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Abstract

Mixup, a simple data augmentation method that
randomly mixes two data points via linear
interpolation, has been extensively applied in
various deep learning applications to gain better
generalization. However, the theoretical
underpinnings of its efficacy are not yet fully
understood. In this paper, we aim to seek a
fundamental understanding of the benefits of
Mixup. We first show that Mixup using different
linear interpolation parameters for features and
labels can still achieve similar performance to the
standard Mixup. This indicates that the intuitive
linearity explanation in Zhang et al. (2018) may
not fully explain the success of Mixup. Then we
perform a theoretical study of Mixup from the
feature learning perspective. We consider a
feature-noise data model and show that Mixup
training can effectively learn the rare features
(appearing in a small fraction of data) from its
mixture with the common features (appearing in
a large fraction of data). In contrast, standard
training can only learn the common features but
fails to learn the rare features, thus suffering from
bad generalization performance. Moreover, our
theoretical analysis also shows that the benefits
of Mixup for feature learning are mostly gained in
the early training phase, based on which we
propose to apply early stopping in Mixup.
Experimental results verify our theoretical
findings and demonstrate the effectiveness of the
early-stopped Mixup training.
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1 Introduction

The Mixup method (Zhang et al., 2018) is a popular data
augmentation technique in deep learning, known to yield
notable improvements in generalization and robustness
across multiple domains, such as image recognition
(Berthelot et al., 2019), natural language processing (Guo
et al., 2019b; Chen et al., 2020a), and graph learning (Han
et al., 2022a). Unlike traditional data augmentation
approaches that require domain knowledge of the
dataset (e.g., random rotation and cropping for image
data, and randomly modifying edges for graph data),
Mixup relies on convex combinations of both features and
labels from a pair of randomly selected training data
points. As a result, this technique does not require any
specialized knowledge or expertise to be performed.

Despite the remarkable empirical success of Mixup, there
is a considerable gap in the theoretical understanding of
this technique. In the original work of Mixup (Zhang et al.,
2018), it has been argued that the efficacy of Mixup can
be attributed to its inductive bias, which encourages the
trained model to behave linearly, leading to (relatively)
simple decision boundaries. This inductive bias has been
further supported by a series of works (Guo et al., 20193;
Zhang et al.,, 2020; 2022; Chidambaram et al., 2021),
which prove that the Mixup behaves similarly to standard
training for linear models. In particular, Mixup applies the
same linear interpolation on the features and labels of a
pair of training data points (X1,y1) and (X2,y2): denoted by
Ax1+ (1 -2A)xzand labels Ay1 + (1 - A)y2, where A € [0.5,1]
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is randomly chosen. Then, the trained neural network
(NN) model F is naturally encouraged to conduct the
mapping F(Ax1+(1-A)x2) = Ay1+(1-A)y2 for all A €
[0.51], (x1y1) and (x2y2), implying that F tends to
behave linearly at least within the line segments between
all training data pairs.

Although linearity is a nice inductive bias that tends to
learn the models with low complexities, we are not clear
about whether such an intuition from the algorithm
design (i.e., performing the same linear interpolation for
features and labels) can indeed explain the improvement
in generalization. To examine this, we conduct a proof-of-
concept experiment on CIFAR-10 dataset. Instead of using
the same linear interpolation in the feature and label
space, we implement the interpolations using different
A’s for features
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Figure 1. Test accuracy achieved by Mixup training with different
configurations of A and g(A). The results are evaluated by training
ResNet18 and VGG16 on CIFAR-10 dataset without random crop &
flip data augmentation and weight decay regularization. We
consider 5 different configurations: (1) A = g(A) = 1, i.e., standard
training; (2) A = g(A) ~ U[0.5,1], i.e., standard Mixup; (3) A ~
U[0.5,1] and g(A) = 1.5 - 4; (4) A ~ U[0.5,1] and g(A) ~ U[0.5,1];
(5) A =0.7 and g(A) = 0.8. It is clear that the performance gain of
Mixup does not require setting g(A) = A.

and labels, i.e.,, we implement the Mixup data
augmentation on the features and labels as: Ax1 + (1 - A)xz
and g(A)y1 + [1 - g(A)]yz2 for some nonlinear or even
random function g(-) : R[> — RI%51]. Qur results, shown in
Figure 1, demonstrate that the substantial performance
gain of Mixup training over standard training does not
require g(A) = A. Other choices, such as fixed or
independently random A and g(A), can lead to comparable
or even better performance.

Therefore, it demands seeking a more fundamental
understanding of Mixup that is beyond the linearization
illustration. To address this issue, we draw inspiration from
a recent work (Shen et al., 2022), which regards standard
image data augmentation as a form of feature
manipulation. This perspective offers a general framework
to investigate the behavior of various data augmentation

techniques, including Mixup in deep learning. In particular,
they consider a multiview data model that consists of
multiple feature vectors and noise vectors with different
strengths and frequencies. More specifically, the feature
vectors are categorized as the common ones (i.e., “easy to
learn” features) and the rare ones (i.e., “hard to learn”
features): the former refers to the feature appearing in a
large fraction of data (thus contribute a lot to the gradient
updates), and the latter refers to the features occurring in a
small fraction of data (thus have limited contribution to the
gradient). They further assume that the common features
are the ones with rare orientations compared to the rare
features and they can be balanced by applying data
augmentations. For example, the common feature of a cow
could be the left-facing cow, while the rare feature could be
the right-facing cow, which can be generated by applying a
horizontal flip to the common feature.

However, in many cases, the common and rare features may
not be easily balanced by standard data augmentations.
Let’s still take the cow image as an example, the common
and rare features could be brown cows and black cows, or
front-view cows and side-view cows. Then the standard
rotation or flip operations clearly cannot convert the
common features to rare ones. We conjecture that Mixup
may exhibit certain benefits in tackling this type of feature,
as it has been shown to improve test accuracy when
combined with standard data augmentations (Zhang et al.,
2018). This motivates the problem setup considered in this
study.

Particularly, we perform the theoretical study of the
learning dynamics of Mixup based on a similar multi-view
data model (see Definition 3.1 for more details): each
data point will either contain a common feature vector
with a relatively high probability 1 - p, or a rare feature
vector with a relatively low probability p. The remaining
components will be filled with random noise or feature
noise. We then consider a two-layer convolutional neural
network (CNN) model and study the learning behaviors of
both standard training and Mixup training using gradient
descent. The main contributions of this paper are
highlighted as follows:

¢ We identify that the linearity illustration may not be
able to fully elucidate the exceptional performance of
Mixup. In particular, we show that using the same linear
interpolations for both features and labels is not
necessary, while some other choices, e.g.,
independently random linear interpolations, can also
lead to substantial performance gains compared to
standard training.
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e We prove a negative result (Theorem 4.1) for standard
training, demonstrating its inability to learn the rare
features of the multi-view distribution. This failure
leads to the domination of the rare feature data by its
noise components during the test period, resulting in a
0(p) test error. The reason for this lies in the tendency
of the standard training algorithm to memorize the
noise component of rare feature data to attain zero
training error, while the rare feature itself, which
appears in only a small fraction of the data, is not
prominent enough to be effectively discovered by the
algorithm.

e More importantly, we establish a positive result
(Theorem 4.2) for Mixup training by showcasing its
ability to attain near-zero test errors on the multi-view
distribution. Specifically, we demonstrate that Mixup
can successfully mix the common and rare features so
that the gradients along these two features are
correlated. As a result, the rare feature learning can be
boosted by the fast learning of common features, and
ultimately reaches a sufficiently high level to
overshadow the effects of noise on test data. ¢ Our
theory also suggests that the feature learning
(especially the rare feature) benefits of Mixup are
mostly gained in the early training phase. Then we
develop the earlystopped Mixup, i.e., turning off the
Mixup data augmentation after a certain number of
iterations. Experimental results show that the test error
achieved by early-stopped Mixup is comparable to or
even better than that achieved by standard Mixup (i.e.,
using Mixup throughout the entire training), which is
consistent with the recent findings that over-training
with Mixup may hurt the generalization (Liu et al.,
2023). This not only corroborates our theoretical
findings but also justifies the necessity to study the
entire feature learning dynamics of Mixup rather than
only the solution to the (equivalent) empirical risk of
Mixup.

Notations. We use poly(n) and polylog(n) to denote a
polynomial function, with a sufficiently large (constant)
degree, of n or log(n) respectively. We use o(1/polylog(n))
(and w(polylog(n))) to denote some quantities that
decrease (or grow) faster than 1/log¢(n) (or loge(n)) for any

constant c. We use Og, Qe, and B¢ to hide some log factors
in the standard Big-O, Big-Omega, and Big-Theta notations.
2 Related Work

Theoretical Analysis of Mixup. We would like to comment
on some recent works that attempt to explain the benefits
of Mixup from different angles. To name a few, Thulasidasan

et al. (2019) showed that the models trained by Mixup are
substantially better calibrated, i.e., the softmax logits are
closer to the actual likelihood than that obtained by
standard training. Carratino et al. (2020) studied the
regularization effect of Mixup training and connected it to
multiple known data-dependent regularization schemes
such as label smoothing. Following the same direction, Park
et al. (2022) further developed a unified analysis for a class
of Mixup methods, including the original one and CutMix
(Yun et al., 2019), and proposed a hybrid version of Mixup
that achieves better test performance. Chidambaram et al.
(2021) studied the Mixup-optimal classifier and
characterized its performance on original training data
points. However, these works mostly focus on the solution
to certain Mixup-version regularized empirical risk, while
our experiments on early-stopped Mixup suggest that the
entire learning dynamics could be more important.

Very recently, Chidambaram et al. (2022) conducted feature
learning-based analyses for Mixup and demonstrated its
benefits. However, we would like to clarify some differences
in our theoretical analysis. Firstly, in terms of the Mixup
method, they considered only the mid-point Mixup, where
A=g(A) = 0.5, while we allow a more general choice of A €
(0.5,1). Secondly, for the data model, we followed Shen et
al. (2022) by considering a data model with two features of
different frequencies (common and rare), feature noise, and
random noise, while the random noise component, which
plays an important role in memorizing all training data
points (Allen-Zhu & Li, 2020b; Shen et al., 2022), was
ignored in Chidambaram et al. (2022). Finally, in terms of
theoretical analysis, Chidambaram et al. (2021) and our
paper also differ due to our distinct data models.
Specifically, their study focuses on the competence
between learning two symmetric features, whereas our
focus is on the competition between rare feature learning
and noise memorization. In conclusion, while Chidambaram
et al. (2022) and our work share a similar high-level spirit for
understanding the benefits of Mixup, we approach this
problem from different angles.

Data Augmentation. There are also many works studying
the effect of standard data augmentation methods (i.e.,
performed within the data points) from different
perspectives, such as regularization effect (Bishop, 1995;
Dao et al., 2019; Wu et al., 2020), algorithm bias (Hanin &
Sun, 2021), margins (Rajput et al.,, 2019), model
invariance (Chen et al., 2020b), and feature learning
(Shen et al., 2022). We view these works as orthogonal to
our work as they mostly concern the data augmentation
within the data points (e.g., random perturbation,



The Benefits of Mixup for Feature Learning

random rotation, etc), which is different from the cross-
data Mixup data augmentation.

Feature Learning in Deep Learning Theory. In the field of
deep learning theory, there has emerged a series of works
studying feature learning behavior during NN training.
They focus on characterizing how different training
approaches affect feature learning, such as ensembling &
knowledge distillation (Allen-Zhu & Li, 2020b), using
adaptive gradients (Zou et al., 2021), mixture of expert
(Chen et al., 2022), and contrastive learning (Wen & Li,
2021). We point out that feature learning in Mixup is
more complicated as the learning dynamics for different
features are heavily coupled.

3 Problem Setting.

As mentioned in the introduction section, we
theoretically investigate the behaviors of standard
training and Mixup training on a multi-view data model.
In this section, we will first deliver a detailed set up of the
multi-view data model and then introduce the two-layer
CNN model as well as the gradient descent algorithms of
standard training and Mixup training.

3.1 Data Model

In this work, we consider a binary classification problem
on the data (x,y) € R% x{1,2}, where x = (x(1,..,x(P) has
P patches and y € {1,2} denotes the data label. For ease
of presentation, we define the data of label y = 1 as the
positive data and the data of label y = 2 as the negative
data. Moreover, the data will be randomly generated
according to the following detailed process.

Definition 3.1. Let D denote the data distribution, from
which a data point (x,y) € R%? x {1,2} is randomly
generated as follows:

1. Generatey € {1,2} uniformly.
2. Generatex as a vector with P patchesx =
(xD,...,x@2) € (R)P, where

e Feature Patch. One patch, among all P patches, will
be randomly selected as the feature patch: with
probability 1-p for some p € (0,1), this patch will
contain a common feature (v for positive data, u for
negative data); otherwise, this patch will contain a
rare feature (vOfor positive data, u® for negative
data).

* Feature Noise. For all data, a feature vector from « -
{u,v} is randomly sampled and assigned to up to b
patches.

¢ Noise patch. The remaining patches (those haven’t
been assigned with a feature or feature noise) are ran-

~ N 2,
dom Gaussian noise N(O. p H), where H =
- L.'lL:lT - VVT - V’V"T o LIIU."T
| SRR V3 Tz,

We assume all feature vectors are orthonormal, i.e., kakz =
1 and habi = 0 for all a,b € {v,u,v,u’} and a =6 b.
Moreover, we set d = w(n®), Bb = polylog(n), p = ©(n-3/4),
op=0(d-1/2n1/4), and a = O(1/n)1.

Our data model includes three types of critical vectors:
common features, rare features, and noise vectors (the
feature noise vectors can be categorized into common
features since they are only different in terms of strength).
All of them can be leveraged to fit the training data points
and thus achieve a small training accuracy/loss. However, in
order to achieve a nearly perfect test accuracy, one has to
learn both common features and rare features as overfitting
the random noise vectors of training data points will make
no contribution or even be detrimental to the test
performance, then the prediction will be heavily affected by
the feature noise. Given our data model in Definition 3.1,
we aim to show that Mixup is able to learn all informative
features while standard training may only learn a part of
them.

The feature-noise data model has been widely adopted to
study many algorithmic aspects of deep learning, including
adversarial training (Allen-Zhu & Li, 2020a), momentum
(Jelassi & Li, 2022), ensemble and knowledge distillation
(Allen-Zhu & Li, 2020b), benign overfitting (Cao et al., 2022),
and data augmentation (Shen et al., 2022). Our data model
mostly follows from the one considered in Shen et al.
(2022), which also includes the design of common features
and rare features for studying the learning behaviors of data
augmentation (that is performed within one single data
point, e.g., random flip/rotation). However, instead of
assuming that the rare features (v0 and u?) can be re-
generated by applying data augmentation on the common
features (v and

u), we make nearly no assumption on their relationships.
Therefore, learning the rare features in our model can be
regarded as a harder problem, and our theoretical analyses
for Mixup are orthogonal to those in Shen et al. (2022).

3.2 Neural Network Function

Two-layer CNN model. We consider a two-layer CNN
model F using quadratic activation function o(z) = z2.
Note that we consider binary classification problem with
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y €{1,2}, then given the input feature x = (x(1),..,x(), the
k-th output of the network (k € {1,2}) is formulated as

P m

Fi(W;x) = XX(hwkr,X(p)i)2.
p=1r=1

where wi,- € R¢denotes the neuron weight corresponding
to the k-th output, W denotes the collection of all model
weights, and m denotes the NN width, which is set as m
= polylog(n) throughout this paper?. Moreover, given the
input X, we denote Logiti(W;x) by the logit of the kth
output of the NN model, which can be calculated via
performing a softmax function on the NN outputs:

Logitk(W;X) = er(w;xi)/Pse{1,2} eFs(W,x).

Using a polynomial activation function (or RelLU with
polynomial smoothing) is not new in deep learning
theory. The purpose is to better illustrate/distinguish the
feature and noise learning dynamics during the neural
network training (Frei et al., 2022; Cao et al., 2022; Shen
et al., 2022; Glasgow et al., 2022). Our analysis can also
be extended to other polynomial functions o(x) = x2for
some q > 1.

3.3 Training Algorithms

Initialization. We assume that the initial weights of the
neural network model are generated i.i.d. from the

0w 2
Gaussian initialization: wk.r ‘\'(O’JUI)

o(d-172).

, Where oo =

Standard training. Given the training data points S :=
applying standard full-batch gradient descent to optimize
the following empirical risk function:
1 (]
Ls(W)=— ¢
S (Wixiyi),

1The choice of these parameters is not unique, here we only
pick a feasible one for the ease of presentation.

