit its portability advantage, along with C for implementing system-level
features to leverage its efficiency advantages. It is also common that the different components of a distributed software
system [8, 15], like in Android apps [6, 7], are developed in different languages to benefit from the decoupled design.

So much as the employment of multiple languages reduces software costs and improves software development
productivity, the multilingual construction paradigm also leaves larger room for quality threats, including functionality
defects and security vulnerabilities [28], in the resulting systems. Intuitively, the more languages used in a system, the
harder the quality issues across different language units could be diagnosed effectively. However, before we focus on
developing tool support for multilingual software quality assurance, we must first address the basic knowledge gap
about how multilingual systems are constructed. The lack of this knowledge creates immediate barriers for building
quality multilingual software. For instance, while developers recognize the general benefits of using multiple languages
in one project, it may not be straightforward for a developer to make decisions in multilingual software development
as regards how many and which languages should be used given the (e.g., functionality) requirements [34]. These
decisions may be particularly challenging yet important to make given the large [23] and growing [27] number of
languages as well as the constant evolution of the languages (e.g., in their features and capabilities) [45]. In this context,
understanding how developers of existing multilingual software have selected languages, the rationale behind the
selection, and the potential changes in the decision-making over time is a first yet essential step towards helping future
developers deal with similar decisions and informing language designers about future language design considerations.

The use of programming languages in software development has been studied, concerning the factors that affect the
success of a language [10], the popularity of different languages [4, 25, 36, 43], interactions/relationships (e.g., similarity)

1In this paper, we refer to as ‘languages‘ any computer languages, including but not limited to programming languages.
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across languages [4, 25, 46], as well as evolution of languages in these regards [10, 25]. Relevant studies also have
addressed the effects of language use on the defect-proneness [43], quality risk of the lack of maintenance [46], and bug
resolution characteristics (e.g., bug fix size and time) [50] of the resulting software. However, these prior studies mainly

targeted single-language software, focusing on how individual languages were used.
Studies looking at language use in multilingual software do exist, which addressed the prevalence of such software [34,

44] as well as good/bad practices for various quality factors in developing software [1]. Few of these studies looked into
the possible rationale behind developers’ choice of languages and justifications of language combinations in multilingual
projects [49]. Moreover, several of these studies were based on developers’ perceptions through surveys [1, 34] rather
than examining the actual artifacts of multilingual software projects. Two studies [13, 33] investigated the associations
among chosen languages in multilingual software based on actual project data. Yet, like other peer studies, they did
not examine how the language combinations in a multilingual project may be justified with respect to development
decisions (e.g., functionality category/domain or project topic). In particular, the more recent study [33] (as performed
in 2015) did not apply an evolutionary perspective but rather considered the dataset (1,150 projects) as one single
collection from GitHub. The other considered the evolution of language use during the years of 2000—2005 [13]; since it
was conducted over a decade ago, the relevance of the results might have significantly deteriorated.

In this paper, we conduct a large-scale characterization study of multilingual softwarewith a focus on theirmultilingual

construction in terms of language use and selection (i.e., language profile), sampling those in the open-source community
while taking a longitudinal lens. The goal of our study is three-fold, subsuming three specific aims: (1) provide an
updated, multifaceted overview of language use and selection in contemporary multilingual software in terms of overall
prevalence, language distributions, and language-combination popularity, (2) take a deeper look into the functionality
relevance of language selection in terms of the quantitative association between these two factors, and (3) offer a
longitudinal view of (1) and (2) in terms of the evolution of both. The key motivation is that outcomes of these aims
would lead to an understanding of how corresponding multilingual development decisions have been made, which will
inform future decision-making in relevant regards. These aims and outcomes differentiate our study from, and make it
complement to, previous peer studies on the use of programming languages. While multilingual software construction
concerns many other aspects (e.g., data model/format, architecture, and human factors), we chose to only study the
language selection/use aspect in order to keep a necessary focus in a single paper.

Around these objectives, our study revealed a range of novel findings about multilingual software construction as
highlighted below.

Overall statistics/characteristics on language use/selection. Among 7,113 projects we sampled, despite the large
number of (296) languages in use as available unique choices, most of the studied multilingual software projects
only used 2 to 5 languages (mean=4.5 and median=3). Similar results were reported earlier [44] (mean=6 and
median=5) and [33] (mean=5 and median=4). We also found that languages widely existed which were used
frequently but only lightly (in terms of the associated code size) in multilingual software (e.g., shell and cmake),
albeit mainstream languages tended to be used both frequently and contribute significantly to the software code
size (e.g., c/c++ and javascript). The combinations of these mainstream languages also tended to be popular
for developers (i.e., the top combinations of languages were often those of top individual languages used). In
terms of how the used languages interact with one another, implicit interfacing (e.g., two languages exchange
data via interprocess communication) mechanisms were used notably more often than explicit ones (e.g., the
code of one language explicitly calls a function written in another language).
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Functionality relevance/justification of language selection. Our study revealed a variable yet generally strong
association between functionality domains andmain languages, betweenmain languages and language interfacing
mechanisms, and between the interfacing mechanisms and language selections, which justifies the overall
association between functionality domains and language selections being strong as well, in the studied multi-
language projects; in contrast, prior work only focused on the correlation between software categories and
individual languages [4]. Meanwhile, some language combinations were more strongly associated with certain
domains than others. These results offer a lens to an in-depth understanding of how languages are selected in
multi-language software, an empirical reference for developers when choosing a typical language combination for
a common topic/domain, and potential insights for program analysis researchers on what language combinations
to focus on and analyze.

Evolution of language use and selection. The number of languages and the number of projects using multiple
languages have both been increasing every year. This observation brings to light a growing trend in which
developers are choosing to use various combinations of multiple languages to construct software systems
quickly to keep up with increasing demands. Meanwhile, over time, the lists of top individual languages and top
language combinations used in the studied multilingual systems were stable, although the absolute ranking of
top combinations has changed. For specific software categories, the language combinations used to implement
corresponding kinds of software changed from year to year; yet the primary language commonly kept stable (e.g.,
our study indicated that albeit the language combinations for the category of End-user application changed
every year, javascript was consistently included in the language combinations for constructing software in
that domain). In all, over the 10 past years, some language combinations were more stably associated with certain
domains than others, and the association was generally less stable than that between individual languages and the
domains. Moreover, language interfacing mechanisms had been being adopted in an increasingly diverse manner,
signaling the growing construction complexity of multi-language software; meanwhile, implicit interfacing has
generally maintained a consistent dominance over other language interfacing mechanisms over time during the
studied 10-year span.

We have released all of the source code and data sets used in our study, as found here2 and here3. We will turn them
into archived open data with detailed documentation.

Paper organization. The rest of this paper is structured as follows. We start with our study design in Section 2,
elaborating data collection, filtering, development of study toolkit, and experimental procedures. We then present our
empirical results and major findings in Section 3, followed by an in-depth discussion of the insights and implications
behind our results in Section 4, along with the various threats that may affect the validity of the results. After that,
Section 5 relates our study to relevant prior works, right before we offer concluding remarks in Section 6.

2 METHODOLOGY

We first outline our research questions, which provide the overarching guideline for our study. Next, we describe our
approach to answering these questions, starting with an overview of our study process and followed by elaborations on
the datasets and data analyses used in our study.

2https://www.dropbox.com/s/h515kgfufyi2mr1/Multilanguage_Tool.zip?dl=0
3https://bitbucket.org/wsucailab/multilangstudy/
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2.1 ResearchQuestions

In accordance with our study goal and specific aims (Section 1), we seek to answer the following three main research
questions, for which the scope, rationale (justification), and approach are also outlined below.

• RQ1 What statistical properties describe the overall characteristics of language use and selection in
multilingual software?
Scope. We start with a basic empirical analysis of the overall language use in multilingual software, including
the prevalence of individual languages versus that of various language combinations, as well as the distribution
of languages within and across projects.
Rationale. These overall statistical properties provide a recent, multifaceted overview about the language profile
as a basic construction characteristic of multilingual software, fulfilling the aim (1) of our study. Also, given the
age of closest prior studies and the evolution of languages [45], the general statistical properties also reveal an
updated view of the characteristics of multilingual software regarding language use.
Approach. We started with a random sampling of 10,000 open-source projects on GitHub that has been active
throughout the five past years (2015 through 2019) and received at least 1,000 stars. This initial process ended
up with 7,113 projects that come with meta data necessary for our empirical analysis (e.g., language profile
information and meaningful project descriptions). We calculated basic statistics of the dataset to compute the
metrics and measures within the scope of this question (e.g., #languages used per project, ranking of top language
combinations, language distribution in terms of the occurrences of unique languages and the size of code written
in different languages, and mechanisms in which the selected languages interface with each other).

• RQ2 How is language selection related to the functionality domain/topic in multilingual software?
Scope. We further characterize multilingual software by examining whether developer decisions in choosing
which languages to use in these software projects may have been associated with the project topic or software
domain in terms of their functionality categories. If such associations exist, we proceed to quantify the extent.
Rationale. Intuitively, an essential milestone in understanding the practice of multilingual software construction
is to understand why developers select the particular languages they choose to use. One avenue toward the milestone
would be to measure the relationship between language selection and functionality domain/topic—prior work
based on developer opinions suggested that one reason that developers chose to use different languages is their
perception that each language offers the best features for certain functionalities of the software [1, 34]. While
such a quantitative analysis as in our study focusing on this single aspect may not suffice for fully answering the
why question, studying the functionality relevance of language selection should be a useful step, which fulfills
the aim (2) of our study.
Approach. With the same dataset used for RQ1, we computed the functionality topic from the natural-language
project descriptions through topic modeling. We then used the extracted topics to form common domain names
for the studied projects after manual normalization and calibration, following a principled approach (i.e., inductive
and axial coding processes) to label the functionality domain of each project. Next, we discovered and quantified
the correlation between functionality domains/categories and language combinations in the (7,113) projects
through association rule mining. We also took a deep dive into these overall associations through the selection
of main languages and language interfacing mechanisms, while examining the effects of non-programming

languages (as opposed to programming languages) on the associations.
• RQ3 How has multilingual software evolved in terms of language use and selection?
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Scope. We lastly characterize the evolutionary dynamics of multilingual software, via a time-aware empirical
analysis of how the overall language use and the association between language selection and project functionality
category (i.e., the answers to RQ1 and RQ2, respectively) have changed over time.
Rationale. One widely recognized norm of modern software is that in general they constantly evolve. For
multilingual software in particular, it is reasonable to assume that the evolution of language use and selection
plays a significant underlying role in the overall evolutionary dynamics of these software projects. Understanding
the dynamics in the past would naturally help make informed decisions for future multilingual development and
language design. For instance, studying how the functionality relevance of language selection has changed over
time can provide insights on the same into the future. In addition, peer studies in the last decade [4, 33, 43, 50]
provide rich insights into the language use in contemporary software development yet without incorporating a
longitudinal view, a gap we intend to fill so as to fulfill the aim (3) of our study.
Approach. We randomly sampled GitHub for open-source projects in the 10 past years (2010 through 2019)
and used 1,000 projects for each year in our evolution study. With the per-year datasets, we performed the
same empirical analysis for each year as used on the dataset used for RQ1 and RQ2. We then characterized
the evolutionary traits of multilingual software in terms of language use (e.g., top language combinations
and language distribution), selection (i.e., association between language combination and project functionality
category), and language interfacing mechanisms from the per-year characterization results.

2.2 Study Overview

To answer the above three research questions, we propose an orchestrated characterization study whose overall process
flow is depicted in Figure 1. As its primary input, the process takes the Git repositories of open-source projects on
GitHub [17]. From this data source, we mined the repositories of different numbers of projects for two complementary
characterization studies. The first considers all projects to be from a single period (hence referred to as single-period
characterization (SPC)), which aims to answer RQ1 and RQ2 based on the projects from the five past years (2015-2019)
as a whole. The second characterization considers projects per year (referred to as evolutionary characterization (EVC)),
which aims to answer RQ3 based on projects from each of the 10 past years (2010-2019) separately.

Repository 
Mining

GitHub 
Repositories

Repository 
Mining

Project Set (2015-2019)

Projects from past 
five years as a whole

RQ1

Projects from each of the 
past ten years

SPC Results 2010

……
SPC Results 2019

Evolutionary Characterization (EVC)RQ3

Project Set 2010

……
Project Set 2019

Empirical 
Analysis

Functionality 
Domain 

Identification

Association
Analysis

Projects 
Topics

Single-Period Characterization (SPC)
RQ2

Fig. 1. Overview of the process flow of our multilingual software characterization study.

More specifically, in the SPC study, an empirical analysis is performed to compute basic statistical properties
of the dataset to answer RQ1. This analysis also extracts project topics, from which project functionality domains
(i.e., categories) are identified through topic modeling. Then, we computed the relationships between the resulting
categories and top language selections via an association analysis to answer RQ2. In particular, we first look at the
overall association between functionality domain (FD) and language selection (LS), followed by a closer look into such
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associations through two key underlying factors of LS in relation to FD: main language (MaL) and language interfacing
mechanism (LIM). The rationale here is that when developers select languages for a target functionality domain, it is
intuitive for them to first select MaL, then LIM according to the MaL chosen, and finally the other languages hence the
entire language combination (i.e., language selection).

In the EVC study, per-year characterization results are computed first by running the SPC on the projects from each
year. The resulting per-year SPC results are then used to characterize the evolutionary dynamics of all the projects
across the 10-year span hence answer RQ3.

Next, we elaborate on the two characterizations separately, after describing the common repository mining step that
produced the dataset used for each characterization.

2.3 Repository Mining

To obtain the datasets needed for our characterization studies, we retrieved raw project repositories from GitHub
followed by two data processing steps, as described below. These three steps constitute the data collection procedure
that we applied for each project.

Raw repository retrieval. We accessed each original project repository using the GitHub’s Version 3 Python API [18].
In particular, we retrieved repositories that meet three criteria as listed and justified below, each corresponding to a
project property specified when invoking the repository query via the API.

(1) Popularity. We used the property "star" as the popularity indicator of a project as in prior work [38, 43]: the
larger this property’s value, the more popular the project. We only chose projects that had at least 1,000 stars as
these projects were considered popular ones [38]. Given the huge number of projects on GitHub, we intended to
focus only on characterizing software that likely represents influential development practices, with respect to
the goal of our study. While high popularity may not necessarily indicate high quality, it is reasonable to assume
that the more popular projects more likely represent the practices that have greater influence.

(2) Creation time.We used the property "created" as the indicator of when the project was created. We only chose
projects that were created in no more than 10 years. The rationale is that a project likely does not represent
contemporary software characteristics if it is too (over 10-years) old. Also, none of our two characterizations
would look beyond the span of 10 past years (2010 through 2019).

(3) Update time. We used the property "pushed" as the indicator of the latest time the project was updated. We only
chose projects that have been updated in the latest six months (relative to July 2022 when we started sample
project crawling). The rationale is that more active projects tend to more likely represent ongoing software
development practices.

