
 

1 

 

The Benefits of Mixup for Feature Learning 

 

Difan Zou 1 Yuan Cao 2 Yuanzhi Li 3 Quanquan Gu 4 

Abstract 

Mixup, a simple data augmentation method that 

randomly mixes two data points via linear 

interpolation, has been extensively applied in 

various deep learning applications to gain better 

generalization. However, the theoretical 

underpinnings of its efficacy are not yet fully 

understood. In this paper, we aim to seek a 

fundamental understanding of the benefits of 

Mixup. We first show that Mixup using different 

linear interpolation parameters for features and 

labels can still achieve similar performance to the 

standard Mixup. This indicates that the intuitive 

linearity explanation in Zhang et al. (2018) may 

not fully explain the success of Mixup. Then we 

perform a theoretical study of Mixup from the 

feature learning perspective. We consider a 

feature-noise data model and show that Mixup 

training can effectively learn the rare features 

(appearing in a small fraction of data) from its 

mixture with the common features (appearing in 

a large fraction of data). In contrast, standard 

training can only learn the common features but 

fails to learn the rare features, thus suffering from 

bad generalization performance. Moreover, our 

theoretical analysis also shows that the benefits 

of Mixup for feature learning are mostly gained in 

the early training phase, based on which we 

propose to apply early stopping in Mixup. 

Experimental results verify our theoretical 

findings and demonstrate the effectiveness of the 

early-stopped Mixup training. 
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1 Introduction 

The Mixup method (Zhang et al., 2018) is a popular data 

augmentation technique in deep learning, known to yield 

notable improvements in generalization and robustness 

across multiple domains, such as image recognition 

(Berthelot et al., 2019), natural language processing (Guo 

et al., 2019b; Chen et al., 2020a), and graph learning (Han 

et al., 2022a). Unlike traditional data augmentation 

approaches that require domain knowledge of the 

dataset (e.g., random rotation and cropping for image 

data, and randomly modifying edges for graph data), 

Mixup relies on convex combinations of both features and 

labels from a pair of randomly selected training data 

points. As a result, this technique does not require any 

specialized knowledge or expertise to be performed. 

Despite the remarkable empirical success of Mixup, there 

is a considerable gap in the theoretical understanding of 

this technique. In the original work of Mixup (Zhang et al., 

2018), it has been argued that the efficacy of Mixup can 

be attributed to its inductive bias, which encourages the 

trained model to behave linearly, leading to (relatively) 

simple decision boundaries. This inductive bias has been 

further supported by a series of works (Guo et al., 2019a; 

Zhang et al., 2020; 2022; Chidambaram et al., 2021), 

which prove that the Mixup behaves similarly to standard 

training for linear models. In particular, Mixup applies the 

same linear interpolation on the features and labels of a 

pair of training data points (x1,y1) and (x2,y2): denoted by 

λx1 + (1 − λ)x2 and labels λy1 + (1 − λ)y2, where λ ∈ [0.5,1] 
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is randomly chosen. Then, the trained neural network 

(NN) model F is naturally encouraged to conduct the 

mapping F(λx1+(1−λ)x2) → λy1+(1−λ)y2 for all λ ∈ 

[0.5,1], (x1,y1) and (x2,y2), implying that F tends to 

behave linearly at least within the line segments between 

all training data pairs. 

Although linearity is a nice inductive bias that tends to 

learn the models with low complexities, we are not clear 

about whether such an intuition from the algorithm 

design (i.e., performing the same linear interpolation for 

features and labels) can indeed explain the improvement 

in generalization. To examine this, we conduct a proof-of-

concept experiment on CIFAR-10 dataset. Instead of using 

the same linear interpolation in the feature and label 

space, we implement the interpolations using different 

λ’s for features 

 

 (a) ResNet18 (b) VGG16 

Figure 1. Test accuracy achieved by Mixup training with different 

configurations of λ and g(λ). The results are evaluated by training 

ResNet18 and VGG16 on CIFAR-10 dataset without random crop & 

flip data augmentation and weight decay regularization. We 

consider 5 different configurations: (1) λ = g(λ) = 1, i.e., standard 

training; (2) λ = g(λ) ∼ U[0.5,1], i.e., standard Mixup; (3) λ ∼ 

U[0.5,1] and g(λ) = 1.5 − λ; (4) λ ∼ U[0.5,1] and g(λ) ∼ U[0.5,1]; 

(5) λ = 0.7 and g(λ) = 0.8. It is clear that the performance gain of 

Mixup does not require setting g(λ) = λ. 

and labels, i.e., we implement the Mixup data 

augmentation on the features and labels as: λx1 + (1 − λ)x2 

and g(λ)y1 + [1 − g(λ)]y2 for some nonlinear or even 

random function g(·) : R[0.5,1] → R[0.5,1]. Our results, shown in 

Figure 1, demonstrate that the substantial performance 

gain of Mixup training over standard training does not 

require g(λ) = λ. Other choices, such as fixed or 

independently random λ and g(λ), can lead to comparable 

or even better performance. 

Therefore, it demands seeking a more fundamental 

understanding of Mixup that is beyond the linearization 

illustration. To address this issue, we draw inspiration from 

a recent work (Shen et al., 2022), which regards standard 

image data augmentation as a form of feature 

manipulation. This perspective offers a general framework 

to investigate the behavior of various data augmentation 

techniques, including Mixup in deep learning. In particular, 

they consider a multiview data model that consists of 

multiple feature vectors and noise vectors with different 

strengths and frequencies. More specifically, the feature 

vectors are categorized as the common ones (i.e., “easy to 

learn” features) and the rare ones (i.e., “hard to learn” 

features): the former refers to the feature appearing in a 

large fraction of data (thus contribute a lot to the gradient 

updates), and the latter refers to the features occurring in a 

small fraction of data (thus have limited contribution to the 

gradient). They further assume that the common features 

are the ones with rare orientations compared to the rare 

features and they can be balanced by applying data 

augmentations. For example, the common feature of a cow 

could be the left-facing cow, while the rare feature could be 

the right-facing cow, which can be generated by applying a 

horizontal flip to the common feature. 

However, in many cases, the common and rare features may 

not be easily balanced by standard data augmentations. 

Let’s still take the cow image as an example, the common 

and rare features could be brown cows and black cows, or 

front-view cows and side-view cows. Then the standard 

rotation or flip operations clearly cannot convert the 

common features to rare ones. We conjecture that Mixup 

may exhibit certain benefits in tackling this type of feature, 

as it has been shown to improve test accuracy when 

combined with standard data augmentations (Zhang et al., 

2018). This motivates the problem setup considered in this 

study. 

Particularly, we perform the theoretical study of the 

learning dynamics of Mixup based on a similar multi-view 

data model (see Definition 3.1 for more details): each 

data point will either contain a common feature vector 

with a relatively high probability 1 − ρ, or a rare feature 

vector with a relatively low probability ρ. The remaining 

components will be filled with random noise or feature 

noise. We then consider a two-layer convolutional neural 

network (CNN) model and study the learning behaviors of 

both standard training and Mixup training using gradient 

descent. The main contributions of this paper are 

highlighted as follows: 

• We identify that the linearity illustration may not be 

able to fully elucidate the exceptional performance of 

Mixup. In particular, we show that using the same linear 

interpolations for both features and labels is not 

necessary, while some other choices, e.g., 

independently random linear interpolations, can also 

lead to substantial performance gains compared to 

standard training. 
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• We prove a negative result (Theorem 4.1) for standard 

training, demonstrating its inability to learn the rare 

features of the multi-view distribution. This failure 

leads to the domination of the rare feature data by its 

noise components during the test period, resulting in a 

Θ(ρ) test error. The reason for this lies in the tendency 

of the standard training algorithm to memorize the 

noise component of rare feature data to attain zero 

training error, while the rare feature itself, which 

appears in only a small fraction of the data, is not 

prominent enough to be effectively discovered by the 

algorithm. 

• More importantly, we establish a positive result 

(Theorem 4.2) for Mixup training by showcasing its 

ability to attain near-zero test errors on the multi-view 

distribution. Specifically, we demonstrate that Mixup 

can successfully mix the common and rare features so 

that the gradients along these two features are 

correlated. As a result, the rare feature learning can be 

boosted by the fast learning of common features, and 

ultimately reaches a sufficiently high level to 

overshadow the effects of noise on test data. • Our 

theory also suggests that the feature learning 

(especially the rare feature) benefits of Mixup are 

mostly gained in the early training phase. Then we 

develop the earlystopped Mixup, i.e., turning off the 

Mixup data augmentation after a certain number of 

iterations. Experimental results show that the test error 

achieved by early-stopped Mixup is comparable to or 

even better than that achieved by standard Mixup (i.e., 

using Mixup throughout the entire training), which is 

consistent with the recent findings that over-training 

with Mixup may hurt the generalization (Liu et al., 

2023). This not only corroborates our theoretical 

findings but also justifies the necessity to study the 

entire feature learning dynamics of Mixup rather than 

only the solution to the (equivalent) empirical risk of 

Mixup. 

Notations. We use poly(n) and polylog(n) to denote a 

polynomial function, with a sufficiently large (constant) 

degree, of n or log(n) respectively. We use o(1/polylog(n)) 

(and ω(polylog(n))) to denote some quantities that 

decrease (or grow) faster than 1/logc(n) (or logc(n)) for any 

constant c. We use Oe, Ωe, and Θe to hide some log factors 

in the standard Big-O, Big-Omega, and Big-Theta notations. 

2 Related Work 

Theoretical Analysis of Mixup. We would like to comment 

on some recent works that attempt to explain the benefits 

of Mixup from different angles. To name a few, Thulasidasan 

et al. (2019) showed that the models trained by Mixup are 

substantially better calibrated, i.e., the softmax logits are 

closer to the actual likelihood than that obtained by 

standard training. Carratino et al. (2020) studied the 

regularization effect of Mixup training and connected it to 

multiple known data-dependent regularization schemes 

such as label smoothing. Following the same direction, Park 

et al. (2022) further developed a unified analysis for a class 

of Mixup methods, including the original one and CutMix 

(Yun et al., 2019), and proposed a hybrid version of Mixup 

that achieves better test performance. Chidambaram et al. 

(2021) studied the Mixup-optimal classifier and 

characterized its performance on original training data 

points. However, these works mostly focus on the solution 

to certain Mixup-version regularized empirical risk, while 

our experiments on early-stopped Mixup suggest that the 

entire learning dynamics could be more important. 

Very recently, Chidambaram et al. (2022) conducted feature 

learning-based analyses for Mixup and demonstrated its 

benefits. However, we would like to clarify some differences 

in our theoretical analysis. Firstly, in terms of the Mixup 

method, they considered only the mid-point Mixup, where 

λ = g(λ) = 0.5, while we allow a more general choice of λ ∈ 

(0.5,1). Secondly, for the data model, we followed Shen et 

al. (2022) by considering a data model with two features of 

different frequencies (common and rare), feature noise, and 

random noise, while the random noise component, which 

plays an important role in memorizing all training data 

points (Allen-Zhu & Li, 2020b; Shen et al., 2022), was 

ignored in Chidambaram et al. (2022). Finally, in terms of 

theoretical analysis, Chidambaram et al. (2021) and our 

paper also differ due to our distinct data models. 

Specifically, their study focuses on the competence 

between learning two symmetric features, whereas our 

focus is on the competition between rare feature learning 

and noise memorization. In conclusion, while Chidambaram 

et al. (2022) and our work share a similar high-level spirit for 

understanding the benefits of Mixup, we approach this 

problem from different angles. 

Data Augmentation. There are also many works studying 

the effect of standard data augmentation methods (i.e., 

performed within the data points) from different 

perspectives, such as regularization effect (Bishop, 1995; 

Dao et al., 2019; Wu et al., 2020), algorithm bias (Hanin & 

Sun, 2021), margins (Rajput et al., 2019), model 

invariance (Chen et al., 2020b), and feature learning 

(Shen et al., 2022). We view these works as orthogonal to 

our work as they mostly concern the data augmentation 

within the data points (e.g., random perturbation, 
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random rotation, etc), which is different from the cross-

data Mixup data augmentation. 

Feature Learning in Deep Learning Theory. In the field of 

deep learning theory, there has emerged a series of works 

studying feature learning behavior during NN training. 

They focus on characterizing how different training 

approaches affect feature learning, such as ensembling & 

knowledge distillation (Allen-Zhu & Li, 2020b), using 

adaptive gradients (Zou et al., 2021), mixture of expert 

(Chen et al., 2022), and contrastive learning (Wen & Li, 

2021). We point out that feature learning in Mixup is 

more complicated as the learning dynamics for different 

features are heavily coupled. 

3 Problem Setting. 

As mentioned in the introduction section, we 

theoretically investigate the behaviors of standard 

training and Mixup training on a multi-view data model. 

In this section, we will first deliver a detailed set up of the 

multi-view data model and then introduce the two-layer 

CNN model as well as the gradient descent algorithms of 

standard training and Mixup training. 

