Demystifying Issues, Challenges, and Solutions for
Multilingual Software Development

Haoran Yang Weile Lian
Washington State University Washington State University
Pullman, WA, USA Pullman, WA, USA
haoran.yang2 @wsu.edu weile.lian@wsu.edu

Abstract—Developing a software project using multiple lan-
guages together has been a dominant practice for years. Yet
it remains unclear what issues developers encounter during
the development, which challenges cause the issues, and what
solutions developers receive. In this paper, we aim to answer these
questions via a study on developer discussions on Stack Overflow.
By manually analyzing 586 highly relevant posts spanning 14
years, we observed a large variety (11 categories) of issues,
dominated by those with interfacing and data handling among
different languages. Behind these issues, we found that a major
challenge developers faced is the diversity and complexity in
multilingual code building and interoperability. Another key chal-
lenge lies in developers’ lack of particular technical background
on the diverse features of various languages (e.g., threading and
memory management mechanisms). Meanwhile, Stack Overflow
itself served as a key source of solutions to these challenges—the
majority (73%) of the posts received accepted answers eventually,
and most in a week (36.5% within 24 hours and 25% in the next
6 days). Based on our findings on these issues, challenges, and
solutions, we provide actionable insights and suggestions for both
multi-language software researchers and developers.

Index Terms—Multilingual software, development issues, lan-
guage interfacing, software build, data format, interoperability

I. INTRODUCTION

Using multiple computer languages in a single software
project (i.e., multilingual development) is a prominent software
practice [1]-[3]. In fact, multilingual development has been
a norm for decades—over 80% projects sampled both in the
industry and open-source world use two or more languages [1],
[4]-[6], and become increasingly popular among develop-
ers [7]-[9]. This practice is easily justifiable by the increased
productivity and flexibility of combining the complementary
strengths of different languages [1], [2], [7], [10]-[13].

Meanwhile, as for single-language software development,
developers adopting this practice (i.e., multilingual developers)
need support of techniques and tools for assuring the quality of
multi-language software. Intuitively, this need is more critical
given the increased complexity of multilingual code [1]. In-
deed, it is already found that using multiple languages tends to
make the resulting software more prone to both functionality
defects [14], [15] and security vulnerabilities [16]-[18]. To
address such needs, it is imperative to understand the issues
multilingual developers face and the underlying challenges that

* Haipeng Cai is the corresponding author.

Shaowei Wang
University of Manitoba
Winnipeg, Canada
shaowei.wang @umanitoba.ca

Haipeng Cai*
Washington State University
Pullman, WA, USA
haipeng.cai@wsu.edu

lead to those issues—so that researchers and tool providers can
be well-informed regarding what to target and how best to
meet the needs. Also, knowing what current solutions to those
challenges are offers direct insights for designing automated
tools while helping identify missing areas.

Existing research has looked at the multilingual develop-
ment phenomenon, yet focusing mainly on the characteris-
tics (e.g., prevalence [1], [3], [4], quality [14], [16], cross-
language links [6], [7], [12], [19]) of the end product (i.e.,
the resulting multi-language software). To investigate practi-
cal issues/challenges in multilingual development, a common
approach is to examine developers’ discussions (questions,
answers, comments, etc.) on relevant Q&A platforms such as
Stack Overflow (SO) [20]. Indeed, SO has enabled numerous
informative studies on developers’ issues with software devel-
opment concerning a broad range of topics [21]-[23]. How-
ever, no prior study has particularly addressed multilingual
development issues encountered by developers.

In this paper, we set out to systematically examine the
issues, challenges, and solutions regarding multilingual de-
velopment by analyzing relevant SO posts. This choice of
information source is justified by SO’s role as a primary plat-
form where developers exchange about software development
and an educational resource that influences their development
practices [24], [25] We started with the entire set of potentially
relevant posts since the creation of SO until late 2021 and
manually inspected 586 randomly sampled and highly relevant
ones. For each post, we checked the entire thread of discussion,
including the original question, answers, and comments. We
frame our study around three key questions, as outlined below
along with our major findings as respective answers.

RQ1: What are the issues encountered and discussed
by multilingual developers? We found that developers
encountered a variety (11 categories) of issues when devel-
oping multi-language software, among which the primary
ones include those concerning how to interface different
languages (accounting for 38% of the 586 inspected posts),
handle data across languages (30%), and build the holistic
multi-language system (15%). Issues were associated with
specific language combinations. The top three language
combinations involved were PHP-JavaScript (26% of
the posts), Python-C++ (10%), and C++-C# (9%), while

mailto:haoran.yang2@wsu.edu
mailto:weile.lian@wsu.edu
mailto:shaowei.wang@umanitoba.ca
mailto:haipeng.cai@wsu.edu

almost half of all the 586 issues were with Web applica-
tions. For instance, 72% of Embedding issues were mainly
encountered in PHP-JavaScript projects, while 30% of
Error/Exception Handling issues were associated with the
language combination of Python-C++.

RQ2: Which challenges do multilingual developers face
as the root causes behind the issues? Build issues were
mainly about compilation failures, version conflicts caused
by language evolution, and project maintenance problems,
due to challenges like insufficient documentation, uninfor-
mative compiler error messages, and inadequate tool support.
Data handling issues were mostly about data conversion and
third-part library usage difference, which are caused by chal-
lenges including variations in the configurations of libraries,
complexity of cross-language data structures, and diversity
in the type systems of different languages. Interfacing issues
were often exhibited as failures in memory management
and interoperations across languages, and the main causes
were inconsistencies in memory management mechanisms
between languages and incompatibilities (and even conflicts)
in the data types of different languages.

RQ3: How are the challenges being solved by multilingual
developers? For the documentation insufficiency challenge
underlying the build issues, the solutions were to use external
links to relevant information and multilingual code examples
directly on SO as alternative documentation. The main so-
lutions to the data conversion related challenges underlying
data-handling issues were to use language-independent data
format and check data-conversion (typically, relevant foreign)
function calls against encoding/serialization errors. To over-
come challenges with memory-management inconsistencies
that led to interfacing issues, current solutions suggest avoid-
ing pointer/memory operations across languages.

Based on our findings, we offer actionable suggestions to
researchers and developers of multi-language software. For
example, we suggest that multilingual developers refrain from
directly managing threads and memory across languages—
instead, they should manage them within individual languages
and let the respective language’s runtime to manage those
low-level interoperations. Developers should be aware of the
common issues/challenges of multilingual development when
making decisions, e.g., they should carefully consider the typ-
ical issues/challenges that are often associated with particular
language combinations when deciding which languages to use.
For researchers, our results clearly call for efforts on devel-
oping tools to support for detecting data type/format conflicts
across languages, recommending better API/usage in multilin-
gual development, and building multi-language projects.

II. BACKGROUND
This section defines key concepts and terminologies used in
the rest of this paper that are necessary for understanding it.
A. Multi-Language Software and Multilingual Development

Multi-language software is one that uses more than one
computer language, regardless of language classes (e.g., pro-

1 Calling C functions in Python
2 Asked 9 years, 3 months ago 3 /Active 7 years ago (4)Viewed 50k times
I have a bunch of functions that I've written in C and I'd like some code I've written in
Python to be able to access those functions. ... One question recommends ctypes and
another recommends cython. I've read a bit of the documentation for both, and I'm
completely unclear about which one will work better for me. ... | don't know if it will be
easier for me to call the Python from C or vice 6
You should call C from Python by writing a ctypes wrapper. Cython is for making
python-like code run faster, ctypes is for making C functions callable from python. What
~ | you need to do is the following:
7 1. Write the C functions you want to use. (You probably did this already) ... @8

Fig. 1: An example Stack-Overflow post with an accepted
answer illustrating that the ctypes is recommended to the
questioner with advice on the usage of it [26].

o

10

gramming/modeling/descriptive), and the code written in each
language (i.e., language unit) is integral to the system func-
tionalities. The process/practice of developing multi-language
software is referred to as multilingual development.

B. Language Interfacing Mechanism

In a multi-language software project, developers have to
consider and decide on the mechanisms by which the used
languages interface with each other (i.e., language interfacing
mechanism [16]). For example, in Java-C programs, a
typical interfacing mechanism is that the Java code unit calls
a C function via Java Native Interface (JNI).

Generally, there are two types of interfacing mechanism:
explicit and implicit. An explicit interfacing is a mechanism
by which the two languages interact via function invocations
(e.g., via JNI for Java-C software)—one language unit
invokes a function in another unit. There are two kinds of
such functions: foreign function and native function. A native
function is one written by the application developer in a
language (i.e., native language) that is different from the
caller’s language. A foreign function is one written by the
language developer in the caller’s language, used for retrieving
information from a different language (i.e., foreign language).
For example, as shown in Figure 1, the answer suggested the
developer uses the ctypes to call C functions from Python.
In this case, the functions written in C are native functions.

Alternatively, two language units may interact via implicit
interfacing, where one unit accesses another unit’s functional-
ities through IPC (interprocess communications)—via shared
memory, network-based message passing, message queue, etc.
For example, in PHP-Java applications, the PHP client
interfaces with the Java server by message passing via sockets.