While GitHub offers a valuable source for software data mining, there are multiple perils in conducting studies based
on GitHub mining [24]. For example, most of the projects on GitHub were found inactive. It is for this reason that we
applied multiple selection criteria as described above. But we have additionally applied a basic filter in light of another
peril: many projects on GitHub are not used for software development activities [24]. Thus, we have skipped repositories
that are not for software development projects (e.g., personal/course websites and tutorials)—assisted by automated,
conservative checking, we have spent extensive effort to apply this filtering step. In particular, we manually defined a
list of heuristic words that might be indicative of common kinds of non-software-development projects on GitHub
based on our experience (e.g., “tutorial", “course", “website", “book", and “list"). We then applied this conservative list to
automatically check against project descriptions to obtain a rough list of potentially non-software-development projects.
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Lastly, we manually validate each project in this rough list as software development versus non-software-development
projects by reading any documentation available and the source code as much as necessary.

Mining key project properties. Given a project’s URL, detailed project information can be obtained (using the GitHub
API). Among the over 70 different project properties available, most were irrelevant for our current study. The relevant
ones are listed in Table 1.

Table 1. Key project properties retrieved during the software project repository mining for our study

No. Field Description
1 id Repository Id
2 language URL the hyperlink for querying the project’s languages
3 topics List of topic tags
4 description Simple description of the project

These four fields contained pertinent information for our study. Accordingly, we set two constraints: (1) a project
must contain at least one valid topic, which should not be just a programming language name; (2) a project’s description
must contain at least 5 characters. These minimal requirements were set to ensure that we have valid information to
derive the project’s functionality category.

Mining language information. Information on the languages used in a project is key to our study. With the language
URL (Field 2 of Table 1) retrieved for a project, the GitHub API enables us to query the detailed language information
for the project. The information we gathered includes the number of languages and the number of bytes written in
each language. As an example, the query result for a project was {’css’: 71539, ’html’: 17627, ’javascript’:

992797, ’shell’: 340}. We refer to this information as the language profile of the project, where the numbers
indicate the number of bytes written in each language (referred to as the language code size of the language). When a
project’s profile size (i.e., #languages used) is greater than 1 (i.e., potentially multi-language project), we detect/classify
the interaction between the languages using our multi-language software characterization tool PolyFax [29]. We only
keep the project if is a really multi-language project (i.e., there exists an interaction between the languages).

2.4 Single-Period Characterization (SPC)

SPC is the core component of our study process. It takes as input a set of projects without considering any time
information about each project, and then computes basic statistics about these projects as a whole via an empirical

analysis, followed by functionality domain identification and then an association analysis.

Dataset. We started with randomly sampling 10,000 projects from GitHub that met the basic criteria for our raw
repository retrieval step but limited the creation time to the five past years. The rationale for this time length is
that through the SPC study we intended to take one sizable, single-period sample from GitHub to characterize the
multilingual software in the sample as a whole, for which five years represent a reasonable length of period. And
looking at the particular window of the past five years (2015-2019) ensures the recency of this single sample. From the
10,000 initial projects, we ruled out those that did not satisfy the two constraints set against the key project properties
(Table 1), which left us 7,113 projects. The data mined from the corresponding 7,113 repositories by following our data
collection procedure (Section 2.3) formed the basis for SPC.
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2.4.1 Empirical Analysis. This analysis computes the following measures over the given input project set. The rationale
of computing these measures is that they constitute a basic overview of language use in multilingual software.

• Average Language Profile Size (ALPS): we first retrieve per-project language profile sizes (i.e., the number of
languages used in a project), and then compute the mean and standard deviation (stdev) of language profile sizes
across all projects in the given set.

• Language Profile Size Distribution (LPSD): this is the percentage distribution of projects in the given set over
different numbers of languages used. For example, if we have a set of 10 projects, of which 3, 5, 2 projects use 1,
2, 3 languages, respectively, then this measure would be {1: 0.3, 2: 0.5, 3: 0.2}.

• Language Distribution By Frequency/code Size (LDBF/LDBS): we measure the popularity of each language through
two measures: frequency (number of occurrences) and code size (number of bytes). From the language profile of
each project, we compute these measures for all the projects in the given project set.

• Average Language Code size Percentage (ALCP): we first compute the percentage distribution of code size of all the
languages used in each project from its language profile. For example, given a language profile {’c#’: 569869,

’javascript’: 198348, ’shell’: 317}, the distribution is {’c#’: 0.74, ’javascript’: 0.25, ’shell’:

0.01}. Then, by averaging these percentage distributions over all projects in the given set, we compute the ALCP
per language for the project set.

• Top Language Combinations (TLCO): we compute the top combinations from the given project set according to
the number of occurrences of each combination. Yet we only consider mainstream languages which have the
greatest influence on the functionality of software [4, 43], given that the number of language combinations is an
exponential of the number of unique languages.

• Language Interfacing Mechanisms (LIM): Intuitively, looking at the structure of a multi-language software project
helps understand the construction of the software. And we believe the most essential and unique aspect of
this structure, as opposed to that of single-language software, is the language interfacing mechanism. Hence,
examining the association between language selection and language interfacing mechanism offers a useful
angle into the rationale of language selection/use in multi-language software. To that end, we compute the
language interfacing mechanisms for the studied projects with our multi-language software characterization
tool PolyFax [29]. PolyFax classifies the LIM of a given project into four categories: Foreign Function Invocation

(FFI)—one language provides a foreign function interface to match its semantics and calling conventions with
those of another language, IMplicit Invocation (IMI)—one language interacts implicitly with another language via
interprocess communication (IPC), EmBoDiment (EBD)—the involved languages interact via one embodying
the other, and Hidden InTeraction (HIT)—there are no any code-level evidence of connection, even implicit ones,
between the languages; the interaction is often realized through external data sharing. More detailed descriptions
about these interfacing mechanisms can be found in relevant earlier works [28, 29]. In this study, we only consider
the interfacing between mainstream languages as in the TLCO computation for the same reason (i.e., the reason
why we only considered the mainstream languages in computing that metric).

2.4.2 Functionality Domain Identification. To examine the functionality relevance of language use (as one way to justify
language selection) in multilingual software, we needed to identify the functionality domain of each project. To that end,
we categorized the studied projects based on their functional features through inductive and axial coding analysis [12, 37].
In the inductive coding, we manually labeled a set of randomly sampled projects as per their corresponding non-code
artifacts (i.e., README, project description, and topics) and collected a set of codes identified during the manual
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analysis, hence forming a codebook. Then, in axial coding, we categorized the studied projects by functionality domains
according to the codebook derived (i.e., labeling each project with one of the codes that best represents its primary
functionality domain).

Specifically, our manual analysis for project functionality domain categorization includes two main steps, codebook
creation and project categorization, as elaborated below.

(1) Codebook creation. For our study, the codebook is a set of rules that defines how to assign a specific code to
a project. To create this codebook, we randomly selected 1,500 projects, a sample size that was statistically
significant at a 95% confidence level (CL) and 5% margin of error (ME). The sampled projects’ documents were
then analyzed by three of the authors to create and iteratively refine the codebook, addressing disagreements
through meetings/discussions until reaching a consensus. Specifically, each project was evaluated by the authors
via (1) carefully reading its documents, (2) checking if it fit into an existing category, and (3) creating a new
category for those that did not fit into any existing categories.

To create a new category, the authors first defined a label for it and then created a detailed description of the
category. To aid in labeling future projects, the authors also summarized the descriptions of projects of that
category as typical examples.

The result of this analysis was a codebook that consisted of 20 codes, along with their summary descriptions,
which are presented in Table 2. The codebook has two levels of categorization: level 0 encodes the codes
corresponding to the different layers of the common software stack, ranging from drivers to end-user applications,
while level 1 is coded to cover the diverse kinds of application software.

It is important to note that a well-designed codebook plays a critical role in ensuring consistency and accuracy
in coding the projects. This consistency allows for comparing and analyzing the functionality domains of the
studied projects.

(2) Project categorization. Based on the codebook, the five authors analyzed and coded the entire set of the studied
projects. During the coding process, some projects were assigned multiple labels as they were related to different
functionality domains. Furthermore, we employed negotiated agreement to address the reliability of coding [9]. As
a result, a project was only categorized when all of the authors reached a consensus (through discussion/meetings
if disagreement arose initially). A summary of the categorization results, concerning the overall distribution of
projects in the SPC dataset over different functionality domains, is presented in Table 3.

2.4.3 Association Analysis. As noted earlier, we aim to understand the process and rationale of language selection in
multi-language software construction from the perspective of functionality domains. The motivation is that practically
different language combinations are chosen typically in relation to what kind/category of functionalities is targeted
by the software project. Thus, we compute the association between such categories and language combinations over
the studied projects. In addition, to dissect these associations and understand their presence and strength, we further
decompose them through in-depth examination of (1) how the functionality domains (FD) are associated with the main
languages (MaL) selected—the motivation is that intuitively developers would start language selection with choosing
the main languages (i.e., the primary languages to use), which are usually mainstream programming languages as
we consistently observed in both of our SPC and EVC datasets, (2) how the main languages are further associated
with language interfacing mechanisms (LIM)—the motivation is that once the main languages are selected, the next
necessary step is to consider how those main languages would interface with other languages (i.e., which interfacing
mechanisms are suitable for the chosen main languages)—also, the selection of such interfacing mechanisms is indeed
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Table 2. Codes used to categorize functionality domains of projects

id Level Category Description
1 0 driver a software component connecting the operating system and hardware de-

vices
2 0 system the interface between hardware and user applications
3 0 programming tools for software development (e.g., programming, build)
4 0 middleware software providing services to applications beyond those available in the OS
5 0 application library libraries providing data and functions to other client applications
6 0 end-user application applications providing data and functions to end users
7 1 word process software for manipulating and designing text
8 1 database software for creating, editing, and maintaining database files and records
9 1 spreadsheet software for capturing, displaying, and manipulating data arranged in rows

and columns
10 1 multimedia software for playing, recording or editing audio/video files
11 1 presentation software for creating a presentation of ideas via texts, images, and/or au-

dios/videos
12 1 enterprise an integral part of an information system for organizations
13 1 information worker software for users (individuals) to create and manage information
14 1 communication software for passing information from one entity to another
15 1 education software for educational purposes
16 1 simulation software modeling a real phenomenon with a set of mathematical formulas
17 1 content access software for accessing content without editing
18 1 application suite a group of different but inter-related software applications
19 1 email software for using electronic mail
20 1 engineering/development integrated software systems supporting development tasks

Table 3. Distribution of projects in SPC over functionality domains, with both levels considered but only notable (>1%) ones shown

Software functionality domain Percentage of projects in SPC
end-user application 28.67%
application libraries 14.38%
middleware 13.34%
content access 8.75%
engineering/development 6.11%
education 5.16%
database 4.30%
programming 3.82%
multimedia 2.94%
word process 2.82%
system 2.10%
communication 1.60%
email 1.57%
presentation 1.13%
application suites 1.07%
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an integral part of the holistic language selection process, and finally (3) how the language interfacing mechanisms
are eventually associated with language combinations/selections (LS)—the motivation is that the choice of language
interfacing mechanism, given the main languages chosen, immediately affects the choice of other languages in the
ultimate language selection. In short, we dissect the overall association between FD and LS through a series of analyses
of the association along the following chain: FD→MaL→LIM→LS.

Accordingly, after we obtained/computed the relevant properties (i.e., FD, MaL, LIM, and LS) of each project, we
conducted four kinds of association analysis: (1) Overall association between FD and LS, (2) Association between FD and

MaL, (3) Association between FD and LIM, and (4) Association between MaL and LIM.
Specifically, for any of these kinds of association analysis, we followed an association rule mining process against

the given project set. In particular, we identify frequent if-then associations which consist of an antecedent (if, e.g., FD
here) and a consequent (then, e.g., LS here), using the Apriori algorithm [41] implemented in the Mlxtend library [42].
This association rule mining process consists of the following three general steps:

(a) Data formatting. We represent the inputs as a data frame where one column stores the antecedent variable while
the other stores the consequent variable.

(b) 1-hot encoding. We transform the data frame as follows: first, form all unique data items (i.e., words) in the data
frame as a set of size 𝑛; then, each cell of the data frame is encoded as 𝑛 bits by setting each item of the cell as 1
if it is in that set, followed by zero padding.

(c) Association computation. With the encoded data frame, we first calculate the support for each row, and then
obtain the association rules (i.e., the if-then association matrix) for the given project set.

For the four kinds of association analysis, in (1)–(3), we consider FD as the variable antecedent and others as the
variable consequents, while in (4) MaL is considered the variable antecedent and LIM the variable consequent.

2.5 Evolutionary Characterization (EVC)

As shown in Figure 1, for the per-year project sets as inputs, the EVC works by first computing the per-year SPC results.
Then, the EVC examines the evolutionary dynamics of multilingual software based on what the SPC results inform
about, in terms of the six statistics listed in Table 4. Each of these statistics indicates an evolutionary characteristic we
focused on in our EVC.

Table 4. Evolutionary characteristics we focused on in EVC

No. Statistics
1 number of unique languages (language diversity)
2 percentage (prevalence) of multilingual projects
3 language profile size distribution (LPSD)
4 average language code size percentage (ALCP)
5 top language combinations (TLCO)
6 functionality relevance of language use
7 language interfacing mechanisms (LIM)

The rationale of focusing on these particular statistics in the EVC is that the first five offer an intuitive evolutionary
overview of language use while the last would reveal how the deeper look into the correlation between functionality
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domain/topc and language selection have changed over the years. This is in line with the goal and corresponding
specific aims of our study.

Datasets. For EVC, we need multiple yearly datasets each for one of the years within our targeted history—the 10 past
years (2010-2019). To that end, we crawled GitHub extensively and obtained 1,000 projects for each year that met all the
criteria (i.e, popularity, creation time, update time) and constraints (i.e., valid topic, valid description) as we set for the
repository mining step (Section 2.3). We also aimed to ensure that there is no overlap between any two yearly datasets,
for which we considered a project belonging to a specific year only when its last update time is within that year and it
is not a fork [33] of another project.

In order to get 1,000 projects per year, we randomly sampled a greater number of projects for that year. Specifically,
for each year, we (1) randomly sampled more (than 1,000) projects, (2) dismissed those that failed to satisfy any of the
criteria/constraints/requirements stated above, and repeated (1) and (2) until we had 1,000 projects left.

We believe that 10 years represent a reasonably long span for anticipating that multi-language software potentially
undergoes noticeable changes in language use and selection. Thus, a span of this length should be suitable for a study
with a focus on an evolutionary angle. And 1,000 projects can be considered a sizable dataset for each year. Another
reason for choosing 1,000 as the per-year dataset size was that it was more difficult to get a lot more projects from
earlier years that met all the criteria/constraints/requirements on GitHub.