3.1 Data Model 

In this work, we consider a binary classification problem 

on the data (x,y) ∈ RdP ×{1,2}, where x = (x(1),...,x(P)) has 

P patches and y ∈ {1,2} denotes the data label. For ease 

of presentation, we define the data of label y = 1 as the 

positive data and the data of label y = 2 as the negative 

data. Moreover, the data will be randomly generated 

according to the following detailed process. 

Definition 3.1. Let D denote the data distribution, from 

which a data point (x,y) ∈ RdP × {1,2} is randomly 

generated as follows: 

1. Generate y ∈ {1,2} uniformly. 

2. Generate x as a vector with P patches x = 

(x(1),...,x(2)) ∈ (Rd)P, where 

• Feature Patch. One patch, among all P patches, will 

be randomly selected as the feature patch: with 

probability 1−ρ for some ρ ∈ (0,1), this patch will 

contain a common feature (v for positive data, u for 

negative data); otherwise, this patch will contain a 

rare feature (v0 for positive data, u0 for negative 

data). 

• Feature Noise. For all data, a feature vector from α · 

{u,v} is randomly sampled and assigned to up to b 

patches. 

• Noise patch. The remaining patches (those haven’t 

been assigned with a feature or feature noise) are ran- 

dom Gaussian noise , where H = 

I . 

We assume all feature vectors are orthonormal, i.e., kak2 = 

1 and ha,bi = 0 for all a,b ∈ {v,u,v0,u0} and a =6 b. 

Moreover, we set d = ω(n6), P,b = polylog(n), ρ = Θ(n−3/4), 

σp = Θ(d−1/2n1/4), and α = Θ(1/n)1. 

Our data model includes three types of critical vectors: 

common features, rare features, and noise vectors (the 

feature noise vectors can be categorized into common 

features since they are only different in terms of strength). 

All of them can be leveraged to fit the training data points 

and thus achieve a small training accuracy/loss. However, in 

order to achieve a nearly perfect test accuracy, one has to 

learn both common features and rare features as overfitting 

the random noise vectors of training data points will make 

no contribution or even be detrimental to the test 

performance, then the prediction will be heavily affected by 

the feature noise. Given our data model in Definition 3.1, 

we aim to show that Mixup is able to learn all informative 

features while standard training may only learn a part of 

them. 

The feature-noise data model has been widely adopted to 

study many algorithmic aspects of deep learning, including 

adversarial training (Allen-Zhu & Li, 2020a), momentum 

(Jelassi & Li, 2022), ensemble and knowledge distillation 

(Allen-Zhu & Li, 2020b), benign overfitting (Cao et al., 2022), 

and data augmentation (Shen et al., 2022). Our data model 

mostly follows from the one considered in Shen et al. 

(2022), which also includes the design of common features 

and rare features for studying the learning behaviors of data 

augmentation (that is performed within one single data 

point, e.g., random flip/rotation). However, instead of 

assuming that the rare features (v0 and u0) can be re-

generated by applying data augmentation on the common 

features (v and 

u), we make nearly no assumption on their relationships. 

Therefore, learning the rare features in our model can be 

regarded as a harder problem, and our theoretical analyses 

for Mixup are orthogonal to those in Shen et al. (2022). 

3.2 Neural Network Function 

Two-layer CNN model. We consider a two-layer CNN 

model F using quadratic activation function σ(z) = z2. 

Note that we consider binary classification problem with 
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y ∈ {1,2}, then given the input feature x = (x(1),...,x(p)), the 

k-th output of the network (k ∈ {1,2}) is formulated as 

 P m 

Fk(W;x) = XX(hwk,r,x(p)i)2. 

p=1 r=1 

where wk,r ∈ Rd denotes the neuron weight corresponding 

to the k-th output, W denotes the collection of all model 

weights, and m denotes the NN width, which is set as m 

= polylog(n) throughout this paper2. Moreover, given the 

input x, we denote Logitk(W;x) by the logit of the kth 

output of the NN model, which can be calculated via 

performing a softmax function on the NN outputs: 

Logitk(W;x) = eFk(W;xi)/Ps∈{1,2} eFs(W,xi). 

Using a polynomial activation function (or ReLU with 

polynomial smoothing) is not new in deep learning 

theory. The purpose is to better illustrate/distinguish the 

feature and noise learning dynamics during the neural 

network training (Frei et al., 2022; Cao et al., 2022; Shen 

et al., 2022; Glasgow et al., 2022). Our analysis can also 

be extended to other polynomial functions σ(x) = xq for 

some q > 1. 

3.3 Training Algorithms 

Initialization. We assume that the initial weights of the 

neural network model are generated i.i.d. from the 

Gaussian initialization: w  , where σ0 = 
o(d−1/2). 

Standard training. Given the training data points S := 

{(xi,yi)}i=1,...,n, we train the neural network model via 

applying standard full-batch gradient descent to optimize 

the following empirical risk function: 

(W;xi,yi), 

 
1 The choice of these parameters is not unique, here we only 

pick a feasible one for the ease of presentation. 
2 This choice of network width is to guarantee some nice 

properties hold with probability at least 1−1/poly(n) at the 

initialization. We can also resort to setting m as some large 

constant at the price of deriving a constant probability 

guarantee, e.g., > 0.9. 
3 If considering random λ, we will need to further take an 

expectation of LMixupS (W) defined in (3.2). As a result, our 

 where `(W; . 

Starting from the initialization W(0), the gradient descent of 

the standard training takes the following update step 

W 

where η is the learning rate. Then, the detailed 

calculation of the partial derivative ∇wk,r`(W;xi,yi) is 

given by 

P 

∇wk,r`(W;x . 
p=1 

where `k,i = 1k=yi −Logitk(W(t);xi). 

Mixup Training. Given two training data points (x1,y1) and 

(x2,y2), Mixup trains a neural network based on the convex 

combinations of them: (λx1+(1−λ)x2,λy1+(1− λ)y2) and 

((1 − λ)x1 + λx2,(1 − λ)y1 + λy2), where we slightly abuse 

the notation by viewing the labels y1 and y2 as their one-

hot encoding. Besides, Figure 1 suggested that λ does not 

need to be randomly sampled to achieve better 

performance than standard training, we will focus on a 

fixed constant λ ∈ (0.5,1) 34  in our theoretical analysis. 

Finally, if considering all possible combinations of the 

training data pairs with a fixed λ, the (equivalent) training 

dataset of 

Mixup training is SMixup := {xi,j,yi,j}i,j∈[n], where we denote 

xi,j and yi,j by λxi + (1 − λ)xj and λyi + (1 − λ)yj respectively. 

Motivated by this, we can claim that the Mixup training 

actually aims to learn the model parameter by optimizing 

the following loss function: 

 LMixupS (W;xi,j,yi,j), (3.2) 

where 

analysis, particularly Proposition 5.4 also needs to consider 

the additional expectation over λ in the definitions of 

coefficients . 
4 Besides, we can also allow using different λ’s for inputs 

and outputs, given our theoretical analysis in Section 

5.2. 
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`(W;xi,j,yi,j) = λ`(W;xi,j,yi) + (1 − λ)`(W;xi,j,yj). 

In this paper, in order to better illustrate the key aspect of 

Mixup training as well as simplify the theoretical analysis, 

we resort to the gradient descent on the loss function 

(3.2), which takes the following update step: 

W . 

Then, the detailed calculations of all partial derivatives are 

given as follows: for any Mixup data (xi,j,yi,j), we have 

P 

∇wk,r`(W;xi,j) = 2`k,(i,j) · Xhwk,r,x(i,jp)i · x(i,jp), 
p=1 

where `k,i is the loss derivative with respect to the network 

output Fk(W;xi,j,yi,j): 

`k,(i,j) = λ1k=yi +(1 − λ)1k=yj −Logitk(W;xi,j). 

4 Main Theory 

In this section, we will theoretically characterize the 

generalization errors achieved by standard training and 

Mixup training on the multi-view model. In particular, the 

following Theorem states the negative result of standard 

training. 

Theorem 4.1. Suppose that the training data are generated 

according to Definition 3.1, let η = 1/poly(n), 

T = polylog(n)/η, and {Wstandard(t) }t=0,...,T be the iterates 

of standard training, then with probability at least 1 − 

1/poly(n), it holds that for 

all t ∈ [0,T], 
(t) 

 ,y argmaxk Fk(Wstandard;x). 

Theorem 4.1 basically states that the two-layer CNN 

model obtained via standard training will lead to at least 

Θ(ρ) test error on the data model defined in Definition 

3.1. In fact, as we will clarify in Section 5.1, this is due to 

the fact that the rare feature data will be fitted via their 

random noise components, while the rare features v0 and 

u0 will not be learned. Consequently, nearly a half of test 

rare feature data will be misled by the feature noise 

components, resulting in a Θ(ρ) test error. 

In comparison, Mixup training can help learn the rare 

features and thus achieve a smaller generalization error. 

We formally state this result in the following theorem. 

Theorem 4.2. Suppose the training data are generated ac- 

cording to Definition 3.1   polylog(

 η n), and   be the iterates of 

Mixup training, then with probability at least 1 − 
poly(

1 n), it holds that for 
(t) 

someargmaxk 

Fk(WMixup;x) 6= 

 . 

Theorem 4.2 shows that the two-layer CNN model 

obtained via Mixup training can achieve nearly zero test 

error, which is much better than that of standard training 

as  poly(n)) (see Definition 3.1). 

In 

particular, as we will show in Section 5.2, at the core of 

Mixup training is that it mixes common features and rare 

features together, thus the learning of these two types of 

features will be coupled. Consequently, the learning of 

rare features will be “boosted” by the learning of 

common features, reaching a sufficiently large level that 

dominates the effect of feature noise. 

5 Overview of the Analysis 

According to the data model in Definition 3.1, the critical 

step of the generalization analysis for standard training 

and Mixup training is to sharply characterize the 

magnitude of the feature learning, including both 

common features (v and 

u) and rare features (v0, u0), as well as the noise learning, 

including all noise vectors ’s (denoted by {ξ}). Then, 

the key step to show the generalization gap between 

standard training and Mixup training is to identify their 

difference in terms of feature and noise learning. 

5.1 Feature and Noise Learning of Standard Training 

According to Definition 3.1, we define  and  as the set 

of training data that have strong positive and negative 

features respectively and  and  as the set of data that 

have weak positive and negative features respectively. In 

the following, the learning patterns of these vectors will be 

characterized by studying the inner products  , 

where a ∈ {v,u,v0,u0} ∪ {ξ}. Intuitively, a larger inner 

product implies that the neural network has a stronger 

learning ability of a. Given the multi-view data model in 

Definition 3.1 and the update rule (3.1), we have for any a 

∈ {v,u,v0,u0} ∪ {ξ}, 
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. 

(5.1) 

Then by the data model in Definition 3.1, we can see that 

for common feature vector a ∈ {v,u}, there will be Θ(n) 

training data points contributing to the learning of a; while 

for rare feature vector a ∈ {v0,u0}, only Θ(ρn) data points 

contributing to the learning. Besides, since each noise 

vector a ∈ {ξ} in the training data point is randomly 

generated, its learning will largely rely on one single data, 

i.e., the data consisting of that noise vector. This difference 

clearly shows that the common features will be preferably 

discovered and learned during the standard training. 

In the following analysis, we will decompose the entire 

standard training process into three phases, according to 

the learning of common features and noises. In particular, 

the Phase 1 referred to the initial training iterations such 

that the neural network output, with respect to all input 

training data, is in the order of O(1). In this phase, the loss 

derivatives   will remain in the constant order and all 

critical vectors will be learned at a fast rate. Then The Phase 

2 is defined as the training period starting from the end of 

Phase 1 to the iteration that the neural network output has 

reached Θ(1)e for all training inputs. Finally, we refer to 

Phase 3 as the training period starting from the end of 

Phase 2 to convergence, i.e., the gradient converges to zero. 

Standard Training, Phase 1. The following lemma 

characterizes the learning of all features and noise in Phase 

1. 

Lemma 5.1. There exists a iteration number 

such that for any t ≤ T0, it holds that 

(5.2) 

 .
 (5.3) 

Besides, for all remaining inner products, it holds that 

polylog(  

where t ≤ T0, r ∈ [m], k ∈ [2], q ∈ [P], a ∈ 

{u,v,u0,v0} ∪ {ξ} are arbitrarily chosen as long as the inner 

products are different from those in (5.2). 

Lemma 5.1 shows the competence results of learning 

common features, rare features, and noise vectors in 

Phase 1. In particular, it can be observed that the learning 

of common features (v, u) enjoys a much faster rate, 

while other critical vectors, including rare features and 

noise vectors, will be staying at their initialization levels. 

Standard Training, Phase 2. During this phase, the loss 

derivative will remain in the constant order for the rare 

feature data, since either the rare feature learning (e.g, 

) or the noise learning (e.g., ) are still 

quite small. Recall that the common features have already 

been fitted during Phase 1, we will then focus on the 

competence between learning rare features and learning 

noise vectors in Phase 2. The following lemma 

characterizes the dynamics of standard training in Phase 2. 