2 This choice of network width is to guarantee some nice
properties hold with probability at least 1-1/poly(n) at the
initialization. We can also resort to setting m as some large
constant at the price of deriving a constant probability
guarantee, e.g., > 0.9.

3 If considering random A, we will need to further take an
expectation of LMixupg

(W) defined in (3.2). As a result, our

({P‘yt(wsxi)

Yreqrzp €W

Xi, yi) = —log
where (W;

Starting from the initialization W), the gradient descent of
the standard training takes the following update step

n
) =W~ IN O Wix, ). G
W i3
where 7 is the learning rate. Then, the detailed
calculation of the partial derivative Vwi. (W;X;y:) is
given by

P
o Wi ) = 2 Yo
p=1

where 'ki= lk=yi—Logitk(W(0);Xi).

Mixup Training. Given two training data points (x1,y1) and
(%2,y2), Mixup trains a neural network based on the convex
combinations of them: (Ax1+(1-A)x2,Ay1+(1- A)y2) and
((1 = A)x1 + Ax2,(1 = A)y1 + Ay2), where we slightly abuse
the notation by viewing the labels y1 and y2 as their one-
hot encoding. Besides, Figure 1 suggested that A does not
need to be randomly sampled to achieve better
performance than standard training, we will focus on a
fixed constant A € (0.5,1)3* in our theoretical analysis.
Finally, if considering all possible combinations of the
training data pairs with a fixed A, the (equivalent) training
dataset of

Mixup training is SMixup := {Xi;, Vi }ije[n], where we denote
x;jand yijby Axi+ (1 - A)x;and Ayi+ (1 — A)y;respectively.
Motivated by this, we can claim that the Mixup training
actually aims to learn the model parameter by optimizing
the following loss function:

W)= 3¢

LMixup$S t.i€m] (W;xiiyij), (3.2)

where

analysis, particularly Proposition 5.4 also needs to consider
the additional expectation over A in the definitions of

(t)
coefficients Vs (:a),
4 Besides, we can also allow using different A’s for inputs
and outputs, given our theoretical analysis in Section
5.2.
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(Wixipyi) = A’ (Wixigyi) + (1 - A) (W3Xip)-

In this paper, in order to better illustrate the key aspect of
Mixup training as well as simplify the theoretical analysis,
we resort to the gradient descent on the loss function
(3.2), which takes the following update step:

n n

(t+1) — w1 (W x. - e
=W - ZZ Vwl(WYix; 5 i )

w i=1 j=1 .
Then, the detailed calculations of all partial derivatives are
given as follows: for any Mixup data (Xi;yij), we have

P
Vwir (W;Xij) = 2'%6j) - Xhwkr,X(ijp)i + X(ijp),
p=1

where ‘iis the loss derivative with respect to the network
output Fk(W;Xi;yij):

k(i) = ALk=yi+(1 = A) Lk=y; - Logitk(W;Xi)).

4  Main Theory

In this section, we will theoretically characterize the
generalization errors achieved by standard training and
Mixup training on the multi-view model. In particular, the
following Theorem states the negative result of standard
training.

Theorem 4.1. Suppose that the training data are generated
according to Definition 3.1, let n = 1/poly(n),

T = polylog(n)/n, and {Wstandard(s) }¢=0,.,T be the iterates
of standard training, then with probability at least 1 -

1/poly(n), it holds that for
P )ND[ allte [0,T], # 3}'] > 5%
®
B argmaxk Fk(Wstandard;X).

Theorem 4.1 basically states that the two-layer CNN
model obtained via standard training will lead to at least
0O(p) test error on the data model defined in Definition
3.1. In fact, as we will clarify in Section 5.1, this is due to
the fact that the rare feature data will be fitted via their
random noise components, while the rare features v®and
u’will not be learned. Consequently, nearly a half of test
rare feature data will be misled by the feature noise
components, resulting in a ©(p) test error.

In comparison, Mixup training can help learn the rare
features and thus achieve a smaller generalization error.
We formally state this result in the following theorem.

Theorem 4.2. Suppose the training data are generated ac-

letn = T =

1
cording to Definition 3.1° poly(n)* polylog(

Mixup training, then with probability at least 1 = poiy(

1, it holds that for
t € [0,T], Pxyyop| X
someargmaxk

Fi(Wmixup;X) 6=
'.U] = U(p(ﬂ)l-'(n.))i

Theorem 4.2 shows that the two-layer CNN model
obtained via Mixup training can achieve nearly zero test
error, which is much better than that of standard training
asp = On ) > o(1/poly(n)) (see Definition 3.1).
In

particular, as we will show in Section 5.2, at the core of
Mixup training is that it mixes common features and rare
features together, thus the learning of these two types of
features will be coupled. Consequently, the learning of
rare features will be “boosted” by the learning of
common features, reaching a sufficiently large level that
dominates the effect of feature noise.

5 Overview of the Analysis

According to the data model in Definition 3.1, the critical
step of the generalization analysis for standard training
and Mixup training is to sharply characterize the
magnitude of the feature learning, including both
common features (v and

u) and rare features (v0, u%), as well as the noise learning,

including all noise vectors ‘ﬁfp)’s (denoted by {&}). Then,
the key step to show the generalization gap between
standard training and Mixup training is to identify their
difference in terms of feature and noise learning.

5.1 Feature and Noise Learning of Standard Training

+ p—
According to Definition 3.1, we deﬁneSO and'Sn as the set
of training data that have strong positive and negative

. + -

features respectively andS1 andSi as the set of data that
have weak positive and negative features respectively. In
the following, the learning patterns of these vectors will be
(t) )

characterized by studying the inner products (Wi a ,

where a € {v,u,vo,u®} U {£}. Intuitively, a larger inner
product implies that the neural network has a stronger
learning ability of a. Given the multi-view data model in
Definition 3.1 and the update rule (3.1), we have for any a
€ {v,u,vou'} u {¢},

w, . .a) =



The Benefits of Mixup for Feature Learning

=3 Lx) (g a)

i€[n] p= l .
(5.1)

Then by the data model in Definition 3.1, we can see that
for common feature vector a € {v,u}, there will be ©(n)
training data points contributing to the learning of a; while
for rare feature vector a € {v%,u®}, only O(pn) data points
contributing to the learning. Besides, since each noise
vector a € {£} in the training data point is randomly
generated, its learning will largely rely on one single data,
i.e., the data consisting of that noise vector. This difference
clearly shows that the common features will be preferably
discovered and learned during the standard training.

In the following analysis, we will decompose the entire
standard training process into three phases, according to
the learning of common features and noises. In particular,
the Phase 1 referred to the initial training iterations such
that the neural network output, with respect to all input
training data, is in the order of O(1). In this phase, the loss

derivatives f:(‘.!) will remain in the constant order and all
critical vectors will be learned at a fast rate. Then The Phase
2 is defined as the training period starting from the end of
Phase 1 to the iteration that the neural network output has

reached ©(1)e for all training inputs. Finally, we refer to
Phase 3 as the training period starting from the end of
Phase 2 to convergence, i.e., the gradient converges to zero.

Standard Training, Phase 1. The following lemma
characterizes the learning of all features and noise in Phase
1.

Lemma 5.1. There exists a iteration number 10 = e(1/n)
such that for any t < Ty, it holds that
( (t+1)

wi' vy = (wi'lv) - (1+06(n),
(wi ™ u) = (wi) a) - (14 6(n))

(5.3)
Besides, for all remaining inner products, it holds that

(5.2)

max \(wﬂ +l},a)|
a)| - [1+o(n/

wheret< To,r € [m],k€[2],q€[P],a€

{u,v,ud, v} U {£&} are arbitrarily chosen as long as the inner
products are different from those in (5.2).

< max (Wi polylog(”))}

Lemma 5.1 shows the competence results of learning
common features, rare features, and noise vectors in
Phase 1. In particular, it can be observed that the learning
of common features (v, u) enjoys a much faster rate,

while other critical vectors, including rare features and
noise vectors, will be staying at their initialization levels.

Standard Training, Phase 2. During this phase, the loss
derivative will remain in the constant order for the rare
feature data, since either the rare feature learning (e.g,

<W(lf)r vf>) or the noise learning (e.g.,<w'gi-2" Ew}) are still
quite small. Recall that the common features have already
been fitted during Phase 1, we will then focus on the
competence between learning rare features and learning
noise vectors in Phase 2. The following lemma
characterizes the dynamics of standard training in Phase 2.

- Tl
Lemma 5.2. There exists a iteration number T1 = O(dﬂgrr)

such that for any t € [To,T1], it holds that

AR ) [L+O(pm)]

[+ 0(m)] .

Besides, for any’ € Sfr USI_, any q € [P] and k =ys,
max | (wy' ", €(9)]

€D [1+6(:

(w! = (wi'l.v

(wyl, ') = (wi)

do}
)

Lemma 5.2 shows that for rare feature data points,
standard training admits a faster noise learning speed

2
compared to rare feature learning (note thatdgp > P,

according to Definition 3.1). This consequently leads to

(T1) £Phy) _ 9§
adequate learning of noise (|<Wu:l &7 = O(1) for
some p € [P]) and nearly no learning of rare features
(i VL Ik o = 0oy,

Standard Training, Final Phase. The final phase is defined
as the training period after the end of Phase 2 until
convergence. In the following lemma, we will show that
(1) the convergence can be guaranteed; and (2) the
learning of features and noise vectors at Phase 2 will be
maintained.

Lemma 5.3. Let T1 be the iteration number defined in
Lemma 5.2, then for any t= poly(n) >Tiand k€ {1,2},

1/?:)

=17 i=1

(t) (t)
Moreover, we have Z:nﬂ((“ﬁ V)2 21’1—1““’2.1»1 u))? =

O(1) and (Wiir V)1 Wi )| = Ofov),

It can be clearly seen that the gradient descent can
converge to the point with a small gradient (the averaged

loss derivative will be roughly in the order of Oe(1/(tn)),
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which approaches zero when t is large). More importantly,
the common feature data and rare feature data will be
correctly classified by fitting different components:
common feature data will be fitted by learning v and u,
while the rare feature data will be fitted by noise
memorization (as standard training nearly makes no
progress in learning. Consequently, when it comes to a fresh
test rare feature data, the model prediction will be heavily
affected by the feature noise component, thus leading to an
incorrect prediction with a constant probability (the formal
proof is deferred to Section B.3).

5.2 Feature and Noise Learning of Mixup Training

As mentioned in Section 3.3, any data pair sampled from
training dataset will be considered, which gives in total n2
Mixup data. Note that we have two types of data in the
origin training dataset: common feature data and rare

+ o— ot
feature data with two labels, denoted by‘s .S 8 ,and
S (see Section 5.1), we can also categorize the Mixup data

N , . . shit
points into multiple sets accordingly. Particularly, let ©x.#*
be the set of mixed data x;; = Ax; +(1-A)x; with xi € S.Tand
X; € ST, we can accordingly categorize all Mixup data with
the following 4 classes:

¢ Mix between two common feature data points, including
STt g~ &t + ) )
0.0 »<0.0 »*0,0 »<0,0  each of them is of size ©(n?).

e Mix between common feature and rare feature data
+4+ o—— ot+
Soi 801 s S0 ,

points with the same label, including
and
1,0 , each of them is of size O(pn?).
e Mix between common feature and rare feature data
S+=— —+ S+.—
points with different labels, including“0,1 > 0,1 > <10 |
and

— +
1,0 , each of them is of size B(pn?).
* Mix between two rare feature data points, including

-+
S1+1,+,S1-1,-, S1+1,- and Sl,l , each of them is of size
0(p%n?).

In contrast to standard training that nearly admits separate
learning dynamics for common and rare features, the
second and third classes of Mixup training data points,
actively mix the common and rare features together. For

8++

instance, some data points in 0.1 will contain a data patch
of form Av + (1 — A)v0. Then the learning of v will benefit
the learning of v9, since their gradient updates are
positively correlated. In the following, we will provide a
precise characterization on the learning dynamics of
feature and noise vectors.

In particular, noting that we consider the full-batch gradient
descent on the entire Mixup training dataset (see Section
3.3), the update formula of all critical vectors are provided
as follows: for any a© {u.v.u' . v}U {5}, we have
t+1 t t
(wittt a) = (wi) a) — - (Vaw, , L(W®),2). (5.4)

where we denote L(W(®) as the short-hand notation of

LMixupg (defined in (3.2)) for simplifying the notation.
More specifically, we summarize the update of all critical
vectors (e.g., common features, rare features, and data
noise vectors) in the following Proposition.

Proposition 5.4. For any critical vector a € {v,u,vou®} U {¢&},
we have

() (t)
-hVwi.L(W(p),ai = X Y. (bya)(wy. ., b)

be{v,u,vo,ut}u{é}

(1) . .
whereVs: (8,2)is a scalar output function that depends on
bac {v.u, v, u'} U{&} Mmore specifically, let

(r) _ plp) (») (P) (ot /
xiy =0 (v)-v+0; () a6 (v) v

n

+ Bij(p)(uo) - wo + X X Bij (és(a) - &s(a)

s=1q€[P]

(»p) be a linear expansion of
x;jon the space spanned by {v,u,v0,u®} U {}, we have

(t) 1 '0)
T (ba) =5 > b
i,j€[n]

(p) (p)
Gm (b) - (xi‘j ,a)
pE[P]

From Proposition 5.4, it can be seen that the learning of
common features, rare features, and noise vectors are

heavily coupled. Mathematically, the coefﬁcient"f'JE:” (a,b)
precisely describes how the learning of a affects the
learn-

ing of b, where a,0 € {v,u, v, u'} U{&} This effect
can be either positive or negative, depending on the sign

ﬁ,(*)( b) . .
of 7k "8 BJ Then, the next step is to sharply characterize

the coefﬁcients’?'lgf) (b,a) we will focus on early phase of
Mixup training, where the loss derivatives can be
regarded as the constant (i.e., approximately 0.5, -0.5,
A-0.5, or 0.5-2). Particularly, we will consider the training
stage such that rl]’lanE[Z],i,je[n] | Fr(W0);xi4)| < ¢, where { =

0 polylog(. n)/is a user-defined parameter. Then
based on {, we summarize the results of some critical
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coefficients in the following lemma, while the results for
all coefficients are presented in Lemma C.3-C.11.

Lemma 5.5. Assume maxke[2)ije[n] |Fr(W(e;Xij)| < ¢ for
some$ € [w(doy/(Pn)), O(dil/%;l)}, then,

W (v, v), 8 (u,u) = O(1), v (&, €7)) = O(do? /n)

H v, v), 55" (uu') = ©(p/P),

75 (V) Y (v, 0| = 0o/ P). ,
The coefficients presented in Lemma 5.5 reveal some key
differences between learning common features, rare
features, and noise. Let’s consider v without loss of
generality. First, similar to the standard training, the
learning of common features is much faster than the
learning of noises, since the leading terms of common

feature learning (i.e.,

t () g(p) £(p) .
'Y§ )(v,v)) and noise learning (i.e., (ne (&7, & )) satisfy:

(t) () e(p) £(p)
N (v, v) >y (&7, 8F ), Second, different from

standard training where the rare features are nearly
unexplored, Mixup training has the ability to boost the
learning of rare features via common feature learning,
which is characterized by

)
)

t t) t t
A v, v (wit) vy orad! (u,v!) - (wil) )
Finally, we also show that such a boosting effect is positive:

the boosting of v0to the correct neurons (i.e.,

{W(” } . ;

1. frelml) js stronger than that to the incorrect neurons
. i
(i.e., {Wéta-}re[nﬂ

t) (t)
( ), since”r'{ (v.v') > |77 (0, V') (recall
1
we pick ¢ = 0 polylog( 'n-)) ). This implies that the

rare features will be effectively discovered by Mixup
training, and finally, the neural network will have non-
negligible components along the directions of v?and u®.
We formally stated this in the following lemma.

Lemma 5.6. Let { be the same as that in Lemma 5.5 and T
be the smallest iteration number such that maxke[2]ije[n]
|Fr(W(m);xij)| 2 {/2, then T =

Oe(1/1n) and with probability at least 1 - 1/poly(n),

max |(w}"), )|, max | (w§), w)| = Q(¢1/?)

’

max|hwi(zn,voi|,max|hwz(zn,uoi| = Q(pd1/2) r r

max|hwz(zn),vi|, max|hwizh,ui| = 0e({3/2), r
r  max|hwz(zn,voi|, max|hwizrn,uoi| =
0e(g3/2).r r

We can then make a comparison between Lemma 5.3 and
Lemma 5.6 to illustrate the similarities and differences
between standard training and Mixup training in feature
learning. In particular, it is clear that both standard and
Mixup training can successfully learn the common features,
i.e., the inner prod (wii)ov) (wr,) u)

e, products ‘71 and are the
domi-

nating ones among all critical inner products. While more
importantly, the Mixup training can lead to much better rare
feature learning compared to standard training: the

(t) (t) — 0
standard training gives (Wi V) (W w)] = Oon)gy,

all iterations; in contrast, the Mixup training gives

(Wit VL IWES W] = Q(0CH2) nich are much
larger. Consequently, the strength of rare feature learning
in Mixup training will dominate the effect of feature noise,
thus achieving a nearly zero test error (the formal proof is
deferred to Section C.5).