2.6 Language Scoping

As a hindsight, we found that there are nearly 300 unique languages used throughout the projects in our study datasets.
The sheer total of combinations among this large set of languages turned out to be even more overwhelming. For the
ease of presentation and the need to enable in-depth investigation towards our study aims, we have to prioritize and be
more focused instead of trying to report results about all the languages and their combinations in one single paper.

Therefore, for the rest of the paper, whenever holistic language profiles/selections are involved (e.g., language profile
prevalence for RQ1 and associations with language selections for RQ2), we consider those consisting of some in the
top 50 languages according to language popularity seen in our datasets—the popularity of a language is measured as
the percentage of all of the studied projects that use that language. These 50 languages include both programming
languages (e.g., Python and Java) and non-programming languages (e.g., CSS and HTML).

Moreover, given the consistently primary roles played by programming languages in all of our studied projects—
compared to those of non-programming languages according to the percentage of entire project code size that is
attributed to individual languages, the associations computed for RQ2 and RQ3 would be intuitively different between
considering all of the 50 languages and considering programming languages only. Thus, we separately examined those
associations for the top 20 programming languages (among the top 50) only. To determine whether a language is a
programming language or not, we referred to the Github Language Stats [16].

For brevity, hereafter, we refer to the top 50 languages when we note that all languages are considered, and we refer
to the top 20 programming languages when we note that only programming languages are considered.

3 RESULTS

In this section, we present and discuss main results and findings obtained according to our study methodology as
answers to our research questions.
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3.1 RQ1: Language Use/Selection Overview

We start with a basic empirical analysis of the overall language use in multilingual software, including the prevalence of
various language selections and the significance of each selected language in a language profile. Specifically, we aimed
to understand the language use in terms of the size and composition of language profiles of the studied projects. Again,
given that the total number of language selections is an exponential of the number of unique languages, we focus on
the combinations of mainstream languages as they have the greatest influence on software quality and functionality as
in prior work [4, 43].

As we defined earlier, the overview of language use and selection in multilingual software consists of five measures
(Section 2.4.1). We report the measurement results for these measures below.

3.1.1 Language Profile Size. We examine the language profile size in terms of its average and distribution (i.e., ALP-
S/LPSD). Figure 2 depicts the percentage distribution of the 7,113 projects studied (𝑦 axis) over different language profile
sizes (𝑥 axis). Size one was included here to (1) assess the prevalence of multilingual projects overall and (2) make our
results more comparable to those of prior peer studies which commonly included single-language projects also when
reporting language profile size statistics. We did not differentiate languages of different types (e.g., GPL versus DSL) in
order to assess the entire language profiles in multilingual software.

Fig. 2. Distribution of language profile sizes in SPC.

Across these 7,113 projects, 296 unique languages were used, including the well-known languages such as c, c++,
java, python, and javascript and some unusual/much less known ones such as renderscript, hcl, processing,
mako, tcl, plsql, xs, gap, qmake, meson, angelscript, zenscript, and hlsl—the full list can be found in our artifact.
The average language profile size was 4.5 (median 3, stdev 4.8). Excluding a few outlier projects that used more (up
to 149) languages, the maximum profile size was 9. The majority (over 75%) of our subject projects used more than 2
languages, while 25% of all used 5 or more languages. There appears to be a long tail in the chart because we chose to
cover the entire range of profile sizes whereas there were only a tiny/negligible portion of projects that have a profile
size greater than 9. Also, the profile sizes are not continuous after 35 (e.g., there were no projects in our datasets with
profile sizes of 36, 42, between 44 and 50, between 52 and 64, between 66 and 77, between 79 and 87, or between 89 and
148). And there were no more than 3 projects having a profile size greater than 25. Our inspection revealed that, in those
outlier projects (profile size above 9), the majority of the language units are parallel/alternative to each other in terms
of functionalities—for example, demonstrating the implementation of the same function (e.g., a Hello-World program)
in different languages and providing the capabilities (e.g., syntax highlighting) for (hence in) different languages. That
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is, most of the languages in these outlier projects do not interact with each other—per our prioritization as described
earlier (Section 2.6), these outlier projects were not eventually part of our results for RQ2 or RQ3.

All in all, these numbers show that the studied subjects did not use a very large number of languages in one project,
despite the large variety of (296) language choices available. The results are generally close to those from recent peer
studies in GitHub (e.g., mean and median language profile size of 6 and 5 in one study [44], and of 5 and 4 in another
study [33], respectively). On the other hand, the profile sizes tend to be considerably larger in our study than as reported
a decade ago in an average case: according to [13], back during 2000-2005, over 90% of the studied projects (albeit from
a different source—SourceForge [35]) used no more than 2 languages. Meanwhile, the largest (outlier) language profiles
were much smaller five years or longer ago (e.g., up to 36 [33] or 52 [44] languages in one project) than now (149).

Despite the large number of (296) languages in use, most of the studied multi-language software projects only used 2 to 5

languages (mean=4.5), similar to what were reported over five years ago but noticeably larger than a decade back.

3.1.2 Language Prevalence. After looking at the size of language profiles, we now look inside and across the profiles to
examine language distribution by frequency/code size (LDBF/LDBS). Figure 3 shows how frequently different languages
were used in the studied multilingual software, where the 𝑥 axis lists the top-30 most frequently used languages and the
𝑦 axis indicates the frequency. For instance, objective-c was used in 10% (versus html in almost 40%) of our projects.
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Fig. 3. Language distribution by frequency across all language profiles in SPC.

Our results show that languages such as shell, javascript, python, java, c, and c++ were the most popularly used
languages in the studied multilingual projects. These are not drastically different from what prior studies found about
popular languages, whether in single-language projects (e.g., java and javascript were growing in popularity and
python was staying popular [13]) or multilingual ones (e.g., javascript and c/c++ were the top two most frequently
used languages [33]).

Yet neither c nor c++ has dropped out the top list as yet despite there were found to decline in popularity over 15
years ago [13]. Also, the greatest frequency of use (as high as 45%) of shell over other languages has not been reported
before (e.g., previous studies found that the most popular language was xml [25] or c [4]). This prominent popularity of
shell in multilingual software may be partly attributed to its good interoperability with other languages [4].

Intuitively, higher (lower) frequency of use of a language may not always indicate a greater (lower) extent of use of
the language in terms of the language code size. For example, a language may be used commonly but mostly only for
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writing very little code. Indeed, in contrast to the frequency results of Figure 3, Figure 4 reveals that the most popularly
used languages (e.g., shell and javascript) were not exactly the ones in which most of the software code was written
(e.g, c and c++). Here the 𝑦 axis shows the percentage of code size attributed to each language (listed on the 𝑥 axis)
across all the 7,113 projects (i.e., treating all these projects as one project). Note that language code sizes here can be
largely affected by the nature/type of different languages (e.g., code of a certain number of lines/bytes in higher-level
languages would be written in much more lines/bytes in lower-level ones). Nevertheless, the contrast still suggests
that neither frequency nor code size alone can fully characterize language use extent in multilingual software. An
earlier study [4] found that c, javascript, and c++ were top 3 languages in terms of lines of code written in various
languages. That is quite similar to our finding here.
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Fig. 4. Language distribution by code size across all language profiles in SPC.

Meanwhile, despite the differences in measurement results between frequency and code size, we also observed that
some languages were among the dominant ones in terms of both measures (e.g., javascript, c, c++, python, and java).
These languages are all mainstream programming languages in modern software development in general [36, 43, 50].

Popular individual languages used in multilingual systems were not quite different from those in single-language

software, but the languages of prevalent use were not necessarily used extensively (in terms of language code size) across

the studied projects.

3.1.3 Language Significance. In light of the results of Figures 3 and 4 on the LDBF/LDBS measures, we extrapolate that
languages within a language profile were not evenly significantly used in terms of the code size of each constituent
language. To validate this hypothesis, we examine the significance of language use in average language profiles in terms
of the average language code size percentage (ALCP). Figure 5 shows what percentage of code (bytes) was written in
each language within a project (i.e., a language profile) in an average case. The languages are listed on the 𝑥 axis in the
same order as that of Figure 4 to facilitate contrasting between these two results. Thus, as opposed to LDBS measuring
the percentage of the total amount of code of all the (7,133) projects in different languages, this figure characterizes the
average contribution (in terms of code size) of different languages in multilingual projects—the differences in the total
code sizes of different projects were thus considered. For instance, on average 32% of the code in a project was written
in c among the projects whose language profile included c, while among the projects that used go over 70% of the
code in each project was written in go on average. The bases (denominators) from which the averages were computed
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may not be the same since a language was not necessarily used in every project. Thus, the result should be interpreted
together with the frequency of each language among all the (7,133) projects (Figure 3).

0%

10%

20%

30%

40%

50%

60%

70%

80%

P
e
rc
en

ta
ge
 o
f 
co

d
e 
si
ze
 o
f 
o
n
e
 la

n
gu

ag
e
 p
ro

fi
le
 

at
tr
ib
u
te

d
 t
o
 a
 la

n
gu

ag
e

Language selected (i.e., included in the language profile)

mean standard deviation

Fig. 5. Average code size percentage attributed to different languages in SPC.

As shown, some languages (e.g., go, rust, php, java, and c#) contributed to more than half of the code of a project
when the project used them. In contrast, certain languages (e.g., perl, html, css, and cmake) only contributed minimally
to the projects they participated in. Considering the frequency of these languages, the contrast reveals that quite a few
languages were widely adopted in multilingual software development but only used very lightly (e.g., shell). This can
be explained by the intuitive observation that those languages (e.g., makefile) were best for certain functionalities that
are commonly needed (e.g., project building) but not much code is needed for such functionalities (e.g., a few lines of
shell commands for building a project).

Languages widely existed which were used frequently but only lightly in the studied multilingual software (e.g., shell

and cmake), albeit mainstream programming languages tended to be used both frequently and contributed significantly

to the software code size (e.g., c/c++ and javascript).

3.1.4 Language Profile Prevalence. Our another perspective into language use/selection concerned the prevalence
of language profiles, for which we examine the top (most frequently used) language combinations (TLCO) with all

languages considered.
Table 5 lists the top-30 most frequently appeared language combinations in the language profiles of the multilingual

projects studied in SPC. Intuitively, languages css, html, and javascript were most widely used together, as found
earlier [44], plausibly because of the popularity of Web and mobile applications in recent years—these languages were
indeed common choices for such applications. This suggests that in the era of mobile Internet, front-end applications
are a point of interest for most multilingual software developers. In relation to that, combinations of languages c, c++,
shell, and python were also relatively popular, likely due to the popularity of back-end services which were commonly
developed using these languages. Bissyande et al. [4] found that javascript, shell and ruby appeared to be most
used together (having the best interoperability) with other languages, which is consistent with what we found here.

In light of other earlier studies, our results also indicate certain shifts of language selection preferences and dominating
language profiles in multilingual software construction. For example, java-xml and java-sql were found to be the
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Table 5. Top language combinations in SPC

Rank Language Combination %Occurrences
1 css-html-javascript 10.4%
2 c-c++-shell 4.8%
3 python-shell 3.6%
4 javascript-typescript 3.1%
5 html-python 2.7%
6 html-ruby 2.4%
7 css-html-javascript-python 2.3%
8 javascript-python 2.2%
9 css-html-javascript-shell 1.9%
10 css-html-javascript-ruby 1.9%
11 c-python 1.9%
12 html-javascript-python 1.8%
13 html-java 1.8%
14 makefile-python 1.6%
15 html-php 1.6%
16 objective-c-ruby 1.5%
17 go-shell 1.5%
18 c++-java-shell 1.5%
19 javascript-php 1.5%
20 css-html-javascript-php 1.4%
21 objective-c-ruby-swift 1.4%
22 javascript-shell 1.4%
23 java-shell 1.4%
24 c-c++-python 1.4%
25 html-javascript-java-c 1.4%
26 c-c++-cmake 1.4%
27 css-javascript-php 1.3%
28 java-javascript 1.3%
29 css-html-javascript-python-shell 1.3%
30 c++-python 1.2%

most common language pairs [34], which is related to another prior finding that java and xml files were the top
dominating co-evolving code units [25]. And c and perl were most commonly used together for Web development [13].

Top popular language combinations tended to be the combinations of top popular individual languages used in the

studied multilingual software projects.

3.1.5 Language Interfacing Mechanisms. Our final perspective on language use/selection concerned how the languages
selected interact with each other. For each project, we used PolyFax [29] to detect all of the interfacing mechanisms
among the top language selections (i.e., those among the top-30 list of Table 5). The tool may return hybrid mechanisms
(i.e., multiple interfacing mechanisms) for a single project if its top language selections do involve different interfacing
mechanisms. This is reasonable because a project can indeed involve multiple functionality domains.
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As shown in Table 6, eight types of LIMs (including single and hybrid mechanisms) were discovered to be used
across the projects in the SPC dataset. Implicit interfacing (IMI) was the most prevalent among all LIMs, with 69% of
projects utilizing it. In contrast, only 7% of the projects used an explicit interfacing via foreign function invocation
(FFI). This may be due in part to the fact that only a limited number of language pairs support FFI between the top
languages. Specifically, of the 66 pairs of top 12 languages analyzed in our study, only 30% were found to support
interaction via FFI. As a result, indirect interaction is frequently the only feasible option for most language pairs,
such as javascript-python. Additionally, indirect interaction reduces coupling between language components and is
relatively straightforward to implement using a mature communication framework. For example, popular languages
such as c, python, java, and ruby can easily communicate with one another through gRPC [21] in any setting.

Aside from FFI and IMI, inter-dependence (EBD) is another significant category, mostly found in projects that
use the language selection javascript-css-html. This trend reflects the common usage of both general-purpose
programming languages (GPLs) and domain-specific languages (DSLs) [34].

Table 6. Distribution of LIM over the SPC dataset

LIM Percentage
IMI_EBD 22.04%
FFI_IMI 20.14%
IMI 25.72%
EBD 12.17%
FFI 7.04%
HIT 11.49%
FFI_IMI_EBD 1.03%
FFI_EBD 0.36%

Implicit interfacing (IMI) was dominantly used over explicit mechanisms such as FFI (e.g., JNI). A significant portion

(43.57%) of the projects used hybrid interfacing mechanisms, mostly including IMI or FFI.

3.2 RQ2: Functionality Relevance of Language Selection

We examined whether, and quantified how, developer decisions in choosing which languages to use in the studied
software projects are associated with their functionality domains in terms of the project topics. Specifically, we first
computed an overall associations between functionality domains and language selections. Then, to achieve a deeper
understanding of the functionality relevance of language selection, we look into the hidden connections under those
associations (i.e., underlying associations) with respect to language interfacing mechanisms, a crucial and unique

(relative to single-language software) factor in multilingual software construction, hence the total of four kinds of
associations as described in Section 2.4.3. By default, we computed these associations with all languages considered;
to examine the effects of non-programming languages, we additionally examined the underlying associations with
non-programming languages excluded (i.e., focusing on programming languages only). Concerning the functionality
domains in these association analyses, we consider level-0 and level-1 domains (as listed in Table 2) separately. We
further characterized the evolution of such associations, as described later in Section 3.3.