C. Embedding

In addition to having one language interface with another,
another way of integrating units of different languages in a
multi-language project is to embed one language unit within
the code of another language. Typically, embedding is often
used between two declarative languages (e.g., HTML em-
bedding CSS), or a declarative language and an imperative
language (e.g., HTML embedding JavaScript).

III. METHODOLOGY

A typical SO post has the following attributes that are used
in our analyses, as illustrated in Figure 1.

|E 586 relevant posts
Category of RQ2 l Key challenges of RQ3 l

issue (' What challenges are | issue category (What solutions to
behind the issues? the challenges? ‘

RQI l

"What are the issues
encountered?

s

Understanding of multi-language software
development issues, challenges, and solutions

Fig. 2: Our research questions and their relationships.

Solutions of
key challenges

@ Title summarizes the question of the asker (developer).

@ Created time is the post creation time, in seconds.

® Active time is the most recent time someone participated
in the discussion of (i.e., posting answers to or comments
on) this post, also accurate to seconds.

@ View count is the #times the post has been viewed.

® Vote is the sheer #times the post has been liked (i.e.,
#upvotes - #downvotes).

® Question describes the question (i.e., issue encountered) in
detail. It may contain code snippets, screenshots, or links.

@ Accepted answer indicates that this answer has been se-
lected as the solution by the asker, marked by a green tick.

Answer describes a potential solution to the issue of the
asker. It may also contain code snippets, screenshots, or links.

A. Research Questions

Using the relevant posts, we seek to answer three research
questions in relation, as shown in Figure 2. Below, we clarify
the aim and justification for each question with respect to our
study goal and describe our approach to answering it.

RQI: Issues. First, we aimed to discover the problems that
these developers have that may both impede their multilingual
development productivity and compromise the quality of the
resulting software product. Knowing the problems is the first
step toward helping developers overcome those barriers. We
plan to identify the first taxonomy of multilingual develop-
ment issues that covers the entire software development life
cycle (ranging from analysis and design to coding/testing and
maintenance/evolution). This taxonomy provides an overarch-
ing guide for our further investigation into the underlying
challenges and solutions. We also identified the language
combinations associated with each category of issues.

To answer RQI, we adopted an open coding approach to
categorize each post, as we had no prior knowledge about it.
Three of the authors created and validated the codebook with
a common inter-agreement and consensus procedure, and then
used it to categorize sample posts confirmed as highly relevant
to our study, as elaborated in §III-C. As a result of categorizing
these posts, we obtained the issue taxonomy mentioned above.

RQ2: Challenges. Next, we aimed to understand the root
causes (i.e., challenges) underlying the issues identified in
RQI. This is essential for developing effective and sustainable
solutions. We focused on the 4 most prevalent categories of
issues and identified the major challenges for each. The result
provides a guiding reference for our investigation into the
current solutions to each of those categories of issues.

To answer RQ2, we clustered the 586 resulting posts from
RQ1 by their issue categories. Then, authors 1 and 2 inde-

pendently analyzed the posts in each category to summarize
the common root causes across those posts based on the
discussion in the posts while leveraging our prior knowledge
about multilingual development and online resources. This was
followed by meetings to resolve disagreements until a final
consensus was reached for each post.

More specifically, for each issue category, we first read
each post in it and assigned one/more tags that indicate the
content and problems discussed. We then clustered these tags
based on semantic similarities, and examined the posts in each
cluster and identified causal factors of the problems. Finally,
we consolidated the primary, common factors for each cluster
as one of the root-causes (i.e., ‘challenges’) for the issue. As
a result, for each issue category, we identified multiple root-
causes/challenges, although due to space limit we will only
present the primary one or two challenges.

RQ3: Solutions. Lastly, we aimed to reveal the current
solutions that developers have been offered to the issues they
encountered. The answer to RQ3 can provide a catalog of
existing solutions which could be used as an immediately
useful reference for developers. It also provides a picture of
the current situation and practice of multilingual development,
and helps identify a roadmap for future research. We focus
on retrieving the common solutions for the 4 prevalent issue
categories (discovered for RQ1) and their top underlying
challenge (identified for RQ?2).

To answer RQ3, we first selected the posts belonging to the
studied 4 categories which had an accepted answer. Then, we
examined the answers and the comments of each selected post.
Finally, we consolidated the solutions specific to individual
posts into common, more general ones for the challenge (root
causes) behind each category of issues.

B. Data Collection

Given the complexity and diversity of each individual
language and their combinations in multilingual software, we
rely on manual inspection to analyze the content of posts.
Thus, we need to identify a sufficient yet manageable number
of relevant posts to study. As shown in Figure 3, we started
with all the posts available on SO. We then used two filters
below to identify relevant posts with high quality. Note that
we consider a post relevant if it (1) discusses software
development issues, and (2) the development issues are with
multi-language software (§11-A) projects.

Filtering via language tags and #votes. To make our study
manageable, we started with the most popular languages as
tags, for which we referred to several language popularity
rankings [27] and found common languages in those top-10
lists. We targeted the top-7 popular languages in 2020 (when
we started this study), JavaScript, Python, Java, C,
C++, Shell, and PHP, as an initial filter, as these have been
mainstream programming languages for a long time [1]-[3].
We chose 7 because we referred to several top-language lists
and there are 7 in common. We also used the #votes as a
proxy for selecting potentially high-quality posts following
prior studies [28], [29]. We kept posts where the original

All posts 10,444 posts

Stack
Overflow Filtering via Filtering via
tags and topic modeling
#vote (LDA)
| 5,565 posts
495 posts i
T p Derive — g|
Codebook
Random Codebook
sampling for
codebook £
i 1,113 posts
% F()Zodlng '
rocess Random
586 posts sampling for
study

Fig. 3: The flow of our data collection process.

question received 6+ votes and prioritized our effort on those
likely higher-quality posts. We tried a few other thresholds and
chose 6 as it gave a good trade-off between the topic coverage
of posts and an affordable amount of manual effort. To obtain
the posts, we used the Scrapy tool [30] to crawl posts from
SO that have at least two tags among the 7 selected languages.
We crawled the SO website, rather than using a dump (which
is released every three months), because we wanted to ensure
that our study is up to date. After filtering via language tags
and #votes, we ended up with 10,444 posts.

Filtering via topic modeling (LDA). Per our study goals,
we would like to focus just on posts that are highly relevant to
multilingual-development issues. Yet among the 10,444 posts,
most were clearly irrelevant to any development issue per
our quick sampling and inspection. However, filtering out
irrelevant ones fully manually would be too tedious/costly.
To help rule out such posts efficiently, we thus applied
LDA [31] topic modeling as a filtering step. Specifically,
we used LDA to extract a generic list of development-issue-
relevant topic words, from which we then manually removed
noisy ones (e.g., "hence’, ’solution’) that are not indicative
of development issues. Then, we kept a post if it contained
some of the remaining topic words—we did not exclude a
post just because it contains a non-indicative/noisy topic word.
With the remaining ones (e.g., ’JNI’, 'SWIG’, ’socket’) as
keywords, we experimented with many potential sets of final
keywords (including various word combinations as phrases)
while randomly sampling 50 posts for which we manually
labeled as ground truth to validate. For each potential set,
we used it to detect relevant/irrelevant posts from the 50 and
computed precision and recall as per the ground truth. We
ended with a final keyword set that gave us 95% recall and
45.23% precision—other sets gave better precision but much
lower recall. We favored recall because we intend to keep
a high coverage of actually relevant posts even at the cost
of greater manual effort for removing false positives in the
next step. The recall of 95% is high enough for us to use
this LDA-based filtering step as a filter, as it will not lead
us to miss many true positives during our final post-relevancy

confirmation. Filtering with the LDA left us with 5,565 posts.

C. Post Categorization

For the next step, we need to derive a codebook and then
apply it for the categorization of posts.

Random sampling for codebook. To manually generate the
codebook, we first randomly sampled 495 out of the 5,565
posts for analysis. This sample size is statistically significant
at 98% confidence level (CL) and 5% margin of error (ME).

Derive codebook. Three of the authors each created an
initial list of issue categories independently based on the 495
posts. Then, they addressed any divergence until reaching a
consensus on the final codebook of Table I. More specifically,
each of them (1) carefully read the posts, (2) checked whether
each post belonged to the current issue categories, and (3)
created a new category if needed. When creating a new
category, they first defined a label to describe the issue in the
post, then created descriptions for this category and provided
some common issues that should belong to this category, and
added the post to the codebook as an example for this category.

Random sampling for study. Filtering with the LDA left
us with 5,565 posts. Considering the typically substantial
time cost of manually inspecting even one post, we randomly
selected 20% of these posts, resulting in 1,113 posts that need
to be manually confirmed in the coding process. This sample
size is statistically significant at 99.9% CL and 5% ME.

