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ABSTRACT

Given the widespread use of Python and its sustaining impact, the
security and reliability of the Python runtime system is highly and
broadly critical. Yet with real-world bugs in Python runtimes being
continuously and increasingly reported, technique/tool support for
automated detection of such bugs is still largely lacking. In this
paper, we present PyRTFuzz, a novel fuzzing technique/tool for
holistically testing Python runtimes including the language inter-
preter and its runtime libraries. PyRTFuzz combines generation-
andmutation-based fuzzing at the compiler- and application-testing
level, respectively, as enabled by static/dynamic analysis for ex-
tracting runtime API descriptions, a declarative, specification lan-
guage for valid and diverse Python code generation, and a custom
type-guided mutation strategy for format/structure-aware applica-
tion input generation. We implemented PyRTFuzz for the primary
Python implementation (CPython) and applied it to three versions
of the runtime. Our experiments revealed 61 new, demonstrably
exploitable bugs including those in the interpreter and most in
the runtime libraries. Our results also demonstrated the promising
scalability and cost-effectiveness of PyRTFuzz and its great poten-
tial for further bug discovery. The two-level collaborative fuzzing
methodology instantiated in PyRTFuzz may also apply to other
language runtimes especially those of interpreted languages.
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1 INTRODUCTION

With its versatility and ease of use, Python has for years been one
of the most popular programming languages [21, 25, 26, 40]. It is
widely used in various domains, ranging from artificial intelligence
and data science to web development and scientific computing.
In particular, the significance of Python is highlighted in recent
years by its pivotal role in building and deploying machine learning
systems [46]. Like other Python applications, these systems have
their reliability and security heavily and broadly depend on that of
the environment they run in—the Python runtime, which consists
of the interpreter and runtime libraries of the language. Given the
prevalent of Python and the breadth of its software ecosystem, any
bugs in the Python runtime would have widespread impact and
critical consequences.

Unfortunately, this concerning premise about potentially buggy
Python runtimes has been shown to be true: real-world reports on
bugs in the Python runtime are prevalent and growing. For instance,
the last five years have witnessed nearly 2,000 bugs in CPython [41],
the most widely used implementation of Python, annually as per
our recent manual studies. Notably, 10% of these bugs have serious
security consequences that have been disclosed. Thus, it is essential
to thoroughly test the Python runtime. Since manual analysis is
clearly undesirable, automated tool support is needed. However,
such tools are largely lacking as it stands.

Relevant automated software testing tools do exist. For instance,
various fuzzing techniques have been developed for compiler and
language runtimes (e.g., JavaScript engines and JVM). Examples
include generation-based fuzzers like JSfunfuzz [45], TreeFuzz [37],
and Skyfire [48] which learn grammatical features and rules of
respective languages from existing samples to generate valid test
programs, as well as mutation-based fuzzers like Superion [49] and
Fuzzil [15] which generates tests by mutating seed programs via
AST editing or an intermediate language with grammar awareness.
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Other grammar-awareness approaches (e.g., for JVM testing [7, 8])
have also been developed.

These techniques have proven effective in detecting bugs in their
targeted runtime systems. And fuzzing is a successful and promising
approach in general—in fact, it has become the primary method-
ology for bug detection. However, existing relevant approaches
are not sufficient for testing Python runtimes due to several key
challenges to Python runtime fuzzing that they have not addressed.

First, like that of a typical language, the runtime of Python con-
sists of the interpreter core and the language’s runtime libraries.
Thus, testing the Python runtime requires testing both of these two
integral parts. Indeed, our recent studies on real-world CPython
bugs show those bugs exist in both parts. Moreover, unlike for the
runtime of compiled languages such as C/C++ and Java, focusing
just on generating test programs is insufficient for testing Python
runtimes because the interpreter’s behaviors are mostly exercised
only during the execution of Python applicationswhen they interact
with the interpreter through various runtime APIs. Thus, fuzzing
a Python runtime additionally requires fuzzing the generated test
programs (i.e., Python applications) as well, for which concrete
application (or APP in short) test inputs need to be generated. As a
result, holistically fuzzing Python runtimes would necessitate two
different levels (i.e., generating programs versus concrete program
inputs) of fuzzing closely collaborating together (i.e., for extensively
exercising the interactions between the interpeter and runtime li-
braries). However, there is little prior knowledge on how to design
such a two-level, collaborating fuzzing technique (Challenge 1).
Second, fuzzing the interpreter itself would need diverse yet (syn-
tactically and semantically) valid Python APPs. Yet how to achieve
these two requirements at the same time is largely unknown espe-
cially for Python (Challenge 2). Third, it is general challenging for
an application fuzzer to generate quality input values, even more so
for Python application fuzzing because data types are not available
in the program of a dynamically-typed language like Python, mak-
ing it difficult to achieve format/structure-aware input generation
which is important to effectively fuzz Python APPs (Challenge 3).

To address these challenges, we have developed PyRTFuzz, a
two-level collaborative fuzzing technique for comprehensive testing
of Python runtimes. PyRTFuzz combines generation- and mutation-
based fuzzing, at Level-1 and Level-2, respectively, with the two
fuzzers collaborating in synergy and working in a holistic fuzzing

loop as a singleton based on shared coverage feedback to address
Challenge 1. In particular, the Level-1 fuzzing generates valid and
diverse Python APPs of various levels of control flow complexities
through a novel extensible specification-based Python code genera-
tion method based on the descriptions of each API in the Python
runtime extracted using static and dynamic analysis, addressing
Challenge 2. The APP-generation capability is also enabled by a
specialized declarative specification language whose syntax and
semantics are defined via a set of APP-generation primitives that
capture common Python language features and real-world Python
application programming patterns. At Level 2, the mutation-based
fuzzing in PyRTFuzz instruments the given Python runtime for
collecting the coverage feedback and runs the instrumented run-
time against an APP selected by the Level-1 fuzzer, while generat-
ing concrete application inputs to feed the APP through a custom
mutation strategy that can produce input values in a type-guided,

format/structure-aware manner by utilizing the runtime API de-
scriptions, hence addressing Challenge 3.

We have implemented PyRTFuzz based on Atheris [14] and lib-
Fuzzer [30]. To evaluate its effectiveness, we tested PyRTFuzz on
three different versions of CPython [41]: Python 3.7.15, Python
3.8.15, Python 3.9.15. In addition tomeasuring its bug-detection
capability, we also evaluated the scalability of its Python application
generation across various APP specification sizes, ranging from a
minimum of 1 to a maximum of 4096. Furthermore, we investigated
several factors that may affect the effectiveness of PyRTFuzz, in-
cluding APP specification size, level-2 time budget, and typed API
descriptions. Within a total budget of 5 × 24 hours, PyRTFuzz de-
tected a total of 61 bugs across the three Python versions, including
25 in Python 3.9.15, 15 in Python 3.8.15, and 21 in Python 3.7.15.
Our results also demonstrated monotonic growth of coverage of
the runtime code, suggesting that greater coverage may be attained
and potentially even more bugs may be discovered if the fuzzing
continues. Regarding the scalability of application generation, we
found that both the time and memory expense of PyRTFuzz have
linear correlations with the APP specification size, and PyRTFuzz
can generate 4.77 KLoC of code in 40 minutes with a memory
usage of 291.71 MB. Finally, our ablation studies revealed signifi-
cant impacts of APP specification size and Level-2 per-APP fuzzing
time budget on PyRTFuzz’s cost-effectiveness and that the runtime
API descriptions with type information contributed significantly to
PyRTFuzz’s performance.

To the best of our knowledge, PyRTFuzz is the first two-level
collaborative fuzzing technique for Python runtime testing. In addi-
tion, its open-source implementation and extensible design can also
facilitate the development of greybox fuzzing for other compiler
and runtime systems. Particularly, the methodology of combining
generation-based compiler fuzzing and mutation-based application
fuzzing as instantiated in PyRTFuzz can be more broadly applied
to interpretation languages beyond Python.
Open science. Source code of PyRTFuzz and our experimental
datasets are all available in our artifact package and has been made
publicly accessible.

2 BACKGROUND AND MOTIVATION

In this section, we provide a brief background on greybox fuzzing
and discuss its relevance to compiler testing. We also discuss the
challenges and problems that arise in Python runtime testing, which
motivated us to develop our PyRTFuzz approach.

2.1 Greybox Fuzzing

Greybox fuzzing [3, 10, 31, 33, 44] is a software testing methodol-
ogy that strikes a balance between white- and black-box fuzzing,
and the most commonly adopted approach is coverage-guided grey-
box fuzzing [1, 14, 28, 33]. Regarding the strategy for generating
input values, greybox fuzzing can be divided into two categories:
mutation-based and generation-based [31].

Mutation-based fuzzing generates new test cases by randomly
modifying or mutating existing ones. The modified test inputs are
then used to exercise the target application for unexpected behav-
iors such as crashes [44]. In contrast, generation-based fuzzing gen-
erates test cases from scratch based on predefined input grammar
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or input-generation rules. This approach requires understanding
the application’s input specification to ensure the generated inputs
are semantically valid and meaningful. Although mutation-based
fuzzing is simpler to implement, generation-based fuzzing could be
more effective in discovering deep bugs in complex applications.

2.2 Compiler Testing

A key challenge with compiler testing is to generate valid, diverse
test programs [5]. Generating invalid programs may not be useful
as they may get discarded in the early (e.g., preprocessing) stages of
the compiler, while syntactically diverse programs can help exercise
different parts of the compiler, hence potentially increasing code
coverage and uncovering bugs.