3.2.1 Overall Associations. Tables 7 and 8 list the results of our association analysis on the overall functionality
relevance of language selection using the SPC dataset in terms of level-0 and level-1 functionality domains, respectively.
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The selections shown are part of the top language selection ranking obtained for RQ1. For each pair of (software
domain, language combination), the support indicates how frequently the pair appears in the dataset, and the confidence
indicates the conditional probability of the occurrence of the language selection given the domain. We only report the
pairs for which support≥1% and confidence≥50%. These two thresholds were determined empirically with respect to our
SPC dataset: continuing to lower these thresholds would not produce more pairs of at least weak association [22] (i.e.,
lift≥1). The strength of association is indicated by the lift factor: lift<1 indicates the selection and domain are mutually
exclusive; lift==1 indicates no association; and lift>1 indicates the selection and domain are associated, with a greater
lift value for a stronger association.

Table 7. Association between level-0 functionality domains and top language combinations in SPC with all languages considered

Functionality Domain Top Language Selection Support Confidience Lift
application library css-javascript-php 2.20% 7.11% 1.51
middleware c-c++-python 1.66% 12.65% 1.41
end-user application php-shell 1.50% 2.98% 1.39
end-user application css-html-ruby 1.82% 3.62% 1.38
application library css-html-javascript 8.80% 28.42% 1.33
end-user application css-html-javascript 1.89% 14.56% 1.29
end-user application java-kotlin 1.02% 2.02% 1.18
application library objective c-ruby-swift 1.72% 5.55% 1.10
middleware css-html-javascript-php 3.59% 27.35% 1.03
middleware css-html-javascript-python 3.38% 25.71% 1.01
end-user application c-c++-cmake 3.97% 7.88% 1.01

Our results revealed that there is a generally quite notable tie between language selection and the functionality
domains examined, although the association was relatively weaker (e.g., between css-html-javascript-php and
middleware as well as between c-c++-cmake and end-user application at level 0 as shown in Table 7) in a few
cases than others (e.g., between css-html-javascript and multimedia at level 1 as shown in Table 8). Overall, with
half (3) of the level-0 and half (7) of the level-1 domains, there were strongly associated language selections.

More particularly, when considering the domains at level 0 only, the majority of the positive associations are with
applications (e.g., application library or end-user application). Also, for a specific domain, language selections
tend to be somewhat diverse—multiple selections are associated with one domain. For example, to develop end-user
applications, some may select php-shell while others may choose java-kotlin or objective c-ruby-swift. One
possible reason is software of the same domain is naturally developed with different language combinations when
in different software ecosystem or on different platforms (e.g., apps on Android often use java or kotlin and other
languages while the apps of same functionality domains on iOS use objective c and swift more often). For the other
(i.e., non-application) domain, middleware, developers tend to select c-c++-python or languages (e.g., php and python)
combined with css-html-javascript.

Regarding the domains at level 1 (i.e., specific kinds of end-user applications), multimedia is strongly associated with
languages combined with css-html-javascript—this kind of language selection is also popularly seen in constructing
other kinds of end-user applications, such as spreadsheet, communication, and email. These associations indicate that
the language selection css-html-javascript is most widely used in developing application software. Referring to the
results in Table 7, we note that end-user application is strongly associated with css-html-javascript, indicating
a consistency in the association analysis results between the two levels of functionality domains we examined.
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Table 8. Association between level-1 functionality domains and top language combinations in SPC with all languages considered

Functionality Domain Top Language Selection Support Confidience Lift
simulation go-shell 1.28% 7.95% 3.24
multimedia css-html-javascript 1.28% 48.00% 2.59
multimedia css-html-javascript-php 1.38% 52.00% 2.19
multimedia css-html-javascript-ruby 1.38% 52.00% 2.18
multimedia css-html-javascript-python 1.28% 48.00% 2.10
simulation makefile-python-shell 1.92% 11.92% 1.90
application suites css-html-javascript-ruby 1.49% 45.16% 1.89
engineering/development c-c++-cmake 3.83% 14.63% 1.86
spreadsheet css-html-javascript 1.70% 30.19% 1.63
spreadsheet css-html-javascript-php 1.92% 33.96% 1.43
spreadsheet css-html-javascript-ruby 1.92% 33.96% 1.42
engineering/development html-javascript-typescript 3.83% 14.63% 1.37
spreadsheet css-html-javascript-python 1.70% 30.19% 1.32
engineering/development objective c-ruby-swift 1.49% 5.69% 1.27
communication css-html-javascript-python 2.66% 28.74% 1.26
engineering/development html-javascript-python 2.56% 9.76% 1.19
email css-html-javascript-php 3.30% 25.41% 1.07
application suites css-html-javascript-python-shell 1.28% 38.71% 1.07
communication css-html-javascript-ruby 2.34% 25.29% 1.06
email c-c++-cmake 1.06% 8.20% 1.04

On the other hand, between the two functionality domain levels, the associations at level-1 are generally stronger.
This is because when we look at the higher-level (level-0) domains, the greater diversity of language selections within
each domain (compared to the lesser diversity within each domain at the lower level, i.e., level 1) tend to make the
association with a particular language selection relatively weaker.

Language selection was considerably relevant to the functionality domain in multilingual software construction, and

some language combinations were more strongly associated with certain functionality domains than others.

3.2.2 Underlying Associations. To further mine the hidden connections (as potential interpretations) underlying the
overall associations identified in Section 3.2.1, we progressively computed associations between FD and MaL, then
between MaL and LIM, and finally between LIM and LS. In this way, we may potentially understand why functionality
domains are associated with some specific language selections along this association chain. We then separately look at
this association chain with programming languages considered only to further assess how non-programming languages
may have impacted the functionality relevance of language selection. Given the generally stronger associations with
functionality domains at level 1, to avoid verbosity of this paper we will only report results on the association chain
with respect to level-1 domains.

With all languages considered. Table 9 shows the associations between FD andMaL, Table 10 shows the associations
between MaL and LIM, and Table 11 shows the associations between LIM and SL.

As summarized in Table 9, most of (8 out of the total of 14) the level-1 functionality domains were found positively
associated with one or more main languages. For instance, the simulation domain is associated with four main
languages shell, go, java, and python, while the engineering/development domain is associated with c++, c, php, and
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c#. That is, the main languages associated with a functionality domain can also be diverse, consistent with the diversity
in this regard seen in the overall associations between functionality domains and language selections.

Further along the association chain, we found substantive associations between the main language and language
interfacing mechanisms, as shown in Table 10. Specifically, main languages c and c++ are both strongly associated with
the interfacing mechanisms involving FFI (i.e., FFI, FFI_IMI, and FFI_IMI_EBD). One reason is that current mainstream
languages all have FFI interfacing with c/c++ [28]. For example, python interacts with c through Python extension,
java interacts with c through JNI, and go interacts with c via cgo. As a result, most of the main languages (which are
also mainstream languages) listed in the table are found associated with FFI or interfacing mechanisms involving FFI.

Finally, between language interfacing mechanisms and language selections, we also found generally quite strong asso-
ciations, as listed in Table 11. For instance, FFI is associated with c-c++, while FFI_IMI is associated with c-c++-python,
c-c++-objective c, c-python, and so on. These associations are also consistent with the results of Table 10, where
the main languages are always part of language selections shown in Table 11.

Overall, along the holistic association chain, the results on overall associations are generally quite well aligned with,
hence explained/justified by, the corresponding results on underlying associations. To illustrate, let us consider the
simulation domain. From Table 8, we see that one of strongly associated language selections with this domain is
makefile-python-shell. To understand how this overall association came about rationally, let us follow the association
chain as follows. First, fromTable 9, we can see themost strongly associatedmain languagewith simulation applications
is shell. Then, from Table 10, we notice that the interfacing mechanism most strongly associated with shell is IMI.
Finally, as shown in Table 10, we see that IMI is strongly associatedwith the language selection makefile-python-shell.
In this way, the overall association between the simulation domain and the makefile-python-shell selection is
justified by the illustrated chain of underlying associations.

More generally, from a developer’s perspective, given a functionality domain targeted along with a specific software
ecosystem concerned with, selecting the main language can be the crucial first step during the multilingual software
construction process. For example, to develop a communication application, python can be a good choice as the main
language, as shown in Table 9. Then, the developer can try to find languages that work well with the main language to
satisfy the development requirements. In this step, the language interfacing mechanism is a primary decision factor
since the interfacing is knowingly associated with the quality (e.g., security in terms of vulnerability proneness) of
multilingual software [28]. Following the example, if the developer chose the interfacing of IMI to construct the software,
then according to Table 11, the language selection css-html-javascript-python can be a good choice since it is widely
used in this domain. Moreover, the domain of communication is also associated with css-html-javascript-python

as shown in Table 8. Alternatively, the developer could choose other language selections associated with IMI that
include python (e.g., c++-python).

With only programming languages considered. Table 12 shows associations between FD and MaL, Table 13 shows
associations between MaL and LIM, and Table 14 shows associations between LIM and SL, with non-programming
languages dismissed.

Like those with all languages considered, the underlying associations computed with only programming languages
considered are similarly strong, supporting generally similar conclusions as well. One major difference is that EBD as
an interfacing mechanism is now absent in the underlying associations of Table 14. The reason is that this interfacing
mechanism is commonly applicable between non-programming languages (e.g., CSS and html)—thus, the relevant data
samples were filtered out prior to the association analysis.
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Table 9. Association between (level-1) functionality domains and main languages in SPC with all languages considered

Functionality Domain Main Language Support Confidience Lift
simulation shell 1.32% 7.80% 2.72
multimedia javascript 1.03% 47.37% 2.13
end user application javascript 2.12% 38.95% 1.75
simulation go 1.49% 8.81% 1.60
email c 1.09% 9.22% 1.58
communication python 1.32% 13.22% 1.51
engineering/development c++ 2.80% 10.10% 1.51
spreadsheet javascript 1.89% 33.33% 1.50
engineering/development c 2.35% 8.45% 1.45
engineering/development php 2.75% 9.90% 1.20
word process java 1.03% 12.41% 1.20
engineering/development c# 1.26% 4.54% 1.18
communication java 1.14% 11.49% 1.11
email php 1.03% 8.74% 1.06
simulation java 1.83% 10.85% 1.05
simulation python 1.49% 8.81% 1.01

With either all or only programming languages considered, underlying associations along the chain of {FD→MaL,

MaL→LIM, LIM→SL} are strong and consistent with, hence explaining/justifying, the respective overall associations.

3.2.3 Case Studies. To gain more insights into the association, we randomly chose 10 popular (i.e., having received
1800+ stars) and mature (i.e., having been 6+ years old) projects from all Music Software projects in our SPC dataset
and manually gained understanding about the functionalities of modules in different languages. We chose Music

Software as a subcategory in multimedia, a random sample of the functionality domains represented in our study
datasets, which is also one of the major level-1 domains (Table 2) that covers a non-trivial portion of our sample projects
(Table 3). This software functionality category has also seen projects that use a variety of languages and language
combinations. Table 15 shows these projects and the top languages used in each project in terms of the size of code
written in each language. We found that javascript and python were used most frequently in these projects and
selected together in three cases (boldfaced). Meanwhile, not every music software used them and most of the projects
did not select both. This is consistent with our result indicating that the association between Music Software and
javascript-python is relatively weak (hence not listed in Table 8).

Looking further into the three cases, we found that the core functionalities (i.e., accounting for 85%+ of project
code) are implemented in python, consistently for features such as resource (e.g., songs and lyrics) search and downloads.
The remaining functionalities are mostly implemented in javascript, consistently for features such as music play

and metadata viewing via web browsing, as a Web UI or a Web plug-in. This finding suggests that the association we
observed is justifiable: the language selection appeared to be justified by the features the selected languages can best
offer together for the targeted functionalities.

In relation to prior peer studies, although the functionality relevance of language choices was looked at before [4],
prior studies focused on how functionality domains were connected to individual languages rather than the selection of
multiple languages as a whole. We also recall that in practice there are usually many factors (e.g., language features,
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Table 10. Association between main languages and language interfacing mechanisms in SPC with all languages considered

Main Language Language Interfacing Type Support Confidience Lift
css EBD 1.31% 55.56% 4.56
html EBD 1.33% 34.74% 2.85
c++ FFI 1.59% 19.90% 2.82
shell IMI 1.13% 69.14% 2.69
c FFI 1.49% 18.18% 2.58
php HIT 1.67% 29.64% 2.57
java FFI 1.37% 15.63% 2.22
javascript EBD 6.06% 26.76% 2.20
ruby HIT 1.41% 23.49% 2.04
go IMI 1.93% 48.98% 1.91
html FFI_EBD 1.39% 36.32% 1.85
c FFI_IMI 7.65% 93.37% 1.77
c++ FFI_IMI 7.29% 91.18% 1.73
python IMI 5.23% 41.47% 1.61
css IMI_EBD 2.27% 96.58% 1.61
typescript IMI_EBD 1.93% 96.00% 1.60
javascript IMI_EBD 21.60% 95.38% 1.59
shell FFI_IMI 1.31% 80.25% 1.52
java FFI_IMI 6.96% 79.54% 1.50
python FFI 1.31% 10.37% 1.47
go FFI_IMI 3.00% 76.02% 1.44
html IMI_EBD 3.28% 85.79% 1.43
shell IMI_EBD 1.37% 83.95% 1.40
javascript FFI_EBD 6.20% 27.38% 1.40
ruby IMI 2.09% 34.90% 1.36
python FFI_IMI 9.00% 71.29% 1.35
ruby IMI_EBD 4.27% 71.14% 1.19
javascript FFI_IMI_EBD 22.34% 98.67% 1.12
php IMI_EBD 3.72% 66.07% 1.10
css FFI_IMI_EBD 2.29% 97.44% 1.10
c# IMI_EBD 1.13% 65.88% 1.10
typescript FFI_IMI_EBD 1.95% 97.00% 1.10
shell FFI_IMI_EBD 1.57% 96.30% 1.09
c FFI_IMI_EBD 7.87% 96.07% 1.09
html FFI_IMI_EBD 3.64% 95.26% 1.08
c++ FFI_IMI_EBD 7.59% 94.96% 1.07
c# FFI_IMI_EBD 1.59% 92.94% 1.05
java FFI_IMI_EBD 8.11% 92.64% 1.05
c++ FFI_EBD 1.63% 20.40% 1.04
python FFI_IMI_EBD 11.25% 89.15% 1.01

software functional requirements, and developer expertise/preferences) that may affect the eventual choices of language
profiles. In our study, we did not attempt to fully answer the question of why certain language combinations are chosen
over others; instead, our goal is to shed light on the justifiable relevance of functionality categories of multilingual
software to its language profile.
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Table 11. Association between language interfacing mechanisms and language selections in SPC with all languages considered