Lemma 5.2. There exists a iteration number T1 =  

such that for any t ∈ [T0,T1], it holds that 

, 

Besides, for any , any q ∈ [P] and k = ys, 

 

Lemma 5.2 shows that for rare feature data points, 

standard training admits a faster noise learning speed 

compared to rare feature learning (note that   ρ, 

according to Definition 3.1). This consequently leads to 

adequate learning of noise (   for 

some p ∈ [P]) and nearly no learning of rare features 

T T 

Standard Training, Final Phase. The final phase is defined 

as the training period after the end of Phase 2 until 

convergence. In the following lemma, we will show that 

(1) the convergence can be guaranteed; and (2) the 

learning of features and noise vectors at Phase 2 will be 

maintained. 

Lemma 5.3. Let T1 be the iteration number defined in 

Lemma 5.2, then for any t = poly(n) > T1 and k ∈ {1,2}, 

. 

Moreover, we have 

 and . 

It can be clearly seen that the gradient descent can 

converge to the point with a small gradient (the averaged 

loss derivative will be roughly in the order of Oe(1/(tη)), 
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which approaches zero when t is large). More importantly, 

the common feature data and rare feature data will be 

correctly classified by fitting different components: 

common feature data will be fitted by learning v and u, 

while the rare feature data will be fitted by noise 

memorization (as standard training nearly makes no 

progress in learning. Consequently, when it comes to a fresh 

test rare feature data, the model prediction will be heavily 

affected by the feature noise component, thus leading to an 

incorrect prediction with a constant probability (the formal 

proof is deferred to Section B.3). 

5.2 Feature and Noise Learning of Mixup Training 

As mentioned in Section 3.3, any data pair sampled from 

training dataset will be considered, which gives in total n2 

Mixup data. Note that we have two types of data in the 

origin training dataset: common feature data and rare 

feature data with two labels, denoted by , and 

 (see Section 5.1), we can also categorize the Mixup data 

points into multiple sets accordingly. Particularly, let  

be the set of mixed data xi,j = λxi +(1−λ)xj with xi ∈ S∗† and 

xj ∈ S∗∗††, we can accordingly categorize all Mixup data with 

the following 4 classes: 

• Mix between two common feature data points, including 

, each of them is of size Θ(n2). 

• Mix between common feature and rare feature data 

points with the same label, including , 

and 

, each of them is of size Θ(ρn2). 

• Mix between common feature and rare feature data 

points with different labels, including , 

and 

, each of them is of size Θ(ρn2). 

• Mix between two rare feature data points, including 

S1+,1,+,S1−,1,−, S1+,1,− and  , each of them is of size 

Θ(ρ2n2). 

In contrast to standard training that nearly admits separate 

learning dynamics for common and rare features, the 

second and third classes of Mixup training data points, 

actively mix the common and rare features together. For 

instance, some data points in  will contain a data patch 

of form λv + (1 − λ)v0. Then the learning of v will benefit 

the learning of v0, since their gradient updates are 

positively correlated. In the following, we will provide a 

precise characterization on the learning dynamics of 

feature and noise vectors. 

In particular, noting that we consider the full-batch gradient 

descent on the entire Mixup training dataset (see Section 

3.3), the update formula of all critical vectors are provided 

as follows: for any a , we have 

 

where we denote L(W(t)) as the short-hand notation of 

LMixupS (defined in (3.2)) for simplifying the notation. 

More specifically, we summarize the update of all critical 

vectors (e.g., common features, rare features, and data 

noise vectors) in the following Proposition. 

Proposition 5.4. For any critical vector a ∈ {v,u,v0,u0} ∪ {ξ}, 

we have 

−h∇wk,rL(W(t)),ai = X  
b∈{v,u,v0,u0}∪{ξ} 

where  is a scalar output function that depends on 

. More specifically, let 

x  
n 

+ θi,j(p)(u0) · u0 + X X θi,j(p)(ξs(q)) · ξs(q) 

s=1 q∈[P] 

(p) be a linear expansion of 

xi,j on the space spanned by {v,u,v0,u0} ∪ {ξ}, we have 

. 

From Proposition 5.4, it can be seen that the learning of 

common features, rare features, and noise vectors are 

heavily coupled. Mathematically, the coefficient  

precisely describes how the learning of a affects the 

learn- 

ing of b, where a,  . This effect 

can be either positive or negative, depending on the sign 

of . Then, the next step is to sharply characterize 

the coefficients . We will focus on early phase of 

Mixup training, where the loss derivatives can be 

regarded as the constant (i.e., approximately 0.5, −0.5, 

λ−0.5, or 0.5−λ). Particularly, we will consider the training 

stage such that maxk∈[2],i,j∈[n] |Fk(W(t);xi,j)| ≤ ζ, where ζ = 

o polylog(  is a user-defined parameter. Then 

based on ζ, we summarize the results of some critical 
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coefficients in the following lemma, while the results for 

all coefficients are presented in Lemma C.3-C.11. 

Lemma 5.5. Assume maxk∈[2],i,j∈[n] |Fk(W(t);xi,j)| ≤ ζ for 

some , then, 

, 
The coefficients presented in Lemma 5.5 reveal some key 

differences between learning common features, rare 

features, and noise. Let’s consider v without loss of 

generality. First, similar to the standard training, the 

learning of common features is much faster than the 

learning of noises, since the leading terms of common 

feature learning (i.e., 

) and noise learning (i.e., ) satisfy:

. Second, different from 

standard training where the rare features are nearly 

unexplored, Mixup training has the ability to boost the 

learning of rare features via common feature learning, 

which is characterized by

. 

Finally, we also show that such a boosting effect is positive: 

the boosting of v0 to the correct neurons (i.e., 

) is stronger than that to the incorrect neurons 

), since  (recall 

we pick ζ = o polylog(  ). This implies that the 

rare features will be effectively discovered by Mixup 

training, and finally, the neural network will have non-

negligible components along the directions of v0 and u0. 

We formally stated this in the following lemma. 

Lemma 5.6. Let ζ be the same as that in Lemma 5.5 and T 

be the smallest iteration number such that maxk∈[2],i,j∈[n] 

|Fk(W(T);xi,j)| ≥ ζ/2, then T = 

Oe(1/η) and with probability at least 1 − 1/poly(n), 

, 

max|hw1(T,r),v0i|,max|hw2(T,r),u0i| = Ω(ρζ1/2) r r 

max|hw2(T,r),vi|,max|hw1(T,r),ui| = Oe(ζ3/2), r

 r max|hw2(T,r),v0i|,max|hw1(T,r),u0i| = 

Oe(ζ3/2). r r 

We can then make a comparison between Lemma 5.3 and 

Lemma 5.6 to illustrate the similarities and differences 

between standard training and Mixup training in feature 

learning. In particular, it is clear that both standard and 

Mixup training can successfully learn the common features, 

i.e., the inner products  and   are the 

domi- 

nating ones among all critical inner products. While more 

importantly, the Mixup training can lead to much better rare 

feature learning compared to standard training: the 

standard training gives for 

all iterations; in contrast, the Mixup training gives 

, which are much 

larger. Consequently, the strength of rare feature learning 

in Mixup training will dominate the effect of feature noise, 

thus achieving a nearly zero test error (the formal proof is 

deferred to Section C.5). 

 

(a) Common Feature Learning (b) Rare Feature Learning 

Figure 2. Common feature learning and rare feature learning on 

synthetic data, all experiments are conducted using full-batch 

gradient descent. Here we consider three training methods: 

standard training, Mixup training, and Mixup training with early 

stopping (at the 10000-th iteration). 

5.3 Implications to the Early Stopping of Mixup 

In addition to demonstrating the ability of Mixup in learning 

rare features, Lemma 5.6 also reveals that the bene- 

fits of Mixup training mostly come from its early training 

phase. Therefore, this motivates us to study the 

earlystopped Mixup training, i.e., the Mixup data 

augmentation will be turned off after a number of 

iterations. Then clearly, after turning off the Mixup data 

augmentation, the learned features will never be 

forgotten since the gradient update in this period will be 

always positively correlated (by (5.1)). This immediately 

leads to the following fact. 

Fact 5.7. Let T be the same as that in Lemma 5.6, then if 

early stopping Mixup training at the iteration T, we have 

for any t > T, it holds that 
 t

 t 
. 
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This further implies that applying proper early stopping in 

Mixup training will not affect the rare feature learning. 

Besides, turning off Mixup will enhance the learning of 

common features (since its learning speed will no longer 

be affected by the mix with rare features and noises), 

which could potentially lead to even better generalization 

performance. In the next section, we will empirically 

justify the effectiveness of applying early stopping in 

Mixup training. 

6 Experiments 

Synthetic Data. We first perform numerical experiments 

on synthetic data to verify our theoretical results. In 

particular, the synthetic data is generated according to 

Definition 3.1. In particular, we set dimension d = 2000, 

training sample size n = 300, the ratio of rare feature data 

ρ = 0.1, noise strength σp = 0.15, feature noise strength α 

= 0.05, number of total patches P = 5, and number 

feature noise patches b = 2. For the two-layer CNN model 

and the training algorithm, we set network width m = 10, 

and conduct full-batch gradient descent with learning 

rate η = 0.05 and total iteration number T = 20000. We 

characterize the learning of common features and rare 

features via calculating   and

  (we only consider v and v0 as the 

dynamics for u and u0 are similar). 

 

 (a) Training Loss (b) Test Accuracy 

Figure 3. Training loss (the cross-entropy loss on the mixup 

data/clean data) and test accuracy achieved by Mixup with 

different early stopping iterations: 0 (standard), 50, 125, 150, 200 

(Mixup), numbers in the legend denote the average accuracy of the 

last 10 iterates. The results are evaluated by training ResNet18 on 

CIFAR-10 dataset without random crop & flip data augmentation 

and weight decay regularization. 

The results are reported in Figure 2. It is clear that both 

standard training, Mixup training, and Mixup with early 

stopping can exhibit sufficiently common feature learning, 

while the rare feature learning of standard training is much 

lower than those of Mixup and Mixup with early stopping. 

This verifies Lemmas 5.3 and 5.6. Besides, we can also see 

that turning off Mixup after a number of iterations will lead 

to no decrease in rare feature learning and an increase in 

common feature learning. This verifies Fact 5.7 and 

demonstrates the benefits of early stopping. 

CIFAR-10 Data. We further perform the Mixup training on 

CIFAR-10 dataset to evaluate the performance of early 

stopping, where we use SGD with momentum 0.9 and 

learning rate 0.1, followed by ×0.1 decaying at the 100-th 

and 150-th iterations. We first train the ResNet18 model 

(He et al., 2015) via Mixup without other data 

augmentations and regularizations. We consider applying 

early stopping at the 0-th (standard training), 50-th, 125-

th, 150-th, and 200-th (Mixup training) iterations and 

report the training loss and test accuracy in Figure 3. First, it 

can be observed that the cross-entropy loss on the training 

data quickly drops to nearly zero after the stopping of 

Mixup, showing that the neural network has correctly 

predicted the labels of training data points with high 

confidence. Besides, the test accuracy results show that 

such a high-confidence fitting on training data will not affect 

the test performance, while proper early stopping can even 

gain further improvements, e.g., Mixup with early stopping 

at the 125-th iteration achieves substantially higher test 

accuracy than that of Mixup training. This demonstrates the 

effectiveness of early-stopped Mixup and backs up our 

theoretical finding that the benefits of Mixup mainly stem 

from the early training phase. 

7 Conclusion and Future Work 

In this work, we attempted to develop a comprehensive 

understanding of the benefits of Mixup training. We first 

identified that the benefits cannot be fully explained by the 

linearity inductive bias of Mixup. Then we theoretically 

studied the dynamics of Mixup training from a feature 

learning. We showed that Mixup is more beneficial in 

learning rare features compared to standard training. 

Moreover, our analysis revealed that the benefits of Mixup 

in feature learning mostly stem from early training stages, 

based on which we developed the early-stopped Mixup. 

Our experimental results demonstrated that the early-

stopped Mixup can achieve a comparable or even better 

performance than the standard one, which supports our 

theoretical findings. 

One future direction is to theoretically investigate the 

benefit of a broader class of Mixup methods in various 

tasks. For instance, Han et al. (2022b); Yao et al. (2022a) 

proposed different Mixup methods to address the issue 

of distribution shift; Yao et al. (2022b) proposed C-Mixup 

methods for regression problems. It is also interesting to 

explore the theoretical understanding of Mixup for other 

types of data such as language data and graph data. We 

believe the theoretical framework developed in this work 
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can be adapted, while a more precise and practical data 

model needs to be considered. 
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 (a) LeNet (b) VGG16 (c) ResNet18 (d) ResNet34 

Figure 4. Test errors achieved by Mixup training with different early stopping iterations: 0 (standard), 50, 125, 150, 200 (Mixup), 

numbers in the legend denote the average accuracy of the last 10 iterates. The results are evaluated by training LeNet, VGG16, 

ResNet18, and ResNet34 on CIFAR-10 dataset with random crop & flip data augmentation and weight decay regularization. 