To overcome the challenge, two primary approaches exist: grammar-
guided and programmutation-based [5]. Grammar-guided approaches
use the formal grammar of a programming language to generate
valid programs [2, 18, 39, 47, 52]. In contrast, program mutation-
based techniques modify parts of an existing test program while
either preserving the program’s semantics [22, 23, 29] or changing
them [8, 34, 35]. The choice of technique depends on several factors,
such as the programming language, type of compiler, and testing
goals, each with its pros and cons.

2.3 Python Runtime Fuzzing

Our work in this paper is motivated by not only the prevalence
and impact of the Python runtime as generally perceived, but more
by what we observed in our study on its historical bugs. We first
present key findings from the bugs we analyzed manually and then
discuss key challenges to automatically detecting such bugs.
Empirical Study on CPython Bugs. CPython [41] is the most
widely used implementation of the Python programming language,
and it has been actively maintained for more than two decades.
To understand the nature of bugs in CPython, we collected 98.3K
historical issues from its source repository, of which we found 23.4K
are bug-related through a comprehensive analysis. In particular, we
revealed that since 2008, more than 1,000 bug-related issues have
been reported annually, and the number of bugs reported per year
has consistently remained close to 2,000 in the last five years (as
shown in Figure 1). To understand how these bugs were detected,
we manually analyzed a random sample of 500 bug-related issues.
We found that over 98% of the bugs were triggered by developers

during Python application development, highlighting the need for
effective testing tools to ensure the quality of CPython and the
opportunity of testing the language runtime via its applications.

We then analyzed the distribution of these bugs across different
modules in CPython. Our analysis revealed that most bugs (86.8%)
occurred in the Python runtime libraries, while the remaining 13.2%
occurred in the Python interpreter core. Furthermore, out of 165
modules extracted from the CPython source code, 164modules were
found to have reported bugs. That is, bugs can occur in various
Python runtime libraries and the interpreter core, underscoring the
importance of thoroughly testing both hence the need for automated

techniques to test the Python runtime as a whole.
Python Runtime Fuzzing. As in traditional compiler testing, gen-
erating diverse and valid Python applications is crucial for Python
runtime testing. However, merely applying existing techniques

Figure 1: The number of bugs over twenty years in CPython.

1 # program A as seed | # program B gene r a t ed from A
2 n = 4 | n1 = 4
3 s = [ 0 , 3 , 5 , 8 , 7 , 9 ] | s1 = [ 0 , 3 , 5 , 8 , 7 , 9 ]
4 f o r i i n range ( 0 , n ) : | f o r n2 in range ( 0 , n1 ) :
5 s [ i ] = n | f o r n3 in range ( 0 , n2 ) :
6 s [ n ] = i | s1 [ n3 ] = n2
7 | s 1 [ n2 ] = n3

Figure 2: Example of grammar-based code generation.

may not be sufficient. As illustrated in Figure 2, a valid program
B can be generated using an arbitrary number of code bricks ex-
tracted from program A through a state-of-the-art grammar-based
approach (e.g., CodeAlchemist [17]). While these generated pro-
grams are both semantically and syntactically correct, such testing
approaches suffer three significant limitations, among others:
• L1: Unawareness of diverse domains: Behind the empirical
results above, most of the bugs occurred in diverse Python
runtime libraries that covered 165 domains. Yet existing ap-
proaches focus on generating code itself on top of input seeds
(as shown in Figure 2) without paying sufficient attention to
how these runtime APIs are used. Thus, unawareness of this
diversity can lead to missed opportunities to detect bugs.
• L2: Insufficient application inputs: While covering the vari-
ous domains (via diverse Python applications) is important,
it is not enough for effectively testing the Python runtime.
Even with unit tests being available, the recent growing
CPython-bug reports suggest that these tests alone are also
insufficient, because they cover only a limited space of pos-
sible inputs to the runtime. As depicted in Figure 2, when
using existing compiler testing techniques [17], the newly
generated program B will be executed only once with no
varying inputs. This limitation hinders the ability to uncover
potential bugs that may arise with different input scenarios.
• L3: Lack of holistic testing: Python applications run in the
environment of Python runtime, which comprises the inter-
preter core and runtime libraries. Testing only one of these
two parts is inadequate for thorough testing. A comprehen-

sive approach to testing the Python runtime should address
both the interpreter core and runtime libraries as well as
interactions between the two.

To illustrate further, consider the example in Figure 3, where
the API locale.format formats the integer 2 with an input for-
matter percent. This application has three inputs as shown on the
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import locale
def localeTest(percent):
    try:
        ret = locale.format(percent, 2)
    except:
        pass

if __name__ == '__main__':
    localeTest (sys.argv[1])

[input B]: ”%777777777777777u”
[output]: MemoryError in locale.py
[bug type]: Unhandled Exception

[input C]: ”%7777777777u”
[output]: Hard crash
[bug type]: Out of Memory

[input A]: ”%2u”
[output]: “  2”
[bug type]: None

Figure 3: Motivating example: bugs occur in the interpreter

and runtime APIs of the Python runtime.

right, leading to three different results. Input A led to a normal
run, while against input B the API locale.format fails to han-
dle the MemoryError exception that the interpreter throws when
trying to construct a large-sized string, resulting in an Unhandled
Exception. Input C led to a hard crash due to Out of Memory,
caused by missing validation before memory allocation in the in-
terpreter; in this case, a MemoryError exception should have been
thrown.

This example illustrated an important point: if we do not gener-
ate applications for a particular runtime module such as locale,
bugs within that module may not be triggered otherwise (limita-
tion L1). Further, even generating applications of diverse domains
may not be sufficient to detect all bugs if not considering vari-
ous inputs to the applications (limitation L2). Finally, the different
results demonstrate interactions and collaborations between the
interpreter core and runtime libraries, highlighting the importance
of testing them holistically (limitation L3).

Motivated by the above empirical results and observations, we
propose a two-level collaborative fuzzing approach to achieve thor-
ough testing of the Python runtime. This approach consists of
(Level-1) generation-based fuzzing for Python application gener-
ation and (Level-2) mutation-based fuzzing to generate various
application inputs. Together, the two fuzzers collaborate closely at
the two levels to detect Python runtime bugs comprehensively.

3 TECHNIQUE DESIGN

This section describes our two-level collaborative fuzzing approach
to Python runtime testing.We first give an overview of our approach,
summarizing the high-level workflow of PyRTFuzz. Then, we elab-
orate the process of extracting API descriptions (§3.2), following
by the two collaborating fuzzing phases: generation-based fuzzing
at Level 1 (§3.3) and mutation-based fuzzing at Level 2 (§3.4).

3.1 Design Overview

The overall design of PyRTFuzz is delineated in Figure 4. The three
PyRTFuzz inputs consist of the (source code of the) Python run-

time including (1) the interpreter and (2) its built-in libraries (runtime

libs), and the unit tests as part of the runtime’s source package.
With these inputs, PyRTFuzz tests the given Python runtime

through its APIs, as justified by (1) these APIs are an essential part
of the runtime and (2) the interpreter’s behaviors are exercised as
it interacts with Python applications (APP) via the APIs. To that
end, PyRTFuzz first extracts the description of each runtime API in
Phase 1. These API descriptions, each including the key metadata

(e.g., enclosing module/class and the type of each parameter) of an
API, enable both the API-centered APP generation for the Level-
1 (L1) fuzzing and the type-guided input generation during the
Level-2 (L2) fuzzing. In particular, this phase starts with statically
extracting the metadata without resolving types (e.g., of each API’s
return and parameters), resulting in the untyped API description.
The description is then refined (i.e., with the types getting resolved)
by running the unit tests, leading to the typed API description.

Using the (typed) API descriptions, PyRTFuzz now enters the
iterative process of two-level fuzzing closely collaborating with
each other. During Level-1 fuzzing in Phase 2, PyRTFuzz aims to
generate test Python APPs using a declarative specification language
(noted as SLang) based on a set of pre-defined generation primitives

derived per the interpreter. Then, this phase starts with generating
the specification of an APP as triggered by the L1 fuzzer core on
demand. Next, from the resulting APP specification while referring
to the SLang primitives, our SLang compiler generates the Python
APP by translating the specification to respective Python code.
With this capability, the L1 core generates an APP around each API
of the given runtime and initializes the APP queue with all such per-
runtime-API Python APPs. Once the collaborative fuzzing loop sets
off, the core selects an APP, at random initially (when no coverage
feedback is available yet) and per the feedback later on, and feeds
it to Level-2 fuzzing (Phase 3). To balance between the depth of
fuzzing around each API and the breadth of fuzzing in terms of
exercising all the APIs, the L1 core schedules the Level-2 fuzzing of
each APP for a budgeted period of time. Once the budget runs out,
the L1 core decides if to generate another (more complex) APP for
the same API as in the previous APP, triggers the APP-generation
if so, and selects the next APP for Level-2 fuzzing, all based on the
coverage achieved in the previous Level-2 fuzzing iteration.