Language Interfacing Type Language Selection Support Confidience Lift
FFI c-c++ 1.34% 20.69% 4.97
IMI javascript-shell 1.59% 6.43% 3.54
EBD html-javascript 2.54% 17.40% 3.08
EBD css-javascript 1.26% 8.60% 3.05
IMI makefile-python-shell 1.12% 4.51% 2.83
EBD css-html-javascript 4.50% 30.78% 2.76
EBD javascript-typescript 1.17% 8.03% 2.66
FFI_IMI c-c++-python 2.51% 5.30% 2.09
FFI_IMI c-c++-objective c 1.26% 2.65% 2.06
FFI_IMI c-python 2.23% 4.71% 2.03
IMI java-shell 1.12% 4.51% 1.92
FFI_IMI makefile-python-shell 1.42% 3.01% 1.89
FFI_EBD css-html-javascript 4.50% 21.07% 1.89
FFI_IMI javascript-shell 1.62% 3.42% 1.88
FFI_IMI c++-python 1.34% 2.83% 1.88
FFI_EBD javascript-typescript 1.17% 5.50% 1.82
IMI javascript-typescript 1.28% 5.19% 1.72
FFI_IMI java-javascript 1.42% 3.01% 1.52
IMI_EBD css-html-javascript-ruby 2.79% 4.32% 1.47
IMI css-html-javascript-python 2.07% 3.20% 1.40

Table 12. Association between (level-1) functionality domains and main languages in SPC with only programming languages considered

Functionality Domain Main Languages Support Confidience Lift
simulation shell 1.32% 7.80% 2.72
multimedia javascript 1.03% 47.37% 2.13
end user application javascript 2.12% 38.95% 1.75
simulation go 1.49% 8.81% 1.60
email c 1.09% 9.22% 1.58
communication python 1.32% 13.22% 1.51
engineering/development c++ 2.80% 10.10% 1.51
spreadsheet javascript 1.89% 33.33% 1.50
engineering/development c 2.35% 8.45% 1.45
engineering/development php 2.75% 9.90% 1.20
word process java 1.03% 12.41% 1.20
engineering/development c# 1.26% 4.54% 1.18
communication java 1.14% 11.49% 1.11
email php 1.03% 8.74% 1.06
simulation java 1.83% 10.85% 1.05
simulation python 1.49% 8.81% 1.01

The association between language selection and functionality domain was justifiable by the collective features of selected

languages better facilitating the functionality requirements.
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Table 13. Association between main languages and language interfacing mechanisms in SPC with only programming languages
considered

Main Language Language Interfacing Types Support Confidience Lift
c++ FFI 1.59% 19.90% 2.82
shell IMI 1.13% 69.14% 2.69
c FFI 1.49% 18.18% 2.58
php HIT 1.67% 29.64% 2.57
java FFI 1.37% 15.63% 2.22
ruby HIT 1.41% 23.49% 2.04
go IMI 1.93% 48.98% 1.91
c FFI_IMI 7.65% 93.37% 1.77
c++ FFI_IMI 7.29% 91.18% 1.73
python IMI 5.23% 41.47% 1.61
shell FFI_IMI 1.31% 80.25% 1.52
java FFI_IMI 6.96% 79.54% 1.50
python FFI 1.31% 10.37% 1.47
go FFI_IMI 3.00% 76.02% 1.44
ruby IMI 2.09% 34.90% 1.36
python FFI_IMI 9.00% 71.29% 1.35

Table 14. Association between language interfacing mechanisms and language selections in SPC with only programming languages
considered

Language Interfacing Type Language Selection Support Confidience Lift
HIT ruby-swift 1.81% 21.67% 8.85
FFI c-c++ 1.78% 20.65% 7.81
IMI c-shell 1.22% 4.37% 2.49
IMI go-shell 2.28% 8.14% 2.40
IMI ruby-shell 2.50% 8.94% 2.35
IMI python-shell 5.59% 19.96% 2.31
IMI php-shell 1.47% 5.26% 2.28
FFI_IMI c-c++-python 1.50% 2.46% 1.63
FFI_IMI c-c++-java-python-shell 1.53% 2.50% 1.63
FFI_IMI c-c++-python-shell 5.90% 9.64% 1.59
FFI_IMI c-c++-shell 3.62% 5.91% 1.59
FFI_IMI c-c++ 2.50% 4.09% 1.55
FFI_IMI c-python-shell 1.70% 2.77% 1.53
IMI java-shell 1.53% 5.46% 1.51
FFI_IMI c-c++-javascript-python-shell 2.17% 3.55% 1.50
HIT python-shell 1.06% 12.67% 1.47
FFI python-shell 1.08% 12.58% 1.46
FFI_IMI java-c-shell 3.17% 5.18% 1.43
IMI javascript-shell 2.67% 9.53% 1.22
FFI_IMI c++-ruby-shell 2.61% 4.27% 1.12
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Table 15. Case studies on the functionality relevance of language selection: 10 cases for the Music Software domain

Project #Stars:Age(#years) Top Languages
iScript 4738:6 python javascript

KodExplorer 4715:7 php html javascript css

Soundnode 4660:6 javascript html css

Cmus 3853:8 c c++ shell python

Headphones 2937:9 python html javascript css

Lmms 4181:6 c++ objective-c cmake html

Scdl 1800:6 python

Tomahawk 2644:10 c++ cmake javascript

Vexflow 2760:10 javascript html shell

Beets 9525:10 python javascript shell

3.3 RQ3: Evolution of Multilingual Systems

In this section, we present the results of our Evolutionary Characterization (EVC) study, reporting the evolutionary
characteristics on both overall language use/selection and their functionality relevance as outlined in Table 4. We first
look at the evolution of language use/selection (for which an overall characterization was given for RQ1), followed by
examining the evolution of the association between language selection and functionality domains (for which an overall
characterization was given for RQ2).

3.3.1 Evolution of Language Use/Selection. We found that the diversity of languages had grown continuously, as
depicted in Figure 6. In less than a decade, the number of unique languages used across our 10 yearly datasets nearly
quadrupled: from 35 in 2010 to 138 in 2019. This result clearly indicated that multilingual software developers had
increasing flexibilities and choices in language use and selection for system construction. The monotonic nature of
the trend that has sustained for 10 years projects a likely continuing growth of language diversity (at least in the
open-source community).
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Fig. 6. Evolution of language diversity (#unique languages used year to year).

Plausibly a result of the growing language choices, we also observed a steady uptrend in the prevalence of multilingual
software construction. Figure 7 delineates the percentage of projects that were developed in 2 or more languages in each
of our 10 yearly EVC datasets. For instance, in 2010, 41% of the 1,000 sampled projects were written in multiple languages,
while in 2019 this percentage grew to 74%. This finding resonates with results from a prior study [13] that showed
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a similar growth of multilingual software prevalence: the percentage of projects using multiple languages increased
from 10% to 35% from year 2000 to year 2005 (albeit on a different open-source software repository portal SourceForge).
Put together, that earlier study and ours here revealed constant growth of the prevalence of the multilingual software
construction practice. By now, multilingual construction has become a definite norm and clearly dominated over
single-language development in modern software practice, so far as our studied projects were concerned with.
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Fig. 7. Evolution of multilingual software prevalence (% multilingual projects year to year).

In the 10-year span examined, both the language diversity and multilingual software prevalence grew steadily, and

multilingual construction has become a dominating norm in modern software development as seen in the studied projects.

Complementary to the overall growth of language diversity and multilingual software prevalence, we now examine
what has changed in individual projects (language profiles). Figure 8 shows the evolution of language profile size
distribution among the studied subjects, where various sizes are encoded with gradual color depth and the height of
each single-color bar indicates the percentage of projects having the associated profile size. The results show 3, 4, and 5
as sizes of the fastest growing popularity, consistent with our overall profile size statistics (e.g., mean 4.5); meanwhile,
the trend also indicates general decreases in projects using less languages.

Fig. 8. Evolution of language profile size distribution.

Looking into the profile composition, we found that the top languages used (e.g., java, python, and javascript)
remained almost constant over time. Figure 9 shows the percentage of projects (𝑦 axis) from each of the 10 years (𝑥 axis)
in our EVC study that used each of these top languages. Our results show that the use (profile inclusion) frequency of
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almost all of the contemporary mainstream languages was fairly stable (or slightly up in a few cases such as javascript
and java). One exception was ruby, whose popularity dropped considerably (by 15% in terms of the portion of projects
using it). Nevertheless, the languages that are mostly known as highly popular sustained a strong and unwavering
presence in the language profiles of the studied multilingual systems.
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Fig. 9. Evolution of top individual languages used.

In terms of language combinations in the studied projects (i.e., language profiles), we found the list of top ones was
also pretty stable, yet the order has had clear shifts, as Figure 10 shows. The most noticeable were the growth in python

shell and python c/c++, and the reduction in javascript ruby and c objective-c. These trends can be explained
by the evolution of the popularity of constituent languages (e.g., uptrend in python and downtrend in ruby) and the
interoperability between languages (e.g., friendly interface of shell with other languages). Again, the top/mainstream
individual languages included in these top combinations did not change much over the years and were consistent with
the results of Figure 9.

Fig. 10. Evolution of top (10) language combinations.

Over the 10 past years, increasingly more projects used 3–5 languages; both the list of top individual languages used and

the list of top language combinations selected were stable (even more so with the former list), albeit the ranking of top

combinations has shifted considerably.
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3.3.2 Evolution of Language Interfacing Mechanisms. Figure 11 depicts the distribution of multilingual software over
various kinds of language interfacing mechanisms for each of the yearly datasets in our EVC characterization. Together,
these yearly results present a view of how this distribution has evolved from the year of 2010 through 2019. Overall,
there has been a clear increase in the diversity of interfacing mechanisms used in multilingual software construction.
The number of different kinds of mechanisms was 4 in 2010, which has gone up to 8 by 2019. And the diversity
increased monotonically over the years, reflecting the growing complexity of multilingual software construction. For
instance, in earlier years (e.g., 2010 and 2011), most (around 70%) of the projects in each year primarily used relatively
straightforward interfacing mechanisms such as FFI, IMI, or both. This growth appears to be aligned with the increase
in the number of multilingual projects that have increasingly greater language profile sizes shown in Figure 8—with a
greater number and variety of languages being selected in constructing a single multi-language software project, there
are naturally increasingly more and diverse language interfacing mechanisms adopted in the construction.

Fig. 11. Evolution of language interfacing type distribution.

On the other hand, we observed some consistency/stability in the use of interfacing mechanisms during this 10-year
span. For instance, IMI has always been the most popular interfacing mechanism used in multilingual construction,
either exclusively or in conjunction with other mechanisms such as FFI and/or EBD. In fact, in any given year, more
than 60% of the projects used IMI. This constant dominance can be justified by the merit of IMI in reducing the coupling
between different language units (because IMI features indirect/implicit interaction which implies low coupling), as
well as facilitating software extensibility in terms of including additional language units for new functional features
(again because of the flexibility IMI offers). Such merits are particularly significant as modern software construction has
gone increasingly multilingual and polyglot-ism has become the norm [28]. Considering the evolution of language
combinations as shown in Table 10, we observed that language selections such as python-shell, javascript-python,
and java-shell have been increasingly dominant. This trend helps justify the growing dominance of IMI in the
evolution of language interfacing mechanism distribution as shown in Figure 11 because in these language selections
the languages are commonly interfaced via the IMI mechanism.

Over the 10 years examined, increasingly diverse language interfacing mechanisms have been used in multilingual

construction. On the other hand, IMI has been consistently dominant over interfacing mechanisms.
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3.3.3 Evolution of Functionality Relevance of Language Use/Selection . As a result of the random sampling process
underlying our collection of the EVC dataset, the set of functionality domains as categorized with our approach
(Section 2.4.2) varied from one year to another. Also, from some of the domains, there may not be any positively
associated language selection for any of the years studied. Thus, we focus on functionality domains in common across
the 10 per-year domain sets that have at least one positively associated language selection for at least one of the 10
years and refer to such domains as common domains.

With all languages considered.When all languages were considered, there were five common functionality domains,
as shown in (the leftmost column of) Figure 12. To facilitate visual pattern discovery, we visualize the association
evolution for these common domains as follows: (1) the legend shows the set of languages most frequently included
in the top language selections in the EVC dataset; (2) for each domain and year, these languages are mapped to
fixed colors and cell positions4 to help observe evolution patterns, and each row of cells represents one language
selection. For instance, in 2014 the most frequently adopted language combination for Application library was
c-c++-objective c-ruby, while one year later for the same functionality domain the dominating language selection
was css-html-javascript-shell. As a partial elaboration of the visualization, Table 16 lists one of the language
selections associated with each of the five domains (first row) for each year (first column), to illustrate how to observe
the evolution pattern. As in the visualization, the order of languages in each language selection is not relevant.

Overall, our evolutionary characterization on the association between language selection and functionality domain
indicates that the association has shifted over the 10 past years. For each individual functionality domain, the language
selections associated with it changed constantly from year to year. Meanwhile, no selection was always associated
with a domain, although some associations were relatively stabler than others. For instance, c-objective c-ruby was
associated with Middleware only in 2011, the association of css-javascript-ruby with End-user Application

stayed the same for three years—2014, 2015, and 2016, while objective c-ruby has remained associated with
Engineering/development for four consecutive years.

On the other hand, looking at subsets of selected languages, we observed that there appeared to be some stable
members in the language selections associated with each domain. For instance, javascript was selected in End-user

Application projects in all the 10 years, although the other languages it joined changed (e.g., python in 2010 but ruby
in 2012 and 2013). Another instance is c selected in Engineering/development projects for six years. We noticed that
these stable members are individual languages known to be widely used in the respective functionality domains —for
example, java and objective-c for mobile (Android and iOS, respectively) apps, as well as those that are recognized
for their high portability and user-friendliness (i.e., ease to program with) .

Over time, language selections were less stable than individual languages in association with functionality domains of

the studied multilingual projects, although some selections were more stable for certain domains than others.

With only programming languages considered. To further understand the evolution of the associations between
functionality domain and language selection, we examined the potential effects of non-programming languages on
the evolutionary dynamics. To that end, we characterized the evolution of those associations with only programming
languages considered, as visualized in Figure 13 following the same format as Figure 12.

4This is attempted at best effort but cannot be always enforced due to (1) the considerable variations in language selections associated with different
domains across different years and (2) the large number of individual languages that need to be presented—thus, the box enclosing the language selections
for each domain at each year would be too wide if we strictly enforce mapping each language to a fixed cell position.
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Fig. 12. Evolution of the associations between language selections and common functionality domains over the 10-year span studied,
with all languages considered.