Coding process. Finally, we manually determined the even-
tual relevancy of each of the 1,113 posts, confirmed that
586 were highly relevant, and categorized them using the
codebook derived. We utilized negotiated agreement to ensure
the reliability of the coding procedure, because it is helpful
in research when the primary objective, just like ours here, is
to provide new insights [32]. The final coding was performed
by the three authors who derived the codebook reaching a
consensus on each of these 586 posts, which (hereafter referred
to as “relevant posts”) are used for our further manual analysis
to answer our three research questions.

IV. RESULTS
A. RQI: Issues

We present our issue taxonomy and then look into the asso-
ciation between issue categories and language combinations.

1) Issue Taxonomy (Categories): As shown in Figure 4, we
categorized the 586 posts into 11 disjoint categories (the leaf
nodes of the tree). The hierarchy also informs the distribution
of the posts over these categories. At the top level, we have the
8 categories from the codebook we derived Table I . Then, we
broke down the two categories with the most (222 and 174)
posts to form the second level: Interfacing choice and Invoca-
tion mechanism under Interfacing, and Data format/compa-
tibility and Interoperability under Data handling. Finally, the
Invocation mechanism category is further broken to the third
level as two subcategories corresponding to the two kinds of
interfacing mechanisms (§11-B). We formed the taxonomy such
that the number of posts in all leaf categories does not exceed
100, which facilitates deeper analyses (for RQ2 and RQ3).

TABLE I: Key codes used to categorize SO posts on multilingual development issues.

Code Summary Description

Language choice Developers ask/discuss about choosing the languages to use for their multi-language project.

Interfacing Developers ask/discuss about calling interface (implicit or explicit) between two languages.
Embedding Developers ask/discuss about embedding one language unit within another language unit.
Developers discuss how to build (e.g., compile, install, configure) the multilingual code.
Efficiency/Performance Developers are concerned about computing/storage efficiency of their multi-language systems.
Security Developers have security/privacy/cryptography-related concerns with multilingual development.

Data handling | Developers discuss cross-language data processing and/or transferring data between languages.

\
\
\
\
Build |
|
|
\
\

Error/exception handling | Developers ask/discuss about handling errors and/or exceptions in multilingual code.

All StackOverflow posts (586)
|

Language choice (21) Interfacing (222) Embedding (47) Build (90) Efficiency/Performance (14) Security (8) Data hai'ldling(174) Error/Exception handling (10)
|

[| [[
Interfacing choice (86) Invocation mechanism (136) Data format/compatibility (88) Interoperability (86)

Explicit interfacing (78) Implicit interfacing (59)
Fig. 4: Our proposed taxonomy of multilingual developme

38% and 30% of all of the relevant posts are about Inter-
facing and Data handling, indicating that developers need
more help on these issues.

We also found that 73% of the 586 posts have an ac-
cepted answer, versus 57% for all posts on SO per an earlier
study [33]. Only 1% of these multilingual posts never received
any answer. Moreover, we found no significant differences
among the 11 issue categories regarding the response status.
In terms of the response time, among those 73% of the 586
relevant posts, most of them got the accepted answer within
seven days and nearly half got it in just 24 hours. Finally,
we observed that the average view count per post has started
rising since 2016 (after an 8-year plateau), and has then been
sharply and steadily increasing since 2019.

The multilingual development community is active, with
relevant questions getting quick responses within one day
through a week, and different categories of issues received
a similar degree of attention. Meanwhile, the community
appeared to grow very fast in recent years.

2) Issue Categories versus Language Combinations: Fig-
ure 5 (top chart) shows the primary language combinations
associated with each of the 8 top-level issue categories,
with the distribution of all the 586 posts over the involved
language combinations provided as a reference (bottom chart).
The results in the bottom chart reveal that across all the
issue categories, the top 3 language combinations involved
were PHP-JavaScript (26% of the posts), Python-C++
(10%), and C++-C# (9%). Note that this is not necessarily an
indication that PHP-JavaScript projects are most likely
subject to different kinds of multilingual development issues—
it is possibly just a result of the highest popularity of this
combination among the shown ones.

90% 11%
80%
70% 38%
49% 20 I 13 | 72% m‘
20% 43%
. 5]
b
By;j) D,
Uiley ata hand, e /C’E"Cy/p Mbey, ling rro,—/E Cept tenra Cing "g‘lag o E,Cu,-,ty
Ce
"Tor ance Nljng
m php,javascript W c++,python python,c javascript,c#
B c++,c#f M java,c M java,javascript M java,php
200 26.1%
100 10.4% 9.0% o 9
. o 7.5% 7.3% 6.3% 2.7% 1.0%
0 | | — e
php python c++c# javascript java pythonc cjava python
javascript c++ c# javascript java

Fig. 5: The percentage distribution of top three language
combinations involved in the posts of each issue category
(top), and the percentage distribution of all the 586 posts over
all such language combinations (bottom). The bottom chart
serves as a reference for better understanding the top chart.

While the prevalence of language combinations affects
the absolute proportions of posts associated with each com-
bination, it is still noticeable that certain types of is-
sues were typically associated with specific language com-
binations. For instance, 72% of Embedding issues were
mainly encountered in PHP-JavaScript projects, 50%
of the Efficiency/Performance issues were associated with
PHP-JavaScript, and 38% of the Security issues were
associated with Java—-JavaScript. Meanwhile, Data han-
dling issues were discussed almost evenly across different
kinds of projects in terms of language combinations used. This
contrast may also be elucidated by looking at the heights of the
bars (in the top chart): the higher the bar for an issue category,
the more dominating the top three language combinations that
are associated with that category of issues.

(How do I remove unnecessary resources from my project?)

(How can I convert Python dictionary to JavaScript hash table?)

Question: | am working with a very big project (a solution that contains 16 projects
and each project contains about 100 files). It is written in C++/C# with Visual Studio
2005. One of the projects has around 2000 resources out of which only 400 are
actually used. How do | remove those unused resources? | tried to accomplish the task
by searching for used ones. It worked and | was able to build the solution, but it broke
at runtime. | guess because enums are used. (IMPORTANT)

How can | make sure that it doesn't break at runtime? ...

Fig. 6: An example illustrating that tool support for building
multilingual code is lacking, as a challenge causing the issue
here: unnecessary resources were not successfully removed
during the build process [36].

Embedding and Efficiency/Performance issues were related
to a few highly-dominant language combinations, while other
issue categories involved more diverse combinations.

B. RQ2: Challenges

Out of the 11 distinct issue categories, we focused on the
4 most prevalent ones (accounting for 58% of all posts) to
identify common challenges behind each.

1) Build: Build issues were found mainly concerning prob-
lems with installation, compilation, configuration, and packag-
ing, for which we identified 2 common challenges. These two
main challenges summarize the root causes of multilingual
build issues encountered by developers, as seen in 10 out of
the total of 90 posts on such (i.e., build) issues.

Challenge 1: Documentations on the discussed build-
related topic are insufficient or entirely lacking. Many de-
velopers mentioned documentation related problems in their
questions or comments. In particular, among the relevant posts,
the developers faced two kinds of situations:

e Missing documentation: Documentation on the discussed
topic is entirely lacking/missing. For example, the post [34]
illustrates this situation. In this post, the QWebChannel
JS API failed to setup in a QWebEngineView since the
QT documentation is incomplete. The reason is that the
documentation about QWebChannel is entirely missing.

o Insufficient documentation: Relevant documentations exist
but they only provide some reference information or general
ideas for solving respective problems. As shown in [35], the
Pybindll documentation only addresses the special case
and does not provide a complete method to developers; as a
result, the developer could not figure out how to split code
into multiple modules in a general situation.

Challenge 2: Support for multi-language code build is
severely lacking. For example, compiler log messages are
not enough, and developers seek to build related tools to
improve work efficiency. However, the existing tools can not
support multilingual projects well. Figure 6 indicates that
the existing tool support failed to help the developer remove
unnecessary resources from multi-language projects during the
build process. The reason is that the build support is lacking
in multi-language projects. Actually, the project was written
in C++—Ci#, yet there is no supporting tool that can remove
resources at runtime.

Question: | have passed to template regular Python dictionary and | need to inside
S(document).ready(function() {.. } to convert that Python dictionary to JavaScript
dictionary. | tried like var js_dict={{parameters}}; but | got errors (' instead of ' and all
strings start with u'). How can | convert Python dictionary to JavaScript hash table?

Fig. 7: An example showing that data conversion is difficult
in multilingual coding, as a challenge causing the issue:
converting the Python dictionary to JavaScript hash table failed
in this particular case [37].

The build issue related posts are about failures in the build
process, i.e., compilation failures, language version conflicts,
and project maintenance problems. These problems are due
to the challenges of missing/insufficient documentation and
lacking necessary support.

2) Data Format/Compatibility: These issues usually occur
before and after data exchange, causing program defects due
to data format or compatibility problems. Such issues may
also occur when the data formats between the languages
are not compatible. Below, we elaborate on two primary
challenges underlying data Format/Compatibility issues. These
two major challenges summarize the root causes of such issues
encountered by developers in 27 out of a total of 88 posts.