The Level-2 fuzzing in Phase 3 aims to exercise a given Python
APP under the time budget following a mutation-based application
fuzzing strategy. In particular, this phase starts with instrumenting
the entire Python runtime for coverage monitoring. Then, during
the collaborative fuzzing loop, for each APP received, the L2 fuzzer
core runs the APP with the instrumented runtime against concrete
input values (i.e., the arguments feeding the call to the underlying
API in that APP). Given the differences among the incoming APPs,
the L2 core maintains a per-APP seed queue initially populated by
seeds randomly generated. Later on, new input values are obtained
by mutating the seeds based on the collected coverage feedback,
through a custom mutation scheme. The custom mutator can pro-
duce values that fit the input format for each particular APP, as
enabled by probes inserted to the APP during the APP generation
in Phase 2. These probes aim to decode a byte sequence into indi-
vidual argument values as per the (typed) description of the API
called in the APP. Any triggered bugs, along with the triggering
seeds, are then produced as the PyRTFuzz outputs.

3.2 Runtime API Description Extraction (Phase 1)

While the APIs in the Python runtime are described in Python’s
official documentation, those descriptions as in the unstructured
format are not immediately amenable for testing the runtime. The
descriptions could be manually put together in more structured
form, yet this manual process is clearly undesirable given its tedious
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Figure 4: An overview of PyRTFuzz’s design, including its inputs, three working phases, and outputs.

nature and unscalable given the constant evolution of the language
as well as numerous versions of its implementation. Thus, it is
essential to extract the descriptions in an automated manner.

3.2.1 Static Extraction. Using the standard AST parser of Python,
PyRTFuzz first statically parses the runtime libs to extract API
descriptions. A runtime API description in PyRTFuzz is the API’s
metadata essential for our two-level fuzzing, as defined in Table 1.

Table 1: Definition of runtime API Description in PyRTFuzz

Field Type Field Description

module string name of API’s enclosing module
class string name of API’s enclosing class if any
name string canonical name of the API
parameters {string:string} dictionary of parameter and types
returns {string:string} directory of returns and types
exception [string] list of exceptions that may be thrown

All the fields defined are essential for generating executable
Python applications. Specifically, to call anAPI, its enclosing module
must be imported. If the API is definedwithin a class, then the class
must be known also since an object of the class must be created to
call the API from. The name, parameters, and returns, including
the type of each parameter and each return value, are intuitively
important to know in order to generate a Python APP around a
call to the API. Given the name of an API, all of its arguments are
extracted as a dictionary where the key is parameter name and the
value is the parameter type. Also, a pair "...:..." is appended
to the dictionary if the API has a variable number of parameters.
Given the inaccuracy of static type inference [19, 32, 38], the types
are set as None for now and will be refined next. Thus, the static
extraction ends with untyped API descriptions.

For the exception field, both explicit exceptions possibly thrown
by the API or implicit ones thrown from the imported modules are
collected as comprehensively as possible—this information guides
the exception handling of the API call during APP generation (§3.3),
which is essential for avoiding exceptions thrown during the Level-2
fuzzing being spuriously identified as bugs.

3.2.2 Dynamic Refinement. Given the untyped API description of
a runtime API as input, PyRTFuzz then runs the given unit tests.
From the test executions, it extracts the parameter/return types
of the API as outlined in Algorithm 1, hence refining the untyped
description to produce the typed API description.

Algorithm 1: Dynamic refinement of API descriptions
Input:𝑈 : unit test set
Input:𝑢𝑡𝐷𝑒𝑠𝑐𝑠 : untyped API descriptions
Output: 𝑡𝐷𝑒𝑠𝑐 : typed API description

1 Function dynamicRefinement (𝑈 ,𝑢𝑡𝑆𝑝𝑒𝑐)
2 foreach𝑢𝑖 in𝑈 do

3 𝐹 ← dynamicInspect (𝑢𝑖 ) ; //get all functions’ frames via Python’s Inspect
4 foreach 𝑓𝑖 in 𝐹 do

5 𝑁 ← getAPIName (𝑓𝑖 ) ;
6 𝐷𝑒𝑠𝑐← getAPIDescription (𝑁 ,𝑢𝑡𝐷𝑒𝑠𝑐𝑠);
7 if 𝐷𝑒𝑠𝑐 is None then

8 continue;
9 foreach 𝑝𝑎𝑟𝑎𝑚 in 𝐷𝑒𝑠𝑐.𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 do

10 𝑡𝐷𝑒𝑠𝑐← updateParameterType (𝐷𝑒𝑠𝑐 , 𝑝𝑎𝑟𝑎𝑚, 𝑓𝑖 );

11 𝑡𝐷𝑒𝑠𝑐← updateReturnType (𝑓𝑖 ) ;

12 return 𝑡𝑆𝑝𝑒𝑐 ;

The algorithm processes one unit test at a time (line 2). For each
test, it inspects the frame objects of all APIs exercised during the
test execution (line 3), which local variables (e.g., parameters and
return values) are captured. Then, from each frame 𝑓𝑖 , the API name
is extracted (line 5) and used to retrieve the corresponding untyped
API description (line 6). If the retrieval succeeds, the parameter
names are taken as the keys to further identify the respective ar-
guments (live objects) from the frame 𝑓𝑖 ; then the parameter types
are extracted. Next, the return type is also extracted (line 9–11).

Compared to static type inference, the dynamic analysis here can
provide high precision but may suffer from false-negative issues
due to the incomplete coverage of the test executions. Also, given
Python’s dynamic nature, each API’s parameter/return types may
vary from one execution to another. Nevertheless, getting at least
one concrete type instance of each parameter and return suffices
for generating valid APP code and application inputs in PyRTFuzz.

3.3 Level-1 Fuzzing (Phase 2)

To fully fuzz the Python runtime, PyRTFuzz aims to generate valid
and diverse Python applications around the APIs in the runtime
(libraries). Specifically, this aim subsumes three requirements:
R1: API coverage PyRTFuzz should generate applications such
that all the different runtime APIs are considered hence covered.
This helps test the runtime as comprehensively as possible.

R2: APP diversity For each API, PyRTFuzz should generate a di-
verse set of applications so that various use scenarios of the API
can be tested. This helps detect bugs in the runtime as far as possi-
ble, and one way to achieve the diversity is to let the applications
have at least diverse control flow complexity.
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R3: APP validity Each application generated needs to be syntac-
tically and semantically valid since invalid ones would be quickly
rejected by the runtime before its deep logic may be exercised
during fuzzing. One aspect of the validity is data flow reachability:
the data should flow from the application entry to the API callsite.

PyRTFuzzmeets these requirements through SLang, a simple declar-
ative specification language, and specification-based Python APP
generation via SLang whose syntax and semantics are defined
through a set of generation primitives as the lowest-level language
constructs. In particular, the syntax of SLang is formulated below:

𝑃 ::= 𝑆∗

𝑆 ::= [𝑐 =]𝐶 (𝑒)∗
𝑒 ::= 𝑐 | 𝐴

A SLang program (i.e., an APP specification) 𝑃 is a sequence 𝑆∗ of
statements. A statement 𝑆 is definedwith only one type: assignment.
In each assignment, the right-value 𝐶 (𝑒)∗ represents a primitive
𝐶 taking an expression 𝑒 ; and the left-value 𝑐 represents the result
of𝐶 (𝑒)∗. An expression 𝑒 here is one of two kinds: a variable 𝑐 or a
call to a runtime API 𝐴.

3.3.1 Primitive Derivation. The SLang primitives were derived ac-
cording to the Python language reference [43] while referring to the
interpreter implementation. We aim to identify the most essential
primitives based on the common features of the Python language
so that these primitives do not vary with various Python implemen-
tations (e.g., varying versions of the interpreter). With respect to
R2, these primitives mainly (albeit not only) summarize the key
control flow structures of Python hence falling in two categories:
basic and extend, as elaborated as follows.
Basic. A Basic primitive only takes a call to a runtime API as input.
It is used to construct the basic (control-flow) structure of a Python
program, which may be object- or procedure-oriented, and define
the program’s entry point. Thus, a SLang program should start with
one and only one basic primitive.

Algorithm 2: Operational semantics of a Basic primitive
Input:𝐴𝑃𝐼 : a runtime API description
Output: 𝑃 : a Python APP

1 Function basicPrimitive (𝐴𝑃𝐼 )
2 𝑇 ← typeList (𝐴𝑃𝐼 ); //probe for API parameter type list
3 𝑃 .insert (𝑇 );
4 𝐷 ← newFunction (demoFunc, demoParam);
5 𝑝𝑑 ← getParameters (𝐷);
6 args← decodeArguments (𝑇 , 𝑝𝑑 ); //probe for decoding API arguments
7 𝑠𝑑 ← newCall (API.name, args);
8 𝐷 .insert (wrapException (𝑠𝑑 ));
9 𝑃 .insert (𝐷)

10 𝑀 ← newFunction (𝑃 , SLmain, mainParam);
11 𝑝𝑚 ← getParameters (𝑀 );
12 𝑠𝑚 ← newCall (demoFunc, 𝑝𝑚 );
13 𝑀 .insert (𝑠𝑚 );
14 𝑃 .insert (𝑀 )
15 return 𝑃 ;

Algorithm 2 outlines the general operational semantics of a
basic primitive (in pseudo code)—as in other algorithm pseudo
code in our paper, we use the special (e.g., cyan) color to high-
light the key algorithmic steps. The algorithm uses as input the
description of the runtime API taken by the primitive and initializes
the program 𝑃 with a probing for the API’s parameter type list 𝑇

(line 3). Next, it creates a demoFunc to wrap the invocation of the
API (line 4–8). To enable the input format-aware mutation (§3.1), a
function called decodeArguments is inserted to probe for decoding
the input (which is an encoded byte stream from the L2 fuzzer)
into individual arguments of the API call (line 6). This ensures the
type correctness of arguments. Also, it is important to wrap the
invocation of the API in a try–except block to filter out expected
exceptions hence allowing the fuzzer to capture unhandled excep-
tions as bug indicators. Then, the definition of demoFunc is added
to the APP 𝑃 .