3

8 0.30 Mixup Training

—— Mixup w/. Early Stopping,

o

IN

FeatureLearning
FeatureLearning

N

--- Standard Training
Mixup Training
—— Mixup w/. Early Stopping 0.00

o

[ 5000 10000 15000 20000 5] 5000 10000 15600 20000
Iterations Iterations

(a) Common Feature Learning (b) Rare Feature Learning

Figure 2. Common feature learning and rare feature learning on
synthetic data, all experiments are conducted using full-batch
gradient descent. Here we consider three training methods:
standard training, Mixup training, and Mixup training with early
stopping (at the 10000-th iteration).

5.3 Implications to the Early Stopping of Mixup

In addition to demonstrating the ability of Mixup in learning
rare features, Lemma 5.6 also reveals that the bene-

fits of Mixup training mostly come from its early training
phase. Therefore, this motivates us to study the
earlystopped Mixup training, i.e., the Mixup data
augmentation will be turned off after a number of
iterations. Then clearly, after turning off the Mixup data
augmentation, the learned features will never be
forgotten since the gradient update in this period will be
always positively correlated (by (5.1)). This immediately
leads to the following fact.

Fact 5.7. Let T be the same as that in Lemma 5.6, then if
early stopping Mixup training at the iteration T, we have
forany t > T, it holds that

max, |(W§‘3_.v’)|,maxr |(Wg3 )| = Q(p''?) E
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This further implies that applying proper early stopping in
Mixup training will not affect the rare feature learning.
Besides, turning off Mixup will enhance the learning of
common features (since its learning speed will no longer
be affected by the mix with rare features and noises),
which could potentially lead to even better generalization
performance. In the next section, we will empirically
justify the effectiveness of applying early stopping in
Mixup training.

6 Experiments

Synthetic Data. We first perform numerical experiments
on synthetic data to verify our theoretical results. In
particular, the synthetic data is generated according to
Definition 3.1. In particular, we set dimension d = 2000,
training sample size n = 300, the ratio of rare feature data
p = 0.1, noise strength g, = 0.15, feature noise strength «
= 0.05, number of total patches P = 5, and number
feature noise patches b = 2. For the two-layer CNN model
and the training algorithm, we set network width m = 10,
and conduct full-batch gradient descent with learning
rate n = 0.05 and total iteration number T = 20000. We
characterize the learning of common features and rare

m 2
features via  calculating > e (Wi v)) and

m N2 .
2or=1 (W1 V1) (we only consider v and v° as the
dynamics for u and u? are similar).
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Figure 3. Training loss (the cross-entropy loss on the mixup
data/clean data) and test accuracy achieved by Mixup with
different early stopping iterations: 0 (standard), 50, 125, 150, 200
(Mixup), numbers in the legend denote the average accuracy of the
last 10 iterates. The results are evaluated by training ResNet18 on
CIFAR-10 dataset without random crop & flip data augmentation
and weight decay regularization.

The results are reported in Figure 2. It is clear that both
standard training, Mixup training, and Mixup with early
stopping can exhibit sufficiently common feature learning,
while the rare feature learning of standard training is much
lower than those of Mixup and Mixup with early stopping.
This verifies Lemmas 5.3 and 5.6. Besides, we can also see
that turning off Mixup after a number of iterations will lead
to no decrease in rare feature learning and an increase in

10

common feature learning. This verifies Fact 5.7 and
demonstrates the benefits of early stopping.

CIFAR-10 Data. We further perform the Mixup training on
CIFAR-10 dataset to evaluate the performance of early
stopping, where we use SGD with momentum 0.9 and
learning rate 0.1, followed by x0.1 decaying at the 100-th
and 150-th iterations. We first train the ResNet18 model
(He et al., 2015) via Mixup without other data
augmentations and regularizations. We consider applying
early stopping at the 0-th (standard training), 50-th, 125-
th, 150-th, and 200-th (Mixup training) iterations and
report the training loss and test accuracy in Figure 3. First, it
can be observed that the cross-entropy loss on the training
data quickly drops to nearly zero after the stopping of
Mixup, showing that the neural network has correctly
predicted the labels of training data points with high
confidence. Besides, the test accuracy results show that
such a high-confidence fitting on training data will not affect
the test performance, while proper early stopping can even
gain further improvements, e.g., Mixup with early stopping
at the 125-th iteration achieves substantially higher test
accuracy than that of Mixup training. This demonstrates the
effectiveness of early-stopped Mixup and backs up our
theoretical finding that the benefits of Mixup mainly stem
from the early training phase.

7 Conclusion and Future Work

In this work, we attempted to develop a comprehensive
understanding of the benefits of Mixup training. We first
identified that the benefits cannot be fully explained by the
linearity inductive bias of Mixup. Then we theoretically
studied the dynamics of Mixup training from a feature
learning. We showed that Mixup is more beneficial in
learning rare features compared to standard training.
Moreover, our analysis revealed that the benefits of Mixup
in feature learning mostly stem from early training stages,
based on which we developed the early-stopped Mixup.
Our experimental results demonstrated that the early-
stopped Mixup can achieve a comparable or even better
performance than the standard one, which supports our
theoretical findings.

One future direction is to theoretically investigate the
benefit of a broader class of Mixup methods in various
tasks. For instance, Han et al. (2022b); Yao et al. (2022a)
proposed different Mixup methods to address the issue
of distribution shift; Yao et al. (2022b) proposed C-Mixup
methods for regression problems. It is also interesting to
explore the theoretical understanding of Mixup for other
types of data such as language data and graph data. We
believe the theoretical framework developed in this work
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can be adapted, while a more precise and practical data
model needs to be considered.
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Figure 4. Test errors achieved by Mixup training with different early stopping iterations: 0 (standard), 50, 125, 150, 200 (Mixup),
numbers in the legend denote the average accuracy of the last 10 iterates. The results are evaluated by training LeNet, VGG16,
ResNet18, and ResNet34 on CIFAR-10 dataset with random crop & flip data augmentation and weight decay regularization.
Experimental results suggest that applying proper early stopping in Mixup will not downgrade the test performance but can even lead
to higher test accuracy, especially for simpler models such as LeNet and VGG16.

A Additional Experiments

We further perform Mixup training for different neural network models and add the random crop/flip data augmentation
and weight decay regularization (set as 10-%). In particular, we consider two (relatively) high-capacity models: ResNet18
and ResNet34; and two low-capacity models: LeNet and VGG16. For ResNet18 and ResNet34, we set the learning rate as
0.1; for LeNet and VGG16, we set the learning rate as 0.02 and 0.1 respectively. Then we can clearly see that applying
proper early stopping in Mixup will not downgrade the test performance but can even lead to higher test accuracy. In
particular, Mixup with early stopping at the 50-th, 125-th, and 150-th iterations can still achieve a substantial
performance improvement compared to standard training for LeNet, VGG16, and ResNet18. Moreover, we can also
observe that Mixup with early stopping at the 150-th iteration performs better than the standard Mixup for all 4 models,
especially for LeNet and VGG16, two relatively simpler models. This justifies our theoretical findings and demonstrates
the benefit of early stopping in Mixup.

B Detailed Proof for Standard Training
B.1 Critical Quantities at the Initialization

Before moving on to the detailed characterization of the dynamics of standard training and Mixup training, we first
characterize a set of critical quantities at the initialization. Recall (1) the data model in Definition 3.1 that the feature
vectors have unit norm and the noise vectors are randomly generated from N(0,0,21); and (2) the initial model parameter

. ] 2 X . . . - .
wi,(9is randomly generated from/V (0. J[)I), we first give the following lemma that characterizes some critical quantities
that will be repeatedly used in the later analysis.

Lemma B.1. With probability at least 1 — 1/poly(n), it holds that for all i € [n], k € [2], r € [m], a € {v,u,v0ul},

((wil a) = Olon), . ((wi').a)* = O(a?)

re(m]

Additionally, for any noise patch ¢ € {&},

|(W1E[]3£>| = 6(01-1/2‘71150), Z ((WE?&))Q = :(daﬁag)

re[m]

©

13
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Proof. Note that wiis randomly generated N (0,02I)  from. Then using the fact that m= n), [|al|3 =1

(dap)

2 _
polylog(, and €112 = with probability at least 1 — 1/poly(n), applying standard concentration arguments can

lead to the desired

results.
O
B.2 Feature and Noise Learning of Standard Training
We first restate the feature and noise learning of standard training as follows: for features, we have
27
t+1 t &n (1 t)
(wii vy = (w0 Y (wiv) ek v
i€n] pEP;(v)
t+1 (t) 2n (t t
(wiiy ) = (Wil w) + =5 A ST (Wil of )3
~i€ln)  pePi(w) ,
t+1 t 2n (1 t :
(Wi v = wilov) = =5 360 YT W) IV,
! ieSt pEPi(v')
t+1) ) t
<w£ r u’) - <W£ r? Z éh i Z wi.z'ﬂul) : ”u’HE
i€s, PEPi(u’) i (B.1)

1if x\?)

2 _
where Pi(a) denotes the set of patches in Xicontaining the feature a and%i.p = is a feature patch and a;p? = a?if

(P) + —
Xi "is the feature noise. Additionally, note that the update of rare features only depends on the data inS1 andS1 since

. : + = . L A . .
the data (Xi:¥i) in S5 andSy satisfies Pi(v9) = @ and Pi(u®) = @. Similarly, we can also obtain the following result
regarding noise learning

n P
<w£}t?l)‘£§(;)> — ( E(q Z?Ef Z JJ) (JJ) ggﬁ' )
= p=1 .
(
Moreover, note that |fx # E (ie.i# sorp# q then|< £s >||sm the order of Oe(dV/20,?). Therefore, we
further have
2
(0 = (o 60) - [14 3L 0l £ 2L S O i 1O )
i#s||p#q . (B.2)

Phase 1, Fitting Common Feature Data. The following lemma characterizes the learning of all feature and noise vectors in
Phase 1.

Lemma B.2 (Phase 1, Standard Training). Let To be the iteration number such that the neural network output satisfies
|Fe(WW;x:)| < O(1) for all t < Toand i € [n], then for any t < Ty, it holds that

(Wit vy = (wilov) - (L em).  (wi u) = (wi u)- (1+6()
Besides, we also have for any t < To, r € [m], k € [2], q € [P], and s € [n],

(w8 V) = O(o0).  [(wi'),u)| = O(av),

(Wi, V) = Olo0),  [(wih,w)] = O(ov),  [(wil), &) = O(d"*a,00)

Proof. First, note that in the first stage, the neural network outputs are in the order of 0(1), impIying that the loss

() ) _ q e 1iQ)
derivatives satisfy |k | o1 ) More specifically, we can get thatﬁi i =0 ifk =y and b =00 )otherwise.
Then by (B.1),

we have

14
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; 2n (t) ‘ 9, 21 (t : -
(Wit D vy = (wifl v [H— D41 X alIvE+ T 30 4L X obIviE

ics] PEPi(V) ieln]\S; PEPi(v)

Note that by Definition 3.1, for any data i € [n] let P°(v) and P;°(u) be the set of patches corresponding to the feature

noise vectors v and u respectively, we have |P0(v)| < b andEI'E”P (v) Yip = ba? (1/polylog('”)). Additionally, note
that
() _ S + .
i =01 fori e & 5 4Pi(v) = P/(V) for alli € [”]\53- we have
(w(lt_j'l),v) = (WEQV) . |S+| :t()('q/ 'n,.)) = (wﬁt?v) . {1 - (T)(T])]
L polylog( , (B.3)
C("):|S+‘71_Z_ . Q)
where " 0 i€Sy "L remains in the constant level for all t < To. Similarly, we can also get that
S, ;
(wirtVw) = (wil) u) - {14+ =185 |- O 2 o(n/ )| = (wi),a) - [1+6(n)]

polylog( , (B.4)

O =185 1T Des 1)
where " 0 i€S, “2iremains in the constant level for all t < To. Moreover, in terms of the learning of wrong
features, we have

27 2y
t+1 t ] (t ] (t
(wit ),v>=<wé.3~,v>-[1+ Y B Y )Y ;,,||v|2]

eSS PEPi(v) i€[n]\Sg pEPi(v)
= wfov)- 1= 21571 000) £o(0)
= (Wfff v) - [1 - e("l‘)]- (B.5)
Then by Lemma B.1, this further implies that for all t in the first stage, we have

(Wi V)| < [(wy v < - < (Wi v)| = O(ay) (8.6)

Now we can move on to the learning of rare features and noise vectors. Particularly, for rare features, we have

f+1 2n .
WD V) = (wl) v [H SIS |v'||§]

ieStH PEP:(v')
- il 1+ 0250
= (Wi V) - [L+ ©(on)]
where the second equality is due to |Pi(v?)| = ©(1) and the last equality is due to|3 | = ©(pn) with probability at least

1 - 1/poly(n). Therefore, by Lemma B.1, we can then obtain
(Wi VL < [L4O(om)]" - (w3}, v')] < Olov) - 27 = O(ov)

where we use the fact that To= Oe(1/7). Similarly, it also follows that
(witt w'y = (wi) u') - [1 4+ ©(on)] = O(ay)

(t) _ _ o , (1) _ _ o .
Moreover, using the fact that€2-i O(1)forﬁ" € SFL andtlﬂ'— - O(1)for"f- € SQL, we can follow the same proof in
(B.5) and (B.6) and get

[(wih V)] < (Wi v = O(o0). [(wif).u')] < [(wi), u')| = O(00)

15
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(t) (£)
where the results for (W1.r+ V' andl (Wi, 1) | re by Lemma B.1.

Finally, regarding the learning of the noise vector 59)’ if 7 = Ys, we have the following by (B.2),

max \( +l Y| < max|(w,b LEDY 1+ g - é(dcrf,) + g -6(73Pd]/20}f)

Note that we have nP = 0(d/2), then the above equation further leads to

max |(wi' ), €0)] = max|(wi’), €0)] - 1+ 2 &(do?)
Besides, we can also get if k 6=ys,

mdx|( f+1) £y < max\(w?l.éﬁ“ﬂ B (:j(doﬁ)

8,7 ’ n
Then for any t < To= Oe(1/1) and any k, we have
] t
IIl'c'lXI(W o |<1111x|( U} LEDY . [1+2‘@((ia}f]
8.7 T

To
< max |(w£02££”))\ - [1 + 1. (—)(daf, ]
8,7 ! n
< max |(wf]3,§£"'))\ - exp {é(nngcr?,/n)}
< max|hwkr(0),és(q)i] - O(1) sr

= 0(e d1/2000p).
This completes the proof.

Lemma B.3. At the end of Phase 1 with maximum iteration number To= Oe(1/n), we have
m m

S v =6(1), S (wi u))? =T
r=1 r=1 6(1):

besides, it holds that
[(ws L w0 ) [ wy o )] (w Y v = Ooo): (w2, €)] = O(dY?0,00)

forall k€ [2],r € [m] and £ € {£}.