Challenge 1: The languages involved in multi-language
software development projects can have different typing
strengths and type systems, making the conversions across
such languages error-prone. Meanwhile, for the same reason,
it is difficult for developers to fully understand the data type
validity requirements and data conversion rules across all the
different languages. Type conversion is the most common
problem with these symptoms. Each programming language
has its own rules for how to convert types. Languages are also
divided into strong typing and weak typing. Languages with
weak typing perform many implicit conversions between data
types and usually allows the compiler to interpret data items
as having different representations arbitrarily. Although this
is very convenient for developers, it introduces errors in data
format for multilingual development projects. For example,
Figure 7 illustrates that the data of the dictionary type
in Python is hard to convert directly to a JS hash table. The
reason is that Python and JavaScript have different systems to
represent a dictionary internally.

Challenge 2: Different languages have varying third-party
libraries even for the same algorithm, and accordingly, the
libraries for these algorithms provide different functions for
dissimilar languages. This is a common error when working
with the same algorithm but in other languages. Techni-
cally, the same algorithm should produce the same results
in different languages. Yet in practice developers can get
inconsistent results. This is because different languages set
different algorithm parameters, leading to data generated in
one language not being compatible with another, even though
both use the same algorithm. The third-party libraries provide
different functions with different parameters to achieve the
purpose. In this case, it is difficult for developers to use the
correct function when unfamiliar with it. As Figure 8 shows,
the encryption result in the C# unit is different from that in the

(Encrypt AES with C# to match Java encryption)

(Does managed languages lock flush and reload variables of native libraries?)

Question: | have been given a Java implementation for encryption but unfortunately
we are a .net shop and | have no way of incorporating the Java into our solution. Sadly,
I'm also not a Java guy so I've been fighting with this for a few days and thought I'd
finally turn here for help.

I've searched high and low for a way to match the way the Java encryption is
working and I've come to the resolution that | need to use RijndaelManaged in c#. I'm
actually really close. The strings that I'm returning in c# are matching the first half, but
the second half are different. ...

Fig. 8: An example illustrating that there is encryption and
decryption difficulty between different languages, as a chal-
lenge causing the data format/compatibility issue that the AES
encryption result is different between C# and Java [38].

(Memory leak using JNI to retrieve String's value from Java code)

Question: |'m using GetStringUTFChars to retrieve a string's value from the java code
using JNI and releasing the string using ReleaseStringUTFChars. When the code is
running on JRE 1.4 there is no memory leak but if the same code is running with a JRE
1.5 or higher version the memory increases. This is a part of the code
msg_id=(*env)->GetStringUTFChars(env, msgid,NULL);
opcdata_set_str(opc_msg_id, OPCDATA_MSGID, msg_id);
(*env)->ReleaseStringUTFChars(env, msgid,msg_id);

I'm unable to understand the reason for leak. Can someone help? ...

Fig. 9: An example illustrating that garbage collection mech-
anism divergences across different languages lead to interop-
eration faults, as a challenge causing the interoperability issue
that JNI retrieving strings resulted in a memory leak [39].

Java unit. The challenge is that even if the different languages
encrypt using the same algorithm, the results can be different
because of varying parameters.

The studies posts on Data Format/Compatibility issue were
mainly about data conversion and third-party library usage
differences. The challenges lie in the diversity in data type
systems and variations in the configuration of the algorithms
of the libraries.

3) Interoperability: This type of problem is relatively com-
plex. In the interfacing phase, data related issues usually arise,
except for formatting problems. For example, parameter con-
figuration or type problems happening when data is transmitted
are of this kind. We highlight below the two most significant
challenges underlying these interoperability issues as seen in
29 posts, out of the total of 86 posts on such issues.

Challenge 1: There are discrepancies in memory man-
agement mechanisms (e.g., allocation and recycling) across
different languages, which cause interoperation faults (e.g.,
buffer overflow and memory leaks). Some languages (such as
C, C++) allow developers to manage their own memory. This
seemingly convenient way may bring risks to the project in
a multilingual environment. When multiple languages exist in
a project simultaneously, if the garbage collector mechanism
of each language is different, it will first cause development
difficulties for developers. Second, if you want to pass data
types such as pointers in development, it may cause problems
in memory management. For example, Figure 9 illustrates
that JNI generates memory leaks when retrieving strings from
Java. The reason is that the different languages have distinct
memory management mechanisms, which makes interopera-
tion between two languages difficult.

Challenge 2: Data types between languages can be in-
compatible or even have conflicts, which leads to failing
interoperation between the languages. Two languages that are

Question: When we use locks in managed languages like C# and Java, we can always
be sure we are dealing with the latest data. Specifically in Java memory model, they
have a guarantee called Happens-before relationship. But I'm not sure what will
happen with native libraries. ... As you see, if sharedData from C side is not declared as
volatile, then is there still a guarantee that Thread 2 can always get the latest value set
by Thread 1? Does the same apply to Java using JNI too?

Fig. 10: An example illustrating that multiple threading makes
the interface have special requirements in the multi-language
project, as a challenge causing the explicit interfacing issue
that the developer was confused about declaring the ’volatile’
data type in multithreading between C and C#. [41]

not able to communicate normally interact through language
interaction APIs. This issue is usually caused by poor semantic
interoperability, which may exist in the data transmission
process and lead the APIs to be buggy. In the post [40], the
string-type data in C# is hard to match the parameter type
wchar_t = returned from the C++ function. The challenge
is caused by the conflict between different data type systems.

Interoperability issue posts were mainly about memory man-
agement and failures in the interoperations between lan-
guages. These challenges were due to discrepancies in mem-
ory management mechanisms and incompatibilities in data
types across different languages.

4) Explicit Interfacing: Explicit interfacing is often realized
via a foreign function interface (FFI), e.g., JNI, CPython, etc.
As the interfacing mechanism is already chosen, the questioner
usually asks about errors related to the selected interface. We
elaborate on the top challenge below, which explains Explicit
Interfacing issues seen in 6 out of 78 posts on such issues.

Challenge 1: Multiple threading further complicates the
correct usage of explicit interfaces, as data transfer or value
sharing via these interfaces across threads may have spe-
cial/additional requirements. Many developers have always
had trouble with thread control, and many challenges exist
in the single language development environment. In a multi-
lingual environment, the multithreading mechanism may be
completely different between languages. For example, the
C++ language does not support multithreading directly, and
multithreading programming in C++ is implemented by calling
low-level functions of the operating system. Figure 10 shows
that the developer wants to use the thread of the C# side to
get the value from the C side. And the developer is confused
about whether the variable needs to be declared as ’volatile’
on the C side in the multi-language project. So the challenge
is that there is an additional requirement for C side variables.

The studied posts on Explicit Interfacing issues were mainly
about threading and foreign function calls. The challenges
were due to complicated multiple threading and varying
multithreading requirements.

C. RQ3: Solutions

We further looked into the current solutions to the primary
(first) challenge for each of the 4 prevalent issue categories
for which we identified the common challenges for RQ2.

How to setup QWebChannel JS API for use in a QWebEngineView?

How can | convert Python dictionary to JavaScript hash table?

Question: ... As Qt's documentation is far from complete, which are the ways to setup
QWebChannel and are there different ones from adding a <script> tag in your HTML
page like recommended in the documentation?

Answer: ... Using runJavaScript() to execute the code in Qt's QWebChannel JS API:
...<code snippet>..
Sources: - QT QWebEnginePage::setWebChannel() transport object
- How do | include a JavaScript file in another JavaScript file?
- How to use Qt WebEngine and QWebChannel?
- http://doc.qt.io/qt-5/gtwebchannel-javascript.html

Fig. 11: An example illustrating that external references and
code example can provide useful information for developers
to overcome documentation insufficiency [34].

1) Documentation Insufficiency Challenge: Overall, no
generic solutions to this challenge were found. Nevertheless,
we observed a few useful suggestions.

Solution 1: According to the accepted answers, external
links can help the asker. Some posts even provide valuable
parts of the corresponding documents directly.

Figure 11 shows that the developer encountered the chal-
lenge with insufficient documentation that led to not being
able to set up the QWebChannel JavaScript API for use in
QWebEngineView. In addition, the developer is confused
about the <script> tag usage of QWebChannel on the
HTML page. To address this problem, the developer was pro-
vided some alternative sources to solve Qt’s QwebChannel
JS API problem and <script> tag usage confusion. In sum,
the developer can look for alternative sources on this Q&A
platform (i.e., SO) itself or other developer discussions forums.

Solution 2: Accepted answers to the studied posts also
suggest that code examples, provided sometimes, helped de-
velopers understand how to solve problems immediately.

As shown in Figure 11, for the issue encountered by the
developer as described above, in addition to the solution via al-
ternative sources, the developer was also provided with a code
example that demonstrates how to set up the QWebChannel
JavaScript API and a code example on using a <script> tag
in the web page. In sum, the developer can look for code
examples when the challenge with insufficient documentation
is encountered.

For the Documentation Insufficiency challenge under the
Build issues, the solutions provided were to offer external
links to and/or code examples about relevant information as
alternatives (to the documentation).

2) Error-Prone Data Conversion Challenge: We found
three generic solutions for the challenge with the error-
proneness of data conversion underlying the Data format issue.