Next, the main function SLmain of 𝑃 is created (line 10–13). Like
demoParam, mainParam is a single parameter used for passing the
APP input eventually to the API callsite. Then, a call is added for
SLmain to invoke demoFuncwith the same parameters of SLmain as
arguments, so as to ensure the data-flow reachability in R3. Finally,
𝑃 adds SLmain as its entry point to facilitate Level-2 fuzzing.
Extend. An Extend primitive takes the results of other primitives
as inputs. It is used to diversify an APP while increasing its com-
plexity. Derivation of these primitives was additionally informed by
programming patterns we observed in real-world Python software.

Algorithm 3: Operational semantics of an Extend primi-
tive
Input: 𝑃 : a previously generated Python application
Output: 𝑃 ′ : a new Python application

1 Function extendPrimitive (𝑃 )
2 𝑀 ← getMain (𝑃 ); //get SLmain
3 𝐵𝑀 ← getBody (𝑀 );
4 𝑝← getParameters (𝑀 );
5 𝐵𝑙𝑜𝑐𝑘 ← newBlock (𝐵𝑀 , 𝑝); //wrap SLmain’s body into a new block
6 𝑃 ′ ← setBody (𝑀 , 𝐵𝑙𝑜𝑐𝑘);
7 return 𝑃 ′ ;

Algorithm 3 describes the general operational semantics of an
extend primitive, which generates new applications via wrapping
the input program 𝑃 in a top-down fashion. The algorithm retrieves
the main function𝑀 of 𝑃 (i.e., SLmain) (line 2) along with its body
(line 3) and parameters (line 4). Next, the primitive wraps𝑀 ’s body
as the body of a new (e.g., for or if) block (line 5) and then replaces
𝑀 ’s body with this new block to generate a new program 𝑃 ′ (line 6).
Such a generation process is intraprocedural—no new function
is generated. The process can be interprocedural as well, during
which a new function with the same parameters (𝑝) as those of𝑀
is generated,𝑀’s body is inserted into the new function, and the
body of𝑀 is replaced by an invocation of the new function.

Table 2: SLang primitives

No Command Category Comment

1 OO Basic object-oriented program
2 PO Basic procedure-oriented program
3 While Extend a while structure wrapper
4 For Extend a for structure wrapper
5 If Extend a if structure wrapper
6 Call Extend a call structure wrapper
7 With Extend a with structure wrapper

Specifically, we derived seven primitives as shown in Table 2,
which are realized on top of relevant Python abstract syntax tree
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(AST) operators. Each primitive can operate on any Python runtime
API while not dependent on the syntax or semantics of a specific
API, which allows for generating APPs to cover all of the APIs
hence satisfying requirement R1.

Note that these specific primitives induce both intra- (e.g., If )
and inter-procedural (e.g., Call) control flows. The rationale is to
diversify the ultimate control-flow complexity of the generated
APP for satisfying requirement R2.

The design of both categories of primitives follows a top-down
wrapping approach where posterior primitives operate only on the
body of SLmain of prior ones. For primitives that induce interproce-
dural control/data flows, this approach also allows for seamless data
transfer from the top (i.e., SLmain) to the bottom (i.e., the API call
site) via parameter passing. In all, the design ensures the validity
of generated APPs, satisfying requirement R3.

1 OO ( s q l i t e 3 . dbap i 2 . DateFromTicks )
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 TypeL i s t = [ ' t i c k s : i n t ' ]
4 c l a s s demoCls ( ) :
5 de f demoFunc ( s e l f , p ) :
6 t r y :
7 t i c k s = decodeArguments ( TypeL i s t , p )
8 s q l i t e 3 . dbap i 2 . DateFromTicks ( t i c k s )
9 ex c ep t ( A s s e r t i o nE r r o r ) as e :
10 pas s
11 de f SLmain ( x ) : # en t ry po i n t
12 dc=demoCls ( )
13 dc . demoFunc ( x )

Figure 5: Example illustrating the 𝑂𝑂 primitive’s semantics.

Figure 5 shows an example of applying the OO primitive to a
runtime API sqlite3.dbapi2.DateFromTicks (line 1), along with
the corresponding Python code (lines [3–13]) of equivalent seman-
tics. The variable TypeList denotes the name and type of the API’s
parameters. The OO primitive creates a new class named demoCls
and wraps the API inside its method demoFunc (lines [6–10]). Specif-
ically, a new variable ticks is defined to take the result of decoding
the input parameter p (line 7). The call site for the API is then created
and wrapped inside a try-except block. Finally, the entry point
SLmain is created to form a calling context of demoCls.demoFunc.

3.3.2 Specification Generation. As defined in §3.3.1, an APP speci-
fication is composed of a sequence of SLang statements. PyRTFuzz
generates such a specification by sequentially constructing SLang
statements with the primitives, as outlined in Algorithm 4. The
algorithm takes three inputs: the full primitive set 𝑆𝑃𝑆 , a runtime
API’s name 𝐴𝑃𝐼 , and the number 𝑁 of statements to generate.

The generation procedure includes two primary steps:
(1) Constructing the statement on a Basic primitive (line 2–3)

: First, the primitive 𝐶𝑏 is randomly selected from 𝑆𝑃𝑆 (line 2).
Then, an assignment statement is constructed in the form of
𝑅 = 𝐶𝑏 (𝐴𝑃𝐼 ). 𝑅 is a stack for storing the results of 𝐶𝑏 on 𝐴𝑃𝐼 .
As the first statement of the specification, it defines the overall
structure of the target Python APP that uses 𝐴𝑃𝐼 .

(2) Constructing statements on Extend primitives iteratively

according to 𝑁 (line 2–3): In each iteration, a statement 𝑅 = 𝐶𝑒 (𝑅)
is generated with a randomly selected Extend primitive 𝐶𝑒 . 𝐶𝑒

Algorithm 4: Generation of an APP specification in SLang
Input: 𝑆𝑃𝑆 : SLang primitive set
Input:𝐴𝑃𝐼 : Python runtime API name
Input: 𝑁 : number (≥ 1) of statements to generate
Output: 𝑆𝑆 : SLang script

1 Function genSpecification (𝑆𝑃𝑆 ,𝐴𝑃𝐼 , 𝑁 )

2 𝐶𝑏 ← selectPrimitive (𝑆𝑃𝑆 , basic) ; //randomly select a Basic primitive
3 𝑆 ← genStatement (𝑅,𝐶𝑏 ,𝐴𝑃𝐼 ) ; //statement: R =𝐶𝑏 (𝐴𝑃𝐼 )
4 pushBack (𝑆𝑆 , 𝑆 );
5 𝑁 ← 𝑁 − 1;
6 while 𝑁 > 0 do
7 𝐶𝑒 ← selectPrimitive (𝑆𝑃𝑆 , extend); //randomly select an Extend primitive
8 𝑆 ← genStatement (𝑅,𝐶𝑒 , 𝑅); //statement: R =𝐶𝑒 (𝑅)
9 pushBack (𝑆𝑆 , 𝑆 );

10 𝑁 ← 𝑁 − 1;
11 return 𝑆𝑆 ;

takes 𝑅 (the result of the previous statement) as input, and then
stores the operation result back to 𝑅.

1 R = OO ( s q l i t e 3 . dbap i 2 . DateFromTicks )
2 R = For ( R )
3 R = Ca l l ( R )

Figure 6: An example APP specification of three statements.

As an example, with API sqlite3.dbapi2.DateFromTicks, Fig-
ure 6 shows a randomly generated SLang-based APP specification
consisting of three statements. The first statement uses a Basic
primitive, namely 𝑂𝑂 , to generate an object-oriented program for
the API and stores the result in the stack 𝑅. The second statement
applies an Extend primitive, namely 𝐹𝑜𝑟 , on 𝑅. It wraps a for-
structure around the code in 𝑅 and stores the result back in 𝑅.
Similarly, the third statement uses another Extend (𝐶𝑎𝑙𝑙 ) primitive
to wrap a call structure around the current code in 𝑅 and pushes it
back to 𝑅. Finally, 𝑅 stores the Python code corresponding to the
entire example specification here.

3.3.3 Python Code Generation. With an APP specification as in-
put, the SLang compiler parses the specification (SLang code) and
translates each statement in sequence to corresponding Python
code according to the operational semantics of the primitive in that
statement. This code generation process is outlined in Algorithm 5.

Firstly, the algorithm initializes the stack 𝑅 and the API descrip-
tion 𝐷𝑒𝑠𝑐 as None (line 2–3). Then, it loads all of the SLang state-
ments into the memory region denoted as 𝐿𝑠 (line 4), and then
parses and compiles the statements in sequence (line 5–13). For
each statement, the compiler retrieves the primitive 𝑃𝑟𝑚 and cor-
responding input 𝐴𝑟𝑔 (line 6). If 𝐴𝑟𝑔 is 𝑅, the compiler loads the
value of 𝑅 as input and then compiles 𝑃𝑟𝑚 (line 9); in this scenario,
𝑅 stores the program generated by the previous statement, hence
the continuous superposition of the next primitives can lead to
increasingly complex Python code. When the input 𝐴𝑟𝑔 is an API
description, the compiler retrieves the description and stores it
into 𝐷𝑒𝑠𝑐 (line 11) as input for compiling the primitive 𝑃𝑟𝑚. The
compilation result is then pushed to the stack 𝑅 (line 12). When
all statements are compiled (translated), the compiler retrieves the
Import information from the API description 𝐷𝑒𝑠𝑐 and inserts it to
𝑅, hence producing the final Python APP 𝑃𝑦𝐴𝑝𝑝 as output (line 14).