Proof. We first characterize the difference betweenC-((,-” andce(j) in (B.3) and (B.4). Particularly, we consider the
iterations that maxien kerz] | Fr(WW;xi)| < ¢ for somes = ©(1/log(1/00)) = 9(1/polylog(n)), then we can

(t) . _
immediately get that it holds that {10 = 051 < OO gor q11i € 87 and ‘gd 2 =05 < OO for a1 € Sy Therefore, we
can further get

05..“—— YA =05+00), €= > #=05+0()

| U i€Sy iES,

16
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Further note that the positive and negative data are independently generated from the data distribution, which implies
that with probability at least 1 — 1/poly(n), it holds thatl[So | — (1 = p)n/2| < O(n'/?) and
IS0 | = (1= p)n/2| < O(n'/?)
Therefore, applying the fact that { = ©(1/polylog(n)), we can obtain the following by (B.3) and (B.4)
L ] Y m )
Do) = Yl [+ (1= £ 0|

r=1 r=1
m m

> () —Z((Wé’iﬂ))z-[1+(1—ﬂ)ni0(¢7)}]

r=1

(B.7)

Then let”0 be the largest iteration number such that maxk: |Fr(W®;xi)| < ¢, which clearly satisfiesZ0 < 70 (Tbjs defined
in Lemma B.2), applying Lemma B.2 and considering the data i with largest neural network output (w.o.l.g assuming it’s
positive data),

S (Wi )2 2 e (WD x) > e ¢

r=1
for some absolute constant c. By (B.7), we can immediately obtain thatZo = (—)(log(C/(-rrwé))/u)’ where we apply the
initialization results in Lemma B.1. Besides, we can also obtain that

S (wi, ™ m))? ST (wl w))? (1 + (L= p)n om)))““
Srn (Wi v T (w2 AL (L e+ Oen)
=6(1) - (1 - O(To))-

Then note that$ = @(1/1%(]/”0)), we can gett o7 = O(Clog(¢) + Clog(1/(mag))) = O(l), which implies that
m (T, +1) 2 O m (t) m f+l f)
2rm({wa ! w)® = ()(C). Finally, by Lemma B.2, we know thatzr:l (Wi 2 andzrﬂ(( ;) will
keep increasing for all t < To. Then based on the definition of Toand the fact that { = ©(1), we can conclude that

m m

Z( I() _ 0(1} Z (10 1 — ()( )

r=1 r=1

The remaining arguments in this lemma directly follow from Lemma B.2, thus we omit their proof here. O

Phase 2. Fitting Rare Feature Data. After Phase 1, the neural network output will become larger so that the loss derivatives

(1)

(ﬂ'-i) or the output logits may no longer be viewed as a quantity in the constant order. Particularly, as shown in Lemma
e (W v wl ) ) " A

B.3, when t > To, the feature learning, i.e.,\"" 1.7* ¥/and‘ " 2.7/ will reach the constant order, implying that I"%.i!will be

closer to 1 or 0 for all common feature data. Additionally, the loss derivative will remain in the constant order for the rare

(i.e,

(t) (»
feature data, since either the rare feature learning (e.g,<w1-r >) or the noise learning (e.g., <W '-E'i >) will be in the

order of o 1/polylog(n)), so that the corresponding neural network outputs are also in the order of o 1/polylog(n)).
Therefore, we define Phase 2 by the period that (1) is after Phase 1 and (2) the neural network outputs for the rare feature

data are still in the order of O 1/polylog(")) (or equivalently, the loss derivatives of rare feature data are in the constant
order.)

Then, similar to the analysis in Phase 1, we will also characterize the learning of feature and noise separately. Regarding
the learning of common feature, by (B.1), we have

17
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2
t+1 i 1 (1 ¢
(wiir vy = (w0 Y (w0 el

i€[n] pPEP:i(v)
() 2n (1) 2 () 2
—<Wk-f--v>'[1+: (T X e Tl T ety T T )]
ieSy PEP:( i€Sy PEPi(V) SFusy PEPi(V) .

Similarly, we can also get that
27 . . .
t+1 t ! t t t
i = i (142 (A0 S o DAL Y adr X4 Y o)
i€S] pEP;i(u) €S, pEPi(u) Sus,; PEP;(u) ]
(B.9)

Moreover, according to the data distribution in Definition 3.1, we have

e Forany’ € SrT, it holds that Ppepi(v) atip2 =0(1) and Ppepiw) aip2 = baz=o0 1/polylog('”')).
e Forany® € S, it holds that Ppepi(u) tip2 =0(1) and Pperv) @ip2  =baz=o0 1/polylog(”)).

o Forany’ € 81" U ST it holds that P e ¥p2=baz=0 1/polylog(”')) and Pperiw %p2 = baz= 0 1/polylog(”))
(W(l) v) (W(t) u)
Therefore, we have the following results regarding the relation between® ™ k.7* */and\ ™ k,r2 =/,
_ 2
Lemma B.4. LetT1 = O(1/(1pbo®)) pe 5 quantity that is greater than To, then for any t € [To,T1], there exists an
absolute constant C such that
(To)

WiVl L ,v>|_ﬁ(i) (Wi wl o, lwiy w)l ~(i)

> . > . =
[(wi) )l (it )l (w5 V)l W) v)]

ap

a0
, and

Proof. Based on the update rules in (B.8) and (B.9), we have

(WIHI), ) = (W(t) ) . [1 + % . ( Z fl )4 O , polylog(
o w) - 3 A+ 0lmbo) )

’

i€So

(Wit u) = (wi?) u) - [ + 1. (@(1)- 3 o1/ n)- > fﬁflio(pnbag)ﬂ
‘ n : polylog( | .

i€So i€So

<1 N
where we use the fact that "#.:!| = =, This further implies that

\(W(Hl).vﬂ |(w (!) oy 1+1. ((—)(l) - Z-iest,* ?grz + o(1/polylog(n)) - 21_6507 (/ng + O(pnbu‘g})

(t+1) (f ) .
(Wi, ,u)| |<W1 LV + 1. (6(1) . Zieso f(lfl + o(1/polylog(n)) - 2165& f(ltz + O(p'n,bu'z})

~ v
v
*

£( P> 0forieS; andPl? >0forie sy

Note that we have"1 . Then it can be readily verified that

(1) (t) (r')
1)- Z O+ O(l/polylog(n)) . Z 0= 0(1 Z Fl i+ of 1/p01y10g( Z 4

iEST 1ES, €S, iEST

Then we can get that

18



The Benefits of Mixup for Feature Learning

O(pnba?) 2

N=z1-
143 (9(1) . Zfesg Fiff +o(1/

) Sies; )£ Olpnba)
21-0(pnba).

polylog(

Therefore we have for allt € (1o, Tlf]

(t) (To) (To)
Wi,V .V T w; v )
|< 1.r )I > |{ Wir >| . [1*0([)7][’}(}'2)}11 To > |< li )I . [170(pn1)02)]0(m)
(f) (n'(; (lll)
(wim| o (w7 ) [(wi, " w)
_ [1 . O(p?}b(l‘Q)] (,m,bm ) > o
Then applying the fact that ¢ ¢ holds for some absolute
[(w )| (w5 )0l
constant C, we are able to complete the proof for bounding (i) V). The results on!™5-¥)| can be obtained similarly.

O

In the next step, we will show that the learning of common features v and u will not be too large, i.e., exceeding the
polylog(n) order.

Lemma B.5. LetTf be the same quantity defined in Lemma B.4, we have for allt € [TD:Tﬂ, it holds that

KW]HU' >|’ |<W(’!j1 UH = Opolylog(n)).

Proof of Lemma B.5. Based on the update rules in (B.8) and (B.9), we have

(W(H_U, v) = (w(f) v) - [1+ ( Z f] ) —|—o polylog(
ieSy n)) - Z Egrz + O(pnbcf))}

i€So

g(f)

Using the fact that™1.i <0 for all’ € 80_, we further have

2
(Wit ov))? < (wil v [1 o (@(U PILER O(P“bﬂg)ﬂ

ieSy
= () [14 2 (00 X )+ 0(pmbe) )]
ieSy

s

where the second equality holds since (1 + 0(1))%2=1 + o(1). Further take a summation over r € [m] leads to

- ¥ A+ Omba?) )|

m m

S Uwit v < [Z((w§’2 v))‘ﬂ] : {1 n % . ((_)

r=1 r=1

_ €S, . (B.10)
>l < | (w2 |14 2 (00) - 32 A0+ Opnne) )|
r=1 r=1 " ies, . (B.11)

Similarly, we can also get that

(£
Regarding the loss derivat'ivef1 i, we can get that for any' € ‘So

19
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; , exp | Fb (We;xi) - F1(W
0 =1~ ®);x;) = [ Lt exp [y )] S F O -F O ]
(i):xi)] . .
Logit:1(W ®;xi) - F1(W@; exp 2(Wxi) 1(W
Xi)
(W
(B.12)

Before moving to the analysis on the feature, we first show that the model weight corresponding to the wrong label will

) ) |(W(ﬂ g(jﬂ)l . e ST .
not learn the noise of the data, i.e.,|\W2.r: &5 /lwill be very small for all ¢ € [P] and® € 0. Particularly, we have the
following by (B.2)

T ~ T ‘ g
manc | (wy !, €09)] < max [(wi), €17)] [H,—ﬁvfé‘.l—e(daﬁwﬁ- >l O(d 202
h ) i#s||p#aq

< max | (w3, £07)] - [1 + - 0(nPd'/ 0;)]

(t) (t) /
where the second inequality is due to ‘Eff:i| =1 and€2‘s <0 fors € Sf-)’-. Therefore, we can get that for allt € [Tflf Tl],
‘ (1 /1 1/2 .2
whereT1 < O(1/(nPd / UTJ)), that

0(sratrrz)
nPdlf[ZJ%

C
max | (), €L9)] < max |(wy.”, €9)] [1 +O(nPd/ 203)]

< C - max \(Wg.{?)- &) = O(d"*,00), (B.13)

where the last equality is by Lemma B.2. Therefore, we can get the following bound on F2(W®;x;) - F1(W®;x;) for any
i€Sy

m P m P
F2(W(;xi) - F1i(W@;xi) = XX(hw2(r),X(ip)i)2 - XX(hw1(n),X(ip)i)2
r=1p=1 r=1p=1m m
< XX (hwzn,vi)z + a2 X X (hwz(sn),ui)2
r=1p€Pi(v) r=1pePi(u)m m
+ X X (hwe(en),&ipi)2 - X(hwin,vi)2.

r=1 p€ePi(§) r=1
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Then by Lemma B.4 and (B.13), we can further get that

m m

F(WWix,) — F(WY;x,) < 0(ba?) - Y ((wi),u))? = S (wi').v)) + O(mPdo?o?)

r=1 r=1 ,

(t) (t) 2 _ 2
where we use the fact that |Pi(u)| < b and (w5 v) /(W 1))" = o(a )by Lemma B.4. This further implies the

following according to (B.12): for alli € S(T,
(1) < exp [F(WW:x;) — F (W x,)]

< 2exp [O(bo?) - 3 ((wi) u))? = 3 ((wif),v))

r=1 r=1 =
2.2 _ e G-
M Pdo,o5 = 0(1) similarly, we can also get that for alli € S,

r m m A

£g2 < 2exp |O(ba?) - Z((wﬁ v))? — Z((wéﬂ u))

L r=1 r=1 -

where we use the fact tha

L m (t+1) 2 L m (t+1) 2
Consequently, let® *= 2o (W1 V)) gnghr o= 220 ((wy s a)) , further applying (B.10) and (B.11) gives

apry < ag - [1 +0O(n) - exp [O(ba®) - by — a;] + O(npbug)]
b1 < by - {1 +0(n) -exp [O(ba®) - a; — by ] + O(?;pbaz}]
Then we will first prove a weaker argument on a:and be: for allt < 71 it holds that®t: bt = o(1/(ba®)) | particular, we

will apply standard induction techniques. First, it is easy to verify that this condition holds for t = Toaccording to Lemma

B.3. Then assuming this condition holds for all T < t, we have “*P [0(ba?) - bi] . exp [O(ba®) - ar] = O(1) 4nd thus

ar+1< ac-hl+0(n) - exp(-a:) + O(Upbaz)i,

be < be-h1 + 0(n) - exp(~be) + O(npba?)} (B.14)
for all T € [To,t]. Then by Lemma B.6, we can immediately get that

1 ;
a1 < O(log (—2 . etn.r»w))
phba _

_ 2 = o -1
Then recall that 71 = O(1/(npba®)) gngt < 71, we can further geta"“‘bf“ - O(lob(ﬂbﬂg)), which verify the
b ay — Z'm ((w(i-‘rl) V)}Q
hypothesis that a:+1,be+1 < 0(1/(ba?)). Moreover, recall the definitions of arand”t* “¢ r=1\Wlr > and

L m (t+1) 2
b= ((wy 0, w)) , we can further get that for all r € [m],

~ 1
(1)1 = O 1og (—)) ~0
' pba® polylog("?) ),

(t+1) _ .
and|<w2.'r’ u)| = O( polylog(”')). This completes the proof.

Lemma B.6. Let {ac}t=o,., be a sequence with ao € [0,1] that satisfies
ats1=ac- [1+c1-e-a+ 2],

where c1and ¢z are two constants satisfying c1,¢cz2 € [0,1] and ¢2 < c1. Then it holds that
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ap < O(log(czl/gQ) . C?('zf)

19

Proof of Lemma B.6. Note that ¢z < c1, we will then consider two cases: (1) cie-%= czand (2) cie~%< c2. Then case
(2) will occur after case (1) since ais strictly increasing. Regarding case (1), it is easy to see that a: < log(c1/cz2) by the

condition that cie-2 ca. For case (2), let tobe the first iteration t that cie-et< c2, we can get that %o = O (log(e1/c2))ang
then for all t > to

a1 ace [1+ 2cz),

which implies that
ap < ag - [1+ 2e]T0 < O(log(cl/cQ) -62“2")

Combining the results for case (1) and case (2), we can complete the proof.
O

Then we will focus on the rare feature data. Note that in the early stage of the second phase, their corresponding loss
(t)
derivativesfk-'i’s are still in the constant order. The following Lemma summarizes the learning of rare features and noises

for the rare feature data.

_ ()(nlog(l/(o‘nd /2 op))

Lemma B.7. Let do?y ) be a quantity that satisfiesZ0 < 71 < T1, Then for any t € [To,T1], it holds

that
(it v = V) - [ Oem)], (Wil v = (wi v’>-[1—@(m>}
)

2
(witr a) = (wil) ') - [1 = O(om)], (Wit u') = (wi),
Besides, for any’ ESTUSf and k = y5, we have

max | (w7 £00)] = max |(w().. 7)) {1 +1. (:)(rla2)]

for k 6=ys,
max|( Tl)‘ﬁgq)ﬂ = O(d~"?n)

(t+l) E(q )

Proof. The proof is similar to that of Lemma B.2, except the proof for the dynamlcs of< First, by standard

concentration argument, we can get with probability 1 - 1/poly(n), for all 5—,‘. € {5}, it holds that
do? — O(d'?62) < ||€P |3 < do? + O(d"/?0?)

Then by (B.2), we can get

1) 2n 21] y
(60 = (w60 1420 IO £ 2 S i 01 - 2a})
i#s||p#aq

. 2n 2n (¢ : . ~
—<w,£f,2.,££q>>-[1 4 dﬁ]i;- Do 1621 (wil) &) - O *ar).
g efe}

Thenlet (=0 1/polylog(n)) be some user-defined constant, then let T? be the smallest iteration number such that

A |10 _
max; |6 ;| € [0.5 - ¢, 0.5+ d. Then we can get for any ¢ < T°and any ir,
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27 2r G
(w760 = (60 [ 2050 o] £ 2 ST i 61O ). 19

¢e(e)

Then we will prove the main arguments via mathematical induction, including the following hypothesis:
. - (p) (t) q)
« Foralli € S UST it holds that ™#%r. (Wi &) > M

- MaXy i/ ¢ |<Wr’\ r?

max,., |(wi ", €7)] = max,., [(w)), €7)] - [1 + 3 (0.5 £2) -daﬁ]

Then it is clear that the first argument holds for t = Toas with probability at least 1 — 1/poly(n) we have
max,., \(w“" LEPY = O(0gd 20,,)

i

¢
1 and M&%ri’q |<Wh7 g(q "= (Uod UP) which implies thatK () E(p)”

t) gl
polylog(™) maXeirq |(W.£ o 5.-(1))‘.

Besides, given the first argument, we have
>2 160 1w €7 - O(d203) < O(mPd/20?) - max | (wi). £
eV elg}

< 0(n11Pd1/20p2) - max|hwir(),&ip)i] rq
< { - dop2 - max|hwkr(e),ipi|, nq

where we use the fact that d-/2n11P = o 1/polylog(”)) = 0(C) Then by (B.15), we can directly obtain the second
argument.

Now we will verify the hypotheses by induction. First, similar to the previous derivation, the first argument at the ¢t-th
iteration can directly imply the second argument at the t+1-th iteration. Then it remains to verify the first argument. In
fact, given the second argument, we have for any i and i%and Tt < ¢,
+1 :
max, o [ €)1 2 (05 420) -do? max, (W), &)

1 ) — 27 . )
g [0 7)) = T+ 2 (05— 20) 02 ey ({7 0]
nCdo?\"" max, , |(w§‘7;}) , ggp))|
= (H l) ' (1) ¢y’
£ '

max, , [(w .

n
EA-T1

T — O(n l()g(l/(ﬂ(,rflffzdp)) )
Therefore, using the fact that™ ! do?n , setting { = 1/log?(1/(o0d'/20y), we can directly get that
t+41) f T
max,,, |(wi' ) €2 nGdo?\ ™
(t+1) ¢(p) st n 0
max, g [(w ", &)

(polylog(n)) = o(n®*).