Experimental results suggest that applying proper early stopping in Mixup will not downgrade the test performance but can even lead 

to higher test accuracy, especially for simpler models such as LeNet and VGG16. 

A Additional Experiments 

We further perform Mixup training for different neural network models and add the random crop/flip data augmentation 

and weight decay regularization (set as 10−4). In particular, we consider two (relatively) high-capacity models: ResNet18 

and ResNet34; and two low-capacity models: LeNet and VGG16. For ResNet18 and ResNet34, we set the learning rate as 

0.1; for LeNet and VGG16, we set the learning rate as 0.02 and 0.1 respectively. Then we can clearly see that applying 

proper early stopping in Mixup will not downgrade the test performance but can even lead to higher test accuracy. In 

particular, Mixup with early stopping at the 50-th, 125-th, and 150-th iterations can still achieve a substantial 

performance improvement compared to standard training for LeNet, VGG16, and ResNet18. Moreover, we can also 

observe that Mixup with early stopping at the 150-th iteration performs better than the standard Mixup for all 4 models, 

especially for LeNet and VGG16, two relatively simpler models. This justifies our theoretical findings and demonstrates 

the benefit of early stopping in Mixup. 

B Detailed Proof for Standard Training 

B.1 Critical Quantities at the Initialization 

Before moving on to the detailed characterization of the dynamics of standard training and Mixup training, we first 

characterize a set of critical quantities at the initialization. Recall (1) the data model in Definition 3.1 that the feature 

vectors have unit norm and the noise vectors are randomly generated from N(0,σp2I); and (2) the initial model parameter 

wk,r(0) is randomly generated from , we first give the following lemma that characterizes some critical quantities 

that will be repeatedly used in the later analysis. 

Lemma B.1. With probability at least 1 − 1/poly(n), it holds that for all i ∈ [n], k ∈ [2], r ∈ [m], a ∈ {v,u,v0,u0}, 

. 

Additionally, for any noise patch ξ ∈ {ξ}, 

. 

(0) 
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Proof. Note that wk,r is randomly generated from. Then using the fact that m = 

polylog(, and  with probability at least 1 − 1/poly(n), applying standard concentration arguments can 

lead to the desired 

results. 

 
B.2 Feature and Noise Learning of Standard Training 

We first restate the feature and noise learning of standard training as follows: for features, we have 

 

, 

 , (B.1) 

where Pi(a) denotes the set of patches in xi containing the feature a and  is a feature patch and αi,p2 = α2 if 

 is the feature noise. Additionally, note that the update of rare features only depends on the data in  and  since 

the data  and  satisfies Pi(v0) = ∅ and Pi(u0) = ∅. Similarly, we can also obtain the following result 

regarding noise learning 

. 

Moreover, note that if ), then  is in the order of Oe(d1/2σp2). Therefore, we 

further have 

 . (B.2) 

Phase 1, Fitting Common Feature Data. The following lemma characterizes the learning of all feature and noise vectors in 

Phase 1. 

Lemma B.2 (Phase 1, Standard Training). Let T0 be the iteration number such that the neural network output satisfies 

|Fk(W(t);xi)| ≤ O(1) for all t ≤ T0 and i ∈ [n], then for any t ≤ T0, it holds that 

. 

Besides, we also have for any t ≤ T0, r ∈ [m], k ∈ [2], q ∈ [P], and s ∈ [n], 

. 

Proof. First, note that in the first stage, the neural network outputs are in the order of O(1), implying that the loss 

derivatives satisfy  . More specifically, we can get that   and   otherwise. 

Then by (B.1), 

we have 
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. 

Note that by Definition 3.1, for any data i ∈ [n] let Pi0(v) and Pi0(u) be the set of patches corresponding to the feature 

noise vectors v and u respectively, we have |Pi0(v)| ≤ b and polylog( . Additionally, note 

that 

 and  for all , we have 

 polylog( , (B.3) 

where  remains in the constant level for all t ≤ T0. Similarly, we can also get that 

 polylog( , (B.4) 

where remains in the constant level for all t ≤ T0. Moreover, in terms of the learning of wrong 

features, we have 

  (B.5) 

Then by Lemma B.1, this further implies that for all t in the first stage, we have 

 . (B.6) 

Now we can move on to the learning of rare features and noise vectors. Particularly, for rare features, we have 

 

where the second equality is due to |Pi(v0)| = Θ(1) and the last equality is due to  with probability at least 
1 − 1/poly(n). Therefore, by Lemma B.1, we can then obtain 

, 

where we use the fact that T0 = Oe(1/η). Similarly, it also follows that 

. 

Moreover, using the fact that  for  and  for , we can follow the same proof in 

(B.5) and (B.6) and get 

. 
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where the results for and  are by Lemma B.1. 

Finally, regarding the learning of the noise vector , we have the following by (B.2), 

. 

Note that we have nP = o(d1/2), then the above equation further leads to 

. 

Besides, we can also get if k 6= ys, 

. 

Then for any t ≤ T0 = Oe(1/η) and any k, we have 

 

≤ max|hwk,r(0),ξs(q)i| · Θ(1) s,r 

= Θ(e d1/2σ0σp). 

This completes the proof.  

Lemma B.3. At the end of Phase 1 with maximum iteration number T0 = Oe(1/η), we have 

Θ(1); 

besides, it holds that 

 

for all k ∈ [2], r ∈ [m] and ξ ∈ {ξ}. 

Proof. We first characterize the difference between  and  and (B.4). Particularly, we consider the 

iterations that maxi∈[n],k∈[2] |Fk(W(t);xi)| ≤ ζ for some polylog(n)), then we can 

immediately get that it holds that  for all  and  for all . Therefore, we 

can further get 

. 
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Further note that the positive and negative data are independently generated from the data distribution, which implies 

that with probability at least 1 − 1/poly(n), it holds that  and

. 

Therefore, applying the fact that ζ = Θ(1/polylog(n)), we can obtain the following by (B.3) and (B.4) 

 . (B.7) 

Then let  be the largest iteration number such that maxk,i |Fk(W(t);xi)| ≤ ζ, which clearly satisfies  is defined 

in Lemma B.2), applying Lemma B.2 and considering the data i with largest neural network output (w.o.l.g assuming it’s 

positive data), 

 
for some absolute constant c. By (B.7), we can immediately obtain that , where we apply the 

initialization results in Lemma B.1. Besides, we can also obtain that 

 

Then note that , we can get , which implies that 

. Finally, by Lemma B.2, we know that  and  will 

keep increasing for all t ≤ T0. Then based on the definition of T0 and the fact that ζ = Θ(1), we can conclude that 

. 

The remaining arguments in this lemma directly follow from Lemma B.2, thus we omit their proof here.  

Phase 2. Fitting Rare Feature Data. After Phase 1, the neural network output will become larger so that the loss derivatives 

(i.e, ) or the output logits may no longer be viewed as a quantity in the constant order. Particularly, as shown in Lemma 

B.3, when t > T0, the feature learning, i.e., and  will reach the constant order, implying that  will be 

closer to 1 or 0 for all common feature data. Additionally, the loss derivative will remain in the constant order for the rare 

feature data, since either the rare feature learning (e.g, ) or the noise learning (e.g., ) will be in the 

order of o 1/polylog( , so that the corresponding neural network outputs are also in the order of o 1/polylog( . 

Therefore, we define Phase 2 by the period that (1) is after Phase 1 and (2) the neural network outputs for the rare feature 

data are still in the order of O 1/polylog(  (or equivalently, the loss derivatives of rare feature data are in the constant 

order.) 

Then, similar to the analysis in Phase 1, we will also characterize the learning of feature and noise separately. Regarding 

the learning of common feature, by (B.1), we have 
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. 

(B.8) 

Similarly, we can also get that 

. 

(B.9) 

Moreover, according to the data distribution in Definition 3.1, we have 

• For any , it holds that Pp∈Pi(v) αi,p2 = Θ(1) and Pp∈Pi(u) αi,p2 = bα2 = o 1/polylog( . 

• For any , it holds that Pp∈Pi(u) αi,p2 = Θ(1) and Pp∈Pi(v) αi,p2 = bα2 = o 1/polylog( . 

• For any , it holds that Pp∈Pi(u) 
α

i,p2 = bα2 = o 1/polylog(  and Pp∈Pi(v) 
α

i,p2 = bα2 = o 1/polylog(  

Therefore, we have the following results regarding the relation between and . 

Lemma B.4. Let  be a quantity that is greater than T0, then for any t ∈ [T0,T1], there exists an 

absolute constant C such that 

 , and . 

Proof. Based on the update rules in (B.8) and (B.9), we have 

polylog(

; 
i∈S0 

polylog( . 
 i∈S0 i∈S0 

where we use the fact that . This further implies that 

 

Note that we have  and . Then it can be readily verified that 

polylog( polylog( . 

 

Then we can get that 
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 O(ρηbα2) 2 

(?) ≥ 1 − 

 ≥ 1 − O(ρηbα ). 

polylog( 

Therefore we have for all , 

. 

 holds for some absolute Then applying the fact that

constant C, we are able to complete the proof for bounding . The results on  can be obtained similarly.

  

In the next step, we will show that the learning of common features v and u will not be too large, i.e., exceeding the 

polylog(n) order. 

Lemma B.5. Let  be the same quantity defined in Lemma B.4, we have for all , it holds that 

 polylog( . 

Proof of Lemma B.5. Based on the update rules in (B.8) and (B.9), we have 

polylog(

. 
i∈S0 

Using the fact that  for all , we further have 

, 

where the second equality holds since (1 + o(1))2 = 1 + o(1). Further take a summation over r ∈ [m] leads to 

. (B.10) 

. (B.11) 

Similarly, we can also get that 

Regarding the loss derivative , we can get that for any , 
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(W(t);xi) − F1(W

 
 Logit1(W (t);xi) − F1(W(t); exp 2(W ;xi) 1(W 

;xi) 

(W 

(B.12) 

Before moving to the analysis on the feature, we first show that the model weight corresponding to the wrong label will 

not learn the noise of the data, i.e., will be very small for all q ∈ [P] and . Particularly, we have the 

following by (B.2) 

 

where the second inequality is due to  and  for . Therefore, we can get that for all , 

where , that 

  (B.13) 

where the last equality is by Lemma B.2. Therefore, we can get the following bound on F2(W(t);xi) − F1(W(t);xi) for any

, 

 m P m P 

F2(W(t);xi) − F1(W(t);xi) = XX(hw2(t,r),x(ip)i)2 − XX(hw1(t,r),x(ip)i)2 

r=1 p=1 r=1 p=1 m m 

≤ X X (hw2(t,r),vi)2 + α2 X X (hw2(t,r),ui)2 

r=1 p∈Pi(v) r=1 p∈Pi(u) m m 

+ X X (hw2(t,r),ξi(p)i)2 − X(hw1(t,r),vi)2. 

 r=1 p∈Pi(ξ) r=1 
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Then by Lemma B.4 and (B.13), we can further get that 

, 

where we use the fact that |Pi(u)| ≤ b and   by Lemma B.4. This further implies the 

following according to (B.12): for all , 

, 

where we use the fact that . Similarly, we can also get that for all , 

. 

Consequently, let  and , further applying (B.10) and (B.11) gives 

. 

Then we will first prove a weaker argument on at and bt: for all  it holds that . In particular, we 

will apply standard induction techniques. First, it is easy to verify that this condition holds for t = T0 according to Lemma 

B.3. Then assuming this condition holds for all τ ≤ t, we have  and thus 

aτ+1 ≤ aτ · h1 + Θ(η) · exp(−aτ) + O(ηρbα2)i, 

 bτ+1 ≤ bτ · h1 + Θ(η) · exp(−bτ) + O(ηρbα2)i, (B.14) 

for all τ ∈ [T0,t]. Then by Lemma B.6, we can immediately get that 

. 

Then recall that   and  , we can further get  , which verify the 

hypothesis that at+1,bt+1 ≤ o(1/(bα2)). Moreover, recall the definitions of at and  and 

, we can further get that for all r ∈ [m], 

 polylog( , 

and  polylog( . This completes the proof. 

 

Lemma B.6. Let {at}t=0,..., be a sequence with a0 ∈ [0,1] that satisfies 

at+1 = at · [1 + c1 · e−at + c2], 

where c1 and c2 are two constants satisfying c1,c2 ∈ [0,1] and c2 ≤ c1. Then it holds that 
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. 

Proof of Lemma B.6. Note that c2 ≤ c1, we will then consider two cases: (1) c1e−at ≥ c2 and (2) c1e−at < c2. Then case 

(2) will occur after case (1) since at is strictly increasing. Regarding case (1), it is easy to see that at ≤ log(c1/c2) by the 

condition that c1e−at ≥ c2. For case (2), let t0 be the first iteration t that c1e−at < c2, we can get that and 

then for all t > t0 

at+1 ≤ at · [1 + 2c2], 

which implies that 

. 