Figure 7 shows an example of compiling (translating) a SLang-
based specification (as shown in Figure 6) to a Python APP. Overall,

1651



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Wen Li, Haoran Yang, Xiapu Luo, Long Cheng, and Haipeng Cai

Algorithm 5: Specification-based Python code generation
Input: 𝑆𝑆 : SLang-based specification
Input: 𝑃𝑦𝐷𝑒𝑠𝑐𝑠 : Python runtime API descriptions
Output: 𝑃𝑦𝐴𝑝𝑝 : resulting Python APP

1 Function generatePythonAPP (𝑆𝑆 , 𝑃𝑦𝐷𝑒𝑠𝑐𝑠)
2 𝑅← None; //Initialize the stack R as None
3 𝑃𝑟𝑚← None; //Initialize the API description as None
4 𝐿𝑠 ← parseSpecification (𝑆𝑆 ); //parse the specification and get the SLang statement list
5 foreach 𝑠 in 𝐿𝑠 do

6 Prm, Arg← parseStatement (𝑠);
7 if Arg is ’𝑅’ then
8 𝑅← loadR ();
9 𝑅← compilePrimitive (Prm, 𝑅);

10 else

11 𝐷𝑒𝑠𝑐← getDescription (𝑃𝑦𝐷𝑒𝑠𝑐𝑠 , Arg);
12 𝑅← compilePrimitive (Prm, 𝐷𝑒𝑠𝑐);

13 storeR (𝑅)

14 𝑃𝑦𝐴𝑝𝑝← import (𝐷𝑒𝑠𝑐 , 𝑅); //import all dependent modules
15 return 𝑃𝑦𝐴𝑝𝑝 ;

each primitive encapsulates the input program in a top-down man-
ner. For the first statement with a Basic primitive OO, a simple
program is generated as shown in Figure 5. Then, in the second
statement, with For the compiler wraps all the statements of SLmain
(the top) into a for loop and embeds the for block back into SLmain.
Similarly, in the third statement, with Call the compiler wraps all
the statements of SLmain into a new function, PyCall_1681926341
(where the number suffix is randomly generated simply for unique
function naming), and embeds its invocation with input x back
into SLmain. Note that the Call primitive induces inter-procedure
control flow. Both PyCall_1681926341’s arguments (on Line 16)
and parameters (on Line 11) are assigned the same variables for
SLmain’s parameters, to ensure the data flow reachability in R3.
Finally, import information is added to the resulting APP.

1 from py r t f u z z impor t decodeArguments
2 impor t s q l i t e 3
3 TypeL i s t = [ ' t i c k s : i n t ' ]
4 c l a s s demoCls ( ) :
5 de f demoFunc ( s e l f , p ) :
6 t r y :
7 t i c k s = decodeArguments ( TypeL i s t , p )
8 s q l i t e 3 . dbap i 2 . DateFromTicks ( t i c k s )
9 ex c ep t ( A s s e r t i o nE r r o r ) as e :
10 pas s
11 de f PyCa l l _ 1681926341 ( x ) :
12 f o r F_g1 in range ( 0 , 1 ) :
13 dc=demoCls ( )
14 dc . demoFunc ( x )
15 de f SLmain ( x ) : # en t ry po i n t
16 PyCa l l _ 1681926341 ( x )

Figure 7: An example Python APP generated from the entire

APP specification in Figure 6.

3.3.4 APP Selection. With the specification-based APP generation
capability, the L1 fuzzer core is tasked to select one of the generated
APPs from the APP queue. Prior to the two-level fuzzing loop starts,
the L1 core generates an APP for each of the runtime APIs. The
APP is then validated quickly by observing if running it against
several arbitrary input values consistently led to crashes. If so, the
APP may not have good potential hence is discarded. The validated
APPs are pushed to the APP queue to initialize it.

Then, the holistic two-level fuzzing loop (as detailed in §3.5 )
starts. Now the L1 core randomly selects an APP 𝑋 and sends it
to the L2 fuzzer core for application fuzzing until the time budget
allocated for it is used up. If any new runtime code coverage is
achieved, the L1 core will invoke the APP-generation capability to
generate another APP 𝑌 around the same API 𝐼 as called in 𝑋 . 𝑌 is
then sent to the L2 fuzzer after getting validated as described above.
This repeats until now more coverage can be gained around the API
𝐼 , when the next APP will be selected from the queue. The rationale
here is to maximally exploit the APIs that have good potential via
which the Python runtime can be explored further, while exploiting
as many different APIs as possible within the total testing time.

3.4 Level-2 Fuzzing (Phase 3)

Focusing on (greybox) fuzzing the test Python APPs generated
during Level-1 fuzzing, the Level-2 fuzzing in PyRTFuzz primarily
features two components: instrumentation and custom mutation.

3.4.1 Instrumentation. The mutation-based greybox fuzzing at
Level 2 is immediately guided by the coverage of the code of the
Python runtime under test. Thus, the coverage needs to be moni-
tored during the fuzzing, for which the runtime is instrumented.
The probing is only aimed to enable collecting the coverage feed-
back shared by the two collaborating fuzzers.

To probe in a Python runtime, static and dynamic instrumenta-
tion is performed, for its C and Python code, respectively.

3.4.2 Custom Mutation. A common, default mutation strategy in
greybox fuzzers is to mutate the program input holistically as one
single byte sequence, even when the input include variables of dif-
ferent types. To improve the (Level-2) fuzzing efficiency, PyRTFuzz
introduces a new, custom mutation strategy with which the val-
ues of different variables in the APP input are separately mutated
according to their types. Since these values are aimed to feed run-
time API calls as arguments, the types are readily available in the
associated (typed) API descriptions extracted in Phase 1.

Then, the mutated values of different input variables are encoded
(packed together) as a byte sequence that is passed by the L2 core to
the current APP. During the fuzzed execution of the APP, the mu-
tated input byte sequence is decoded into individual API arguments
right before the API is called against the arguments. The decoding is
enabled by the probe inserted into the APP (e.g., Line 7 of Figure 7)
during the APP generation step (at Line 6 of Algorithm 2) in Phase

2. This type-guided custom mutator generates type-correct values
for each particular runtime API. In some cases, if this input-format-
aware mutation does not lead to runtime-coverage gains for several
fuzzing iterations on end, the L2 core will try the default strategy.

Algorithm 6: Custom mutation in Level-2 fuzzing
Input: 𝐹𝑃 : File path for application 𝑃 generated and selected by Level-1 fuzzer
Output: 𝑆 : Seed for 𝑃

1 Function lv2CustomMutator (𝐹𝑃 )

2 𝑆 ← ∅;
3 𝑃 ← importApp (𝐹𝑃 ); //Import the APP by path
4 𝑇𝐿← 𝑃 .TypeList; //Get argument types of 𝑃
5 foreach 𝑡 in𝑇𝐿 do

6 tValue← dataProvider (𝑡 ); //Generate a random value for type 𝑡
7 𝑆 ← encodeArguments (𝑆 , tValue); //Encode the value to 𝑆

8 return 𝑆 ;
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Algorithm 6 gives the procedure of our custom mutation strat-
egy, which takes as the input the file path 𝐹𝑃 of an application 𝑃

generated and selected by Level-1 fuzzing. At first, the seed 𝑆 for 𝑃
is initialized as an empty set ∅ (line 2). Subsequently, 𝑃 is imported
(line 3) from the given path 𝐹𝑃 , and the list𝑇𝐿 of 𝑃 ’s argument types
is extracted from the application 𝑃 itself (line 4). Then, during the
iteration over𝑇𝐿 (line 5–7), a type-specific data provider is utilized
to generate a type-correct value for each argument (line 6). These
argument values are then encoded into 𝑆 (line 7). Once all elements
in 𝑇𝐿 have been processed, an encoded seed 𝑆 is generated for 𝑃 ,
which will subsequently be applied to 𝑃 during Level-2 fuzzing.

It is crucial to ensure type-correct value generation, which is
achieved through our design of a type-specific data provider (line 6)
for each data type. This data provider guarantees that the generated
values comply with the specific types involved. For complex Python
objects, such as BytesIO, the corresponding constructors are in-
voked, and the arguments are populated with randomly generated
values from the type-specific data providers. This approach ensures
that even intricate Python objects are adequately handled during
the mutation process, resulting in overall more comprehensive and
cost-efficient testing of the Python runtime.