Table 16. One example language selection associated with each of the functionality domains (first row) shared among the yearly
datasets in EVC for each of the 10 years (first column), with all languages considered—serving as a partial elaboration of the
visualization of Figure 12

Year Middleware Application library End-user Application Education Engineering/development
2010 – c-c++-python-shell javascript-python javascript-ruby c-c++-java

2011 c-objective c-ruby c-c++-objective c-shell javascript-python-ruby javascript-ruby c-c++-java

2012 c-c++-objective c c-c++-objective c-shell javascript-ruby coffeescript-javascript-ruby c-c++-shell

2013 c-c++-python-shell c-c++-objective c javascript-ruby javascript-ruby-shell assembly-c-c++

2014 css-javascript-ruby-shell c-c++-objective c-ruby css-javascript-ruby css-javascript-ruby c-c++-python

2015 css-html-javascript css-html-javascript-shell css-javascript-ruby css-html-javascript objective c-ruby

2016 css-html-javascript-java – css-javascript-ruby css-html-javascript objective c-ruby

2017 css-html-javascript-php objective c-ruby-swift css-javascript-php css-html-javascript-ruby objective c-ruby

2018 css-html-javascript-php – css-javascript-php css-html-javascript-ruby objective c-ruby

2019 – – html-javascript-python css-html-javascript c-c++-python

With respect to what a common domain means as defined above, we found six common domains across the 10 yearly
sets of sample projects when we only considered programming languages in language selections. In addition to the five
observed when all languages were considered (i.e., in Figure 12), another common domain, Content access, also has
fairly strong associations with some (programming) language selections in most of the (8 out of 10) years.

Similar to the patterns shown in Figure 12, given a specific functionality domain, although language selections
also constantly changed over the years, some individual/constituent languages are stably present in the language
selections throughout the evolution. For example, in Application library projects, c++ and shell were always
selected in all the nine years in which any strong association was successfully found. As another example, in the
Engineering/development domain, the sampled multi-language projects constantly selected c and c++ for every single
year during the studied 10-year span. Also, more holistically, there was also at least one stably associated language
selection (as opposed to individual languages) for every one of the six common domains. In particular, with both
Middleware and Application library, shell-python-c++-c was strongly associated for 6 years (2010, 2011, 2013,
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2015, 2016, and 2019); with End-user application, javascript-ruby-shell was strongly associated for 5 years
(2010, 2012, 2013, 2015, and 2018); with Education, javascript-ruby-pythonwas strongly associated for 3 years (2010,
2011, and 2012); with Content access, shell-python-javascript-c++ was strongly associated for 6 years (2012,
2013, 2014, 2015, 2017, and 2019); and with Engineering/development, shell-c++-python was strong associated for
5 years (2015, 2016, 2017, 2018, and 2019).

These statistics revealed that developers did seem to have preferred particular languages and language selections for
constructing multi-language software projects in a particular functionality domain.

On the other hand, for each of the (five) domains shared between Figure 13 and Figure 12, the associated language
selections changed in most cases; in fact, the language selections in the former (Figure 13) were not often a subset of
the respective ones in the latter (Figure 12). The reason is that the language selections changed for each project after
the elimination of non-programming languages, causing variations in the language selection distributions hence the
positive/strong associations. The overall patterns and evolutionary characteristics, however, are not quite different
between these two figures.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
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Application 
library

End-user 
application

Education

Engineering/ 
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Content 
access

Fig. 13. Evolution of the associations between language selections and common functionality domains over the 10-year span studied,
with only programming languages considered.

When only considering programming languages, the associations between functionality domains and language selections

evolved generally similarly (i.e., in terms of main evolutionary characteristics regarding what changed constantly and

what were more stable) to those with all languages considered.

3.3.4 Evolution of Functionality Relevance of Language Interfacing. Now that we have looked at the evolution of language
interfacing mechanisms (Figure 11) and the evolution of how functionality domains are associated with language
selections (Figure 12), it is naturally helpful to see next how the associations between functionality domains and language
interfacing mechanisms have evolved. The rationale is twofold. First, these mechanisms are an essential, unique/defining
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(relative to single-language software) aspect of multilingual software construction. Second, the interfacing mechanism
of a language selection is clearly a key underlying property of that language selection.

Again we focus on the results for common domains: i.e., the functionality domains that are in common among the
10 yearly sets of sample projects and that each has at least one positively/strongly associated language interfacing
mechanism (including mixed/hybrid ones such as FFI_EBD) for at least one of the 10 years. As shown in Figure 14, we
found eight such common domains.

Overall, similar to the associations between functionality domains and language selections, for any given year, there
were multiple specific domains that were strongly associated with one or more language interfacing mechanisms; in
fact, for almost every year, the majority of these common domains had at least one strongly associated interfacing
mechanism. This observation revealed that developers did generally choose different preferred interfacing mechanisms
for constructing multilingual software of different functionality domains regardless of the change of time, although the
preferences also changed over time—for any of these common domains.

In particular, it is worth noting that for most of these domains, combining two or three individual language interfacing
mechanisms (LIMs) was a dominant practice in multilingual software construction, especially since the year of 2013.
The sheer number of strongly associated LIM choices also grew over the years. For instance, in the domain of End-user
application, the LIM choices consist in IMI_EBD, IMI, and HIT during 2010 through 2012. In 2013 and later years,
the number of associated LIM choices rose up to 5. Note that these results are pretty consistent with those observed
in Figure 12. For instance, prior to 2013, the primary language choices for End-user application multi-language
projects were javascript and ruby, which is consistent with the observation that IMI was the dominant interfacing
mechanism (standalone or mixed with one or two other mechanisms) before 2013 because javascript and ruby are
mostly commonly interfaced via IMI—javascript is used for constructing front-end code while ruby for back-end
construction. Starting in 2014, the language choices became notably diversified (e.g., with java, objective-c, and php

becoming popular choices), leading to the growing diversity of the interfacing mechanisms adopted.
Overall, during the 10-year span studied, multilingual software construction has been featured with growing diversity

of LIM choices, and with fewer and fewer multi-language projects only adopting one single LIM—most of the associated
LIM choices are mixed LIMs. And the most popular mixture scheme was to combine two or three single LIMs—in
fact, we have not found any project combining more than three single LIMs. This observation is consistent with the
rising adoption of mixed LIMs along with the growing diversity of such LIMs as observed in the general evolution of
LIMs shown in Figure 11. This trend, seen in any of the eight common functionality domains, indicates the growing
complexity of multilingual software construction, with more language choices available and diversifying ways in which
multiple languages interact with each other, generally in any software (functionality) domain.

Multilingual software construction, irrespective of the targeted functionality domain, has been constantly featured with

having certain strongly-associated language interfacing mechanisms, which have been increasingly hybrid/mixed and

diverse, indicating growing complexity of multilingual software construction over time.

4 DISCUSSION

In this section, we systematize our study results across the three research questions and distill further insights into the
construction of modern multilingual software systems from our empirical results. Based on these insights and results,
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Fig. 14. Evolution of the association between language interfacing types and common functionality domains.

we provide actionable suggestions on multilingual software development and research. We also discuss threats to the
validity of our results and other limitations of our study.

4.1 Systematization and Implications of Results

Our study results revealed some of the notable practice in modern multilingual software construction concerning
frequent/popular individual language choices and language combinations, the ways in which languages interact with
each other, and the functionality considerations in relation to language use and selection. These results have implications
to various stakeholders of multilingual systems, including relevant researchers and software developers.

4.1.1 Relevant to Software Developers. Despite the rising popularity of the multilingual software construction practice,
we do not claim or suggest that developers should all move to multilingual development. In fact, there is still a significant
portion (e.g., 18% as shown in Figure 2) of software projects in our study dataset developed in one single language. Also,
note that the overall growth in the popularity of multilingual software construction has been gradual, especially in the
recent past years (as shown in Figure 7). Thus, it is reasonably expected that the conventional practice of using a single
language (e.g., c, java, python, and javascript) for software development will continue to stay for years to come.

Nevertheless, the continuously growing and increasingly dominating prevalence of multilingual software among
software projects (at least in the open-source world) as seen in our study (Section 3.3.1) implied the well-recognized
merits of combining the benefits of multiple languages in modern software development. For this reason, we believe
that the adoption of multilingual construction can be considered a viable option to developers thinking about language
selection/use for their future projects. Adding a language to the development does not necessarily mean a need for
writing a significant amount of code in that language, according to our results on language distribution (Figure 4)
and significance by language code size (Figure 5). Thus, the choice of multilingual construction may not imply an
increase in workload and software development costs. Our results show that some language choices, especially scripting
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languages such as shell and declarative languages such as make/cmake, are used quite frequently in multilingual
construction, yet they only contribute minimally in terms of code size—from an experiential point of view, these
languages could be considered when multilingual developers make decisions on (expanding) language selection.
Moreover, the evolution of associations between software domains and language selections/interfacing mechanisms also
suggests that combining multiple languages through certain interfacing mechanisms is becoming popular (Figures 12–
14). For instance, objective c-ruby has been a steadily common language selection for Engineering/development
software development, with which FFI has been chosen as a primary interfacing mechanism.

By the same token, developers who are proficient with one language only may potentially consider to add the ability
to program with more languages to their skill sets, so that they can leverage the benefits of multilingual software
construction and/or more effectively contribute to a collaborative multilingual project. Now that the increasing majority
of open-source software projects adopted the practice of multilingual construction (Figure 2), those developers should
equip themselves with according skills if they aim to become a significant contributors to the open-source community.
In particular, Figure 3, together with Figure 9 and Table 5, suggests that these additional languages that developers may
want to choose mainly include shell, css, html, ruby, swift, objective c, typescript, and make/cmake.

More specifically, whenmaking decisions on language choices, we suggest developers may (1) start with the
high-level functionality requirements of their target software project and accordingly, choose the main language that
often served for the functionality domain as evidenced historically (e.g., using Table 12 as a reference). For instance,
php and c are common choices here for email applications, while go and python have been often selected to start with
for developing simulation software. Then (2) based on the main language selected, developers can choose language
interfacing mechanisms to decide how to construct the software regarding the connection between different language
units. For example, FFI usually brings high performance but also high couplings due to the intra-process invocations
with it; in contrast, IMI helps decouple different language units through inter-process communication, leading
to lower coupling but also relatively lower performance. Finally, (3) with the main language and specific language
interfacing mechanism chosen, developers can select the rest of the eventual language selection for code implementation.
As demonstrated in our results, the strong associations between main languages and language interfacing mechanisms
and those between language interfacing mechanisms and language selections justify/explain associations between
respective functionality domains and the associated language selections. For instance, after choosing javascript as
the main language for a spreadsheet development project (according to Table 9), the developer would choose IMI as
the interfacing mechanism according to how javascript typically interoperates with other languages, hence choosing
the rest of language selection, css and html, based on the common association between these languages and IMI given
that javascript is already chosen. Those domains have been shown to be well supported by the associated language
combinations in the past and are likely to (albeit not necessarily) remain so in the future. Intuitively, for a particular
domain, one reason that some language selections may be more preferable to others is because that each of the selected
languages is known to best suit part of the common functionalities of the domain.

We also found that for a given domain the associated language combinations were not unique. This gives developers
leeway in making the choices of languages, allowing for preferences in other regards (e.g., familiarity with certain
languages). Importantly, our evolutionary characterization revealed that some subsets of languages stood the test of
time, showing a strong and persistent presence in language combinations associated with certain functionality domains
(Figure 12). We thus particularly suggest developers to begin with those stable subsets of languages associated with
the target functionality domains (e.g., css-html-javascript for the development of Education software) and then
choose other secondary, cooperating languages.
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Similarly, in terms of choosing individual languages for multilingual construction, for some specific functionality
domains (e.g., mobile application) there was not a particular language that was always considered a must (i.e., always
associated with the domain). Yet there appeared to be a primary language commonly associated with implementing
certain kinds of functionalities (e.g., javascript for End-user application and c for Engineering/development),
despite the variations in the companion languages. Thus, it would be a reasonable/viable option for developers to consider
including these primary languages in their language selection if they target the respective, associated functionality
domains given the historical successes in using the languages for those kinds of functionalities.

Our results revealed some highly significant (in terms of code size attribution) individual languages although they
may not be used as frequently as others. These languages include c, c++, java, c#, javascript, and python, which are
all well-known mainstream programming languages—a significant portion of multilingual software code is written in
these languages due to their rich language features and the strong support (e.g., third-party libraries and developer
tools) available in the respective ecosystems. On the other hand, some individual languages were highly frequently
used in a variety of domains. These languages include shell, makefile, hmtl, and css, due to their great usability and
flexibility—a few dozens of lines of code in these languages often suffice for the assistive purposes they serve (e.g.,
system maintenance/DevOps and data transfer across heterogeneous system components). Again, these historically
popular choices can be a good reference for developers to make language use/selection decisions.

When it comes to deciding on the holistic set of languages for a project, our results revealed some quite strong
co-occurrences between certain domains and the associated language selections. Thus, multilingual developers can
immediately refer to such frequent associations to make decisisons on language selection once they have nailed down
the target software domain of the project. In particular, css-javascript-php has been a solid option for developing
application libraries, likely due to the fact (at least in our studied projects) that these libraries often serve for Web
applications, for which Web languages (css, javascripts, php, etc.) are widely known to be used together often. For
middleware development, c-c++-python has been most frequently selected plausibly due to the well-known merits
of c and c++ for low-level system implementation and the complementary merits of python in dealing with user
interactions and system configurations.

With End-user applications, various language combinations have been shown to have statistically strong as-
sociations, including php-shell, css-html-ruby, and java-kotlin, among others—the diversity of choices here are
partly due to the diversity of end-user applications: indeed, our level-1 domain categorization is focused on breaking
down end-user applications (into 14 categories). Thus, to start with, developers may want to first nail down the specific
category of end-user application they are targeting, and then refer to our findings (Table 8) on which language selections
were strongly associated with each (level-1) category. For instance, the go-shell combination could be a good starting
point to consider for simulation software given the super strong association between them; another frequent choice
in this domain was makefile-python-shell. It turns out that most of the multimedia applications (in our dataset)
are Web applications; thus, all the past frequently associated language selections included css-html-javascript.

As we discussed earlier, an intermediate step and key factor during the language selection decision making is to
decide on the language interfacing mechanisms after the main languages are nailed down (e.g., which interfacing
mechanisms are suitable for or compatible with the selected main language). Our results revealed some strong historical
preferences of language interfacing mechanisms for specific main languages. For instance, FFI had a solid bond with c++,
c, java, and python, which is unsurprising because these most popular mainstream programming languages enjoyed
the availability of dedicated support for interfacing with other languages through FFI (e.g., JNI for c to interact with
Java and ctypes for c to interact with python). As another example, languages such as shell and go most frequently
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interfaced with other languages via IMI, which is also a well-known practice (e.g., the shell code invokes other language
units through pipes or other inter-process communication (IPC) channels, which all fall in the category of IMI).