(”r‘ €(I’ )

Note that the above holds for all i and 9, taking i° = argmax’ {w} | directly completes the verification of the first

argument.

q
MaXr.q \(w 55 >|W|th k 6= ys, we have the following by (B.2),

1) e . 2n
113:‘;;){'( t+ 5(" ) < Hld*Xl(Wk r~€.(-f)>| + —- Z |;{k:i| . |< L - g(q ) - (dlf? 2)
- isllpg
< max [(w,) €0)| + Ty Py - O(d" o)

The proof for

O(d 12p),

J— (t+1) gl@)y) _ A~
where we use the fact that for all t < T4, it holds that 8%i.mq [(wi, &) = 0(1)
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; + -
Lemma B.8 (End of Phase 2). Let T1 be the same quantity defined in Lemma B.7, we have for all* < Sy U S

(Wi L lwsnw) [ = ©(1), [(wsl v [(wii ) w) = Oloo),  [(wilt) &) = O(d~ ‘“n);
foralli € 8" UST,

[(wi™ V) WS w') = Oao), (Wil v [(wiT uf) = O(oo), (w2, )] = (1)

Proof. The proof of this Iemma is simply a combination of Lemmas B.7 and B.7, where we only need to verify the bound
(T7) ’
for|<Wk r oV >|and|<wk ro 4 >|. This can be done as follows:

(Wil V)l < [1+00m)] " - [tw) 1P V)] < exp [O(np/ (do®)] - |(wil?,v')| = Olon)

(Tv) s
where we use the fact that pn = o(dop?). The proof for| (Wi vl will be similar and thus is ommited here.

O
Phase 3. Training until convergence. In this phase, we will show that the feature learning and noise learning in
Phase 2 will be maintained. Particularly, we first make the following hypothesis and then verify them via mathematical
induction.
Hypothesis 1. For all t = poly(n) that is greater than T, it holds that
t 2 m 2 e
(a) We havelor—1 (<WE 3V>) (1) gnd2rer (( u)) =0(1)
T (t) T
(b) We |(W1 )| = (|(W5.r’)-u)|) = O(W) (W V)| = O(\(w.g‘,,f).,v)l) = O(W)
T t 1)
(Wi V) = 0wyl V) =o(——5)  Iwil w) = O(Itwy w)]) = o(——)
haveand

(c) We have polylog( and polylog(

. - (1) #(p) (T1) #PI\y — 1
(d) Forall’ € Sy USy, we haveHwk.r"si )= (|<Wr’< 3 >|) = O bolylog( ﬂ))

p + DD (w(f) 6(17)))2 — E:)(l) . -
(e) Forall? € 57, we have £r=1 perie) (Wi . for alli € S, we

have
t) ) ~
S Y e (W, E7))2 = ©(1)

, ( (P _ 1 . - i (phy) _

(f) Forall® € SFL, we have| (wy . &) = O(polylog(i ﬂ)) ; for alll € S1, we have|<w1~:-75f M= O(polylog(

! n) )

The hypothesis will be verified via induction. First, it is clear that all hypothesis are satisfied at t = T1according to Lemma
B.8. Then, the following lemma is useful in the entire proof.

Lemma B.9. Assuming all hypothesis in Hypothesis 1 hold for T € [O t], then we have for all k € [2],

> Xown=o(y) 3 > <o(g)

™=T1 icS uSy and T Tiiesfusy

’ 7

; + -
moreover, for any? € Sy US, , we have

t

X @
|'xil = Oe(1/n).

t=T1
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Proof of Lemma B.9. By (B.1), we have

m m :
I SR [EE IO I

r= i€[n] PEP;i (V)
= n bna?
>y i o). S0 - e (M) Y |
r=1 7 iest ) gy
m m 2
Swi w2 = S (wiTv)? [ Z &N wilv) uﬂ]
r=1 r=1 i€[n) pEP;i(v) .
- . 7] bno
>y o [reo(2) 3 - o (M) 3 ) }
r=1 i€S, i€S, . (B.16)
where we use the fact that |'1i| = | 2| Summing them up and further taking a summation over t € [T1,t - 1], applying
Hypothesis 1(a) gives
n - o . =
o(2) £ ¥ w-e("5). S S i<on
=T ies] s, =T i=1 . (B.17)
_ ) m (t) 2 m (t) 2 A
where we use the fact that |g | 1£2.i] and 2=r=1 (<W1 P V)20 ((ws o w)™ = O(1) Besides, by (B.2) and

Hypotheses (e) and (f), we know that the correct noise learning for different weak feature data will be different by at most
O(polylog(n)) factors, therefore, we can get that

n

2
Z Z(< (1‘+1 g“’} Z Z W“ g(;u [ 2’;7 p(lrl) ||E (p) ”2 2?7 Z‘[“ Pdl/z z)]

ies;} pelP] ies; pelP)

R o R e e

LESJr pE[P] i=1
(B.18)

(e Y Y (i [ 6( ) o (). iw ]

ieS; PE(F] ieS; Pe[P]

and similarly,

Therefore, taking a summation over r € [m] and t € [T4,t — 1], and using the Hypothesis 1(e), we have

/2 4 t—1 n
(”d”) YOy P%T,;’I—e(”d P) S S < B(SE UST) = Oen)

™=T1 jesusy =T i=1 . (B.19)

2 PRy
Combining (B.17) and (B.19) and using the fact that@%p = @(1) gpgba” = w(d / a,,P) we can get that

( ) Z ilfﬁil— (bm ) Z ilfm\«) (o)

=Ty i=1 =17 1=1
Note that ba?= 0(1), the above inequality immediately implies that
= n
> Sui=o(2)
=Ty i=1 U .

We will further use this argument to sharpen our result. First, (B.19) directly leads to
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] 5 O (d O
(M) Z ST 1671 < O(pn) + O(d* 203 Ppn) = O(pn)

m=T1 eS8 uS,

s

which implies that
> ¥ mheo(z
do?n o1
T=T1 jeSfus;
Plugging the above inequality into (B.19) and using the fact that ba?= o(1) gives

() Z > 1¢{7) +()(bm) Z T 1] < B )+O(pnga):6(1)

=T1 ic5fusy =T1 ie5;}uS; P

where the last inequality is due to pn = o(dop?). Further note that|£1 !| <1

¢ 2 2
<o 2 O(pm) = 0 2~

=11 jes}us,

£ wnsofs)can-of;)

=T1 ieSfuS,

and n =o0(1), we have

Moreover, by Hypothesis 1 for all T € [T4,t], we also have for all? € St’:+,
exp [Fg B (7), xi;)]

]
(Weoixi) - : L+ exp [Fy ;)|
Fi(W

(W@;xi) - Fi(W(o;

Moreover, we have

m m

F2(W(;xi) — Fi(W@;xi) = X X hw(zn,X(ip)i — X X hwi(zn,X(ip)i

r=1 p€[P] r=1 p€[P]
i O MG G B
r=1pePi(v T.')

. polylog(

This implies that for any?:J € S5 with |Pi(v)| = |Pj(v)], we have

o) F(WOix,) — (W x;
1 (ulBAn) B0
&% i exp [FQ(W(T):_ x;) — Fi (W), xj-)]

polylog(”))]) =0()

Further note that, by Definition 3.1, the number of feature patches are uniformly sampled from [1,0(1)], implying that
with probability at least 1 - 1/poly(n), for any! € SHL,
#J 7 €8T IPi(v)| = [Pi(v)|} = ©(n)

. + , —+
Therefore, let SO be the above set of data points, we have for any® € Sy ors €S ,
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Zlf o(ls'™) ZZ|QI¢|<O (117 Z >

=T =T, i€8’ = LJ€S+U3_

20

where the last inequality is due to |S°| = ©(n). This completes the proof. O

We will then verify Hypothesis 1(c), which is summarized in the following lemma.

(t+1) _ (Tv) o+ (t+1)
Lemma B.10. Let Hypothesis 1 holds for all T < t, then we have| (Wi, Vil = O(HWF\“J‘ v >|) andeAur )=

O(ltwi"H  u'h))

Proof of Lemma B.10. Recall the update of rare features in (B.1), we have

27
(T4+1) o7 (™) !, (T) (1)
(wk,'r ;v > <w.f. 7 E Z E.I{Z:i Z <Wk.r7 v )
ieS) PEPi(v')
2
wir, ) = (wil ) + Tj DI D BILIER
ies;  peEPi(w)

Then according to the Hypothesis 1(c) for all T € [T4,t], we have

[(wi T v < [(wiT v Z ST Y [w v

=T 165+ peEP;(v')

t
<O(wir VI + 237 171 O(ltwin V)l

T=T1jest

’

t 5 _
where the last inequality is due to the fact that |P:(v%)| = ©(1). By Lemma B.9, it is clear that Yr=my Z"EST kil =
—~ o2
O ()

@731m/, Therefore,

W vy < O(Iwl™ V1)) + 6(ﬂ) 0w vl) = Ol )

do?

(i)
The proof for'\ " k,r » is similar so we omit it here. O]

Using the similar proof technique, we are able to verify Hypothesis 1(b), 1(d), and 1(f), which are summarized in the
following lemmas.

(t+1) -~ (71) (t+1) B
Lemma B. 11. Let Hypothesis 1 holds for all T < t, then we havel (Wa,r > V)| = O(|{ws," v)) and (Wi, Wl =

O(|(W1 . u)|)

(t+1)

| (f+]
Proof of Lemma B.11. Since the proofs for <W7 r V) ‘and‘(

)| are basically identical, we will only provide the

(t+1)
proof regarding‘ Wy, ’V>| By (B.1) and data distribution in Definition 3.1, we have

(r+1 21 (7 : 2, 21 : :
(Wi, v) = (wi) v >-[1+7-Zéé.3 PR [ HEE R D aipnvné}

ieS; PEP:(V) ie[r]\Sg PEP;(V)
2nbar? ) =
< (wy V) + = (wiTlv) - YD 1T
=1

mn

Taking an absolute value on both sides and then applying Hypothesis 1(b), we have
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t+1 (Ty) ‘Zf;ba . (r)
(W vl < [ YA

=T i=1

b 2 - 2
< (W™ V) + O (Wi ) -o(” a )o( o +">

n dogn — m

T
= O(lws. . V)I).
where the second inequality is by Lemma B.9 and the last inequality is due to the fact that pn = o(do»?) and ba? = o(1).

This completes the proof.

O

(f+l) (a)y) — _
Lemma B.12. Let Hypothesis 1 holds for all T < ¢, then we have‘( &) = O(l/polylog('”’))for alls € SS_ US, ,TE
[m], k€ [2],and q € [P].
Proof of Lemma B.12. By (B.2), we have

1) (e . nda? d"/ 202 )
(601 < Lol €)1+ I 001 O( 22 ) 1+ 020 ) - B DI Kl 67

pe[P] i=1
T . . nda
< W€+ 3 (. €6 o(")

=T

1/2 52,
+0(LET1) . 3 S ST 6

T="T pE[P] 1=1

Then by Hypotheses 1, we can further get

( D gl 1 AR d”go?n ~\
(w r+1)E;>|<|< (T.)~E.E,-;J>|+O< n))o( nf) Z\&J+O Z

polylog(

(B.20)

+ —_
Note thats € S0 USy, then by Lemma B.9, we have

Srei-of}). 5 S of;)

t=T, =T7 i=1

Therefore, plugging the above inequalities into (B.20) gives

(1) g () LN (MY (L) o PE e 5
[(wy, ‘Eq>‘<|< D) (polvlog(n)) O( n ) O(n)+0( n p ¢ n

1 do ~
_ /242
(polylog(n)) +O( n ) (&) ©

1
polylog(n) ) ’
where we use the fact that dop? = o(n) and d*/20,% = o(1/polylog(n)). This completes the proof. O
t+1) (q) (T1) ¢(q) -
Lemma B.13. Let Hypothesis 1 holds for all T < t, then we have|< &5 )I (|(w2_r & >|) for alls € S‘I'r US; , T

€ [m], k 6=ys, and q € [P].
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, + . -
Proof of Lemma B.13. Similar to the previous proof, we will only prove the argument fors € S , the proof fors € 51 can
) +
be performed using exactly the same analysis. By (B.2), we have for$ € S

, . , . . ndo ‘ ~ a,r}
(w6 < [(wh )] — [(wh &) - ( )-eé'_uw( ) S I ol )

pe[P] i=1
( aln
< |(wi), g0) |+ZO( : ) Zlf

‘l'1'1

1/24 2
= [(wi™) s<q>|+o(Pd ) S

=T i=1

()
=0 —_———— ’
)/ polylog(

where the last inequality is by Lemma B.9. This completes the proof.

O
Finally, we will verify the common features learning (Hypothesis 1(a)) and noise learning for rare feature data (Hypothesis

1(e)).
(t+1) 2 m (!+1) 2 _
Lemma B.14. Let Hypothesis 1 holds for all T < t, then we havezr—l (Wi, V) = ( Jand > 7 ((wy u))° =

0(1)e

(o}

m (t+1)
Proof of Lemma B.14. We first prove the upper bound: 2rm ((wy, 7, v))? <

Definition 3.1, we have

(t+1) (t) n 0 ba’ny N0
R A [ 6 ED SICHE o B Wil

i€S)

(l). Particularly, by (B.8), (B.9) and

Therefore, we can get that

m (t+1) m (t} . ‘,’? ba 7? n (t)
D (e < 3wl vt [140(7) - S e (M) - e

r=1 €S , (B.21)
1649 = |64 , .
where we use the fact that I*1,i "2,il, By Hypothesis 1, we have for all T < tand i,
exp [Fo(W: x;) — Fy (W) x e
) = p[F(W™:ix;) — Fi( i) —exp[—(—)(zuwg, )2 )]
T Lt exp [FR(Wix;) — FI(W )i %)) — ,
ay =" ((W(T) v))?2 . .
Therefore, let"” r=1 1 , we have the following according to (B.21)
l
rpy < ar - |14+0(n) e + O(m ”) Z |(] ¥ ]
; (B.22)

where cis an absolute positive constant. Let T = polylog(n) be the total iteration number, then we will show that a:< 3¢c1
log(T) for all T < t. Particularly, we will prove that either (1) ar < 2c-1log(T) or (2) a-> 2log(T) > a.-1 but it will not reach
3log(T) as t increases before it becomes less than 2c-1log(T) again. The first case immediately implies that a: < 3c™1
log(T), so we will only need to focus on case (2). In this case, we have a: < ar-1+0(n) < 2.1ctlog(T).

Then before a: becomes less than 2c-1log(T), we have for any 70 € [t,t] that

-1

Ayt < ar + Z as * [@(U e+ ()(ba ?]) Z |El i :|

Note that as- e~®< 2¢1log(T)/T%?< 0.1c"Y/T if T = w(1), then using the fact that n = 0o(1),
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T'=1

T'=1 2 n
N often (s) o1 o ba’n (®))
ay < a; + g [17 + O(T) (1; I4% ] < 2.2¢ og(T) + ()( Z as Z 3%
Then as long as as< 10c-1log(T) for s € [1,7°], we have the following according to Lemma B.9,

T 2
o) X D161 =0+ Z ) = o) < 016 ()

S=T

where we use the fact that ba? = 0(1) and doy? = w(pn). Therefore, we can conclude that before®r reaches 10c-tlog(T),
it must satisfy

aws 2.3ctlog(T),

for any 70 < t. This further implies that

a1 < ap + O(n) < 3¢ log(T) = Of polylog(n’)),
which completes the proof onjn—l W(lr:r] V) = 5(1)
The next step is to show thatzm wgfj‘rl)’ v))? = ﬁ(l) Similar to (B.22), we can get that

ba’n &
b > b * 1 -) * 3_Cﬁ7 — C . ("(T)
trp1 = @ [ +O(n) - O( . ) Z| 1l

i=1

7

. s > . .
where C is an absolute positive constant. In fact, we must have a: = polylog(iln) since otherwise,

i1 > a - [1+O(n) ~Car g (b” ’7) Zv“ ] > ar - [1+6()

’

(7)
where the first inequality is due to e-c@r= (1) if ar= O(1) and the second inequality is due to Gl <1 and ba?=o(1).
This implies that a-+1 will keep increase, which will at least continue to the case that a:> 1. This completes the proof that
at+1=Q(1)e.

[OX

m (t+1) 2 _
The proof forzi‘:I (W, w)* =0(1) will be basically the same so we omit it here.