3.5 Holistic Two-Level Fuzzing Loop

Algorithm 7: Overall procedure of the holistic two-level
fuzzing
Input: 𝑃𝑦𝐷𝑒𝑠𝑐 : Python API descriptions
Output: 𝐵𝑢𝑔𝑠 : Bugs detected

1 Function levelOneFuzz (𝑃𝑦𝐷𝑒𝑠𝑐)
2 𝐻 ← startPyGen (𝑃𝑦𝐷𝑒𝑠𝑐) //initialize the server handle for Python code generation
3 𝐼𝑛𝑖𝑡𝐴𝑝𝑝𝑠← genInitAPPs (𝐻 ); //generate initial APPs for each API
4 𝑂𝑘𝐴𝑝𝑝𝑠← validate (𝐼𝑛𝑖𝑡𝐴𝑝𝑝𝑠);
5 𝐴𝑝𝑝𝑄𝑢𝑒𝑢𝑒← initAppQueue (𝑂𝑘𝐴𝑝𝑝𝑠);
6 probPyRuntime (); //dynamic instrumentation of the Python runtime
7 while true do

8 foreach𝐴𝑝𝑝 in𝐴𝑝𝑝𝑄𝑢𝑒𝑢𝑒 do

9 while true do

10 𝑆 ← randomSeeds ();
11 𝐵← randomBudget ();
12 𝑀 ← loadFuzzMain (𝐴𝑝𝑝);
13 levelTwoFuzz (𝑀 , 𝑆 , 𝐵);
14 𝑐𝑜𝑣𝐶ℎ𝑎𝑛𝑔𝑒𝑑 ← covFeedback ();
15 if 𝑐𝑜𝑣𝐶ℎ𝑎𝑛𝑔𝑒𝑑 == false then

16 break;
17 𝐴𝑝𝑝← genPyApp (𝐻 ,𝐴𝑝𝑝); //generate more APPs around the API

Algorithm 7 outlines the overall two-level collaborative fuzzing
loop in PyRTFuzz. Each loop iteration begins with Level-1 fuzzing,
which initializes a Python application generation server in an iso-
lated process and obtains a server handle (𝐻 ) for remote invocation
(line 2). Next, a set of initial APPs (𝐼𝑛𝑖𝑡𝐴𝑝𝑝𝑠) is generated for all
APIs in Python API descriptions (𝑃𝑦𝐷𝑒𝑠𝑐) (line 3). Validation is
then conducted on this set to remove non-executable/low-potential
APPs (line 4), and the remaining APPs are inserted into the Level-1
fuzzer’s APP queue 𝐴𝑝𝑝𝑄𝑢𝑒𝑢𝑒 (line 5).

To obtain complete coverage feedback, the fuzzer imports and
dynamically instruments all Python code of the runtime libraries
(line 6). For the C code of the runtime, static instrumentation is done
at compile time. Once the initialization is complete, the fuzzer enters
an infinite loop, continuously selecting APP for fuzzing (line 7–17)

and observing their behavior until a crash or other unexpected
behavior (e.g., hang) is detected.

During each iteration (line 8–17) of Level-1 fuzzing, a nested
loop of Level-2 fuzzing (line 9–17) starts after an APP is selected. To
initialize Level-2 fuzzing, a set of random seeds (𝑆) and a random
time budget (𝐵) are generated, and then the main function (𝑀) (i.e.,
the fuzzing entry point) of𝐴𝑝𝑝 is loaded. With these inputs, Level-2
fuzzing operates as traditional mutation-based fuzzing but with
a limited time budget (line 13). Once the Level-2 fuzzing on 𝐴𝑝𝑝

is completed, the L2 fuzzer collects the overall coverage variation
(line 14). New coverage detection allows the fuzzer to continue
operating on the API used in 𝐴𝑝𝑝 , and generate more applications
for Level-2 fuzzing.

4 IMPLEMENTATION AND LIMITATIONS

We have implemented PyRTFuzz as per the design shown in Fig-
ure 4, currently for CPython, the de facto standard implementation
of Python. We summarize key points for the implementation of
each of the three phases below.
RuntimeAPI description extraction.The static extraction step is
implemented using the standard Python AST parser [42]. The static
extractor transforms Python libraries from the CPython source into
their ASTs and extracts the API description fields defined in §3.2.1
by iterating through all AST nodes. It then stores this information
in XML as untyped API descriptions. The dynamic refinement step
is implemented using a Python built-in tracing API (sys.settrace)
and the standard Inspect module in Python.
Level-1 fuzzing. The L1 fuzzer is implemented as three submod-
ules. First, we created a set of Python AST-based operators that
enable AST editing, thereby supporting and simplifying our SLang
specification language. Using these operators, we implemented the
seven SLang primitives (see Table 2). Next, we implemented the
SLang compiler to translate a given APP specification to its Python
code according to the operational semantics defined for each prim-
itive (Algorithms 2 and 3). Finally, we developed a set of Remote
Procedure Call (RPC) interfaces to support remote invocation by
the L1 fuzzer core, which is implemented in Python. This decoupled
implementation is justified by the need to avoid coverage feedback
collection being interfered by the invocation of the SLang compiler
which itself is implemented also in Python.
Level-2 fuzzing.We implemented the L2 fuzzer on top of Atheris [14]
and libFuzzer [30]. First, we added relevant interfaces in Atheris to
interact with the L1 fuzzer. To support running Level-2 fuzzing in
the same process as L1 fuzzer, we imported each application’s entry
point (i.e., SLmain) and ran it dynamically through invoking SLmain.
Next, in libFuzzer, we instantiated only one fuzzing core for the
two-level fuzzing, thereby sharing the coverage feedback between
L1 and L2 fuzzer cores. The per-APP time budget is implemented
as a resizable time window, and the time window size can be reset
based on coverage changes. This means that applications capable of
triggering more basic blocks to be covered can obtain more fuzzing
time. For the custom mutator, our current implementation supports
randomly generating values of the top-20 commonly used data
types in Python, such as integers, floats, strings, and lists.

The complete implementation of PyRTFuzz comprises 14KLoC
of code, which includes 11.4KLoC of Python, 2.1KLoC of C++, and
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0.5KLoC of Shell. We tested PyRTFuzz on three CPython versions:
Python3.7.15, Python3.8.15, and Python3.9.15.

4.1 SLang Extensibility

The number of SLang primitives included in PyRTFuzz intuitively
affects its capacity for generating diverse and complex Python appli-
cations. Hence, we implemented PyRTFuzzwith considerable effort
to preserve the extensibility of SLang to support new primitives.
First of all, Algorithms 2–3 demonstrate the overall idea of design-
ing SLang primitives, following which can ensure that the SLang
compiler will generate Python code based on APP specifications
that is valid and executable. Moreover, we have implemented many
Python AST operators in PyRTFuzz to support common Python
codemanipulation operations (e.g., add a new function, insert a call).
According to our experience, the average code size of implementing
a SLang primitive in Table 2 is only around 50 LoC.

4.2 Limitations

PyRTFuzz is designed for in-process fuzzing, which means that it
can only obtain coverage feedback from a single process where
it runs. As a result, PyRTFuzz cannot fuzz APIs that are related
to multiple processes [4, 11], such as those in multiprocessing
and pipe. Moreover, PyRTFuzz, like common fuzzers, focuses on
exploring program behaviors through various test inputs generated,
which may indirectly capture some, but not explicitly all, effects of
environment interactions [12, 13].

Currently, PyRTFuzz only generates Python APPs each using a
single API, without considering the potential dependencies among
APIs. This implementation may result in two possible side effects:
(1) the generated APPs may not reflect use of the APIs in practice,
leading to unrealistic applications; and the bugs detected may be
false positives. (2) some of the generated APPs may not be exe-
cutable due to incomplete environments. For example, an API may
depend on global variables or class members initialized by other
APIs, but the APP generated around the API may not have the
necessary initializations, rendering it non-executable.

5 EVALUATION

We evaluated PyRTFuzz by answering three research questions:
• RQ1: How effective is PyRTFuzz on fuzzing Python run-
time? (§5.2)
• RQ2: How scalable is Python APP generation in PyRTFuzz?
(§5.3)
• RQ3: What are the factors affecting PyRTFuzz’s effective-
ness? (§5.4)

5.1 Experiment Setup

Experiment environment. All experiments were conducted on a
64-bit Ubuntu 18.04 with a 32-core CPU (AMD Ryzen Threadripper
3970X) and 256 GB memory. We ran each fuzzer against each target
application with identical configurations on one CPU core for 5×24
hours. All experiments were repeated five times.
Baseline fuzzers for comparison. Since PyRTFuzz is the first
fuzzer capable of fuzzing the entire Python runtime, it is currently
impossible to directly compare with other tools. However, when

using untyped-API descriptions, PyRTFuzz utilizes Atheris’ original
mutation strategies–which may be considered as Atheris supplied
with test applications. This essentially compares PyRTFuzz’s Level-
2 fuzzing with Atheris as a baseline and evaluates PyRTFuzz’s
custommutation strategy against Atheris’ default mutation strategy.
Moreover, we conducted extensive experiments and evaluations to
demonstrate the effectiveness of PyRTFuzz in terms of coverage
and bug detection.
Benchmarks and initial inputs. We evaluated the effectiveness
of PyRTFuzz on three widely used versions of CPython, namely
Python 3.9.15, Python 3.8.15, and Python 3.7.15. Table 3 sum-
marizes these systems as our subjects in the 1st column, providing
information on their code size in the 2nd column, the number of API
and typed-API in the 3rd column, and the number of valid initial
seeds (applications) in the 4th column. The Typed-API indicates
the API count for which we successfully extracted the descriptions.
As the unit tests may not cover all the runtime APIs for all three
versions, the percentage of Typed-API is around 70%. Regarding
the initial seeds for level-1 fuzzing, we first use PyRTFuzz to gen-
erate one application with one basic primitive for each runtime
API, then calibrate these applications and filter out failed ones as
initial inputs (for level-1). For example, in Python 3.9.15, 3,844
are kept after calibration of 4,208 applications (91.3%). While the
initial seeds for level-2 fuzzing are randomly generated.