Combining the results for case (1) and case (2), we can complete the proof. 

 

Then we will focus on the rare feature data. Note that in the early stage of the second phase, their corresponding loss 

derivatives ’s are still in the constant order. The following Lemma summarizes the learning of rare features and noises 

for the rare feature data. 

Lemma B.7. Let  be a quantity that satisfies . Then for any t ∈ [T0,T1], it holds 

that 

 

Besides, for any  and k = ys, we have 

; 

for k 6= ys, 

. 

Proof. The proof is similar to that of Lemma B.2, except the proof for the dynamics of . First, by standard 

concentration argument, we can get with probability 1 − 1/poly(n), for all , it holds that 

. 

Then by (B.2), we can get 

 

Then let ζ = O 1/polylog(  be some user-defined constant, then let T0 be the smallest iteration number such that 

. Then we can get for any t ≤ T0 and any i,r, 
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Then we will prove the main arguments via mathematical induction, including the following hypothesis: 

• For all , it holds that  

• . 

Then it is clear that the first argument holds for t = T0 as with probability at least 1 − 1/poly(n) we have 

 and , which implies that  

polylog( . 

Besides, given the first argument, we have 

 

≤ O(n1.1Pd1/2σp2) · max|hwk,r(t) ,ξi(p)i| r,q 

≤ ζ · dσp2 · max|hwk,r(t) ,ξi(p)i|, r,q 

where we use the fact that d−1/2n1.1P = o 1/polylog(  . Then by (B.15), we can directly obtain the second 

argument. 

Now we will verify the hypotheses by induction. First, similar to the previous derivation, the first argument at the t-th 

iteration can directly imply the second argument at the t+1-th iteration. Then it remains to verify the first argument. In 

fact, given the second argument, we have for any i and i0 and τ ≤ t, 

 

Therefore, using the fact that , setting ζ = 1/log2(1/(σ0d1/2σp), we can directly get that 

(polylog(n)) = o(n0.1). 

Note that the above holds for all i and i0, taking i0 = argmax  directly completes the verification of the first 

argument. 

The proof for with k 6= ys, we have the following by (B.2), 

 

where we use the fact that for all t ≤ T1, it holds that . 
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Lemma B.8 (End of Phase 2). Let T1 be the same quantity defined in Lemma B.7, we have for all , 

; 

for all , 

. 

Proof. The proof of this lemma is simply a combination of Lemmas B.7 and B.7, where we only need to verify the bound 

for  and . This can be done as follows: 

, 

where we use the fact that ρn = o(dσp2). The proof for  will be similar and thus is ommited here. 

 

Phase 3. Training until convergence. In this phase, we will show that the feature learning and noise learning in 

Phase 2 will be maintained. Particularly, we first make the following hypothesis and then verify them via mathematical 

induction. 

Hypothesis 1. For all t = poly(n) that is greater than T1, it holds that 

(a) We have  and . 

(b) We 

haveand 

(c) We have polylog( and polylog( . 

(d) For all , we have  polylog(  . 

(e) For all , we have ; for all , we

 have 

. 

(f) For all , we have  polylog(  ; for all  , we have  polylog(

 . 

The hypothesis will be verified via induction. First, it is clear that all hypothesis are satisfied at t = T1 according to Lemma 

B.8. Then, the following lemma is useful in the entire proof. 

Lemma B.9. Assuming all hypothesis in Hypothesis 1 hold for τ ∈ [0,t], then we have for all k ∈ [2], 

 , and , 

moreover, for any , we have 

t 

 X (τ) 

|`k,i| = Oe(1/η). 
t=T1 
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Proof of Lemma B.9. By (B.1), we have 

 

; 

 . (B.16) 

where we use the fact that |`1,i| = |`2,i| Summing them up and further taking a summation over τ ∈ [T1,t − 1], applying 

Hypothesis 1(a) gives 

 . (B.17) 

where we use the fact that  and . Besides, by (B.2) and 

Hypotheses (e) and (f), we know that the correct noise learning for different weak feature data will be different by at most 

O(polylog(n)) factors, therefore, we can get that 

 

(B.18) 

and similarly, 

. 

Therefore, taking a summation over r ∈ [m] and τ ∈ [T1,t − 1], and using the Hypothesis 1(e), we have 

 . (B.19) 

Combining (B.17) and (B.19) and using the fact that  and , we can get that 

. 

Note that bα2 = o(1), the above inequality immediately implies that 

. 

We will further use this argument to sharpen our result. First, (B.19) directly leads to 
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, 

which implies that 

. 

Plugging the above inequality into (B.19) and using the fact that bα2 = o(1) gives 

. 

where the last inequality is due to ρn = o(dσp2). Further note that  and η = o(1), we have 

; 

Moreover, by Hypothesis 1 for all τ ∈ [T1,t], we also have for all , 

(W(τ);xi) − 

F1(W 

. 

(W(τ);xi) − F1(W(τ); 

Moreover, we have 

 m m 

F2(W(τ);xi) − F1(W(τ);xi) = X X hw2(τ,r),x(ip)i − X X hw1(τ,r),x(ip)i 

 r=1 p∈[P] r=1 p∈[P] 

 . polylog( 

This implies that for any  with |Pi(v)| = |Pj(v)|, we have 

polylog( . 

Further note that, by Definition 3.1, the number of feature patches are uniformly sampled from [1,Θ(1)], implying that 

with probability at least 1 − 1/poly(n), for any , 

#  

Therefore, let S0 be the above set of data points, we have for any , 
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. 

where the last inequality is due to |S0| = Θ(n). This completes the proof.  

We will then verify Hypothesis 1(c), which is summarized in the following lemma. 

Lemma B.10. Let Hypothesis 1 holds for all τ ≤ t, then we have  and  

. 

Proof of Lemma B.10. Recall the update of rare features in (B.1), we have 

 

. 

Then according to the Hypothesis 1(c) for all τ ∈ [T1,t], we have 

, 

where the last inequality is due to the fact that |Pi(v0)| = Θ(1). By Lemma B.9, it is clear that 

. Therefore, 

. 

The proof for  is similar so we omit it here.  

Using the similar proof technique, we are able to verify Hypothesis 1(b), 1(d), and 1(f), which are summarized in the 

following lemmas. 

Lemma B.11. Let Hypothesis 1 holds for all τ ≤ t, then we have  and  

. 

Proof of Lemma B.11. Since the proofs for and  are basically identical, we will only provide the 

proof regarding . By (B.1) and data distribution in Definition 3.1, we have 

 

Taking an absolute value on both sides and then applying Hypothesis 1(b), we have 
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where the second inequality is by Lemma B.9 and the last inequality is due to the fact that ρn = o(dσp2) and bα2 = o(1). 

This completes the proof. 

 

Lemma B.12. Let Hypothesis 1 holds for all τ ≤ t, then we have polylog( for all , r ∈ 

[m], k ∈ [2], and q ∈ [P]. 

Proof of Lemma B.12. By (B.2), we have 

 

. 

Then by Hypotheses 1, we can further get 

) 

    . 

polylog( 
 1 1 

(B.20) 

Note that , then by Lemma B.9, we have 

. 

o 

 

where we use the fact that dσp2 = o(n) and d1/2σp2 = o(1/polylog(n)). This completes the proof.  

Lemma B.13. Let Hypothesis 1 holds for all τ ≤ t, then we have  for all , r 

∈ [m], k 6= ys, and q ∈ [P]. 
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Proof of Lemma B.13. Similar to the previous proof, we will only prove the argument for , the proof for  can 

be performed using exactly the same analysis. By (B.2), we have for  

 

 

  , 

polylog( 

where the last inequality is by Lemma B.9. This completes the proof. 

 
Finally, we will verify the common features learning (Hypothesis 1(a)) and noise learning for rare feature data (Hypothesis 

1(e)). 

Lemma B.14. Let Hypothesis 1 holds for all τ ≤ t, then we have  

Θ(1)e . 

Proof of Lemma B.14. We first prove the upper bound: . Particularly, by (B.8), (B.9) and 

Definition 3.1, we have 

. 

Therefore, we can get that 

 , (B.21) 

where we use the fact that . By Hypothesis 1, we have for all τ ≤ t and i, 

. 

Therefore, let , we have the following according to (B.21) 

 , (B.22) 

where c is an absolute positive constant. Let T = polylog(n) be the total iteration number, then we will show that at ≤ 3c−1 

log(T) for all τ ≤ t. Particularly, we will prove that either (1) aτ < 2c−1 log(T) or (2) aτ > 2log(T) > aτ−1 but it will not reach 

3log(T) as τ increases before it becomes less than 2c−1 log(T) again. The first case immediately implies that aτ < 3c−1 

log(T), so we will only need to focus on case (2). In this case, we have aτ ≤ aτ−1 +Θ(η) ≤ 2.1c−1 log(T). 

Then before aτ becomes less than 2c−1 log(T), we have for any τ0 ∈ [τ,t] that 

. 

Note that as · e−cas ≤ 2c−1 log(T)/T2 ≤ 0.1c−1/T if T = ω(1), then using the fact that η = o(1), 
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. 

Then as long as as < 10c−1 log(T) for s ∈ [τ,τ0], we have the following according to Lemma B.9, 

, 

where we use the fact that bα2 = o(1) and dσp2 = ω(ρn). Therefore, we can conclude that before  reaches 10c−1 log(T), 

it must satisfy 

aτ0 ≤ 2.3c−1 log(T), 

for any τ0 ≤ t. This further implies that 

 polylog( , 

which completes the proof of . 

The next step is to show that . Similar to (B.22), we can get that 

, 

where C is an absolute positive constant. In fact, we must have aτ 
≥ 

polylog( 1n) since otherwise, 

, 

where the first inequality is due to e−caτ = Θ(1) if aτ = O(1) and the second inequality is due to  and bα2 = o(1). 

This implies that aτ+1 will keep increase, which will at least continue to the case that aτ > 1. This completes the proof that 

at+1 = Ω(1)e . 

The proof for  will be basically the same so we omit it here. 

 

Lemma B.15. Let Hypothesis 1 holds for all τ ≤ t, then we have  for all , 

and  for all . 

Proof of Lemma B.15. Note that P,m = Θ(polylog(n)), it suffices to prove that  for all 

 and . In the following proof we will only consider  as the proof 

for  will exactly the same. 

By (B.2), we have for all , 

 . (B.23) 

We first prove the upper bound of  . Then, using the Hypothesis 1 (e), we have for any 

, and p ∈ [P] 

polylog( polylog( . 

Then (B.23) implies that 
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. 

Then by Hypothesis 1, we can further get that the quantity  will be the dominating 

term in the neural network output function, so that  for some constant c. Therefore, let 

, we can follow the similar derivation of (B.22). Thus, it follows that 

 

Then we can follow the exact proof technique in Lemma B.14 to conclude that at+1 = Oe(1), while it only requires to verify 

that 

, 

which clearly holds by Lemma B.9 and the fact that Pd1/2σp2 = o(1). 

The lower bound can be similarly obtained as the following can be deduced by (B.23): 

, 

which leads to 

 

for some absolute constant C. Then following the same proof of Lemma B.14, we can get that at+1 = Ω(1)e . This completes 

the proof.  

B.3 Proof of Theorem 4.1 

Proof of Theorem 4.1. We first show that  for all k ∈ [2] and r ∈ [m]. In particular, note that the update 

of standard training is always the linear combination of all critical vectors, i.e., v, u, v0, u0, and ’s. Therefore, we have 

n 

w . 
i=1 p∈Pi(ξ) 

Here we use  to denote the coefficient of a for all a . Then by Lemma 5.3 and using the fact 

that kvk2,kuk2,kv0k2,ku0k2 = 1, we have 

 . polylog( 

Moreover, using the fact that |hξi(p),ξj(q)i| = o(1/polylog(n)) for any i 6= j or p 6= q, applying Lemma 5.3 and the fact 

that  for all i ∈ [n] and p ∈ [P], we have 

. 
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Combining the above results, we can readily conclude that . 

Then we will characterize the test errors for common feature data and rare feature data separately. Regarding the common 

feature data, we can take a positive common feature data (x,1) as an example and obtain the following by Lemma 5.3, 

 . (B.24) 
r=1 p=1 

Besides, we have the following regarding F2(W(t);x): 

r=1 p:x(p)=v 

 
 r=1 p:x(p)=v r=1 p:x(p)6=v 

 = . (B.25) 

where we use the result polylog( . Then, note that if x(p) 6= v, it can be either feature noise (i.e., αu 

or αv) or random noise , which is independent of the random noise vectors in the training data points (i.e., {ξ}). 

Therefore, using the result that , we can obtain with probability at least 1 − exp(−Ω(d1/2)), it holds that 

for all r ∈ [m] 

 . (B.26) 

Besides, note that there are at most b patches within the total P patches that are feature noise, we have 

 , polylog( 

where the last equality is by the data model in Definition 3.1: bα2 = o 1/polylog(  and σp = o(d−1/2n1/2). Therefore, 

comparing (B.24) and (B.25), we can get F1(W(t);x) > F2(W(t);x) with probability at least 1 − 1/poly(n). 