Solution 1: According to the accepted answers, we found
that the questioner’s function for data conversion is not ap-
plicable. Questioners should check whether the usage of data
conversion functions is correct (e.g., against wrong choices of
functions, function call parameter mismatch).

The post [42] shows that the developer encountered the
challenge with converting a PHP array to a JavaScript object.
However, the conversion was unsuccessful, causing a syntactic
error, as the developer tried to use the function implode ()

Question: | have passed to template regular Python dictionary and | need to inside
S(document).ready(function() {.. } to convert that Python dictionary to JavaScript
dictionary. | tried like var js_dict={{parameters}}; but | got errors (' instead of ' and all
strings start with u'). How can | convert Python dictionary to JavaScript hash table?
Answer: Python and javascript both have different ideas about how to represent a
dictionary, which means that you need an intermediate representation in order to pass
data between them. The most common way to do this is JSON, which is a simple
lightweight data-interchange format.

Use the python json library to convert (or dump) your python dict into a JSON
string. Then in the javascript parse the JSON string into a javascript dict. (If you are
using JQuery, then use jQuery.parseJSON)

Fig. 12: An example illustrating that there is a common way
for the dictionary conversion between Python and JavaScript,
which is using JSON [37].

for that purpose. The suggested solution was to use the
json_encode () function, instead of implode (), for the
data conversion. In sum, the developer should check whether
the function they used is correct.

Solution 2: Two languages can use foreign functions (e.g.,
in SWIG, ctypes, etc.) to realize data type conversion. The
developer should look for dedicated foreign functions that can
be used for correct data conversion across languages.

For example, the post [43] illustrates that the developer
faced a challenge with converting the jobject data type to
the jstring type. However, the conversion was unsuccessful
since the JNI code got an error at compile time. To address this
problem, the suggested solution was to use the foreign function
properly so as to avoid any errors like the one in this case. It
includes choosing the correct foreign function and modifying
parameters as needed. In sum, the developer should check the
dedicated foreign functions for data conversion.

Solution 3: Some special multi-language projects based
on network transmission use language-independent data-
interchange formats (e.g., JSON, XML) for data conversion.
Many languages have good compatibility with these data
interchange formats, so using them to convert data is simple
and fast while preventing data conversion related issues.

Figure 12 illustrates a developer encountering the challenge
with converting a Python dictionary to its corresponding
JavaScript dictionary. The developer tried to convert it directly.
However, it was unsuccessful since the Python data type differs
from the counterpart in JavaScript. The suggested solution was
to choose JSON, a language-independent and data-interchange
format, to pass data between Python and JavaScript to address
this problem. In sum, the solution was to use the data-
interchange format to accomplish data conversion.

For the Data Conversion challenge underlying the Data
Format/Compatibility issues, the solutions were checking
conversion function calls (e.g., foreign function) and using
the language-independent and data-interchange format.

3) Memory-Access-Mechanism Discrepancy Challenge:
We found two generic solutions for this challenge, which
causes the Interoperability issue.

Solution 1: In the face of complex memory management
mechanisms in a multilingual environment, developers can
try to avoid using pointers across languages in the project

Is it safe to keep C++ pointers in C#?

Application exits (no Exception) when referencing 64bit dIl from C#

Question: I'm currently working on some C#/C++ code which makes use of invoke. In
the C++ side there is a std::vector full of pointers each identified by index from the C#
code, for example a function declaration would look like this:

void SetName(char* name, int idx)

But now I'm thinking since I'm working with pointers couldn't | sent to C#...Would
the pointer address be guaranteed to stay constant in C++ such that | can safely store
its address in C# or would this be too unstable or dangerous for some reason?
Answer: In C#, you don't need to use a pointer here, you can just use a plain C# string.
...This works because the default behavior of strings in p/invoke is to use
MarshalAs(UnmanagedType.LPStr), which converts to a C-style char*. ...You can p/
invoke basically anything without requiring pointers at all (and thus without requiring
unsafe code, which requires privileged execution in some environments).

Fig. 13: An example illustrating that it is not necessary to use
the pointer date type in C#; instead, the string date type may
be used to solve the problem [44].

or reduce the use of data types requiring memory alloca-
tion/releasing manually.

Figure 13 shows that keeping C++ pointers in C# poses
a challenge for the developer. The developer was concerned
that storing pointer addresses from the C++ code in the
C# unit can be unstable or dangerous because programming
in C++ requires the pointer address to remain unchanged.
To address this problem, the suggested solution was to use
strings in p/invoke, because such a string can be converted
to a C-style char* using the MarshalAs () function in
p/invoke. In sum, the solution is to avoid using the pointers
in C# to keep the pointer address unchanged in C++.

Solution 2: Another common cause of memory issues is
improper memory allocation and release [45]. Because the
memory management mechanisms between various languages
are often different, it is easy to hit errors if developers allocate
or release memory across languages. For example, when the
memory allocated in one language is released from another,
the limited access of memory across two languages due to
permission issues may result in errors.

As shown in Figure 14, the developer encountered a problem
that the application exits when calling DLL from C# and
no exception was thrown. The developer was convinced that
the DLL file does not have an issue. According to the
answer, we know that it is a memory management problem,
in which the developer wanted to use a C# function named
CoTaskMemFree () to release memory. However, because
of the stricter memory manager of Vista and Windows 7, C#
cannot release the memory allocated in the C++ DLL. The
suggested solution was to stop the marshaller from trying to
release the string. In sum, the solution is to avoid releasing
the memory from another language.

For the Memory-Access-Mechanism Discrepancies challenge
underlying the Interoperability issues, the solutions were
to be cautious against or even avoid pointer and memory
operations across languages.

4) Threading-Induced Complication Challenge: We found
two generic solutions for threading-induced complications
underlying the Explicit Interfacing issue.

Solution 1: The multithreading mechanism may be different
between languages. For some simple multi-threaded interac-

Question: |'ve compiled Iz02.dIl 64 bit and now looking to use it in a C# program. ...
I've had a look at this but still can't ascertain even a hint of the problem. | believe
its complaining about the symbols even tho the stack trace looks like it does have
names and thus provide some meaning. Can someone hint at what might be the issue
or point in the direction to head next? ...
Answer: No stack trace but | can guess, you see CoTaskMemFree() on there
somewhere. Which is what the pinvoke marshaller calls to release the string buffer
that was returned by the function. Problem is, that string buffer wasn't allocated by
CoTaskMemaAlloc(). Vista and Windows 7 have a much stricter memory manager, they
don't allow a program to release memory it didn't allocate. It works on XP, it simply
ignores the bad buffer pointer. C functions that return strings are a memory
management problem. It is however likely to work in this specific case, it probably
returns a string literal that doesn't need to be released. ...

Fig. 14: An example illustrating that C# code cannot re-
lease the memory allocated by C++ code using the function
CoTaskMemFree () [46]

What happens if | call a java function from multiple threads from C with JNI?
Question: ... don't see how that is possible, is the embedded JVM going to start its
own threads automatically? Or queue the JNI calls? How else could there be multiple
calls to the same virtual machine. which | haven't instructed to do any threading? Any
way | can imagine that to work is, if the java code will simply be executed in the same
calling thread as the c code. Is that correct? That would mean that | don't have to do
any threading in Java.

Answer: The jym does not have to create its own threads, the method calls are
executed on the native threads that make them. The AttachCurrentThread and Detach-
CurrentThread will take care of any necessary jvm internal state management, for
example creating java Thread objects wrapping the native threads.

Fig. 15: An example illustrates that the JVM can use its own
thread mechanism to handle multi-threading in JNI. [48]

tions (e.g., using threads to call functions without data ex-
change or mutual exclusion between threads, etc.), developers
should manage threads within individual languages and avoid
managing the same thread across languages (e.g., creating a
thread of one language from another language) if possible.

As shown in Figure 15, the developer did not understand
how to call a foreign function (written in Java) from multiple
native threads (created in C) and believed that this was not
possible, or it would require multiple (Java) threads to be
created accordingly by the JVM. Apparently, this challenge
was encountered because the developer was not familiar with
Java’s native threading [47] (i.e., threading in native code)
mechanisms via JNI.

The suggested solution is that the JvM does not have to
create its own threads in order for the native threads to call the
foreign function concurrently. Rather, the concurrent calls are
executed in the native threads (not Java/JVM threads). Mean-
while, JNI allows for managing these native threads by wrap-
ping them in Java thread objects or attaching/detaching them
(using relevant APIs such as AttachCurrentThread ()
and DetachCurrentThread()).

Solution 2: For multilingual projects, the use of threads
is likely to lead to more complex thread activities (e.g.,
mutual exclusion between threads) [49], [50], which often
causes issues with explicit cross-language interfacing. Suppose
threading management across languages is inevitable to deal
with such complexities. In that case, the developers can use
mutex (i.e., language-specific thread synchronization mecha-
nism like GIL (global interpreter lock) for Python) properly
to manage the threads across the languages involved.