Table 3: Profiles of the 3 released CPython versions

Benchmark Size (KLoC) #API #Typed-API #L1-Seeds

Python3.9.15 C: 529.5 Python: 287.6 4,208 2,998 (71.2%) 3,844 (91.3%)
Python3.8.15 C: 487.7 Python: 277.3 4,184 2,855 (68.2%) 3,481 (83.2%)
Python3.7.15 C: 416.4 Python: 267.9 4,115 2,773 (67.4%) 3,244 (78.8%)

Performance metrics. We considered two common metrics to
evaluate the effectiveness of PyRTFuzz: the number of basic blocks
covered and the number of bugs triggered. We measured the cover-
age results (i.e., block coverage of both the runtime libraries and
the interpreter) by averaging the number of basic blocks covered
over five repetitions of 5 × 24 hours each, which ensured that all
runtime APIs were covered. Across these repetitions, we did not see
substantial spreads. Thus, we mainly report the average numbers.

While evaluating PyRTFuzz, we also considered the number of
bugs detected as an important metric. We manually validated all
reported issues, including crashes or unexpected behaviors such
as hang-ups or unhandled exceptions. To validate each issue, we
developed a proof of concept (PoC) to reproduce the bug-triggering
inputs. If the bug could be reproduced, we considered it a new bug
only when its call stack differed from all other confirmed bugs.

5.2 Effectiveness of PyRTFuzz

Coverage. Figure 8 displays the coverage evolution of PyRTFuzz on
Python 3.9.15 with specific parameter settings. In particular, we
set the time budget for L2 fuzzing as 90 seconds and the maximum
APP specification size as 256, based on the empirical results obtained
from our experiments.

Specifically, the left subplot of Figure 8 shows the number of ba-
sic blocks and the number of applications generated by PyRTFuzz
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Figure 8: Coverage (𝑦 axis) evolves over the timeline (𝑥 axis)

with parameters of L2 budget=90 (s) and maximumAPP spec-

ification size=256 on Python 3.9.15.

over 5 × 24 hours. As L1 fuzzing continuously generates new appli-
cations, the number of applications always increases (as indicated
by the green line), depicted as an almost straight line. However, in
some time zones (40h–50h), the growth of applications slows down
somewhat. This indicates that the applications generated in these
time zones can cover more basic blocks than others, according to
the design of L2 budget in §4. Regarding the coverage (the black
line), it continues to rise along with the increasing number of ap-
plications, although the growth rate varies among different time
zones due to differences in the generated applications.

The right subplot in Figure 8 presents the same data as the left
subplot but normalized per unit time zone (8 hours). This allows us
to observe the coverage changes per application in a standardized
manner. As shown, the applications generated in the time zone (40h–
50h) can trigger more basic blocks covered, which means that L2
fuzzing spends more time on these applications while L1 generates
fewer applications. This is consistent with the observation in the
left subplot that the growth rate of applications generated during
this time zone slows down somewhat.
Bug triggering.We created three PyRTFuzz instances for the three
Python versions respectively. With the 5 × 24 hours time budget,
PyRTFuzz succeed in detecting a total of 61 bugs across the three
Python versions, with 25 in Python 3.9.15, 15 in Python 3.8.15, and
21 in Python 3.7.15 respectively. After Removing the duplicated
bugs over the three benchmarks, 45 unique ones are reported.

In a time frame of 5x24 hours, PyRTFuzz successfully detected 45

unique bugs across the three Python releases without getting stuck.

5.3 Scalability of Python APP Generation

Figure 9 illustrates how the measured results change with different
APP specification sizes. The left subplot displays the time cost (black
line) and memory usage (green line) measured for APP specification
generation (dotted line) and Python APP generation (solid line).
Concerning the APP specification generation, both the time cost
and memory usage remain at a low level. With a specification size of
4,096, it only takes 0.06 seconds and 0.26 MB of memory. Therefore,
the impact of this step on Python APP generation can be neglected.

For Python APP generation, both time and memory usage ex-
hibit a linear relationship with the APP specification size. With a
maximum specification size of 4,096, it takes 2,714.47 seconds to

Figure 9: The time costs (𝑦 axis) of Python application gener-

ation over increasing APP specification sizes (𝑥 axis).

generate Python APPs, using 291.71 MB memory. However, such a
long time cost is unacceptable for L1 fuzzing as it would consume
most of the time budget. Therefore, the maximum acceptable APP
specification size for PyRTFuzz is 1,024 (with a time cost of 158.94
s), as shown in the figure, based on an empirical threshold of 300
seconds for fuzzing timeout [14].

With the 7 implemented specification primitives shown in Ta-
ble 2, the right subplot of Figure 9 demonstrates a linear correlation
between Python APP and specification sizes. It should be noted
that this correlation is not always true when more primitives are
implemented, as it depends on how the primitives are implemented.
Nevertheless, increasing the specification size can generally help
generate more complex Python APPs.

The cost of Python APP generation has a linear correlation with

APP specification size, and increasing the APP specification size

can generally help generate more complex Python APPs.

5.4 Factors Affecting Effectiveness

According to the design, we have identified three primary factors
that may affect the effectiveness of PyRTFuzz: APP specification
size, L2 time budget, and the use of typed/untyped API descriptions.
For each of these factors, we sampled several values and conducted
5 × 24 hours of fuzzing on Python 3.9.15.

5.4.1 APP Specification Size. Figure 10 shows the coverage evo-
lution with different APP specification sizes. Based on our obser-
vation, we noticed that different PyRTFuzz instances with an APP
specification ranging from 1 to 256 had almost identical coverage
trends, which were consistently higher than the coverage trend
of the specifications [512, 1024]. One possible explanation is that
generating APPs (L1) with the [512, 1024] specification is more
time-consuming than other specifications, as shown in §5.3. As
a result, the number of generated APPs for this specification is
lower than for other specifications, as seen in the middle subplot
of Figure 10. On the other hand, with the same time budget, when
L1 takes more time for APP generation, then it may leave less time
for L2 fuzzing, resulting in less code coverage achieved.

After normalizing the data in the third subplot, it became appar-
ent that the [1024] specification achieved the highest basic blocks
per application between [75, 100] hours. This peak value was higher
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Figure 10: Coverage (𝑦 axis) evolves over the timeline (𝑥 axis) with different APP specification sizes on Python 3.9.15 (L2

budget=90 (s)).

than that of any other specification, suggesting that more complex
APPs generated with larger specification sizes can potentially trig-
ger more block coverage in L2. The underlying reason for the
increased coverage is that generally data flow is carried by con-
trol flow; as the APP specifications become larger hence include
additional or modified control-flow structures, the resultant APPs
contain more or modified data flow. This, in turn, leads to more ex-
tensive exercising of the runtime’s behaviors, resulting in increased
code coverage.

Therefore, our results suggest that finding an appropriate balance
between generating APPs (L1) and the APP fuzzing process (L2)
could improve the overall coverage achieved by PyRTFuzz.

The specification sizes of [1–256] tend to lead to similar improve-

ments in overall coverage, while striking a reasonable balance

between the two fuzzing levels.

5.4.2 L2 Time Budget. Figure 11 illustrates the coverage evolution
of PyRTFuzz on Python 3.9.15 with four different L2 time bud-
gets. The plot shows that the overall coverage varies significantly
based on the budget, as depicted in the left subplot. Notably, the
coverage increases rapidly with a budget of 10 (s) (black solid), as
does the number of generated applications (middle plot). However,
after 20 hours, PyRTFuzz gets stuck, although it continues to gener-
ate more applications than other budgets. This is because too small
a budget will lead to insufficient L2 fuzzing and make it difficult to
exploit the deep paths.

On the other hand, with a budget of 90 seconds (blue solid), the
coverage shows a continuously increasing trend, and PyRTFuzz can
discover significantly more basic blocks than those with budgets
of 180 and 360 seconds. Additionally, PyRTFuzz generates more
applications under this budget. The normalized data in the right
subplot also shows that PyRTFuzz with a budget of 90 seconds
obtains the highest peak value among the four budgets.

Thereby, L2 time budget can greatly affect PyRTFuzz’s effective-
ness. Increasing the L2 time budget can lead to uncovering more
basic blocks; however, as the budget becomes too large, PyRTFuzz
may become less effective due to excessive redundancy in L2 fuzzing,
resulting in diminishing returns.

L2 time budget can greatly affect PyRTFuzz’s effectiveness, and a

budget of 90 (s) is ideal for Python runtime fuzzing.

5.4.3 Typed versus Untyped API Descriptions. Figure 12 shows the
results of PyRTFuzz fuzzing on Python 3.9.15 with typed (solid)
and untyped (dot) API descriptions.

The left subplot in the figure shows that PyRTFuzz with typed
API descriptions consistently outperforms the untyped version
regarding coverage feedback. While the untyped version may gen-
erate slightly more applications, this is only because, within a fixed
time window, untyped applications have fewer chances of uncover-
ing deep execution paths, resulting in fewer new basic blocks being
triggered. This can lead to the untyped version quickly exhausting
the time window and moving on to L1 APP generation for the next
L2 fuzzing. In contrast, typed applications are more likely to touch
deep paths and trigger new coverage, allowing PyRTFuzz to reset
the time window and stay in L2 fuzzing longer than untyped ones,
resulting in fewer applications generated within a given overall
time frame. Furthermore, after normalizing the data (as shown in
the right subplot), it can be observed that the peak value of the
typed version is almost 50% higher than that of the untyped ver-
sion. Additionally, the typed API descriptions are more effective
in triggering basic blocks, as each APP can trigger more blocks on
average with typed API descriptions.