Then we will move on to study the rare feature data. In particular, we consider the rare feature data with incorrect 

feature noise. Without loss of generality, we take a positive data (x,1) as an example, which contains rare feature v and 

incorrect feature noise αu. Then we can get the following results for Fk(W(t);x) 

. 
 r=1 p:x(p)=v0 r=1 p:x(p)=αu r=1 p:x(p)6∈{v0,αu} 

Note that if x(p) ∈6 {v0,αu}, then x(p) must be a random noise vector that is independent of wk,r(t) . To begin with, 

the first two terms of the above equation for different k’s can be bounded by applying Lemma 5.3 (particularly 

Ω(1)e ), we have 

, 
r=1 p:x(p)=v0 r=1 p:x(p)=α r=1 p:x(p)=v0 r=1 p:x(p)=αu 

Moreover, by (B.26), we can further get that with probability at least 1 − exp(−Ω(d1/2)) > 1 − 1/poly(n), we have 
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. 

where the last equality is by our data model in Definition 3.1. This further implies that conditioning on W(t), with 

probability at least 1 − 1/poly(n), we have 

F2(W(t);x) > F1(W(t);x) 

on the positive rare feature data that has incorrect feature noise. 

 1 1 

P(x,y)∼Drare[argmax≥ . kpoly(n) 2.01 

Therefore, combining the test error analysis for common feature data and rare feature data and using the fact that the 

fraction of rare feature data is ρ, we can finally obtain: 

P(x,y)∼D[argmaxFk(W(t);x) 6= y] ≥ ρ · P(x,y)∼Drare[argmax . 

k k 

This completes the proof. 

 

C Mixup data 

C.1 Characterization of the mixup dataset 

Category of different Mixup data patches. First recall the category of different Mixup training data points: 

• Mix between two common feature data points, including , each of them is of size Θ(n2). 

• Mix between common feature and rare feature data points with the same label, including , and 

, each of them is of size Θ(ρn2). 

• Mix between common feature and rare feature data points with different labels, including , and 

, each of them is of size Θ(ρn2). 

• Mix between two rare feature data points, including  and , each of them is of size Θ(ρ2n2). 

Then, given n2 mixed data points, we have in total n2P data patches. Besides, note that in the original dataset that consists 

(p) of n 

training data points, each data patch xi satisfies 

. 

Moreover, by the data distribution defined in Definition 3.1, we have 

• v and u will appear in Θ(n) data and Θ(n) data patches. 

• αv and αu will appear in n data and Θ(bn) data patches. 

• v0 and u0 will appear in Θ(ρn) data and Θ(ρn) data patches. 

• , if it is not zero, will appear in one data and one data patch. 
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Then based on the above facts, we provide the following lemma that characterizes the number of different types of data 

patches on the mixup dataset. 

Lemma C.1. Let  be the collection of all data patches of the mixup dataset, then among these n2P 

data patches, with probability at least 1 − 1/poly(n), let x(i,jp) = λa + (1 − λ)b, we have 

• The vector with a ∈ {v,u} and b ∈ {v,u} will appear in Θ(n2/P) data patches. 

• The vector with a ∈ {v,u} and b ∈ {v0,u0} will appear in Θ(ρn2/P) patches. 

• The vector with a ∈ {v,u} and b ∈ {αv,αu} will appear in O(bn2/P) patches. 

• The vector with a ∈ {v,u} and b ∈ {ξ} will appear in Θ(n2) patches. 

• The vector with a ∈ {v0,αu0} and b will appear in Θ(ρ2n2/P) data patches. 

• The vector with a ∈ {v0,αu0} and b ∈ {αv,αu} will appear in O(ρbn2/P) patches. 

• The vector with a ∈ {v0,αu0} and b ∈ {ξ} will appear in Θ(ρn2) patches. 

• The vector with a ∈ {αv,αu} and b ∈ {αv,αu} will appear in O(b2n2/P) patches. 

• The vector with a ∈ {αv,αu} and b ∈ {ξ} will appear in O(bn2) patches. 

Besides, regarding any non-zero noise vector  , we have, among the collection of data patches  , with 

probability at least 1 − 1/poly(n), 

• x b with b ∈ {v,u} will appear in Θ(n/P) patches. 

• x b with b ∈ {αv,αu} will appear in O(bn/P) patches. 

• x b with b will appear in Θ(ρn/P) patches. 

• x b with b ∈ {ξ} will appear in Θ(n) patches. 

Proof of Lemma C.1. We first consider a fixed xi and the corresponding collection of data patches {x(i,jp)}j∈[n],p∈[P]. Then by 

Definition 3.1, conditioning on v, we have for any j 6= i 

. 

Therefore, we can further get that conditioning on x  v, the summation   follows Binomial 

distribution Binom(n − 1,p) with probability parameter p = Θ(1/P). Then by Hoeffding’s inequality, we can get that with 

probability at least 1 − exp(−n2/P2), it holds that 

. 

Note that we have at least Θ(n) number of xi’s that consist of the common feature vector v, then applying union bound 

over these xi’s, we can further get with probability at least 1 − 1/poly(n), it holds that 
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Here we define pi as the index of the data patch that is v if the data xi has such a common feature vector, otherwise, pi is 

arbitrarily chosen. On the other hand, we can also get 

, 

where the second inequality is due to that each data will have at most Θ(1) patches being v. Similarly, we can also prove 

the same results for the case of x b with a,b ∈ {u,v}. 

The proof for the case of x b with a ∈ {u,v} and b ∈ {αv,αu} will be also similar, the only difference is 

that conditioning on x v, the probability of x v or x u will be O(b/P). Finally, we can get that (here we 
take a = v and b = v as an example) 

. 

 (p) 0,v0} will also be similar, where we only need 

The proof for the case of xi,j = λa + (1 − λ)b with a ∈ {u,v} and b ∈ {u 

to use the fact that . Here we take a = v and b = v0 as an example. 

Regarding the case of x b with a ∈ {u,v} and b ∈ {ξ}, we only need to use the fact that  

, where we take a = v as an example. Then the desired result can be proved in a 

similar way. 

When a  we will also need to use the fact that we have in total Θ(ρn) number of xi’s that consist of v0 or u0. 

Then take a = v0 and b = v0 as an example, conditioning on x(ip) = v0, we have for any j 6= i 

. 

Therefore, we can get that with probability at least 1 − 1/poly(n), 

. 

Accordingly, we can further obtain 

. 

The proof for the case of x b with a ∈ {u0,v0} and b ∈ {αv,αv} or b ∈ {ξ} will also be similar, where we 

only need to use the fact that  and . 

When a ∈ {αv,αu} we only need to use the fact that we have in total Θ(n) number of xi’s that consist of Θ(b) number of 

v0 or u0. The remaining proof will be similar to previous ones based on the fact that  
 (p) (p) (p) 
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and P[xj = αξj |xi = αv] = Θ(1), where we take a = αv and b = αv as an example. 

(p) 
Lastly, we will move on to the case of a = ξi . In this case, we only need to use the facts that for any j 6= i, 

 
 (p) (p) (p) (p) 
 P[xj = u|xi = ξi ] = P[xj = u] = Θ(1/P) 

P[xj(p) = v0|x(ip) = ξi(p)] = P[x(jp) = v0] = Θ(ρ/P) 

P[xj(p) = u0|x(ip) = ξi(p)] = P[x(jp) = u0] = Θ(ρ/P) 

P[xj(p) = αv|x(ip) = ξi(p)] = P[x(jp) = αv] = O(b/P) 

P[xj(p) = αu|x(ip) = ξi(p)] = P[xj(p) = αu] = O(b/P) 

P[xj(p) ∈ {ξ}|x(ip) = ξi(p)] = P[xj(p) ∈ {ξ}] = Θ(1). 

Then applying the standard concentration argument for binomial distribution yields the desired results. 

 

C.2 Learning Dynamics of Feature and Noise vectors 

Now, we will seek to study the learning of feature and noise vectors. Particularly, the update formulas of all feature vectors 

are provided as follows: for any a ∈ {u,v,u0,v0} ∪ {ξ}, we have 

  (C.1) 

More specifically, we summarize the update of all critical vectors (e.g., common features, rare features, and data noise 

vectors) in the following Proposition. 

Proposition C.2. For any critical vector a ∈ {v,u,v0,u0} ∪ {ξ}, we have 

 

, 

where  is a scalar output function that depends on b, . More specifically, let 
n 

 x  (C.2) 

s=1 q∈[P] 

(p) 0,u0} ∪ {ξ}, we have be a linear expansion of xi,j on 

the space spanned by {v,u,v 

 . (C.3) 

(p) 
Proof of Proposition C.2. Recall (C.1) and the decomposition of xi,j in (C.2), we have 
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 = 

 . 
b 

Therefore, it is easy to see that using the definition of  in (C.3), we have 

 −h∇wk,rLS(W(t)),ai = X , 
b∈{v,u,v0,u0}∪{ξ} 

which completes the proof. 

 

Note that the neural network outputs are in the order of o(1) in the first few iterations, which implies that the output 

logits are within the range [0.5 − o(1),0.5 + o(1)]. Further note that the loss derivatives  satisfies 

 Logitk(W(t);xi,j),Logitk(w(t);xi,j),λ − Logitk(W(t);xi,j),Logit , 

which will also be in the constant order. Then similar to the previous analysis on the standard training, we will directly 

take  when characterizing the learning of feature and noise vectors in the initial phase. 

Then, the challenging part in the analysis is the characterization of the mixed data patches , since it can be: 

mixture of common features, mixture of rare features, mixture of common and rare features, mixture of feature and 

noise, 

which will produce different gradients. For any mixed data xi,j = λxi + (1 − λ)xj, we will denote it as the positive mixed 

data if yi = 1 and the negative mixed data if yi = −1. The following lemma gives the characterization of the data patch of 

all mixed data. 

C.3 Characterizing the Coefficient  

C.3.1 CORRECT COMMON FEATURE LEARNING 

Lemma C.3. Assume  polylog(  , then recalling the update 

form in 

Proposition C.2, we have 

, 

Proof of Lemma C.3. We will prove all the arguments in order. 

Proof for . We first prove the bound for . By (C.3), we have 

 , (C.4) 

where . Therefore, we only need to consider the data patches that contain v (including common feature 

v and feature noise αv). The regarding the mixed data xi,j, we consider the following cases 

•  and ; 

•  and , and  and ; 

•  and , and  and  
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•  and . 

Analysis on the data  and  In particular, note that before the mixup, both the data xi and xj have a constant 

number of common feature patches. Therefore, let  denote the set of patches with the common feature v (which 

appears in either xi or xj), we have 

 X (p) (p) X (p) (p) X (p) (p) 

θi,j (v) · hxi,j ,vi = θi,j (v) · hxi,j ,vi + θi,j (v) · hxi,j ,vi. (C.5) p∈[P] p∈Pi,j∗ (v) p∈Pi,j(v)\Pi,j∗ (v) 

Regarding the first term on the R.H.S. of the above equation, by Definition 3.1, we know that there exists at least one 

common feature patch in both xi and xj, which leads to for at least one . This further gives 

 X θi,j(p)(v) · hx(i,jp),vi = X [θi,j(p)(v)]2 ≥ λ2. 

 p∈Pi,j∗ (v) p∈Pi,j∗ (v) 

Besides, we also have that the number of common feature patches are upper bounded by some constant (i.e., |Pi,j∗ (v)| = 

Θ(1)), this further leads to 

 X (p) (p) 

θi,j (v) · hxi,j ,vi ≤ Θ(1). 

p∈Pi,j∗ (v) 

(p) 
Regarding the second term on the R.H.S. of (C.5), we have θi,j ≤ α since v can only appear in the form of feature noise. 

Besides, by Definition 3.1, we know that the number of patches containing feature noise is at most b, then 

(p)

 (p)  . 
 i,j i,j i,j i,j 

Moreover, note that in the initial phase we have  for , we can further get that 

`1(t,)(i,j) X θi,j(p)(v) · hx(i,jp),vi = Θ(1). 

p∈[P] 

Analysis on the data . The analysis for this type of data will be similar. In fact, we will consider two 

types of data:  and , and  and  since two original training data will give two mixed data. 

In particular, note that  for these two types of data, we can immediately get that there is a constant number 

of patches that satisfy , while the remaining patches p ∈ Pi,j(v) satisfy . Therefore, we can follow the 

same proof technique as that for the data  and get that for all , 

 `k,(t)(i,j) X θi,j(p)(v) · hxi,j(p),vi = `(k,t)(i,j) X [θi,j(p)(v)]2 + X [θi,j(p)(v)]2 = Θ(1). (C.6) 

 p∈[P] p∈Pi,j∗ (v) p∈Pi,j(v)\Pi,j∗ (v) 

Analysis on the data  and . In this part, we will handle data xi,j and xj,i together. Different from the 

previous cases where the loss derivatives  are positive, here the loss derivative  will become negative for 
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. Particularly, for any , we have , then 

 (t) X (p) (p) (t) X (p) (p) 

 `1,(i,j) θi,j (v) · hxi,j ,vi + `1,(j,i) θj,i (v) · hxj,i ,vi 
 p∈[P] p∈[P] 

 , (C.7) 

where we use the fact that Pi,j(v) = Pj,i(v) and hx(i,jp),vi = θi,j(p)(v). Recall that the neural network output is upper bounded 

by ζ, then it is easy to see 

. 