O

m (H—l) q) ~
Lemma B.15. Let Hypothesis 1 holds for all T < t, then we haveZ"'Zl q€Ps (E)(< 5“ ) =oed )for alls € S
m (t+1) 2 A _
andZ ' qu*p (g)((wz1 & .-q )= O(l)for alls € St

(t+1) ~
Proof of Lemma B.15. Note that Em = @ (polylog(n)), it suffices to prove that max,,, ((wy', ), €7))? = ©(1) for all
(t+1) w(q) _
sES’ and MaXq,r ({wa, & ))? 0( Jall s € S . In the following proof we will only consider® € S’ as the proof

fors € St will exactly the same.
se St
By (B.2), we have for all 1,

T y 7 el 2
(Wi @) = (wD), gy [1 L2

T ane 27] ~ 2 T T 7
G IEPNE] 7 O(d 2ap) - S0 160 [wiD &)
i#s||p#q . (B.23)

~ > o (wh7), €7))? i i
We first prove the upper bound of&r=1 £=q€Ps( 2,72 58 . Then, using the Hypothesis 1 (e), we have for any

i€n,seS.re [m} and p € [P]
((wiT 7)) < max((wiy, €7))°

n))w’)(mP) umx({ E‘Q))) :O( ol (n)) na:
polylog '

g

(polylog[
Then (B.23) implies that
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nda? nPd/ 252 n
mw«wﬁ“ld@n2<mm«wrhﬂ”””[1+9(lii)'éj+o(] ) EZV”W
T rq T

. . Zm Z (( (7-9—1 E(,‘.))) ' ' '
Then by Hypothesis 1, we can further get that the quantity 1 2.geP.( will be the dominating
[,(11') > (i—('IIH_LX,...Q,((W(ITz‘Eiﬁ')))

term in the neural network output function, so that™1.s for some constant c. Therefore, let

_ (q)
ar = max"ﬂ((Wl €s))? , we can follow the similar derivation of (B.22). Thus, it foIIows that

ndo?, o rr}Pd'/ 202
‘ < i . e—car
re1 < ar {1+@( - ) e +O( E |f11

Then we can follow the exact proof technique in Lemma B.14 to conclude that a:+1= Oe(1), while it only requires to verify

that
Pd1/2
O(* ) 3 S o

=T i=1
which clearly holds by Lemma B.9 and the fact that Pd'/2¢,% = 0(1).

The lower bound can be similarly obtained as the following can be deduced by (B.23):

T T T,dg% T ,J.P[il/z . = T
(o) > (€)1 0P )0 - O ) |

™q

which leads to

ndo;, c ~ (nPd'/?a? ")
1> ar- 140 et o ———2) - £
Ar41 = @ { + ( . ) € ( " Z 1,:,|

i=1

for some absolute constant C. Then following the same proof of Lemma B.14, we can get that a:+1 = Q(1)e . This completes
the proof. O]

B.3  Proof of Theorem 4.1
Wi ll2 = O(n)
Proof of Theorem 4.1. We first show that!! ™ k. 112 for all k € [2] and r € [m]. In particular, note that the update
(p)
of standard training is always the linear combination of all critical vectors, i.e., v, u, v%, u®, and Eip ’s. Therefore, we have
(1) _ (@ + (t) . (t) 5(:))
wk.r k.r I()R r( ) v+p}.r(u) u+p}.r( ) V +lo.l,r -u +Z Z pﬁ.r
i=1 p€ePi(€)

(t)
Here we usepkﬂ'(a) to denote the coefficient of a for all a€ {V.u, v/, u'} U{&} Then by Lemma 5.3 and using the fact
that kvkz kukz,kvokz, ku®k, = 1, we have

. _ 1
P (V)] [ () = O(1), 19 (V)] pi) (u '”( m)
. polylog(

Moreover, using the fact that |héi),§(9i| = o(1/polylog(n)) for any i 6=j or p 6= q, applying Lemma 5.3 and the fact

that”é—,@ I3 =21 forallie [n] and p € [P], we have

Z ST opE”) - e”

i=1 pePi(§)

< 0(n?)
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Combining the above results, we can readily conclude thatHWA oll2 = (ﬂ)

Then we will characterize the test errors for common feature data and rare feature data separately. Regarding the common
feature data, we can take a positive common feature data (x,1) as an example and obtain the following by Lemma 5.3,

R(W®; ZZ i, x")) >Z > (Wi v)' =8q) (8.24)
r=1p=1 r=1 p:x=v

Besides, we have the following regarding F2(W®;x):

m m
V=) X (W)Y Y ()’
r=1 p:xx()=v =1 pxiPb=y

wit) x®)y)? !
Z Z [>) +O(p()1y1()g( ’.'.',))_

=r=1 p:x(Pl£v (825)

W21 V)l =0

where we use the resultl( (1/polylog(”)). Then, note that if x(P) 6= v, it can be either feature noise (i.e., au

or av) or random noise C?l , which is independent of the random noise vectors in the training data points (i.e., {¢}).

O(n)

: Wiz =
Therefore, using the result that I k. 112
forall r € [m]

, we can obtain with probability at least 1 - exp(-Q(d%/2)), it holds that

((W); C(p )) (Uznz) (B.26)

Besides, note that there are at most b patches within the total P patches that are feature noise, we have

m

. ~ 0 1
Z Z (wi') x f’)))Q < O(mba®) + O(mPozn?) = o( n))

r=1 p:x(P) v

, polylog(

where the last equality is by the data model in Definition 3.1: ba?= o 1/polylog(”)) and op = o(d-V/2n%/2). Therefore,
comparing (B.24) and (B.25), we can get F1(W(®;x) > F2(W®;x) with probability at least 1 - 1/poly(n).

Then we will move on to study the rare feature data. In particular, we consider the rare feature data with incorrect
feature noise. Without loss of generality, we take a positive data (x,1) as an example, which contains rare feature v and
incorrect feature noise au. Then we can get the following results for Fx(W(;x)

m m T

W) =3 3 ((wh.v)+> S (wiew)’+3 YT ((wihx®))?

r=1 p:xx®=v0 r=1 pxx®=aqu r=1 p:x(®6€{vo,au}

Note that if x(?) €6 {v%au}, then x(P) must be a random noise vector that is independent of wy,(8). To begin with,
the first two terms of the above equation for different k’s can be bounded by applying Lemma 5.3 (particularly

S Z0me ), we have

Z Z wlr ) =0(c3), Z Z ((w{i (’tll)) = O(bo*a?)

Z Z ((ngivf) O(a3), Z Z ((Wg’:2~~““>)2:ﬁ(“2)-

r=1 p:x)=v0 r=1 p:x)=a r=1 p:x()=v°0 r=1 p:xx)=au

Moreover, by (B.26), we can further get that with probability at least 1 — exp(-Q(d¥?)) > 1 - 1/poly(n), we have
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m

Z Z ((wi), x“’)))2 = a(mpoﬁ-n-Q) = 0(a?)

r=1 px(® g{v’ au}

where the last equality is by our data model in Definition 3.1. This further implies that conditioning on W, with
probability at least 1 - 1/poly(n), we have

F2(W(;x) > F1(W(5;X)
on the positive rare feature data that has incorrect feature noise.

1
BWOix) £y > - L 1
P(xy)~Drare[argmaxz . kpoly(n) 2.01

Therefore, combining the test error analysis for common feature data and rare feature data and using the fact that the
fraction of rare feature data is p, we can finally obtain:

F(WWix) #9120
P(xy)~p[argmaxFx(W®;x) 6=y] = p " P(xy)~Dme[argmax — -0

k k

This completes the proof.

C Mixup data
C1 Characterization of the mixup dataset

Category of different Mixup data patches. First recall the category of different Mixup training data points:

S+:+ S SJr‘* S*H‘
¢ Mix between two common feature data points, including=0.0 > <0,0 - <0.0 - <0,0  each of them is of size ©(n?).

. . . . . S+.+ ST~ S+.+
* Mix between common feature and rare feature data points with the same label, including“0,1 > <0.1 > <10  and

1.0, each of them is of size 0O(pn?).

+.— ¢t ¢t
* Mix between common feature and rare feature data points with different labels, including‘SU,l <S01 - S10 , and
—+
S10 , each of them is of size O(pn?).

. L Loght g gbe gt . .
¢ Mix between two rare feature data points, including=1.1 *<1.1 - <1,1 and“1.1 , each of them is of size O(p2n?).

Then, given n2mixed data points, we have in total n2P data patches. Besides, note that in the original dataset that consists
® of n
training data points, each data patch x; satisfies

x.ﬁ") € {v,u,au, av.v'.u',&'}”)}'

Moreover, by the data distribution defined in Definition 3.1, we have

e vand u will appear in ©(n) data and ©(n) data patches.

e av and au will appear in n data and @(bn) data patches.

¢ v0and u®will appear in ©(pn) data and O(pn) data patches.

. Sip), if it is not zero, will appear in one data and one data patch.
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Then based on the above facts, we provide the following lemma that characterizes the number of different types of data
patches on the mixup dataset.

o [Py )
Lemma C.1. Let"D T {th }L-JF[“]:PFH be the collection of all data patches of the mixup dataset, then among these n2P

data patches, with probability at least 1 - 1/poly(n), let x(;) = Aa + (1 - A)b, we have

¢ The vector with a € {v,u} and b € {v,u} will appear in ©(n%/P) data patches.

¢ The vector with a € {v,u} and b € {v%u®} will appear in ©(pn2/P) patches.

¢ The vector with a € {v,u} and b € {av,au} will appear in O(bn2/P) patches.

¢ The vector with a € {v,u} and b € {&} will appear in ©(n?) patches.

e The vector with a € {v0,au®} and b< {v', u'hwill appear in ©(p2n%/P) data patches.
¢ The vector with a € {v0%,au®} and b € {av,au} will appear in O(pbn?/P) patches.

¢ The vector with a € {v0,au®} and b € {&} will appear in ©(pn?2) patches.

¢ The vector with a € {av,au} and b € {av,au} will appear in 0(b2n2/P) patches.

¢ The vector with a € {av,au} and b € {} will appear in O(bn?) patches.

(p) (p)
Besides, regarding any non-zero noise vector 3 , we have, among the collection of data patches{xid }J?[""], with
probability at least 1 - 1/poly(n),

(p) (p)

o Xij )\5 +(1 /\)b with b € {v,u} will appear in ©(n/P) patches.
(p) /\S(P ( )\) X ) i

o Xi.j b with b € {av,au} will appear in O(bn/P) patches.
(p) (p)

o xiy = A& (1= Np with b€ (v, 1 il appear in @(pn/P) patches.

(P) _ yelp)
o xii = i +(1 )‘)b with b € {£} will appear in B(n) patches.

Proof of Lemma C.1. We first consider a fixed x;and the corresponding collection of data patches {X(;}je[n)pe[p). Then by

() _
Definition 3.1, conditioning on x;'I —v, we have foranyj6=1i
(M) _ @) — (P _ 1
P = vl = v] = Px =v = 0 3

o () _ oS L x (p)*v} I
Therefore, we can further get that conditioning on xi ~v, the summation ~j#i follows Binomial

distribution Binom(n - 1,p) with probability parameter p = ©(1/P). Then by Hoeffding’s inequality, we can get that with
probability at least 1 — exp(-n%/P?), it holds that

(ﬁ _ (P) N
Z 1[x" = v]—O(P>

J€[n]

Note that we have at least ©(n) number of x/s that consist of the common feature vector v, then applying union bound
over these Xi’s, we can further get with probability at least 1 - 1/poly(n), it holds that
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Z Z]l (P _V > Z ]l (.u, _ (P: —V] ]1[ (pi) :V]

i,jE[n] pe[P] i,j€[n]

)
3)

Here we define pias the index of the data patch that is v if the data xihas such a common feature vector, otherwise, piis
arbitrarily chosen. On the other hand, we can also get

oY =vi< 3O ]l[xf’?_v|x§f”_v]-n[xf”_v]<n-(~)(1)-(~)(%> _e)(g)

i,j€[n] pe[P] i.j€[n] pe[P

7

where the second inequality is due to that each data will have at most ©(1) patches being v. Similarly, we can also prove

the same results for the case of xr J =Aa+ (1 A)b with a,b € {u,v}.

= da+(1-A

The proof for the case of x¢.i )b with a € {u,v} and b € {av,au} will be also similar, the only difference is

(p) _ ) _ P _
that conditioning on Xi =V, the probability of xi — “vorxi — “uwill be O(b/P). Finally, we can get that (here we
take a =vand b = v as an example)

3 ST 1 = v+ a(l - A)v] = 6(n) 0@’)’)4)(5;)

i,JE[n] pe[P]

® 0,v0} will also be similar, where we only need
The proof for the case of x;j=Aa + (1 - A)b witha € {u,v}and b € {u

]P’[ (r) _ vf‘x(l)j =v]=0

to use the fact that (p/P}' Here we take a = vand b = v0as an example.

_ ’) _
Regarding the case of x: J =Aa+(1-A) P[x;”) =

v+ (1= NEP X = v

b with a € {u,v} and b € {£}, we only need to use the fact that

J=e0 ), where we take a = v as an example. Then the desired result can be proved in a
similar way.
When a€ {v';u’} we will also need to use the fact that we have in total ©(pn) number of x/’s that consist of v0or u°.

Then take a = v®and b = v0as an example, conditioning on x(?) = v0, we have for any j 6=

P[xf;m = V'\xg‘”) =v']= P[xgm =v']= @(%)

Therefore, we can get that with probability at least 1 — 1/poly(n),

ZH ) 7V|Xp)_v]_ (pn)

;:E[n

Accordingly, we can further obtain

S =v= 3 S ) = v = v 1 —v’]—(-)(p-n.)v@(%)—(')(pj:2)

i,j€[n] pE[P] i,j€[n] pe[P]

=Aa+ (1 A)b with a € {u%v°} and b € {av,av} or b € {&} will also be similar, where we
Plx; (r) = ﬂv\x(‘”) =v'] =0(b/P) andp[xs(fm = a.ﬁjp)|xgm =v]=06(1)

The proof for the case of X’ J
only need to use the fact that

When a € {av,au} we only need to use the fact that we have in total ®(n) number of x/'s that consist of ®(b) number of

(p) _ (p) _ _
v0or u®. The remaining proof will be similar to previous ones based on the fact thatP[X:i = avlx;” = av] = O(b/P)

(v » ®
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and P[x; = aéj|xi = av] = 0(1), where we take a = av and b = av as an example.
(r)
Lastly, we will move on to the case of a=¢& . In this case, we only need to use the facts that for any j 6=1,
(p) _ (p) _ #p)y _ (p) _ e
P[Xj =vlx;"” =&"] = P[Xj =v]|=0(1/P)
(» p) p) )

Plx; =ulxi =& ]=Px; =u]=0(1/P)
P[Xj(p) = Vo|X(ip) = &itp)] = P[X(ip) = Vo] = O(p/P)
P[Xip) = wo|X(ip) = i(p)] = P[X(p) = wo] = ©(p/P)
P[xj(p) = av|x() = §] = P[x(#) = av] = O(b/P)
P[xj(p) = au|x(¥) = §i)] = P[x(?) = au] = O(b/P)
Pxj(p) € {&}x() = £()] = P[x,) € {&}] = O(1).

Then applying the standard concentration argument for binomial distribution yields the desired results.

c.2 Learning Dynamics of Feature and Noise vectors

Now, we will seek to study the learning of feature and noise vectors. Particularly, the update formulas of all feature vectors
are provided as follows: for any a € {u,v,u®,v%} U {£}, we have

(wit a) = (wi) . a) - n - (Vo L(W®), a)
(

t t) (t) g (»)
: 3 ng z f( Z A:.J" X‘Ei?) {xéf'_;l ’ a)

i,j€[n] PE.P] (C.1)

= (w

More specifically, we summarize the update of all critical vectors (e.g., common features, rare features, and data noise
vectors) in the following Proposition.

Proposition C.2. For any critical vector a € {v,u,v%u%} U {£}, we have
3 t t t t t t
(Ve Ls(WH),2) = 3 (v,a) - (Wi} v) + 9 (w, @) - (wil) u) + 47 (v, @) - (wil) V)

+ (' a) - (wi) u +ZZ V(€ a) - (wit) Py

i=1 pe[P]

s

~(1) . ) "
where/k (b.a) is a scalar output function that depends on b,& € {viu, v, 0"} U{&} More specifically, let

(p) _ p(p) (p) (p) (r) (p) g q
xig = Vi (V) v+ 07 () -u 0,7 (V) - v+ 07 HZZG’ (€) - € (C.2)
s=1q€[P]
®) 0,u%} U {£}, we have be a linear expansion of x;;on

the space spanned by {v,u,v
,(t) _ Z p(f) Z 9 P) )
Vi n2 k. (i,5)
i,j€[n] pe[P] . (C3)

()
Proof of Proposition C.2. Recall (C.1) and the decomposition of X;jin (C 2) we have

(Vo LW O)a) = 15 3 (1 3 (wlxl) -

i,J€[n] pe[P]
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N 12 Z Hi; Z Z 91(:")) <W1~” b> {x Ep})a>

i.j€[n] pe[P] be{v,u,v/ u lu{&}
[ED SR ST IR )
i,7€[n] pE [P]

. <W§_t),| b} e{v,u,v/ uu{£}

b

Therefore, it is easy to see that using the definition of 7 #. (b a)in (C.3), we have

(f) (t)
~hVwe Ls(W(9),ai = X (b,a) - (wy .. b)
be{v,u,vo,uttu{é}
which completes the proof.
O

Note that the neural network outputs are in the order of o(1) in the first few iterations, which implies that the output
(1)
logits are within the range [0.5 - 0(1),0.5 + 0(1)]. Further note that the loss derivativesék'-(id) satisfies

1 e {1 -

t).
k:(i,5) Logitk(W();Xij), Logitk(w(e);Xij),A — Logitk(W(0);Xij),Logitk (W( 5 Xij) + A= 1},

which wiII also be in the constant order. Then similar to the previous analysis on the standard training, we will directly

take ‘Fk (4, ))‘ =0(1) when characterizing the learning of feature and noise vectors in the initial phase.