The experiment results provide clear evidence that the type infor-
mation in API descriptions significantly impacts the effectiveness
of PyRTFuzz. Even though we have only implemented support for
the top-20 commonly used data types (§4), and only around 70% of
the APIs are type-extracted successfully (Table 3), the difference
in results between the typed and untyped versions is quite signifi-
cant, resulting in an improvement of up to 20%. Moreover, when
employing untyped-API descriptions, PyRTFuzz leverages Atheris’
original mutation strategies. Consequently, the ablation study also
demonstrates the superior efficiency of PyRTFuzz’s custom muta-
tion strategy compared to Atheris’ default mutation strategy.

PyRTFuzz can greatly improve its effectiveness when using typed

API descriptions (over using untyped ones).
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Figure 11: Coverage (𝑦 axis) evolves over the timeline (𝑥 axis) with different L2 budget on Python 3.9.15 (maximum specification

size=256).

Figure 12: Coverage (𝑦 axis) evolves over the timeline (𝑥 axis)

with typed and untyped API descriptions on Python 3.9.15

(L2 budget=90 (s) and maximum specification size=256).

5.5 Regarding the Vulnerabilities Discovered

Table 4 summarizes the 61 bugs over the three Python versions dis-
covered by PyRTFuzz during our evaluation. Notably, 19 of these
bugs have been validated to occur in the source code of the in-
terpreter, while still impacting the runtime libraries. To ensure
reproducibility and further investigation, we have developed Proof
of Concepts (PoCs) for these vulnerabilities. Additionally, we have
actively engaged with developers to confirm the bugs, comprehend
their root causes, and work towards appropriate solutions for fixing
them. As of the paper submission, 21 bugs have been mutually
agreed upon and acknowledged by the developers. And we have
not encountered any bug marked by them as "Won’t fix" at this
stage, signifying a positive and productive collaboration with the
development community thus far. The details of these vulnerabili-
ties are documented in Python3.9_Vul.pdf, Python3.8_Vul.pdf
and Python3.7_Vul.pdf within our artifact package, along with
the corresponding PoC scripts.

5.5.1 Case Study. In the following section, we present two case
studies from the bugs PyRTFuzz detected, to demonstrate how to
trigger the bugs and discuss the exploitation and security impact.
Case 1: locale.format_string. Figure 13 shows an application
developed with API locale.format_string. When this applica-
tion is run with the input "%8663511110u", it causes an out-of-
memory error, while the input "%18663511110u" triggers an un-
handled MemoryError exception. This bug has been confirmed to

Table 4: Bugs detected by PyRTFuzz.

Benchmarks Bug Type #Bug #Confirmed PoC

Python 3.9.15

MemoryError 15 1 ✓
Out of Memory 4 2 ✓
RecursionError 3 3 ✓
Hang up 3 3 ✓

Python 3.8.15
MemoryError 12 1 ✓
Out of Memory 2 2 ✓
Stack Overflow 1 1 ✓

Python 3.7.15

MemoryError 8 2 ✓
RecursionError 6 3 ✓
Stack Overflow 4 1 ✓
Hang up 2 1 ✓
Out of Memory 1 1 ✓

Total 61 21 -

affect all tested Python versions. An attacker can exploit this vul-
nerability to induce a denial-of-service (DoS) attack by causing the
applications that use this API to crash or exit due to an unhandled
exception.

Figure 13: Bug case 1: Out-of-memory and unhandled mem-

ory error exception in locale.format_string

Case 2: ssl.SSLContext.set_alpn_protocols. Figure 14
shows an application of ssl.SSLContext.set_alpn_protocols.
When running the applicationwith an empty string, a MemoryError
exception is thrown, which is unexpected behavior. This bug has
been confirmed to affect all tested Python versions. An attacker
can exploit this vulnerability to induce a denial-of-service (DoS)
attack by causing the applications that use this API to exit due to
an unhandled exception.

1657



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Wen Li, Haoran Yang, Xiapu Luo, Long Cheng, and Haipeng Cai

Figure 14: Bug case 2: Unhandled memory error exception in

ssl.SSLContext.set_alpn_protocols

6 RELATED WORK

Prior works closely related to PyRTFuzz fall in three areas: compiler

fuzzing, collaborative fuzzing, and Python analysis and testing.

Compiler fuzzing. Generation-based fuzzers, such as JSfunfuzz [45],
TreeFuzz [37], and Skyfire [48], learn grammatical features and rules
from existing samples to generate valid applications. Another signif-
icant contribution in JS-engine testing is CodeAlchemist [17]. This
approach employs a semantics-aware split-combination method
to create tests that are both semantically and syntactically correct,
building upon initial seeds. However, its effectiveness is constrained
by the quality and diversity of these initial seeds. Additionally, it
primarily focuses on generating valid code to test the JS interpreter
specifically, rather than enabling a broader and more comprehen-
sive testing of the runtime and its interaction with applications via
runtime libraries.

On the other hand, mutation-based fuzzers, such as Superion [49]
and Fuzzil [15], mutate input programs on ASTs or intermediate
languages with grammar awareness. LangFuzz [20] uses a grammar
to generate random programs based on code fragments. Moreover,
grammar-aware approaches [7, 8] targeting JVM testing focus on
generating valid Java applications. Additionally, DeepSmith[9] pro-
motes generative models for compiler testing based on machine
learning. These approaches are focused on and limited to testing
the compiler/interpreter alone while ignoring the runtime libraries,
an integral part of the language runtime.

The SLang-based approach in PyRTFuzz draws inspiration from
state-of-the-art generation-based JS-engine fuzzers, such as Tree-
Fuzz/Skyfire for data-driven generation and CodeAlchemist uti-
lizing semantics-aware split-combination approach. Yet these ap-
proaches focus on generating valid code itself, rather than par-
ticularly on synthesising API-centred test applications—which is
essential for testing Python runtimes holistically including the in-
teraction between interpreter and applications via runtime libraries.
In contrast, PyRTFuzz uses a novel specification-based code gener-
ation approach to generate diverse and valid Python applications
around various runtime APIs from scratch, for synthesizing API-

centred applications. Furthermore, with a two-level collaborative
fuzzing methodology, PyRTFuzz tests the Python runtime holisti-
cally, including both the interpreter and runtime libraries. PyRT-
Fuzz also differs from existing relevant approaches in its ability
to generate applications spanning various domains, with diverse
control flow complexities while ensuring application validity (e.g.,
data-flow reachability).

Collaborative fuzzing. EnFuzz [6] proposes a seed synchroniza-
tion mechanism to seamlessly ensemble diverse fuzzers to obtain
better performance. CollabFuzz [36] allows multiple fuzzers to col-
laborate under an informed scheduling policy based on central
analyses. Cupid [16] provides a collaborative fuzzing framework
that automatically selects a set of complementary fuzzers for par-
allelized and distributed fuzzing, improving the efficiency of soft-
ware fault-finding. These fuzzers target improving the effectiveness
through collaboration, but they function as equal entities working
in synergy at the application level.

In all, existing collaborative fuzzers commonly fuzz at one (i.e.,
application) level. In contrast, our two-level collaborative fuzzing
operates at two different levels (i.e., compiler-testing and applica-
tion fuzzing). L1 aims to generate diverse applications and feed
them to L2, while L2’s feedback also guides L1’s application gen-
eration. Both levels collaborate to test the entire Python runtime
comprehensively and are indispensable to each other.
Python analysis and testing. PyPrecditor [50] combines dynamic
tracing and static symbolic execution to analyze Python programs
and predict potential bugs. PolyCruise [27] supports cross-language
analysis [51] of Python programs that can analyze their interac-
tions with native libraries [24]. Python program fuzzers such as
PolyFuzz [28] and Atheris [14] are used to fuzz Python programs
and their bound native libraries to detect bugs and vulnerabilities.
These techniques are all designed to test Python applications, with
some of them being aware of Python runtime libraries. For instance,
PolyFuzz [28] and Atheris [14] can provide coverage feedback by
instrumenting Python runtime libraries, but they are only capable
of fuzzing the specified applications.

In comparison, PyRTFuzz stands out for its focus on holistic
testing of the entire Python runtime, including both the interpreter
and runtime libraries. It can generate applications with diverse
domains, covering all runtime APIs, and use them to fuzz the Python
runtime. Additionally, while not its primary objective, PyRTFuzz
can also fuzz Python applications.

7 CONCLUSION

We presented PyRTFuzz, a novel greybox fuzzing technique for
systemantically testing hence detecting bugs in Python runtime
systems. The design of PyRTFuzz features a two-level collaborative
fuzzing methodology that combines (1) a generation-based fuzzer
at Level 1 as enabled by a specification-based application gener-
ation scheme based on a declarative specification language with
(2) a mutation-based fuzzer at Level 2 that explores the Python
applications generated and selected at Level 1 through type-guided,
format/structure-aware generation of concrete application inputs.
Our extensive experiments demonstrated significant merits of the
two-level collabroative fuzzing design, which can be potentially
applied to the runtime of interpreted languages beyond Python.
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