Besides, note that 

x . 

(p) 
Then we will also defineas the set of patches with common feature. Note that xj does not have the 

common feature patch since , we can immediately get that , where  denotes the set of 

common feature patches of xi. Besides, it is also clear that all data patches in Pi,j(v) only contain the feature noise αv. 

Then it follows that 

 

Similarly, we can also get Pp∈Pi,j(v)[θj,i(p)]2 = Θ(1). Therefore, putting everything to (C.7), we can finally obtain the following 

`1(t,)(i,j) X θi,j(p)(v) · hxi,j(p),vi + `(1t,)(j,i) X θj,i(p)(v) · hx(j,ip),vi = Θ(1) ± Θ(1) · O(ζ) = Θ(1). 

 p∈[P] p∈[P] 

Analysis on the data  In this case, we can observe that there is no common feature patches in xi and 

xj, while the vector v will only appear in at most 2b patches of xi,j in the form of feature noise. Therefore, we have 

 for at most 2b patches and the remaining patches will give . Consequently, we have 

 

 

. 
i,j 

Completing the analysis for . Now we are able to complete the analysis on  based on (C.4): 
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+ 

+ 

+ 

 

Proof for . The next step is to characterize . We will split the entire mixed training dataset into 

the following classes: 

•  and , and  and , i.e., . 

• all . 

We first recall the formula of  (see Proposition C.2): 

 . (C.8) 

Analysis on the data  . Since   and   are symmetric: i.e., for any  , we have 

 and vise versa. Then we will handle data xi,j and xj,i together by studying the following quantity: 

∗ := `(1t,)(i,j) X θi,j(p)(u) · hx(i,jp),vi + `(1t,)(j,i) X θj,i(p)(u) · hxj,i(p),vi 

± o 
 1 

polylog( n ) 

 
·|S 

− , − 
0 , 0 ∪S 

− , + 
0 , 1 ∪S 

− , − 
0 , 1 ∪S 

+ , − 
1 , 0 ∪S 

+ , + 
1 , 1 ∪S 

+ , − 
1 , 1 ∪S 

− , − 
1 , 0 ∪S 

− , + 
1 , 1 ∪S 

− , − 
1 , 1 | 

 

= 
1 

n 2 
 

Θ( n 2 ) ± o 
 n 2 

polylog( n ) 

 

=Θ(1) . 
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 p∈[P] p∈[P] 

= `1(t,)(i,j) X θi,j(p)(u) · θi,j(p)(v) + `(1t,)(j,i) X θj,i(p)(u) · θj,i(p)(v). 

 p∈[P] p∈[P] 

(p) 
Note that we will only consider the patch that contains both u and v. Then consider a data patch xi,j satisfy this condition: 

x  v and  u, where αi,αj ∈ {α,1}, which further leads to x  u and x

v. Accordingly, it further gives 

. 

Additionally, for any p ∈ Pi,j(v), we have at most Θ(1) among them satisfy  and at most Θ(1) among them 

satisfy , while the remaining, with size at most 2b, can only give . This implies that 

X (p) · θj,i(p)(v) = O(1) + O(α) + O(bα2) = O(1). θj,i 

(u) p∈[P] 

Therefore, applying the above equations, we can get that 

 

. 

Further note that in the initial phase we have , we consequently get 

. 

Analysis on the remaining data . In this case, we note that there are no data patches that satisfy 
(p) (p) 
θj,i (v) = Θ(1) and θj,i (u) = Θ(1) simultaneously. Therefore, for any data xi,j, there will exist at most Θ(1) patches that 

satisfy θj,i(p)(v) · θj,i(p)(u) = α and at most 2b patches satisfying θj,i(p)(v) · θj,i(p)(u) = α2, while the remaining patches will 

give . Therefore, we can get that 

X (p) · hx(i,jp),vi = X θi,j(p)(u) · θi,j(p)(u) = Θ(1) · α + 2bα2 = O(α), θi,j (u) 
 p∈[P] p∈[P] 

where the last equality follows from the setting of the data distribution that bα < 1. 

Completing the analysis for . By (C.8) and using the fact that , we have 

 

Proof for . We then tend to characterize . We will consider the following two classes of data: 

•  
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• all . 

Analysis on the data  First, it is easy to see that with probability at least 1 − 1/poly(n), we have 
(p) 

. For this class of data, with probability Θ(1/P) we have the data xi,j has a constant number 

of 

patches that satisfy . Besides, by Lemma C.1, we have with probability at least 1 − 1/poly(n), 

there are Θ(bρn2/P) patches are the mixture of αv and v0, leading to . The remaining patches 

(p) (p) 0) = 0. Combine the above results, we can get will give θi,j (v) · θi,j (v 

 

where we use the fact that bα = o(1). 

Analysis on the remaining data Particular, we will only consider the data   since otherwise 

there is no data containing the rare feature vector v0. Moreover, note that for this class of data we only have

 
since there is no data consisting of common feature patch (but only contain feature noise αv). Therefore, similar to the 

previous analysis, we can get that, by Lemma C.1, with probability at least 1 − 1/poly(n), there are Θ(bρn2/P) patches 

that give , which consequently leads to 

. 

Completing the analysis for . Completing the previous analysis, we have 

. 

Proof for . Regarding the coefficient , we consider two cases (1) mixup between u0 and v; (2) mixup 

between u0 and αv. Then it can be seen that the first cases cover the data   and  , which is 

equivalent to the dataset . Therefore, we will handle the data (i,j) and (j,i) together in this 

case. In particular, we have 

 (t) X (p) 0 · θi,j(p)(v) + `(1t,)(j,i) X θj,i(p)(u0) · θj,i(p)(v) 

 `1,(i,j) θi,j (u ) 
 p∈[P] p∈[P] 

. 

It is clear that the first term on the R.H.S. of the above equation is zero since in case (1) 

. 

Regarding the second term, we can use Lemma C.1 and get that the number of patches falling in case (1) is Θ(ρn2/P). 

Then using the fact that  can lead to the final bound for case (1). 

Regarding case (2), we can follow the analysis for , which relies on the fact that . 

Therefore, we can finally get 
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where we use the fact that ζ = ω(bα). 

Proof for . Finally, we will study . Recall its formula in (C.3) we can get 

. 

Then it can be seen that the noise vector  will appear in 2n − 1 mixup data patches. By Lemma C.1, we have with 

probability at least 1 − 1/poly(n), Θ(1/P) fraction of them are mixed with v and O(b/P) fraction of them are mixed with 

αv. Therefore, we can get that 

 

, 

and 

, 

where we use the fact that bα = o(1) and  for all i 6= s and j 6= s. This further implies that 

 

since we have assumed that d ≥ P4n2.  

We can also get a similar result for the learning of common feature u. 

Lemma C.4. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ = o polylog(  , then recalling the update form in Proposition 

C.2, we have for any r ∈ [m], q ∈ [P], and s ∈ [n], 

, 

C.3.2 INCORRECT COMMON FEATURE LEARNING 

In this part, we will study the incorrect common feature learning, i.e., quantifying the inner products and

. 

Lemma C.5. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ = o polylog(  , then recalling the update form in Proposition 

C.2, we have 

γ 
( t ) 
1 (  ( q ) 

s , v )= 
1 

n 2 
X 

p = q,i = s || p = q,j = s 
` 

( t ) 
1 , ( i,j ) θ 

( p ) 
i,j (  ( q ) 

s ) · θ 
( p ) 
i,j ( v ) 

| z { } I 1 

+ 
1 

n 2 
X 

p = q || i = s,j = s 
` 

( t ) 
1 , ( i,j ) 

X 

p ∈ [ P ] 
θ 

( t ) 
i,j (  ( q ) 

s ) · θ 
( p ) 
i,j ( v ) 

| z { } I 2 

, 
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, 

Proof of Lemma C.5. Recall the definition of , we have 

. 

Then comparing with the previous analysis on , the only difference is to replace . 

Therefore, we can immediately get that . 

Regarding other terms that are bounded in terms of their absolute values, we can get the same results as in Theorem C.3. 

This completes the proof.  

Similarly, we can get the following results for u. 

Lemma C.6. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ = o polylog(  , then recalling the update form in Proposition 

C.2, we have 

, 

C.3.3 RARE FEATURE LEARNING 

In this part, we will study the rare feature learning, i.e., quantifying the inner products and . 

Lemma C.7. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some ζ = o polylog(  and ζ > bα, then recalling the 

update form in Proposition C.2, we have 

, 

Proof of Lemma C.7. Recalling the definition of : 

. 

Note that the rare feature v0 will not appear in the form of feature noise, then we will only need to focus on the mixed 

data (i,j) with either  , where the rare feature can only appear in the form of v, λv, or (1 − λ)v. 

Particularly, regarding the data  be the set of patches that contain the feature v0, 

we 

have  and then 

 `1(t,)(i,j) · X [θi,j(p)(v0)]2 = `(1t,)(i,j) · X [θi,j(p)(v0)]2 = Θ(1), 

 p∈[P] p∈Pi,j∗ (v) 

where we use the fact that  for any . 

Regarding the data , we will consider (i,j) and (j,i) together. Particularly, we have 
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`1(t,)(i,j) · X [θi,j(p)(v0)]2 + `1(t,)(j,i) · X [θj,i(p)(v0)]2 = `(1t,)(i,j) · X h[θi,j(p)(v0)]2 − [θj,i(p)(v0)]2i 

 p∈[P] p∈[P] p∈[P] 

 

Then using the same definition of , we have for any , it holds that  and , 

then 

I1 = Θ(1) · |Pi,j∗ (v0)| · [λ2 − (1 − λ)2] = Θ(1). 

Regarding I2, we can use the condition that the neural network output is upper bounded by ζ, then 

. 

Therefore, combining these results for I1 and I2, we can get 

`1(t,)(i,j) · X [θi,j(p)(v0)]2 + `(1t,)(j,i) · X [θj,i(p)(v0)]2 = I1 + I2 = Θ(1). 

 p∈[P] p∈[P] 

To complete the analysis, we have 

 
= Θ(ρ). 

The characterization of γ1(v,v0) and γ1(u,v0) will be exactly the same as γ1(v0,v) and γ1(v0,u) due to the fact that γ1(a,b) 

= γ1(b,a). Therefore, we can apply Lemmas C.3 and C.6 to get the desired results. 

Regarding the proof for , we will follow a similar proof for  in Lemma C.3, while two differences 

need to be considered: (1) the rare feature vectors u0 and v0 will not appear in the form of feature noise, thus we only 

need to consider the data ; (2) the cardinality of the critical subset of data satisfies

. Therefore, for any , we have 

. 

 (p) 0) · θi,j(p)(v0) = θj,i(p)(u0) · θj,i(p)(v0) = λ(1 − λ). Besides, we have in total ρ2n2/P patches that 

It is easy to see that θi,j (u 

consist of both u0 and v0. This further implies that 

| z { } I 1 

+  ` 
( t ) 
1 , ( i,j ) + ` 

( t ) 
1 , ( j,i )  · X 

p ∈ [ P ] 
[ θ 

( p ) 
j,i ( v 

0 
)] 2 

| z { } I 2 

. 
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where we use the fact that . 

Lastly, we will characterize . First recall its definition: 

 

 
Note that for any fixed ξs , it will be mixed with n data patches in total, while, by Lemma C.1, we know that there are 

only Θ(ρ/P) fraction among them are v0. Using the fact that , we have 

. 

Besides, note that |θi,j(p)(ξs(q))| = Oe(d−1/2) if i,j 6= s or p 6= q, we have 

, 

where the last equality is by the assumption that d ≥ P4n2. Combining the above results for I1 and I2, we can get 

. 

 
Following the exactly same procedure, we can get the following results regarding the learning of u0. 

Lemma C.8. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some ζ = o polylog(  and ζ > bα, then recalling the 

update form in Proposition C.2, we have 

, 

C.3.4 INCORRECT RARE FEATURE LEARNING 

In contrast to the previous section that studies   and  , the incorrect rare feature learning aims to 

characterize the quantities  and . Similar to the proof of Lemmas C.5 and C.6, we only need to replace 

 with  with . Based on this, the update of  and in each 

iteration are characterized in the following lemmas. 