Finally, the choices of the main languages and language interfacing mechanisms intuitively affect the final set of
languages to use—the remaining languages have to be interoperable with the main language via the chosen interfacing
mechanisms. Or the remaining languages may be determined after the main languages are chosen—then the choices of
interfacing mechanisms would be limited to those that have existing support available with respect to the entire set of
languages selected. In this regard, our results revealed that, if the main language is one of c, c++, python, javascript,
and java, the choices for the other languages have typically been among the same set if FFI is chosen as the interfacing
mechanism, shell if IMI is chosen, or one of css, html, and typescript if EBD is chosen. The reason is that those
main languages have well defined interfaces among them, shell has a broad interoperability with those main languages
through IPC (i.e., IMI), and javascript, css, html, and typescript are widely known to integrate via embedding one
lanugage unit within another (i.e., EBD).

These strong associations did provide a good reference in practice when developers look for a possible set of languages
to use in tandem. Of course, the fact that a main language choice, a choice of language interfacing mechanism, or the
whole language selection was used frequently for a domain in the past does not necessarily mean it is the best choice
for future projects of the same domain. Nevertheless, such associations still provide a pointer for decision making
regarding those choices for language selection—e.g., developers may look further into why some sample projects in the
past used the associated main languages, language interfacing mechanisms, and language selections, and then make
their best decisions based on such deeper understandings.

In summary, our results support a general practical strategy for language use and selection during multilingual
software construction, including how to combine the various languages selected: follow the chain of FD→MaL→LIM→LS.
That is, developers may first decide on the functionality domain (FD) as per the requirements of the software project
under development. This target then guides the choice of the main language (MaL), which further informs the selection
of the language interfacing mechanism (LIM). Finally, given the decisions on MaL and LIM, the holistic language
selection (LS) can be derived. In each of these steps, the specific decisions can be made by referring to the historically
strong associations between respective variables (e.g., Table 9 for choosing MaL according to the target FD and Table 10
for selecting LIM according to the chosen MaL). In particular, the decision making as regards to LIM choices immediately
addresses the question of how to combine the selected languages since the LIM informs how these chosen languages
should interoperate with each other.

4.1.2 Relevant to Researchers. Software construction using multiple languages has been a norm for long (Section 3.1.1),
yet our software engineering research community has not paid sufficient attention to particularly support multilingual
software development. For instance, tool support for multilingual systems (e.g., testing, maintenance, evolution, and
security defense) remains largely lacking, despite a few relevant works addressing a particular case of such systems
(e.g., for java-c programs [20, 26]). We hope that our study results could serve as an advocate for more researchers to
invest in studying developers needs in multilingual software construction and proposing techniques to assist them with
common software engineering tasks in developing multilingual systems.

In particular, in light of our results showing the diversity of language selections, we suggest researchers to keep this
diversity in mind when developing techniques and tools to support multilingual software quality assurance. For instance,
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we found that, despite the almost exclusive focus on java-c (e.g., JNI5) programs by existing relevant tool support,
java-c was not even among the top 20 language combinations in our studied projects (Section 3.1.4). For example,
pythonwas a more frequent collaborating language with c (Table 5), and highly impactful machine learning frameworks
such as TensorFlow [19] and PyTorch [39] are developed mainly in python and c. Thus, our results clearly call for
research on multilingual software beyond java-c programs (as one particular, non-dominating language selection) and
JNI (as one specific mechanism for language interoperability).

On the other hand, despite the fast growing diversity of language choices (from 35 to 138 in 10 years as shown in
Figure 8), the number of languages used in one project did not grow as fast. In fact, using 3–5 languages has increasingly
become a dominating multilingual system construction decision in terms of the language profile size. This implies that
with more individual languages available, developers did not keep adding more languages to a project; rather, they
tended to pick a stable number of languages, albeit differently. Moreover, as we showed in Section 3.3, the well-known
mainstream languages (e.g., javascript, c/c++, java, c#, shell, and python) had a constant leading presence in the
language selections over time. This essentially allows for concentrated efforts that yield meaningful and enduring
results. We recommend researchers concentrate on devising techniques that address the interoperability of these
few mainstream/primary languages with each other and other secondary/supplementary languages. This approach
eliminates the concern that such techniques might swiftly become outdated.

While also addressing interfacing mechanisms among different languages (Figure 14), prior works [26, 31, 32] focused
primarily on analyzing multilingual software in which the languages interact via the FFI mechanism. However, our
results revealed that FFI, when used alone, was not a popular choice for language interfacing during multilingual
software construction. Thus, there is a clear disconnect between research and practice here. Also, our results indicate
that IMI is a dominant interfacing mechanism among the studied projects regardless of their functionality domains—
we observed the dominance in all the mined domains. Yet currently there has been little existing work on analyzing
multilingual code with IMI interfacing. Thus, future techniques enabling (e.g., multi-process [5]) analyses of multilingual
software that handle IMI interfacing are critically and urgently needed—note that pursuing a multilingual analysis that
is fully agnostic of the interfacing mechanism (i.e., working with any interfacing mechanisms) may not be a fruitful
future research direction [48].

In addition, our results on the evolution of language interfacing mechanisms and that of the association between
these mechanisms and functionality domains show that, regardless of the target domains, one growing trend is
multilingual software construction is the increasing use of hybrid/mixed interfacing mechanisms and the diversity of
such mechanisms. However, we are not aware of any existing multilingual code analysis that supports more than one
interfacing mechanism at the same time—a gap to be filled in future multilingual software analysis.

4.2 Threats to Validity and Study Limitations

We discuss various kinds of threats to the validity of our results, including threats to internal, external, and construct
validity, during we also discuss limitations of our study.
Internal validity. As a common threat to internal validity, possible errors may happen during the development
procedure of our study toolkit, which might have negatively affected our results. In particular, the functionality domains
referred to in our study were identified through a coding process. During this process, both the codebook derivation

5Without loss of generality, java-c programs mainly use the Java native interface (JNI) to realize language interoperations (between Java and C). Yet
other interoperability options do exist between Java and C, such as interprocess communication (IPC) [14] and implicit mechanisms such as data transfer
through file systems or databases.
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and coding steps are subject to human biases and errors. To mitigate this threat, we addressed disagreement through
meetings/discussions and followed a negotiated agreement, a common approach to dealing with the human biases and
errors in inductive/axial coding.

In addition, the correctness of the functionality domain categorization was limited by by the quality of the data sources
(e.g., descriptiveness of project topics/descriptions). To reduce this threat, we ignored projects whose descriptions/topics
are empty or insignificant in length. A similar threat is that we used the GitHub linguist [18] tool to identify the
language profile for each project, making our results subject to the imperfect accuracy of this tool.

Another limitation of our study lies in the inaccuracy of PolyFax [29], the tool we used for identifying the interfacing
mechanisms used in a given multi-language project. This tool was evaluated manually in its original paper, which
reports precision of 78% (for IMI) up to 96% (for EBD), and the recall ranged from 82% to 90%. The imprecision implies
that our results are subject to mistakenly identified interfacing mechanisms, and the limitation in recall means that not
all of the interfacing mechanisms were recognized for some of the studied projects.

External validity. The primary threat to the external validity of our study results concerns the sample projects we
have collected from GitHub and used. To make the samples more representative of the projects on GitHub, we purposely
chose to randomly select a sizable dataset that included projects each meeting several criteria regarding popularity,
liveness, and recency (Section 2.3), for both the SPC and EVC studies. For example, we enforced that any sampled
project had at least 1,000 stars, which has been used in prior works [38, 43] as an indicator of popularity. We also have
shown that our sample projects covered a variety of software domains (e.g., from OS to musical apps). Yet relative to the
entire project set on GitHub, our sample sizes were still considered small. Moreover, our datasets may not well represent
all real-world multilingual systems with respect to the multilingual software construction practice, the focus of our
holistic study. For this reason, we cannot broadly claim that our findings would surely generalize to any multilingual
software. Instead, our results should be best interpreted for the projects that we actually studied. Yet on a side note, we
would like to point out that although the total number of projects on GitHub seemed to be huge [47], we found that
most of the projects are inactive and many are not software development projects at all [24] hence by nature cannot be
considered in our study anyway. This potentially dwarfs the threats to our study results’ external validity concerning
the sample size. On the other hand, since we only considered software projects on GitHub as the single data source, our
findings and conclusions should be best interpreted with respect to open-source software on this particular platform,
not necessarily representing any software project in the wild. We chose GitHub as we believe, as many prior peer
studies have assumed also, that GitHub is a reasonably credible source of software projects to support studies like ours.

Per our study goals, ideally we would want to use industrial software systems as subjects for our study. However,
we currently do not have access to a substantial set of software projects in the industry. Thus, we chose to sample
open-sources projects on GitHub because they are readily accessible to us and GitHub is a widely used source of
software projects to enable a range of software engineering studies as done in the current literature. Nevertheless, not all
of these open-source projects on GitHub can fully represent real-world software systems when it comes to multilingual
construction particularly concerning language use/selection. Therefore, our results should be best interpreted with
respect to the open-source projects we actually sampled.

On a related note, our study results are pertinent to multilingual software construction in the open-source world,
and may not fully reflect modern software development technologies and practices in general (e.g., as applied in
software and information industries). For instance, widely used machine learning frameworks such as Tensorflow and
PyTorch are multilingual systems, in which the language use/selection decisions are potentially also based on various

40



domain-specific design concerns (e.g., neural network model optimizations towards greater efficiency) in addition to
what we have explored in our study. The interfacing mechanisms to be chosen may also be more diverse than the ones
we discussed. For example, industrial multilingual software systems may use dedicated interfacing frameworks (e.g.,
D-bus [40] and gRPC [21]) to enable interoperability support. Another example is the Common Object Request Broker
Architecture (CORBA) [11], which, through its Interface Definition Language (IDL), provides language independence in
that CORBA objects written in one language can send requests to objects implemented in a different language.

Construct validity. The main threat to construct validity lies in the metrics and measurement procedures adopted in
our studies. Concerning the characterization metrics used, we cannot ensure that they were absolutely comprehensive
for characterizing multilingual software construction in terms of language use and selection. To mitigate this threat, we
chose a diverse set of statistics and dimensions in quantifying the characteristics of multilingual systems, including
those used in peer prior works (e.g., the number of unique languages in total used across all the studied projects and
that number used for each of the projects). For example, to characterize the overall language use and selection, we
have considered metrics for both language prevalence (Section 3.1.2) and language significance (Section 3.1.3) which
seemingly overlap with but actually complement to each other.

Regarding measurements, in our EVC study, we used 1,000 sample projects in total for each year, but the actual
number of multilingual samples varied across the years—as shown in Figure 7, the proportion of these 1,000 that were
multilingual projects ranged from 41% to 74%. As a result, the basis of the yearly results for RQ3 (e.g., results on the
evolution of functionality relevance and the evolution of language profile size) was not always consistent. However,
we chose to do so for two reasons. First, ensuring the size balance of the yearly datasets avoided overall sampling
biases. Second, although the eventual numbers of multilingual projects varied from year to year, the variation exactly
represents the actual ratio of multilingual software over software projects of all kinds on GitHub and likely reflects the
real-world distribution of multilingual versus single-language software systems.

Another threat to construct validity lies in the consistency of language profiles of the studied projects under the
longitudinal lens. As software evolves, which is a norm for any successful software project, the language profile of a
software project may evolve as well—some languages can be added while others may be removed during the evolution.
We currently cannot guarantee that the language profiles of the projects in our studies are constant during their
evolution and maintenance. Instead, we only considered the latest language profiles for all projects in the study dataset.
Thus, our empirical results and findings should be interpreted with respect to the language profiles at the time when
we obtained them, not necessarily always reflecting the language selection/use of the respective projects throughout
their entire lifetime.

Yet another construct validity threat is that we dismissed the possibly varying importance of different languages
in characterizing language prevalence and significance in Section 3.1. For instance, we treated a byte of shell code
equally to a byte of c code in computing the language distribution by code size and language significance in terms of
code size attribution to different languages within a language profile. We also note that in this paper we aimed to study
the multilingual construction of modern software in a holistic manner, thus we did not exclude non-programming
languages (e.g., css and html). In doing so, we also dismissed the differential importance of programming languages
versus other assisting (e.g., data modeling) languages, which may have caused biases in the explanations of our results.
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5 RELATEDWORK

Prior peer works that are related to ours fall in two major categories: characterizing language use and analyzing the
effects of language selection.

5.1 Characterizing Language Use

As discussed earlier (Section 1), most of the previous studies concerning language use/selection focused on the use
of individual languages, as opposed to our focus on the holistic language profiles of multilingual systems (i.e., how
multiple languages are used together in a single project). We have also discussed how their results relate to our empirical
findings in Section 3 when presenting our results.

Like ours, an earlier study [36] also examined the connection between language selection and functionality domains.
Yet again this study addressed different languages individually rather than language combinations. In fact, the study
did not particularly characterize multilingual software but the general language use in any software project. In contrast,
part of our study is dedicated to discovering statistical relationships between functional domains and holistic language
selections. A high-level summary of our study results was recently presented as an abstract [30], which highlighted
those statistical relationships.

Studies explicitly targeting multilingual systems do exist, but they dealt with aspects different from our work
and/or approached the characterization in very different ways. For instance, Bissyande et al. reported the popularity
of languages in various dimensions (number of projects, code size, age, etc.) and the interoperability mechanisms
between languages [4]. Similar kinds of results were also obtained through an empirical assessment of what is called
polyglot-ism by sampling GitHub projects, which found that there were strong relations between different languages
such that various languages tended to be used together in practice [44]. However, unlike our study, the justification of
the connections among languages was not examined in depth. Recently, Yang et al. examined developers’ discussions
on Stack Overflow (SO) regarding the issues and challenges with multilingual software development, and the current
solutions developers have to those challenges [49]. In contrast, our study is based on the actual multilingual code, not
natural-language discussions by developers.

Further research on multilingual software demonstrated the associations between different language groups as
used in different application domains. For example, Mayer and Bauer [33] showed the relationships between one
general-purpose language (GPL) and another GPL, between a GPL and a domain-specific language (DSL), and between
one DSL and another DSL. Similarly, Delorey et al. [13] studied the links among various individual languages and
found some companionship patterns of languages. These studies, while different from ours, potentially complement to
our characterization of multilingual software construction. Overall language use statistics and choices have also been
investigated directly from developers’ opinions [1, 34], which are also complementary to our study based on the work
products of multilingual software developers.