For example, the post [51] shows that the developer en-
countered the challenge with C++ and Python multi-threading

working with each other. However, the Python thread will stop
when returning to the main thread of the C++ program, be-
cause the developer did not use proper thread synchronization
(e.g., GIL) to manage these threads.

The suggested solution is that the main thread should hold
the GIL, and the developer can use the GIL to manage each
thread properly. In sum, the developer can use the GIL to
manage the threads between C++ and Python.

For the Threading-Induced Complication challenge under-
lying the Explicit Interfacing issues, the solutions were
avoiding managing threads across languages and, if it is
inevitable, using a mutex (i.e., language-specific thread syn-
chronization mechanism) to manage threads.

Note that none of the solutions presented for RQ3 were
provided by the authors—they were given by developers,
often in a very-specific manner. When we extracted common
solutions, we also tried to keep them as specific as necessary
for being actionable. Also, these specific solutions solve the
challenges for different language combinations. Each solution
was summarized from a number of posts—these posts often
involve various language combinations and accordingly the
solution applies to all those combinations. In fact, the solutions
identified were rarely tied to a few specific language combi-
nations, although each illustrating/example post we provide in
the paper typically involved only one.

V. DISCUSSION
A. Implications of our findings

1) Actionable Suggestions for Developers: Our findings
reveal the potential risks and challenges for multilingual
development and developers should be aware of them when
making decisions. In RQI, we reveal the frequent issues
encountered by developers, such as issues about interfacing
and data handling across languages, and the build of a holistic
multi-language system. More importantly, certain types of
issues were typically associated with some specific language
combinations, e.g., 72% of Embedding issues were mainly
encountered in PHP-JavaScript projects. In RQ2, we
reveal the causes of the challenges for multilingual devel-
opment, such as data handling and interfacing challenges
across different languages due to the incompatibility of data
type systems, and difficulty in memory and multi-threading
operation and management across languages.

Such results reveal the potential risks and challenges in mul-
tilingual development, and provide insights to developers for
decision-making given their context. For instance, developers
should be aware of such risks and challenges when deciding
on 1) if they should use single-language or multilingual de-
velopment, and 2) if they use multilingual development, what
languages should be selected and what system design across
languages should be avoided or minimized to avoid potential
risks. As nnother example, some language combinations are
prone to being associated with a particular issue. Therefore,
developers need to consider this when selecting languages
based on their system design and requirements.

10

Our findings provide concrete guidelines for dealing with
challenges in multilingual development. In RQ3, we summa-
rized the solutions proposed in SO answers for solving com-
mon challenges underlying multilingual development issues,
particularly in data handling and interfacing across languages.
For instance, for the last two challenges examined in RQ3,
the current solutions are to manage threads/pointers/memory
within each language unit because doing so across languages
would likely cause issues due to language semantics disparity;
For the other two, the solutions are not to look for isolation
(e.g., using a more universal data format like JSON). We
suggest developers be aware of these common solutions when
developing multilingual projects.

2) Actionable Suggestions for Researchers: Future re-
search is encouraged to develop techniques and tools to
detect data type/format incompatibilities/conflicts across
languages. In §IV-B2, we observed that error-prone data
conversions are frequently caused by data format/compatibility
issues. Therefore, future research on detecting such issues
is encouraged. For strongly-typed languages, one possible
direction is to perform static analysis on two languages and
infer the types/format of the converted data across languages.
Once the types/formats are inferred, conflict detection could
be performed. For languages with weak typing, the detection is
more challenging since the type can only be determined during
runtime. One possible direction is using machine learning
techniques to infer type statically based on the surrounding
code following prior studies [52], [53].

Developers often encounter issues with using or choosing
the correct APIs in various tasks when handling data
across languages. Future research should provide better
support for recommending correct APIs and their usage.
In §IV-B3, we observe that some issues are raised due to
developers not being familiar with multilingual APIs and their
usage or using the wrong APIs [54]. Therefore, one direction
is to develop an API recommender for multilingual projects.
Unfortunately, current research on API recommendations is
not typically designed for multilingual development contexts.
For instance, most of the-state-of-art API recommendation ap-
proaches are ML-based and heavily rely on training data [55],
[56], while no multilingual code corpus is available [57].
Future researchers should create a multilingual project dataset,
and then train the API recommendation model for multilingual
development following the approach in prior studies [55], [58].

Future research is encouraged to develop tools to sup-
port the building of multilingual projects. As discussed
in §IV-B1, tool support for building multilingual code is
severely lacking. Each individual language’s build environ-
ment and configuration are different, current building tools
do not support or do not support very well the build of multi-
language projects. Such lacking of tool support is particularly
fatal in DevOps, which requires all build and deployment
processes to be done automatically and continuously [59]. In
other words, the lack of build tools may have impeded the
DevOps workflow. We suggest future research should invest
more efforts in developing multilingual-software-compatible

build solutions with more multilingual build support tools.
Moreover, the some of aforementioned data type/format in-
compatibility/conflict detection and cross-language API mis-
use detection tools could be integrated in such build support.

B. Threat to validity

Threats to internal validity. We depend heavily on manual
analysis and our hand labeling is subject to personal preju-
dices. To reduce human bias throughout the labeling process,
two authors examined each post, and labeled the challenge
and solution independently, with discrepancies discussed until
consensus was established. In RQ1, we incorporated the LDA
model to filter out irrelevant posts and reduce the number
of posts for manual labeling. Our approach may miss some
relevant posts. However, our approach achieves a recall of
95% and we believe we cover the majority of actually relevant
posts. Also, we filtered out posts with fewer votes. This may
cause us to ignore some useful posts, resulting in biased
results. However, we believe that the low votes of a post
usually indicate relatively low value of that post.

Threats to external validity. We focused on analyzing
posts from SO as the single data source for our study. Thus,
our findings may not be generalizable to other programming-
related Q&A websites. This raises a validity threat concerning
the extent to which SO can be considered an accurate reflection
of challenges multilingual developers actually have in the field.

Yet SO is the best data source we can access for our study.
It is well-known as a big and popular knowledge repository
where developers post questions and get answers, and has been
widely used by prior software-engineering studies [24], [60],
[61]. Thus, we assume it reasonably reflects developers’ is-
sues/challenges, including those on multilingual development.
Nonetheless, this assumption implies a validity threat. Thus,
we encourage future research to investigate the problem via
other forms (e.g., surveys) and platforms (e.g., GitHub issues).

Threats to construct validity. As described in §III-B,
our data collection started by focusing on a few popular
languages. To obtain a better/more comprehensive taxonomy,
ideally we would want to drop the language-choice-based
filter. We applied this filter to make the study (which largely
relies on manual effort) more manageable. Also, we took
the current language choices as we believe addressing the
issues related to the most popular languages would serve
a potentially broader audience—they are common languages
over several most-popular-language lists (including one from
Stack Overflow itself [62]). Alternative/different choices may
or may not lead to a better taxonomy. Nevertheless, our current
choices constitute a construct validity threat.

VI. RELATED WORK
A. Studies on Multilingual Software Development
Many studies have been done for multi-language software
development [1]-[3], [9], [10], [12], [63]-[66]. The concept
of multi-language software development (then called mixed
language programming) was first proposed by Einarsson and
Gentleman [66]. Later, Abidi et al. surveyed 93 developers

11

to assess the impact of multi-language design practices on
software quality [2]. Different from their study, we studied
SO posts. Mayer et al. mined 1,150 open-source projects on
GitHub [12] and found multilingual programming is prevalent
in open-source projects. Mayer et al. also found that cross-
language links (i.e., points in the system where code in two
languages is connected) are common in multilingual develop-
ment, and such links can cause problems for developers [1].
We observed similar issues from SO posts (e.g., issues related
to data handling and interfacing across two languages). In
sum, different from prior studies focusing on understanding
the practice of multilingual developments by mining open-
source projects and surveying developers, we reveal the issues,
challenges, and solutions by analyzing SO posts.

B. Studying Development Issues using Stack Overflow

A number of studies used Stack Overflow as a source
to study the issues encountered by developers for various
domains [21]-[23], [60], [61], [67]. Abdalkareem et al. ex-
plored the impact of code reuse from SO on Android de-
velopment [21] and found that after reusing the code from
SO, the development issue increases significantly. Meng et
al. manually analyzed SO posts to understand the existing
secure coding practice and identify risks of adopting code
snippets from SO as well as the gap between specification
and implementation [22]. Yang et al. studied security-related
topics and its trends over time by analyzing SO posts [60].
Wang et al. studied issues and challenges when developing
big data applications by examining SO posts related to Apache
Spark [61]. In contrast, we focus on studying a new topic—the
issues, challenges, and solutions on multilingual development.

VII. CONCLUSION

While much prior work has studied multilingual develop-
ment, there has been no in-depth study of the difficulties faced
by developers during the process. This paper does a man-
ual examination of developer discussions on Stack Overflow
to dissect the issues, challenges, and solutions encountered
during multi-language software development. We describe the
types of challenges in multilingual development by manually
examining the posts on Stack Overflow. Then, we summa-
rize and demonstrate the primary current solutions to each
dominant issue’s primary challenge (i.e, root cause). Action-
able insights and recommendations to both researchers and
developers of multi-language software are provided through
the consolidation of empirical findings.