Then, the challenging part in the analysis is the characterization of the mixed data patches{xgi)}f’ﬂp], since it can be:
mixture of common features, mixture of rare features, mixture of common and rare features, mixture of feature and
noise,

which will produce different gradients. For any mixed data x;;= Ax; + (1 — A)x;, we will denote it as the positive mixed
data if yi= 1 and the negative mixed data if yi= -1. The following lemma gives the characterization of the data patch of
all mixed data.

. - ("J(. )
C3 Characterizing the Coefficient7r \"
C3.1 CORRECT COMMON FEATURE LEARNING

maxge o), (i)es | Fr(WHix; )| < ¢ € [w(ba),0

1
Lemma C.3. Assume ? polylogl—— '”4))] , then recalling the update

formin
Proposition C.2, we have

#Wvv)y=01), Huv)=0(+a), 1,v)=0(p/P)
(', v)| = 0(Cp/P), P&, v)| = O(1/(Pn)).

Proof of Lemma C.3. We will prove all the arguments in order.
(t) (t)
Proof forV1 (V). We first prove the bound for71 (v,v), By (C.3), we have

O (v (1)
Tk n2 Z mu)Z" V>

i,j€[n] pe([P] ) (C.4)

07 (v) = (x7) v) . s
where"i.j i.j> ¥/ Therefore, we only need to consider the data patches that contain v (including common feature
v and feature noise av). The regarding the mixed data X;j, we consider the following cases

«i €8 andi € SSF;

«i €8 andi € SI'-, andi € 81 andJ € ‘SrT;

«i €8 andi €Sy UST and? € So US) andJ € Sy
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i €87 USIUST angi € S5 USTUST,

) ; + i + . .

Analysis on the data® < S0 andJ € So In particular, note that before the mixup, both the data x;and xjhave a constant
*

number of common feature patches. Therefore, Ietpﬁ,j(v)

appears in either x;or x;), we have

denote the set of patches with the common feature v (which

X® ) X ) ) X 1) )
6ij(v) - hx;j,vi = 6;;(v) - hxj,vi + i (v) - hxij,vi. (C.5) pe[P] peP; (v) peP,(v)\Piy (V)

Regarding the first term on the R.H.S. of the above equation, by Definition 3.1, we know that there exists at least one

(p) p * (o]
common feature patch in both x;and xj, which leads toOi-;i z ’\for at least one? € Pi--j(l‘b). This further gives

X O0ipV)-hxapvi= X [Bijp)(V)]22 A2

PEPij: (V) PEPij+ (v)

Besides, we also have that the number of common feature patches are upper bounded by some constant (i.e., |Pi/* (V)| =
0(1)), this further leads to

X ) )
0ij (v) - hxi;,vi< 0(1).
PEPijix (V)

(»)
Regarding the second term on the R.H.S. of (C.5), we have 0;;< a since v can only appear in the form of feature noise.

Besides, by Definition 3.1, we know that the number of patches containing feature noise is at most b, then
. _ (p) 2 2 _ 1
Z 9";-.2'- (V) <X‘.' ? V> - Z [9.'} (V)} <ba” = U(polylog( ”))
peP  (V)\P* (v) peP  (vI\P* (v) )
®)

ij ij if if

A0 : +,+
Moreover, note that in the initial phase we haveflf(‘z}j) =o(1) for (i,5) € S0 , we can further get that

'16) ) X Bij) (V) - hx(ijp),vi = O(1).

pE[P]

; + 3 + . . . - . .
Analysis on the data® € Sq and j € Si' The analysis for this type of data will be similar. In fact, we will consider two
i + ; + ; + ; + .. L s .
types of data:’ € Sy andJ € ¢ ,and? € ST andJ € Sy since two original training data will give two mixed data.

() _ o

In particular, note thatfv--j =0(1) for these two types of data, we can immediately get that there is a constant number
(p) (p)

of patches that satisfyai:;' >1- )‘, while the remaining patches p € P;;(v) satisfyg‘h:f' < & Therefore, we can follow the

- +,+ P oA ot
same proof technique as that for the data (1,7) € 854" and get that for all (1,7) € Sgim VST,

k(06 X Oij(p) (V) - hXij(p), Vi = (k) (i) X [Gim(v)]z+ X [6ijp)(V)]2= ©(1). (C.6)
PpE([P] pEP;j* (v) PEP;j(V)\Pyj* (v)
; i €St gngi €Sy UST ; i N y ;
Analysis on the data o and/ 0 1. In this part, we will handle data x;jand X;; together. Different from the
16 (1)

previous cases where the loss derivatives 1.(i.7) are positive, here the loss derivative 1.(%.7) will become negative for
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- —+ —+ s +.— i -+
(i,4) € S5 USp i, Particularly, for any (i,7) € S , we have (J:7) € o , then

® X® ) ® X ) )
'1,3) 0ij (v) - hxij,vi + 1,41 ;i (v) - hx;i,vi
pE[P] pE[P]
_ (1) (p) 2 (p) 2 () (1) (p) 2
=0y 2 [BFOP RO+ (6, + s D [0 )]
PEP;, (V) PEP; ;(v) ) (C7)

where we use the fact that Pij(v) = P;i(v) and hx(;»),vi = 8;/(P)(v). Recall that the neural network output is upper bounded

by ¢, then it is easy to see

i) + O =N =05+ 0(0) +0.5 = A+ 0(Q)] = 0(C),

1,(4,i
Besides, note that

(p) _ (p) (») (») ; (») (p)
xig = A 4 (1— )\)xj S St (1—=XN)x;"" + AX; ‘

Pr.(v) )
Then we will also defineas the set of patches with common feature. Note that Xx; does not have the
. — — * _ *
common feature patch since/ € So U ST, we can immediately get that P2 (V) = Pi (V) whereP; (V) denotes the set of
common feature patches of Xi. Besides, it is also clear that all data patches in P;j(v) only contain the feature noise av.
Then it follows that

dh S 0 v - 16 (v

PEP; ;(v)
—o)-| S W=+ Y [0 ()2 — 16 (v))?]
PEP; ;(v) PEP: 5 (VI\P? ()
=0(1) £ O(ba?)
= 0(1).

Similarly, we can also get ppEPz}j(v)[ej,i(p)]z = 0Q(1). Therefore, putting everything to (C.7), we can finally obtain the following

16)6) X Gijp) (V) + hxij), Vi + ‘16)60 X Gjip) (V) - hx@ip),vi=0(1) £ ©(1) - 0({) = 0(1).

pE[P] pE[P]

- - -+ - . . H
Analysis on the data®>J €8, USUS, In this case, we can observe that there is no common feature patches in x;and
X;j, while the vector v will only appear in at most 2b patches of x;;in the form of feature noise. Therefore, we have

(r) (r)
|®iiﬁ e [(T—A) |®s_1j

@ for at most 2b patches and the remaining patches will give =0 Consequently, we have

|€.'\~.‘(1'.j) Z E)T(J;J (v)- <X§pj)v>‘ =

pE[P]

{fi.:t.)(f‘.;) Z [95? (V)}Q

peEP  (v)

=0(ba?) = 0( @

polylog(

)

(t) (t)
Completing the analysis for71 (V. V), Now we are able to complete the analysis on71 (V. V) based on (C.4):
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(i.j)esgiﬁu.sjﬁ;ﬁ pE[P

2 G

(1) €SSy USa uS,,jg,*uS;‘ﬁ PE[P]
(p)
IS SACRCC]
i,j€S, USTUS, pe[P]
1 _ _ _ _
= —2 [O( ) 1So0 1+ 01) - [Sgit usT I+ e0) - S5, U‘S‘({i U8y US|
(t ) (p
1 (v, v) = nz S A Y 60w ()
i.j€[n] pE[P]
1 (t) (p) (»)
- ﬁ[ > iy 2 0565
(i,))eST ! PE[P]
+
+
+
1 .
polylog(n) S0 USgi USgi USTy UST; USTy US y US i US y |
2 n’
== 0 + g —————
n? (n) = o polylog(n)
-0(1) .

(t)
Proof for Vi (W, V),

the following classes:

) . _ . _ ) +— ot
e 1 €8 andj € Sy, and! € Sy andJ € SrJ}r, i.e.,SU.U USpi,

o anlisi) & Soo U StIEJ+,

(1) e
1 (V) (see Proposmon C.2):

1 (uv) = I2 Z ‘?1 (i.4) Z 9

i,j€[n]

pe[P]

(1) I ) . . .
The next step is to characterize V' (u,v)_ We will split the entire mixed training dataset into

?;n’v>

(C.8)

i s +,— -+ +,— -+ s -
Analysis on the data (4,0) € Sgp USpy . SinceSU-(J andSU:U are symmetric: i.e., for any (.7) € So , we have

(d,1) 650

0 and vise versa. Then we will handle data x;;and x;itogether by studying the following quantity:

* 1= '(16) (i) X Oijp)(u) - hX(ijp), Vi + (16)6:) X Oji(p) (0) - hXji(p), Vi
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pEl[P] pE[P]

=160 X Gijp) () - Bij (V) + ‘@) X Biip () - G5ip) (v).

pe[P] pe[P]
(»
Note that we will only consider the patch that contains both u and v. Then consider a data patch x;;satisfy this condition:
(p_) . (p) _ o .
xi —®vyand X T %u, where mya; € {a,1}, which further leads to X fJ = Aaiv + (1 = Aoy u and x

(ﬁ
= Aaju+ (1 - A)O’”’v. Accordingly, it further gives

01 (W) 07 (v) = (1= Na - aiki = Aty - (1= Naw = 67 () - 47 (v),

o)

Additionally, for any p € Pij(v), we have at most ®(1) among them satlsfy J i (u) and at most ©®(1) among them

(p) - (p) (r) — O
satlsfng i(v) = O(l) while the remaining, with size at most 2b, can only glveoJ i (), 01 (V)= O(”). This implies that

X @) - 0jip)(v) = 0(1) + O(a) + O(baz) = O(1). ;i
(u) perp

Therefore, applying the above equations, we can get that
w=0y 2[00 60 (v) =07 () - 67 ()] + [6, ) + 670 D0 67 () -6 ()
pEP; i(v) pelP]
= [6(1?5.3) +‘€(12;i,i)] -O(1)
Gla* f%’;%j,a =0()

Further note that in the initial phase we have “1.(:.5) , we consequently get

1('-’) Z Q(TJ) (P Z 8 > :O(C)

peE[P] pe[P]

|| =1

) - (i,7) ¢ STmuS;" . .
Analysis on the remaining data \"> 0,0 0,0 . In this case, we note that there are no data patches that satisfy
(12] (2]

6;i (v) = O(1) and 6;: (u) = ©(1) simultaneously. Therefore, for any data x;j, there will exist at most ©(1) patches that

satisfy 6;i(p)(v) - 6;iP(u) = a and at most 2b patches satisfying 6;:P(v) - 6;{P)(u) = a2, while the remaining patches will
(p) (p _
glve()J i (v)- Oj,i () = 0. Therefore, we can get that

X 0 - hx(ijp),vi = X Gijip)(u) - Gijp)(u) = O(1) - a + 2baz = O(a), i (u)
pE(P] pE[P]

where the last equality follows from the setting of the data distribution that ba < 1.

. o)
Completing the analysisfor"fif)(u-. v), By (C.8) and using the fact that |f )‘ = 7, we have
1
( t) 7] (p)
N )(u V)l = n2 Z f(l.('z‘..j) Z O,OJ (u) - 6;7 (v)
i,jE€[n] pE[P]
1 _ ‘ _ _
=3 (1855 USas -0 + (n* = IS5 USasTl) - Ole)]
=0 +a).

(t) (t)
Proof for¥1 (V. V). We then tend to characterize?1 (V. V). We will consider the following two classes of data:

S J) € S(;r.i+ U SlJr,(TL
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(i) € Syt uSTy

e all
. (f.i j) cSHTus;
Analysis on the data 0,1 1, U First, it is easy to see that with probability at least 1 — 1/poly(n), we have
ST US| = ”
' . For this class of data, with probability ®(1/P) we have the data X;;jhas a constant number

of

(p — 0
patches that satlsfy ij (v) 0,5 (V') = OU}. Besides, by Lemma C.1, we have with probability at least 1 — 1/poly(n),

67 (v) - 07 (V') =

there are O(bpn2/P) patches are the mixture of av and v, leading to”i.; O(a ) The remaining patches

®) ®) 0) = 0. Combine the above results, we can get will give 8i;(v) - 6i; (v
2 2
() () / of bapn=\ L pn
> By om0 ) =6 (P)+O( - )_O(P>
(i.5)€8q TusTyt pEP

where we use the fact that ba = o(1).

i —+UuSs—tuSH—

Analysis on the remaining data Particular, we will only consider the data (i:7) € Soi" US| 1" US since otherwise

there is no data containing the rare feature vector v°. Moreover, note that for this class of data we only have
(») (p)

0,77 (v)- 0,7 (v') = O(a)

since there is no data consisting of common feature patch (but only contain feature noise av). Therefore, similar to the

previous analysis we can get that, by Lemma C.1, with probability at least 1 — 1/poly(n), there are ©®(bpn2/P) patches

0% (v) - 8% (v') = O(a)
bapn?

that givei.j
. . () (ot . . .
Completing the analysis for71 (v, v), Completing the previous analysis, we have

N 1 (1) ®) (o1 . o) bap\ (P
(Vv) = ) Z € i) Z 0;;(v') - 0;5 (v) = O(P) :I:O( 7 ) O(F)

i,j€[n] PE(P]

, which consequently leads to

> ‘ DI HORAIE

(i.)eSy i Tus, tusy” PEP

(t) (t) . . .
Proof for71 (W', V), Regarding the coefficient™1 (u, V), we consider two cases (1) mixup between u®and v; (2) mixup

o — 4+ P +,—
between u® and av. Then it can be seen that the first cases cover the data (+J) € S1.0' ang (4:4) € S , which is

equivalent to the datasett(%7): (7:1) * (1:7) € S167 } Therefore, we will handle the data (1) and (j1) together in this
case. In particular, we have

® X® 0+ Bijp)(v) + ‘(1)) X Bjitp) (o) - Bji(p) (V)
"1,(i) Gij(u)
pelP] pE(P]
=6l D 107 ) -0 (v) = 670 (a) - 07 ()] + [+ 6] D 6 ) -6 (v)
p€[P] pE[P] .

It is clear that the first term on the R.H.S. of the above equation is zero since in case (1)

(®) . plp) _ @y plp) _
0,7 (u') - G@L‘ (v)= Hji‘ (u') '9;.1:3 (v) =A(l - )\),

1,7

Regarding the second term, we can use Lemma C.1 and get that the number of patches falling in case (1) is ©(pn2/P).

45 + 6% = 0()

Then using the fact that can lead to the final bound for case (1).

(t) (p) P o o
Regarding case (2), we can follow the analysis for71 (v, V) which relies on the fact thatgt J (u) 9&':1 (v) = O(G).
Therefore, we can finally get
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1 (t) »)( ()
e D DR D A RO

(i.i)€Sy 1 tusy PelF]

~0(4)-e+o("2)
—o(if)

P (u,v')| =

where we use the fact that { = w(ba).