In all, despite the existence of a few earlier studies examining language use and selection, existing related works
were either limited to single-language software and/or failed to look into the underlying rationale (e.g., as we did from
the perspective of functionality relevance) and mechanism (e.g., as we did from the perspective of cross-language
interaction) that justify/explain language use and selection. Our study also offers an evolutionary viewpoint on the
use/selection of multiple languages together and their underlying justification, which is missing in existing peer studies.
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5.2 Analyzing the Effects of Language Selection

Beyond the general statistics on language use, researchers have also looked at the consequences of language choices
and into how the use of languages affects the various properties of the resulting software products. Ray et al. [43]
studied the impact of language features (strong versus weak typing, dynamic versus static typing, etc.) on the defect
occurrence in software written in the respective languages. They also went further to explore the relationships of
language choices with defect types, both in general and in separate application domains. The study revealed that these
relationships/impact were significant but small. Based on these results, a further research refined the approach and
obtained more interesting findings that revealed correlations between bug resolution characteristics and language
features (e.g., strong/weak typing) and project features (e.g., age, size and domain) [50]. On the other hand, Berger et
al. [3] attempted to reproduce the study conducted by Ray et al. [43] and found that the relationships between languages
and quality were even much weaker than the originally reported.

In addition, Mayer, Kirsch, and Le [34] provided empirical evidence that most developers had encountered at least
one bug related to cross-language linking, and that the use of multiple languages increased the difficulty of bug fixing.
Later, Abidi et al. [1] reported that understandability was the most impacted quality attribute in a multi-language
system (by the use of multiple languages), based on the perception of 93 developers. More recently, the same authors
examined the impact of design smells on fault-proneness of a particular case of multilingual systems—JNI software [2],
and revealed positive associations between the two. Likewise, in a study that was also focused on JNI software [20],
the researchers found that having more dependencies between code units in different languages increased the risk of
functional bugs and security vulnerabilities. More recently, we examined and quantified how language selection affects
the proneness of the multi-language projects that select the languages to various kinds of vulnerabilities [28].

Compared to these prior studies, we focused on the characteristics concerning the multilingual construction of open-
source software projects by looking at the size and composition of language profiles, offering an updated, multifaceted
overview of language use and selection in contemporary multilingual systems. Also, instead of assessing the quality
impact of language use and selection, we addressed the functionality relevance of language selection in terms of the
quantitative association between the selection and functionality domains. We also dove into this overall association,
dissecting/justifying it through studying the effects of the choices of, as well as intermediate associations with, language
interfacing mechanisms and main programming languages on the ultimate language selection holistically. Moreover,
we offered a longitudinal view of such associations in multilingual systems, which has not been explored before.

6 CONCLUSIONS

We presented a large-scale characterization study on language use and selection in multilingual software with projects
randomly sampled from GitHub in order to understand the multilingual construction of modern software systems.
Using carefully chosen and specially developed tools along with relevant statistical analyses, we provided a recent,
multi-faceted, and evolutionary view of language use and selection in the multi-language world, and looked into the
functionality rationales behind the language selection decisions as a way to justify the decisions.

Our study revealed dominating and continuously rising prevalence of multilingual construction in modern open-
source software projects. We also discovered the growing trend of using 3 to 5 languages in multilingual software and top
language selections, along with the increasing diversity of language choices. We further found that language selection
was generally quite strongly associated with some functionality domains. Over time, the top language selections for
those domains changed considerably, whereas the primary languages appeared to be relatively stable. The strong
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association patterns regarding how functionality domains targeted by a project, languages selected in the project, the
main language included in the selection, and interfacing mechanism used for those selected languages to communicate
with each other provide immediate references or even guidance for language use/selection during multilingual software
construction. We reported major findings and drew insights from empirical results, which together led to practical,
actionable suggestions for both researchers and developers of multilingual systems.

For future work, we plan to leverage our insights gained from this study to develop practical tools to support the
quality assurance of multilingual software. An additional next step is to expand our current study by further analyzing
the interfacing between languages and assessing the implications of different interfacing mechanisms to the correctness
and security of multilingual code.

ACKNOWLEDGMENT

We thank our associate editor and reviewers for insightful and constructive comments. This work was supported in
part by the U.S. National Science Foundation (NSF) under Grant CCF-2146233 and in part by the U.S. Office of Naval
Research (ONR) under Grant N000142212111.

REFERENCES
[1] Mouna Abidi, Manel Grichi, and Foutse Khomh. 2019. Behind the scenes: developers’ perception of multi-language practices. In Proceedings of the

29th Annual International Conference on Computer Science and Software Engineering. 72–81.
[2] Mouna Abidi, Md Saidur Rahman, Moses Openja, and Foutse Khomh. 2021. Are multi-language design smells fault-prone? An empirical study. ACM

Transactions on Software Engineering and Methodology (TOSEM) 30, 3 (2021), 1–56.
[3] Emery D Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. 2019. On the impact of programming languages on code quality: a

reproduction study. ACM Transactions on Programming Languages and Systems (TOPLAS) 41, 4 (2019), 1–24.
[4] Tegawendé F Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, and Laurent Réveillère. 2013. Popularity, interoperability, and impact of

programming languages in 100,000 open source projects. In 2013 IEEE 37th annual computer software and applications conference. 303–312.
[5] Haipeng Cai and Xiaoqin Fu. 2022. D2ABS: A Framework for Dynamic Dependence Analysis of Distributed Programs. IEEE Transactions on Software

Engineering (TSE) 48, 12 (2022), 4733–4761.
[6] Haipeng Cai and Barbara Ryder. 2017. DroidFax: A Toolkit for Systematic Characterization of Android Applications. In International Conference on

Software Maintenance and Evolution (ICSME). 643–647.
[7] Haipeng Cai and Barbara Ryder. 2021. A Longitudinal Study of Application Structure and Behaviors in Android. IEEE Transactions on Software

Engineering (TSE) 47, 12 (2021), 2934–2955.
[8] Haipeng Cai and Douglas Thain. 2016. DistIA: A Cost-Effective Dynamic Impact Analysis for Distributed Programs. In IEEE/ACM Conference on

Automated Software Engineering (ASE). 344–355.
[9] John L Campbell, Charles Quincy, Jordan Osserman, and Ove K Pedersen. 2013. Coding in-depth semistructured interviews: Problems of unitization

and intercoder reliability and agreement. Sociological methods & research 42, 3 (2013), 294–320.
[10] Yaofei Chen, Rose Dios, Ali Mili, Lan Wu, and Kefei Wang. 2005. An empirical study of programming language trends. IEEE software 22, 3 (2005),

72–79.
[11] CORBA. 1991. Common Object Request Broker Architecture (CORBA). https://www.omg.org/spec/CORBA/.
[12] Juliet Corbin and Anselm Strauss. 2014. Basics of qualitative research: Techniques and procedures for developing grounded theory. Sage publications.
[13] Daniel P Delorey, Charles D Knutson, and Christophe Giraud-Carrier. 2007. Programming language trends in open source development: An

evaluation using data from all production phase sourceforge projects. In Second International Workshop on Public Data about Software Development
(WoPDaSD’07). 1–5.

[14] Xiaoqin Fu, Haipeng Cai, Wen Li, and Li Li. 2020. Seads: Scalable and Cost-Effective Dynamic Dependence Analysis of Distributed Systems via
Reinforcement Learning. ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 1 (2020), 1–45.

[15] Xiaoqin Fu, Boxiang Lin, and Haipeng Cai. 2022. DistFax: A Toolkit for Measuring Interprocess Communications and Quality of Distributed Systems.
In IEEE/ACM International Conference on Software Engineering (ICSE), Companion Proceedings. 51–55.

[16] GitHub. 2023. GitHut 2.0 - GitHub Language Stats. https://madnight.github.io/githut/.
[17] GitHub, Inc. 2020. GitHub: a US-based global company, provides hosting for software development version control using Git. https://github.com/.
[18] GitHub, Inc. 2020. GitHub Developer: provides APIs to retrive or query repositories in GitHub. https://developer.github.com/v3.
[19] Google Brain Team. 2021. The TensorFlow project. https://github.com/tensorflow/tensorflow.

44

 https://www.omg.org/spec/CORBA/ 
https://madnight.github.io/githut/
https://github.com/
https://developer.github.com/v3
https://github.com/tensorflow/tensorflow


[20] Manel Grichi, Mouna Abidi, Fehmi Jaafar, Ellis E Eghan, and Bram Adams. 2020. On the impact of interlanguage dependencies in multilanguage
systems empirical case study on java native interface applications (JNI). IEEE Transactions on Reliability 70, 1 (2020), 428–440.

[21] gRPC. 2020. gRPC Tutorial. https://grpc.io/docs/.
[22] Fauna Herawati, Muhamad Satria Mandala Pua Upa, Rika Yulia, and Retnosari Andrajati. 2019. Antibiotic Consumption at a Pediatric Ward at a

Public Hospital in Indonesia. Asian Journal of Pharmaceutical and Clinical Research 12, 8 (2019), 64–67.
[23] Capers Jones. 2009. Software engineering best practices. McGraw-Hill, Inc.
[24] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German, and Daniela Damian. 2016. An in-depth study of the promises

and perils of mining GitHub. Empirical Software Engineering 21, 5 (2016), 2035–2071.
[25] Siim Karus and Harald Gall. 2011. A study of language usage evolution in open source software. In Proceedings of the 8th Working Conference on

Mining Software Repositories. 13–22.
[26] Sungho Lee, Hyogun Lee, and Sukyoung Ryu. 2020. Broadening Horizons of Multilingual Static Analysis: Semantic Summary Extraction from C

Code for JNI Program Analysis. In 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). 127–137.
[27] Justin Lestal. 2023. How many programming and coding languages are there? https://devskiller.com/how-many-programming-languages/.
[28] Wen Li, Li Li, and Haipeng Cai. 2022. On the Vulnerability Proneness of Multilingual Code. In ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE). 847–859.
[29] Wen Li, Li Li, and Haipeng Cai. 2022. PolyFax: a toolkit for characterizing multi-language software. In Proceedings of the 30th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering. 1662–1666.
[30] Wen Li, Na Meng, Li Li, and Haipeng Cai. 2021. Understanding Language Selection in Multi-Language Software Projects on GitHub. In 2021

IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). 256–257.
[31] Wen Li, Jiang Ming, Xiapu Luo, and Haipeng Cai. 2022. PolyCruise: A Cross-Language Dynamic Information Flow Analysis. In 31st USENIX Security

Symposium (USENIX Security 22). 2513–2530.
[32] Wen Li, Jinyang Ruan, Guangbei Yi, Long Cheng, Xiapu Luo, and Haipeng Cai. 2023. PolyFuzz: Holistic Greybox Fuzzing of Multi-Language Systems.

In 32nd USENIX Security Symposium (USENIX Security 23). 1379–1396.
[33] Philip Mayer and Alexander Bauer. 2015. An empirical analysis of the utilization of multiple programming languages in open source projects. In

Proceedings of the 19th International Conference on Evaluation and Assessment in Software Engineering. 1–10.
[34] Philip Mayer, Michael Kirsch, and Minh Anh Le. 2017. On multi-language software development, cross-language links and accompanying tools: a

survey of professional software developers. Journal of Software Engineering Research and Development 5, 1 (2017), 1.
[35] Slashdot Media. 2020. SourceForge: The Complete Open-Source and Business Software Platform. https://sourceforge.net/.
[36] Leo A Meyerovich and Ariel S Rabkin. 2013. Empirical analysis of programming language adoption. In Proceedings of the 2013 ACM SIGPLAN

international conference on Object oriented programming systems languages & applications. 1–18.
[37] Matthew B Miles, A Michael Huberman, and Johnny Saldaña. 2018. Qualitative data analysis: A methods sourcebook. Sage publications.
[38] Michail Papamichail, Themistoklis Diamantopoulos, and Andreas Symeonidis. 2016. User-perceived source code quality estimation based on static

analysis metrics. In 2016 IEEE International Conference on Software Quality, Reliability and Security (QRS). 100–107.
[39] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. 2021. The PyTorch project. https://github.com/pytorch/pytorch.
[40] Havoc Pennington. 2020. D-Bus Tutorial. https://dbus.freedesktop.org/doc/dbus-tutorial.html.
[41] Raffaele Perego, Salvatore Orlando, and P Palmerini. 2001. Enhancing the apriori algorithm for frequent set counting. In International Conference on

Data Warehousing and Knowledge Discovery. 71–82.
[42] Sebastian Raschka. 2020. Mlxtend: (machine learning extensions), a Python library of useful tools for the day-to-day data science tasks. http:

//rasbt.github.io/mlxtend.
[43] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014. A large scale study of programming languages and code quality in

GitHub. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering. 155–165.
[44] Federico Tomassetti and Marco Torchiano. 2014. An empirical assessment of polyglot-ism in GitHub. In Proceedings of the 18th International

Conference on Evaluation and Assessment in Software Engineering. 1–4.
[45] Sergi Valverde and Ricard V Solé. 2015. Punctuated equilibrium in the large-scale evolution of programming languages. Journal of The Royal Society

Interface 12, 107 (2015), 20150249.
[46] Bogdan Vasilescu, Alexander Serebrenik, and Mark GJ van den Brand. 2013. The Babel of software development: Linguistic diversity in Open Source.

In International Conference on Social Informatics. 391–404.
[47] Jason Warner. 2018. Thank you for 100 million repositories. https://github.blog/2018-11-08-100M-repos/.
[48] Haoran Yang, Wen Li, and Haipeng Cai. 2022. Language-Agnostic Dynamic Analysis of Multilingual Code: Promises, Pitfalls, and Prospects. In ACM

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), Ideas, Visions and
Reflections. 1621–1626.

[49] Haoran Yang, Weile Lian, Shaowei Wang, and Haipeng Cai. 2023. Demystifying Issues, Challenges, and Solutions for Multilingual Software
Development. In IEEE/ACM International Conference on Software Engineering (ICSE). 1840–1852.

[50] Jie M Zhang, Feng Li, Dan Hao, Meng Wang, Hao Tang, Lu Zhang, and Mark Harman. 2019. A study of bug resolution characteristics in popular
programming languages. IEEE Transactions on Software Engineering 47, 12 (2019), 2684–2697.

45

https://grpc.io/docs/
https://devskiller.com/how-many-programming-languages/
https://sourceforge.net/
https://github.com/pytorch/pytorch
https://dbus.freedesktop.org/doc/dbus-tutorial.html
http://rasbt.github.io/mlxtend
http://rasbt.github.io/mlxtend
https://github.blog/2018-11-08-100M-repos/

	Abstract
	1 Introduction
	2 Methodology
	2.1 Research Questions
	2.2 Study Overview
	2.3 Repository Mining
	2.4 Single-Period Characterization (SPC)
	2.5 Evolutionary Characterization (EVC)
	2.6 Language Scoping

	3 Results
	3.1 RQ1: Language Use/Selection Overview
	3.2 RQ2: Functionality Relevance of Language Selection
	3.3 RQ3: Evolution of Multilingual Systems

	4 Discussion
	4.1 Systematization and Implications of Results
	4.2 Threats to Validity blackand Study Limitations

	5 Related Work
	5.1 Characterizing Language Use
	5.2 Analyzing the Effects of Language Selection

	6 Conclusions
	References