VIII. DATA AVAILABILITY

Open science. Source code and datasets are all available in
our artifact package and has been made publicly accessible.

ACKNOWLEDGMENT

We thank the reviewers for their constructive comments
which helped us improve our original manuscript. This re-
search was supported by National Science Foundation (NSF)
under Grant CCF-2146233 and Office of Naval Research
(ONR) under Grant N0O00142212111.

https://zenodo.org/record/7627260#.Y-XpVHbMJPY

[1]

[2

—

[4]

[5

—_

[6]

[7

—

[8

=

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

P. Mayer, M. Kirsch, and M. A. Le, “On multi-language software
development, cross-language links and accompanying tools: A survey
of professional software developers,” Journal of Software Engineering
Research and Development, vol. 5, pp. 1-33, 2017.

M. Abidi, M. Grichi, and F. Khomh, “Behind the scenes: Developers’
perception of multi-language practices,” in Proceedings of the 29th
Annual International Conference on Computer Science and Software
Engineering, 2019, pp. 72-81.

W. Li, N. Meng, L. Li, and H. Cai, “Understanding language selection
in multi-language software projects on GitHub,” in 202/ IEEE/ACM
43rd International Conference on Software Engineering: Companion
Proceedings, 2021, pp. 256-257.

F. Tomassetti and M. Torchiano, “An empirical assessment of polyglot-
ism in GitHub,” in Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering, 2014, pp. 1-4.

C. Jones, Software engineering best practices: Lessons from successful
McGraw-Hill Education, 2010.

D. P. Delorey, C. D. Knutson, and C. Giraud-Carrier, “Programming
language trends in open source development: An evaluation using data
from all production phase sourceforge projects,” in Second International
Workshop on Public Data about Software Development, 2007.

P. S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of multiple
programming languages and code quality,” in 2016 IEEE 23rd Interna-

projects in the top companies.

tional Conference on Software Analysis, Evolution, and Reengineering,
vol. 1, 2016, pp. 563-573.

K. Kontogiannis, P. Linos, and K. Wong, “Comprehension and main-
tenance of large-scale multi-language software applications,” in 2006
22nd IEEE International Conference on Software Maintenance, 2006,
pp. 497-500.

M. Abidi, M. S. Rahman, M. Openja, and F. Khomh, “Are multi-
language design smells fault-prone? An empirical study,” ACM Trans-
actions on Software Engineering and Methodology, vol. 30, no. 3, pp.
1-56, 2021.

M. Grichi, E. E. Eghan, and B. Adams, “On the impact of multi-
language development in machine learning frameworks,” in 2020 IEEE
International Conference on Software Maintenance and Evolution, 2020,
pp. 546-556.

B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in GitHub,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014, pp. 155-165.

P. Mayer and A. Bauer, “An empirical analysis of the utilization of mul-
tiple programming languages in open source projects,” in Proceedings
of the 19th International Conference on Evaluation and Assessment in
Software Engineering, 2015, pp. 1-10.

P. Mayer, “A taxonomy of cross-language linking mechanisms in open
source frameworks,” Computing, vol. 99, no. 7, pp. 701-724, 2017.
M. Grichi, M. Abidi, F. Jaafar, E. E. Eghan, and B. Adams, “On
the impact of interlanguage dependencies in multilanguage systems
empirical case study on Java native interface applications (JNI),” IEEE
Transactions on Reliability, vol. 70, no. 1, pp. 428-440, 2020.

H. Yang, W. Li, and H. Cai, “Language-agnostic dynamic analysis
of multilingual code: Promises, pitfalls, and prospects,” in ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), Ideas, Visions
and Reflections, 2022, pp. 1621-1626.

W. Li, M. Jiang, X. Luo, and H. Cai, “PolyCruise: A cross-language dy-
namic information flow analysis,” in 3/st USENIX Security Symposium,

2022, pp. 2513-2530.
W. Li, L. Li, and H. Cai, “On the vulnerability proneness of multilingual

code,” in Proceedings of the 30th ACM Joint European Software

12

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
[31]

(32]

[33]

[34]

[35]

[36]

(371

Engineering Conference and Symposium on the Foundations of Software
Engineering, 2022, pp. 847-859.

W. Li, J. Ruan, G. Yi, L. Cheng, X. Luo, and H. Cai, “PolyFuzz: Holistic
greybox fuzzing of multi-language systems,” in 32nd USENIX Security
Symposium (USENIX Security 23), 2023.

T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillere, “Popular-
ity, interoperability, and impact of programming languages in 100,000
open source projects,” in 2013 IEEE 37th annual computer software and
applications conference, 2013, pp. 303-312.

“Stack Overflow,” 2008 Accesssed: 2022-3-17. [Online]. Available:
https://stackoverflow.com/

R. Abdalkareem, E. Shihab, and J. Rilling, “On code reuse from
StackOverflow: An exploratory study on android apps,” Information and
Software Technology, vol. 88, pp. 148-158, 2017.

N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty, “Secure coding
practices in Java: Challenges and vulnerabilities,” in Proceedings of the
40th International Conference on Software Engineering, 2018, pp. 372—
383.

A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? An analysis of topics and trends in Stack Overflow,” Empirical
Software Engineering, vol. 19, no. 3, pp. 619-654, 2014.

Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue, “How do developers
utilize source code from Stack Overflow?” Empirical Software Engi-
neering, vol. 24, no. 2, pp. 637-673, 2019.

X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing, “What
do developers search for on the web?” Empirical Software Engineering,
vol. 22, no. 6, pp. 3149-3185.

“Calling C functions in Python,” 2013. [Online]. Available: https:
/Istackoverflow.com/questions/16647186/calling-c-functions-in-python

V. Puzhevich, “Top programming languages to use in 2020,” 2020.
[Online]. Available: https://scand.com/company/blog/top-programming-
languages-to-use-in-2020/

S. Wang, T.-H. Chen, and A. E. Hassan, “Understanding the factors for
fast answers in technical Q&A websites,” Empirical Software Engineer-
ing, vol. 23, no. 3, pp. 1552-1593, 2018.

A. Bhatia, S. Wang, M. Asaduzzaman, and A. E. Hassan, “A study
of bug management using the Stack Exchange question and answering
platform,” IEEE Transactions on Software Engineering, vol. 48, no. 2,
pp. 502-518, 2020.

“Scrapy,” Accesssed: 2022-3-17. [Online]. Available: https://scrapy.org
D. M. Blei, “Probabilistic topic models,” Communications of the ACM,
vol. 55, no. 4, pp. 77-84, 2012.

E. R. Morrissey, “Sources of error in the coding of questionnaire data,”
Sociological methods & research, vol. 3, no. 2, pp. 209-232, 1974.

N. Gantayat, P. Dhoolia, R. Padhye, S. Mani, and V. S. Sinha, “The
synergy between voting and acceptance of answers on StackOverflow-
or the lack thereof,” in 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories, 2015, pp. 406—409.

“How to setup QWebChannel IS for
use in a QWebEngineView?” 2016. [Online].
Available: https://stackoverflow.com/questions/39649807/how-to-setup-
gwebchannel-js-api-for-use-in-a-qwebengineview

API

“With pybindl11, how to split my code
into multiple modules/files?” 2018. [Online]. Avail-
able: https://stackoverflow.com/questions/53762552/with-pybind11-

how-to-split-my-code-into-multiple-modules-files

“How do I remove unnecessary resources from my project?” 2009.
[Online]. Available: https://stackoverflow.com/questions/149673 1/how-
do-i-remove-unnecessary-resources-from-my-project

“How can I convert Python dictionary to JavaScript hash table?” 2012.
[Online]. Available: https://stackoverflow.com/questions/10073564/
how-can-i-convert- python-dictionary-to-javascript-hash-table

https://stackoverflow.com/
https://stackoverflow.com/questions/16647186/calling-c-functions-in-python
https://stackoverflow.com/questions/16647186/calling-c-functions-in-python
https://scand.com/company/blog/top-programming-languages-to-use-in-2020/
https://scand.com/company/blog/top-programming-languages-to-use-in-2020/
https://scrapy.org
https://stackoverflow.com/questions/39649807/how-to-setup-qwebchannel-js-api-for-use-in-a-qwebengineview
https://stackoverflow.com/questions/39649807/how-to-setup-qwebchannel-js-api-for-use-in-a-qwebengineview
https://stackoverflow.com/questions/53762552/with-pybind11-how-to-split-my-code-into-multiple-modules-files
https://stackoverflow.com/questions/53762552/with-pybind11-how-to-split-my-code-into-multiple-modules-files
https://stackoverflow.com/questions/1496731/how-do-i-remove-unnecessary-resources-from-my-project
https://stackoverflow.com/questions/1496731/how-do-i-remove-unnecessary-resources-from-my-project
https://stackoverflow.com/questions/10073564/how-can-i-convert-python-dictionary-to-javascript-hash-table
https://stackoverflow.com/questions/10073564/how-can-i-convert-python-dictionary-to-javascript-hash-table