Lemma C.9. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some ζ = o polylog(  and ζ > bα, then recalling the 

update form in Proposition C.2, we have 

= 
1 

n 2 
X 

p = q,i = s || p = q,j = s 
` 

( t ) 
1 , ( i,j ) θ 

( p ) 
i,j (  ( q ) 

s ) · θ 
( p ) 
i,j ( v 

0 
) 
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, 

Lemma C.10. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some ζ = o polylog(  and ζ > bα, then recalling the 

update form in Proposition C.2, we have 

, 

C.3.5 NOISE LEARNING 

Lemma C.11. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some ζ = o polylog(  and ζ > bα, then recalling the 

(q) update form in 

Proposition C.2, for any ξs with ys = 1, we have 

, 

Proof of Lemma C.11. Without loss of generality, we assume ys = 1. According to the definition of , we have 

 

, 

where the second equation is due to the fact that only xi,s or xs,i will contain the component of , the fourth inequality 

holds since we assume there have n/2 positive samples and n/2 negative samples in the training data. Moreover, note 

that , applying union bound over all s ∈ [n] and p ∈ [P], we can get that with probability at least 1 − 

1/poly(n), we have 

polylog(n) · d1/2σp2. 

Therefore, it follows that for all s ∈ [n] and p ∈ [P], with probability at least 1 − 1/poly(n), 

 

where we use the fact that ζ = ω(d−1/2). 

Regarding , we have 
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. 

Regarding the remaining quantities, we can directly apply the aforementioned lemmas on the learning of common and 

rare features, since the following holds 

, 

where a ∈ {v,u,v0,u0}. This completes the proof. 

 

C.4 Outcome of Phase 1 Mixup Training. 

In this part, we will provide the outcome of Phase 1 mixup training. 

We first recall Proposition C.2 and Lemma C.3 to obtain the learning dynamics of the common feature vector v. 

 

Then it can be seen that the most complicated part in the above update form is the composition of noise learning, i.e.,  

.The following lemma provides an upper bound on the term , which 

will leverage the randomness of  at the initialization. 

Lemma C.12. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some  polylog(  . Let zt := 

, then we have with probability at least 1−1/poly(n), for all , 

we have 

 

. 

Proof. Based on the definition of zt, we can conduct the following decomposition: 

. 

Note that during the initial training phase  is close to the constant l1,(i,j) ∈ {0.5,−0.5,0.5 − λ,λ − 0.5}, which is 

independent of the random noise vectors {ξ} and random initial weights . Then using the fact that 

l1,(i,j)| = O(ζ), we can get 
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Regarding I1, note that `1,(i,j), θi,j (ξi0 ), and θi,j (v) are independent of the random noise vectors {ξ} and random initial 

(0) weights. Besides, note that the inner productsare independent conditioning on w1,r 

and for all i0 ∈ [n] and q ∈ [P], . We can apply standard concentration arguments to get the upper bound of I1. Before 

approaching this, we first apply Lemma C.1 and follow the similar proof of Lemma C.3, and obtain that with probability at 

least 1 − 1/poly(n) 

 . (C.9) 

Then performing the following decomposition on I1 according to the value of yi0: 

} 

Therefore, note that conditioning on w1,r, the quantity -subGaussian, by (C.9), we can 

immediately get that both  and  are -subGuassian. Then using the fact that w

, we 

can get that with probability at least 1 − 1/poly(n), 

 . (C.10) 

Regarding I2, we can also apply Lemma C.1 and follow the similar proof of Lemma C.3, then with probability at least 1 − 

1/poly(n), 

. 

This further implies that 

 . (C.11) 

where we use the fact that w  and . Combining (C.10) and (C.11) leads to 

. 
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where we use the condition that . 

Next we will move on to study the update of zt using the update results of in Lemma C.11. Particularly, we can 

again use the quantities l1,(i,j)’s and get the following decomposition 

} 

Recall the update results of  in Lemma C.11: for any yi = 1, 

(C.12) 

(C.13) 

For any yi = 2, we have 

We first prove the bound of the quantity . First, using the standard concentration result gives 

. Then, by the above update rule, we can get 

 

 

Then we can get that for any , we have 

 

 

z t = 
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Moreover, similar result can be obtained for  and we omit the proof here. 

Now we are ready to upper bound I3. Particularly, let  and  be denoted as follows: 

. 

Then it is clear that . Then by (C.9) and (C.12), we can get 

. 

Similarly, we can also obtain 

. 

Then using the previous results on  and and (C.10), we can get 

that for any , 

, 

where we use the upper bound of  provided in Similarly, we can obtain the same results for  as follows: 

. 

Combining the above results leads to the bound of I3. 

We will finally bound I4 as follows: using the fact that |`1,(i,j) − l1,(i,j)| = O(ζ) and a similar characterization of (C.9), we can 

get 

. 

Combining the above bounds on I3 and I4, we can finally get 
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This completes the proof. 

 

Then the following lemma characterizes the growth of common feature learning. 

Lemma C.13. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some . Then for any t = 

O polylog(  that satisfies this condition, we have with probability at least 1 − 1/poly(n), there exists at least one r ∈ 

[m] such that 

. 

Proof. First, note that follows , then it is easy to get that 

 poly(n), (C.14) 

where the last inequality is by our assumption that m = polylog(n) > C log(n) for some sufficiently large constant C. 

Recall the update rule of : 

 

Taking absolute value on both sides leads to 

 

. 

Therefore, the next step is to show that these “negative” terms in the above inequality are dominated by 

, i.e., showing that 

; 

where we use our result in Lemma C.3 that . Then we are able to get that 

 polylog( . (C.15) 

Regarding the first three terms, we will prove them by mathematical induction on a stronger argument (recall that 

polylog( , according to Lemma C.3): we aim to 

verify the hypothesis 
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 , (C.16) 

where c is some sufficiently small constant. 

In particular, we can first consider the initialization where t = 0, then by (C.14) and standard concentration bound of 

Gaussian random variable, we have with probability at least 1 − 1/poly(n), 

. 

Therefore, using the fact that , it is easy to verify the hypothesis. We will then assume the hypothesis 

holds for all τ ≤ t and aim to verify it for t + 1. Particularly, recall the update rules of , we have 

 

 

 

where the last inequality is by Lemma C.12. Then by (C.12), we have the following results regarding  

 

 

Therefore, we can accordingly get the following upper bound regarding the last term in the RHS of (C.17), 

 

  (C.18) 

Then using the fact that tη = O polylog(  and n = ω(dσp2), we can further get the following on (C.17) 
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Then according to the Hypothesis C.16 for any τ ≤ t, it is easy to get that 

. 

Then we can get , applying the fact that tη = O(polylog(n)) further gives 

 . (C.19) 

Besides, note that the Hypothesis C.16 holds for all τ ≤ t, we have 

, (C.20) 

 (C.21) 

we can immediately get that 

Putting the above results together, we can verify that 

. 

We will then verify the Hypothesis for . By its update rule, Lemma C.7, and Lemma C.12, we have 

 

 

Then by (C.18) and using the fact that tη = O(polylog(n)) and , we can finally get 
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. 

Then applying (C.19), (C.20), and (C.21), we can also verify that 

. 

The using exactly the same proof, we are also able to verify that 

. 

Lastly, we will prove that 

  (C.22) 

for some sufficiently small constant c and all t = O polylog( . This can be proved by the combination of Lemma C.12, 

(C.18), and our previous characterizations (C.19), (C.20), (C.21). In particular, using the fact that , we 

have 

 

 

  (C.23) 

Then using the facts that ζ = o(d−1/2σp−1) and dσp2 = o(n), we are able to complete the proof of (C.22). 

 

Lemma C.14. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some . Then for any t = 

O polylog(  that satisfies this condition, we have with probability at least 1 − 1/poly(n), 

 . polylog( 

Proof. Recall , we have 
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Regarding I2, using the similar proof in Lemma C.3, we can obtain that I2 = o 1/polylog( . For I1, using the condition 

that maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ, we have 

, 

where l1,(i,j) ∈ {0.5,−0.5,0.5 − λ,λ − 0.5} denotes the loss derivative of data (xi,j,yi,j) when its neural network output is 

forced to be zero. To this end, using the similar decomposition for  and noting ζ = o(1/polylog(n)), we can 

obtain 

 

 + o 1/polylog( . (C.24) 

Moreover, for any , note that 

X X (p) 2 X X (p) 2 X X (p) 2 l1,(i,j) [Θi,j (v)] = l1,(i,j) [Θi,j (v)] + l1,(i,j) [Θi,j (v)] j∈[n] p∈[P] j∈[n] p∈Pi,j∗ (v) j∈[n] 

p6∈Pi,j∗ (v) 

= `1,(i,i) + Xl1,(i,j) · zi,j2 ± o n/polylog( , 
j6=i 

where  and 

( 

 1 with probability 1/P; 

 zi,j = (1 − λ)2 + λ2 with probability (P − 1)/P, 

if . Consequently, applying Hoeffeding’s inequality regarding the random variable zi,j (when ), we have with 

probability at least 1 − 1/poly(n), 

polylog(

 

 . polylog( Similarly, we can also obtain 

 l1,(i,j) ± o 1/polylog(  

Therefore, combining the above results, we can get 
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. 

Similarly, we can get 

 

 

. 

Then note that the positive and negative data are generated with equal probability, we have  and  are different by 

at most o 1/polylog( , therefore, it is easy to get that 

polylog( . 

Plugging the above inequality into (C.24) we can conclude that 

 . polylog( 

This completes the proof.  

Finally, we state the outcome of noise learning, common feature learning, and rare feature learning in the following 

Lemma. 

Lemma C.15. Let ζ be a preset quantity satisfying ζ = [ω(dσp2/(Pn)),o(d−1/2σp−1)] and T be the smallest iteration number 

such that maxk∈[2],(i,j)∈S |Fk(W(T);xi,j)| ≥ ζ/2, then with probability at least 1 − 1/poly(n), it holds that 

 

Proof. We will only prove the results for the inner products , and , as the 

proof for the remaining inner products will be exactly the same. 

We first recall the update of hw1,r,v0i: 

 



The Benefits of Mixup for Feature Learning 

58 

The using Lemma C.7 and the similar proof of Lemma C.13, we can get 

. 

Therefore, noting that we have assumed dσp = o(n/P) and , 

 

for some sufficiently small constant c < 0.5. Therefore, further applying Lemma C.7, we can get that 

  (C.25) 

Given the above equation, we are able to complete the proof by combining it with Lemma C.13: 

 . (C.26) 

In particular, given the fact that , we can get the following 

  (C.27) 

for some . Besides, by Lemma C.14 and (C.15), we have for any r0 ∈ [m], 

polylog( 

 |hw2

,r 2,r 2 polylog( 

 polylog(  

w2,r0,u 

polylog( . 

Note that t ≤ T = Oe(1/η), we can further get . This immediately implies that 

. 

Moreover, (C.25) implies that 

. 

Further note that  has the same sign for all t ≤ T and [1 + Θ(ηρ)]t = Θ(1) for all t ≤ T, then define T0 = T − Θ(1/η), 

we have 
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Then by (C.26) and (C.27), we have for all t ∈ [T0,T − 1], it holds that 

. 

Therefore, we can finally get 

 

The remaining part is to establish the upper bounds in terms of incorrect feature learning, i.e., and . 

Particularly, recall their update forms as follows: 

 

 

Then by Lemmas C.6 and C.10, we have 

, 

the above equations further yield 

 

. 

Then using the fact that Tη = O(polylog(n)), we can further obtain 

 

. 

Moreover, following the same procedure of (C.23), we can get 

 

 

Finally, using the assumption that ζ = ω(dσp2/(Pn)), we can get that 
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. 

Besides, note that the above inequality actually holds for any T0 ≤ T, thus 

 

This further implies that 

. 

Then, rearranging terms will readily give the following result: 

 

 

≤ Oe(ζ3/2), 

where the last inequality holds since we must have 

 

as otherwise, we cannot have maxk∈[2],(i,j)∈S |Fk(W(T);xi,j)| ≤ ζ/2 for all t ≤ T, which contradicts the condition made in this 

lemma. This completes the upper bounds of  and . 

 
C.5 Proof of Theorem 4.2 

Proof of Theorem 4.2. We will evaluate the test error for common feature data and rare feature data separately. In 

particular, take the positive data (x,1) as an example. Then note that the data x consists of the common feature v, we 

can obtain the following by Lemma 5.6: 

. 
 r=1 p=1 r=1 p:x(p)=v 

On the other hand, we can follow the similar proof of Theorem 4.1 to show that  with probability 

at 

least 1 − 1/poly(n), then it follows that 

. 

where we use the fact that bα2 = o(1/polylog(n)) and d = ω(n3P). This clearly suggests that 

P(x,y)∼Dcommon[argmaxFk(W(t),x) 6= y] ≤ 1

 . k poly(n) 
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Then let’s move on to the rare feature data. In particular, consider the positive rare feature data (x,1), which contains the 

rare feature v0, we have 

. 

On the other hand, it holds that 

, 

where we use the fact that bα2ζ2 = o(ρ) and d = ω(n3P3/ρ2). Therefore, this implies that 

P(x,y)∼Drare[argmaxFk(W(t),x) 6= y] ≤ 1

 . k poly(n) 

Putting the results for common feature data and rare feature data together, we are able to complete the proof. 

 