[38

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

“Encrypt AES with C# to match Java encryption,” 2014. [Online].
Available: https://stackoverflow.com/questions/21890805/encrypt-aes-
with-c-sharp-to-match-java-encryption

“Memory leak using JNI to retrieve string’s value from Java code,”
2009. [Online]. Available: https://stackoverflow.com/questions/915790/
memory-leak-using-jni-to-retrieve- strings- value-from-java-code

“C# calling native C++ all functions: What types to use?”’
2011. [Online]. Available: https://stackoverflow.com/questions/5368720/
c-sharp-calling-native-c-all-functions-what- types-to-use

“Does managed languages lock flush and reload vari-
ables of native libraries?” 2019. [Online]. Avail-
able: https://stackoverflow.com/questions/56787106/does-managed-

languages-lock-flush-and-reload- variables-of-native-libraries

“Convert PHP associative array into JavaScript object,” 2014. [Online].
Available:
associative-array-into- javascript-object

“How to convert JObject to JString,” 2012. [On-
line]. Available: https://stackoverflow.com/questions/14036004/how-to-
convert-jobject-to-jstring

“Is it safe to keep C++ pointers C#7” 2011.
[Online]. Available: https://stackoverflow.com/questions/7057022/is-it-
safe-to-keep-c-pointers-in-c

W. Li, H. Cai, Y. Sui, and D. Manz, “PCA: Memory leak detection using
partial call-path analysis,” in ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), Tool Demos, 2020, pp. 1621-1625.
“Application exits exception) when referenc-
ing 64bit DLL C#) 2011. [Online]. Avail-
able: https://stackoverflow.com/questions/8241732/application-exits-no-
exception-when-referencing-64bit-dll-from-c-sharp

IBM, “Understanding Java and native thread details,” https:
/Iwww.ibm.com/docs/en/ztpf/1.1.0.15?topic=threads-understanding-

https://stackoverflow.com/questions/21153805/convert- php-

in

(no
from

java-native-thread-details, 2019.

“Multithreading with Python and C APL” 2015.
[Online]. Available: https://stackoverflow.com/questions/29595222/
multithreading- with-python-and-c-api

X. Fu, H. Cai, W. Li, and L. LI, “Seads: Scalable and cost-effective
dynamic dependence analysis of distributed systems via reinforcement
learning,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 30, no. 1, pp. 1-45, 2020.

H. Cai and X. Fu, “D2Abs: A framework for dynamic dependence
analysis of distributed programs,” IEEE Transactions on Software En-
gineering, vol. 48, no. 12, pp. 47334761, 2021.

“What happens if I call a Java function from multi-
ple threads from C with JNI?” 2011. [Online]. Avail-
able: https://stackoverflow.com/questions/8654519/what-happens-if-i-

call-a-java-function-from-multiple- threads-from-c- with-jni

A. M. Mir, E. Latoskinas, S. Proksch, and G. Gousios, “Type4Py:
Practical deep similarity learning-based type inference for Python,” in
Proceedings of the 44th International Conference on Software Engineer-
ing, 2022, pp. 2241-2252.

13

(53]

[54]

[55]

[56]

(571

[58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python probabilistic
type inference with natural language support,” in Proceedings of the
2016 24th ACM SIGSOFT international symposium on foundations of
software engineering, 2016, pp. 607-618.

J. Wang, L. Li, K. Liu, and H. Cai, “Exploring how deprecated python
library apis are (not) handled,” in ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2020, pp. 233-244.

C. Chen, X. Peng, Z. Xing, J. Sun, X. Wang, Y. Zhao, and W. Zhao,
“Holistic combination of structural and textual code information for
context based API recommendation,” IEEE Transactions on Software
Engineering, vol. 48, no. 8, pp. 2987-3009, 2021.

X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in
Proceedings of the 2016 24th ACM SIGSOFT international symposium
on foundations of software engineering, 2016, pp. 631-642.

W. Li, L. Li, and H. Cai, “PolyFax: A toolkit for characterizing
multi-language software,” in ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), Tool Demos, 2022, pp. 1662—1666.

A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language
model for code,” in 2015 IEEE/ACM 37th IEEE International Confer-
ence on Software Engineering, vol. 1, 2015, pp. 858-868.

C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,” IEEE
Software, vol. 33, no. 3, pp. 94-100, 2016.

X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security
questions do developers ask? A large-scale study of Stack Overflow
posts,” Journal of Computer Science and Technology, vol. 31, no. 5, pp.
910-924, 2016.

Z. Wang, T.-H. P. Chen, H. Zhang, and S. Wang, “An empirical study on
the challenges that developers encounter when developing Apache Spark
applications,” Journal of Systems and Software, vol. 194, p. 111488,
2022.

“Popular programming languages
2021. [Online]. Available: https://www.stackscale.com/blog/popular-
programming-languages-2021/

on stack overflow,”

M. Grichi, “Towards understanding modern multi-language software
systems,” Ph.D. dissertation, Ecole Polytechnique, Montreal (Canada),
2020.

M. Lopes and A. Hora, “How and why we end up with complex
methods: A multi-language study,” Empirical Software Engineering,
vol. 27, no. 5, pp. 142, 2022.

S. Buro, R. L. Crole, and I. Mastroeni, “On multi-language abstraction:
Towards a static analysis of multi-language programs,” in Static Analy-
sis: 27th International Symposium, SAS 2020, Virtual Event, 2020, pp.
310-332.

B. Einarsson and W. M. Gentleman, “Mixed language programming,”
Software: Practice and Experience, vol. 14, no. 4, pp. 383-395, 1984.
M. Bagherzadeh and R. Khatchadourian, “Going big: A large-scale study
on what big data developers ask,” in Proceedings of the 2019 27th
ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering, 2019, pp. 432—
442.

https://stackoverflow.com/questions/21890805/encrypt-aes-with-c-sharp-to-match-java-encryption
https://stackoverflow.com/questions/21890805/encrypt-aes-with-c-sharp-to-match-java-encryption
https://stackoverflow.com/questions/915790/memory-leak-using-jni-to-retrieve-strings-value-from-java-code
https://stackoverflow.com/questions/915790/memory-leak-using-jni-to-retrieve-strings-value-from-java-code
https://stackoverflow.com/questions/5368720/c-sharp-calling-native-c-all-functions-what-types-to-use
https://stackoverflow.com/questions/5368720/c-sharp-calling-native-c-all-functions-what-types-to-use
https://stackoverflow.com/questions/56787106/does-managed-languages-lock-flush-and-reload-variables-of-native-libraries
https://stackoverflow.com/questions/56787106/does-managed-languages-lock-flush-and-reload-variables-of-native-libraries
https://stackoverflow.com/questions/21153805/convert-php-associative-array-into-javascript-object
https://stackoverflow.com/questions/21153805/convert-php-associative-array-into-javascript-object
https://stackoverflow.com/questions/14036004/how-to-convert-jobject-to-jstring
https://stackoverflow.com/questions/14036004/how-to-convert-jobject-to-jstring
https://stackoverflow.com/questions/7057022/is-it-safe-to-keep-c-pointers-in-c
https://stackoverflow.com/questions/7057022/is-it-safe-to-keep-c-pointers-in-c
https://stackoverflow.com/questions/8241732/application-exits-no-exception-when-referencing-64bit-dll-from-c-sharp
https://stackoverflow.com/questions/8241732/application-exits-no-exception-when-referencing-64bit-dll-from-c-sharp
https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=threads-understanding-java-native-thread-details
https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=threads-understanding-java-native-thread-details
https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=threads-understanding-java-native-thread-details
https://stackoverflow.com/questions/29595222/multithreading-with-python-and-c-api
https://stackoverflow.com/questions/29595222/multithreading-with-python-and-c-api
https://stackoverflow.com/questions/8654519/what-happens-if-i-call-a-java-function-from-multiple-threads-from-c-with-jni
https://stackoverflow.com/questions/8654519/what-happens-if-i-call-a-java-function-from-multiple-threads-from-c-with-jni
https://www.stackscale.com/blog/popular-programming-languages-2021/
https://www.stackscale.com/blog/popular-programming-languages-2021/

	Introduction
	Background
	Multi-Language Software and Multilingual Development
	Language Interfacing Mechanism
	Embedding

	Methodology
	Research Questions
	Data Collection
	Post Categorization

	Results
	RQ1: Issues
	Issue Taxonomy (Categories)
	Issue Categories versus Language Combinations

	RQ2: Challenges
	Build
	Data Format/Compatibility
	Interoperability
	Explicit Interfacing

	RQ3: Solutions
	Documentation Insufficiency Challenge
	Error-Prone Data Conversion Challenge
	 Memory-Access-Mechanism Discrepancy Challenge
	Threading-Induced Complication Challenge

	Discussion
	Implications of our findings
	Actionable Suggestions for Developers
	Actionable Suggestions for Researchers

	Threat to validity

	Related Work
	Studies on Multilingual Software Development
	Studying Development Issues using Stack Overflow

	Conclusion
	Data Availability
	References