(t) ela) (£)  ela)
Proof for1 (& V), Finally, we will study”f’l (& , V). Recall its formula in (C.3) we can get
(1) 2 (q) (t) (P} q)
7 (&, v) 2 Z {/ (i) Z 0; (V
i,j€[n] pe[P]

Then it can be seen that the noise vector f-gp) will appear in 2n — 1 mixup data patches. By Lemma C.1, we have with
probability at least 1 - 1/poly(n), ©(1/P) fraction of them are mixed with v and O(b/P) fraction of them are mixed with
av. Therefore, we can get that

(t) 1 NORNT)! () 1 NG| () ()
&= ; X RGO R ORI L X 6 (6767 (v),
p=qi=sllp=qj=s p=qlli=sj =s pE[P]
l 7 o 7 1

where it holds that

\I\< >+ [©(n/P) + ©(ba/P)] = (%)

P
11<0( )
0 (€)Y = O(d—1/2) , . . -
where we use the fact that ba = o(1) and”#.j \>8 ' forall i 6= s and j 6= s. This further implies that

() ¢(q) -0 L
T (és :V)| (P’R)

since we have assumed that d = P4n2. O

and

We can also get a similar result for the learning of common feature u.
1
Lemma C.4. Assume maxke[z],iij)es |Fr(W®;Xij)| € {= 0 polylog——— ™) ), then recalling the update form in Proposition

C.2, we have for any r € [m], q € [P], and s € [n],

% wu) =001), W (v,u)l=0(+a), |5V, u)=0(p/P)

ha(,w)| = O(p/P), 5" (€2, w)| = O(1/(Pn)).

7

C.3.2 INCORRECT COMMON FEATURE LEARNING
. . . o L . (wit vy (wlt )
In this part, we will study the incorrect common feature learning, i.e., quantifying the inner products* "™ 2,7> ¥/and\ "™ 1,r*
C )
Lemma C.5. Assume maxke[2) (ij)es | Fl(W®;Xij)| < { = 0 polylog——  7)/, then recalling the update form in Proposition
C.2, we have
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W) =-01), ' wv)=0(+a), W .v)|=0(/P)
s (', V)| = O(Cp/P), |18 (€9, v)| = O(1/(Pn)).

s

(t)
Proof of Lemma C.5. Recall the definition of 72 (v, V), we have

r)(vv Z f’”) Z[H”) v}]2

i,j€[n] pE[P]

(1) () (f (1)
Then comparing with the previous analysis on™2 (v, V) the only difference is to replace 1.(é:4) ol {/2 (i.7),

(t) (1)
Therefore, we can immediately get that™z (v.v) = =7 (v,v) = —O(1),

Regarding other terms that are bounded in terms of their absolute values, we can get the same results as in Theorem C.3.
This completes the proof. [J

Similarly, we can get the following results for u.

1
Lemma C.6. Assume maxke[z],iij)es |Fr(W®;Xij)| £ {= 0 polylog(——— ") ) then recalling the update form in Proposition
C.2, we have

W) = -0(1), W v.)l=0C¢+a), . a)=0(p/P)
I (u',w)| = O(Cp/P). | (€9, )] = O(1/(Pn)).

C3.3 RARE FEATURE LEARNING

(t) (t)
In this part, we will study the rare feature learning, i.e., quantifying the inner products(wlw V and(W2,r '),

1
Lemma C.7. Assume maxkefz)Gjes |Fi(WO;x;ij)| <  for some { = 0 polylogl— "))and { > ba, then recalling the
update form in Proposition C.2, we have

WV VY =0(p), W (v,v)=0(/P). (V)| =0(p/P)

Y (' V) = OCp*/P), I (€9,v)] = O(p/(Pn)).

Proof of Lemma C.7. Recalling the definition of 1 )(V V).

(t 1 (t (p
M )(Vf'-vf) ) Z é(u.zm) [Hffi)(v,)}z
i,J€[n] pE[P]

Note that the rare feature v® will not appear in the form of feature noise, then we will only need to focus on the mixed

. . . N + i + .
data (ij) with eithert € 87 orj € 87 where the rare feature can only appear in the form of v, Av, or (1 - A)v.

. fot | ot
Particularly, regarding the data (i,7) € 571" USI UU i let Py i)

we

be the set of patches that contain the feature v?,

P (v =6)

have and then

166 * X [Gijp)(vo)]2 = "ae)p - X [Bijw(vo)]z=©(1),
pE[P] PEPi;* (v)
(t) ;o +,+
where we use the fact that ' 1..) = ©(1 for any (i,7) € Sii,

(i,) € ST5 USTT

Regarding the data , we will consider (i) and (j,i) together. Particularly, we have
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166 * X [Gijp) (Vo) ]2 + 1)) - X [61i(p) (Vo) ]2 = “(16)(i) - X h[Bijip)(V0)]2 - [6ip) (V0) ]2i

pE[P] pE[P] pE[P]

| iz )

NG (1) X (P)
L)Y LG ;7 (v
pEI[P]
| {7 1

* * (I’) (P)
Then using the same definition ofPi-j(v), we have for any” € P, (V), it holds thatei-j (v) = )‘andg (v)=1-2A
then

’

Ii=0(1) - [Py (vO)[ - [A2- (1 - A)?] = ©(1).
Regarding Iz, we can use the condition that the neural network output is upper bounded by ¢, then

LI =|[A=05+05-2+00Q)]- > [ )P

PEP? (V)

=0(()

Therefore, combining these results for I1and Iz, we can get

16)6) * X [Bijp)(vo)]2 + ‘)G - X [Bjiw)(vo)]z= 11+ 2= 0(1).

pE[P] pE[P]

To complete the analysis, we have
ROV (P) (o112
(Vv = 2 E E [H?’,j (v

i.j€[n] pE[P]
1
=2 > Pl
iest ieln]||ig[n],jes; PE[P]
= |5++ U8++U(Tl+ |+ |STU_U81 1 |
=0(p).

The characterization of y1(v,v?) and y1(u,v9) will be exactly the same as y1(v%v) and y1(v%u) due to the fact that y1(a,b)
= y1(b,a). Therefore, we can apply Lemmas C.3 and C.6 to get the desired results.

() . . .
Regarding the proof for” ,1 (u v ) we will follow a similar proof for"1 (W', v)in Lemma C.3, while two differences
need to be considered: (1) the rare feature vectors u® and vO will not appear in the form of feature noise, thus we only
; (i.5) € S uS ;T
need to consider the data \*:/ 1,1 1,1
S usT= pgng

; (2) the cardinality of the critical subset of data satisfies
(i.4) €St

Therefore, for any we have
. Z o\ V)Ha S e ") (v
pE[P PE(P]
= %) Z [0 (') - 67 (v') - 9§ff,->(u')-ej??<v'>]Hffif%iwei':%, DI ACIRUAY
PE[P] p€e[P]

) 0) . 6;;P)(v9) = 6;;(P)(u?) - 6;:P)(v9) = A(1 - A). Besides, we have in total p2n%/P patches that
It is easy to see that 8i;(u
consist of both u®and vO. This further implies that
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1 ¢ : "
W == 3 [+ )] Z 0P () - 0% (V')
(i.)estyusy it
I(‘.’2
—o(2).0
( P) ©
¢p?
=0
¢ ( .
) | =0()
where we use the fact that ' 1. (iJ) 1(J i)

(q)
Lastly, we will characterize” 1 (Es . V') First recall its definition:

y L . )
V) =5 D0 By D ATED) 0 ()

i,j€[n] PE[P]
1 NG (p) 1 NG| (r) (p)
= 2 X 1, (ij 165 (fs(q)) - 0 (VO)*' n2 X 1,(ij ) X 6;; (fgq)) - 0 (VO)-
p=qi=sllp=qj =s p=qlli=sj =s pE[P]
I fr Vo f7 )
()
Note that for any fixed & , it will be mixed with n data patches in total while, by Lemma C.1, we know that there are

| (T)

only ®(p/P) fraction among them are v°. Using the fact that " 1.(¢.J) I — 7, we have

1 P
< 2.0 — i
<X eGp) O(pn )

Besides, note that |6;;(P)(&(@)| = Oe(d-1/2) if i,j 6= s or p 6= q, we have

pP Y\ P
m1<0( ) =o(7;)

where the last equality is by the assumption that d = P*n2. Combining the above results for I1and Iz, we can get
De v =of L
vl =0( 7 )

Following the exactly same procedure, we can get the following results regarding the learning of u°.

O

1
Lemma C.8. Assume maxkefz)Gjes |Fi(WO;xij)| <  for some { = 0 polylog— ”))and { > ba, then recalling the
update form in Proposition C.2, we have

1 (W) =0p), 2 (ww) =6(p/P), h(v.w)| = OCp/P)
s (v W) = 0(¢p*/P). 1 (€9 )| = O(p/(Pn)).

Cc34 INCORRECT RARE FEATURE LEARNING

: . ol vy wl) ) . o
In contrast to the previous section that studies " 1.7* and V2.7 = /) the incorrect rare feature learning aims to
t) (t) s
characterize the quantities( 2.V >and<Wl r ) Similar to the proof of Lemmas C.5 and C.6, we only need to replace

(1) (1) ; (t) (t) () (t)
1,G.0) with(2.G.0) = (1 (i.4) OF (2 (4,4) W|thlpl .9 = 2.0, Based on this, the update of W2, V') and(Wir Win each

iteration are characterized in the following lemmas.
1
Lemma C.9. Assume maxke[ziies |Fr(WU;xij)| < { for some { = 0 polylog—— ﬂ))and { > ba, then recalling the

update form in Proposition C.2, we have
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WV V)==0p), (v, ') = —6(p/P), 1" (V)| = O(Cp/P)
87 (', v)| = 0(¢p*/P), | (€49 .v')| = O(p/(Pn)). )
1
Lemma C.10. Assume mazke(2)(;j)es |Fr(WB;Xi;)| <  for some ¢ = 0 polylog(— n))and { > ba, then recalling the

update form in Proposition C.2, we have

(W' ') = —6(p), ”(uu):—ou P), |’ (v,u)| = O((p/P)

(t) t)
(v ) = 0(Cp?/P), |7 (€9 o' = O(p/(Pn)). ,
C35 NOISE LEARNING
;
Lemma C.11. Assume maxke[z}ijes | Fk(WW;xij)| < ¢ for some { = 0 polylog—— n)) and { > ba, then recalling the

(9 update form in
Proposition C.2, for any & with ys=1, we have

do? - [nX3 — (2A = 1)(1 = N)?]  ~/(do?
17 (€, €0) = — 53 + o(_?>

M (v.€9)] = O(da?/(Pn)), |1" (w0, &) = O(do?/(Pn)), " (V' .€D)] = O(da2p/(Pn))

WO €D)] = O(do2of(Pr)), (€D, €@ = 1y, = g - LN io(“f )

n

n n

7

(t) ela) gla)
Proof of Lemma C.11. Without loss of generality, we assume ys= 1. According to the definition of /1 (5S & ) we have

N6 = o5 D Gy D 100 €N I

i,j€[n] pe[P]

1113 . ’

=2 2 Z f(f [9 ‘1 ] + Zf(f g(z )]
i€[n] i#s

[ (1) 2 ()

= (W D Al F (=0 D6,
i€[n| i#s

_ g3

o [0.5nA% — (A = 0.5)(1 — A\)* £ O(n()]
_EIB - X — 23 - - N | (qgﬁ’”n%)
T

2n2

7

. . . (q) . .
where the second equation is due to the fact that only x;sor Xs; will contain the component of €, the fourth inequality
holds since we assume there have n/2 positive samples and n/2 negative samples in the training data. Moreover, note

€7 ~ N(0, 02 I . . . - ~
that p~/, applying union bound over all s € [n] and p € [P], we can get that with probability at least 1
1/poly(n), we have
q)12 2
|H£§1)”2 — do| Spolylog(n) - d'/20,2.

Therefore, it follows that for all s € [n] and p € [P], with probability at least 1 - 1/poly(n),
m(&ﬁ‘”.&ﬁ‘”) _ do? - [nA? — (2X = 1)(1 — A)? O(dl/z o2 (do? )

2n? n n
_ do - [nA* — (1 — A)% N 6(Cda§)

2n2

mn

where we use the fact that { = w(d-1/2).

(1) (@) gla)
Regarding ™1 (5-1'1 N3 ), we have
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e AML=X)
€ €)= S [ + ) €213

=1y =y - M iO(CdU )

n? n?

Regarding the remaining quantities, we can directly apply the aforementioned lemmas on the learning of common and
rare features, since the following holds

1 (@, &7) =217 (€00, a) - €23 = 71" (€. a) - O(doy),

where a € {v,u,v%,u%}. This completes the proof.

C4 Outcome of Phase 1 Mixup Training.
In this part, we will provide the outcome of Phase 1 mixup training.
We first recall Proposition C.2 and Lemma C.3 to obtain the learning dynamics of the common feature vector v.
(witsVv) = (Wi V) = - (Ve Ls (W), v)
= [L+m" (v, v)] - <w£"3.~v> o (u,v) - <w§’3 )+ (Vo) - (wi), V)

+ i, Jua') + Z Z i (& ) (w QEE‘D))

=1 pe[P|

Then it can be seen that the most complicated part in the above update form is the composition of noise learning, i.e.,
(Wﬁ E'EI))>.The following lemma provides an upper bound on the termz‘ ZPE ’”1 (é(p V) (Wﬁ "’:EP)), which
will leverage the randomness of Egm at the initialization.

Lemma C.12. Assume maxke[2],(ij)es |Fi(W;Xif)| < { for someS € [“"((;'7'}))71/2)"0(7polylog(1 ""))] . Let ze:=
Lict 2pelpl N (g_l(p) v): <W£Ll'€'§p)>, then we have with probability at least 1-1,/poly(n), for alll = O(nn~"/(doy ),
we have

dY 2600 r]dcr =1
0 <0(mas) +0(77) 25 3 Kol e+ o5 ) - w2 vt

s= lpe[P =0

AN S SN . dop\ o
#0193 (w1 + ) < 0 K52 ) - T 3 S <)

T=0 T= (Jpe[P]ﬁ 1

Proof. Based on the definition of z;, we can conduct the following decomposition:

Z Z ,Y(f) E(I’ V} (w(f} 6('0

i=1 peE P]
t 1 t (
S 3D DD SRS DY I IR IR R
i'=1ge[P)i,j€[n] pE[P] .
{)(t)
Note that during the initial training phase 1.(i.i) is close to the constant I, € {0.5,-0.5,0.5 - 4,4 - 0.5}, which is

(0) () _
independent of the random noise vectors {£} and random initial weights{wl-r}?'e[m]. Then using the fact that |€1-(i-j)

Ii,ip| = 0(Q), we can get
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n
1 (P) - @)y . AP (0 la)
zols X X X ey X dPED) 6] v) hwi) g
%=1 ge[Pij €[n] pE[P]
| f7 )
n
1 .(0) (P) - )y . AP © o)
+ > X X X [ - I, )] X 91',1‘ (gfo )-01-']- (v) 'hW1,rl 01
i%1 qe[P1ij €[n] pE([P]
| iz )
() (@) (»)
Regarding I1, note that ‘1)), i (§i0), and 6;; (V) are independent of the random noise vectors {£} and random initial
0 0 [’
W) et {10 &) Yt qerr

(0) weights. Besides, note that the inner productsare independent conditioning on W1,

and for all i°€ [n] and q € [P], . We can apply standard concentration arguments to get the upper bound of I1. Before
approaching this, we first apply Lemma C.1 and follow the similar proof of Lemma C.3, and obtain that with probability at
least 1 - 1/poly(n)

rr} (p _ 1
112 Z tl (4,7) Z 0 (V)‘ - O(F)

i,j€[n] pe[P] (C9)

Then performing the following decomposition on I1 according to the value of yio:

1 (1) )y . AP (0) la)
=2, X0 XX gy X 6P @EP) -6 v) hwi), &7

? i%y;0=1 q€[Pij €[n] pEI[P]
| ke
. n% Ox XXX 9,-(,”) €9y e(p)(v) hw®, €9
i%:y;0=2 q€[P]ij €[n] pPE[P]
| A *
© }

(0)
Therefore, note that conditioning on w1, the quan‘city<W1 T’E ) 18 le rll2 - 9p-subGaussian, by (C.9), we can

Wiz - 0y - ()
1) € N(0,031)
can get that with probability at least 1 - 1/poly(n),
W 7@ 5 000y
1O 1] < o(—.,
L L (nP)'/2 ) (C.10)

Regarding Iz, we can also apply Lemma C.1 and follow the similar proof of Lemma C.3, then with probability at least 1 -
1/poly(n),

1) 2
immediately get that bothIE andI} : are ok -subGuassian. Then using the fact that w

, we

max;, H I il
(0) (r] (p _ JR 3 (i,d) . C
r12 Z [1(1;) b i) ZQ (V)'_O( npP )_O(ﬁ)

i,j€[n] pE[P]
This further implies that

b= O(CP) 03 1w €] < O(¢d 2o0ay)

i'=1g€e[P] . (Cll)

7 (q) 7
where we use the fact that w1 , ~ N(0,03T) and &~ N(0,0, I). Combining (C.10) and (C.11) leads to

~ Jl/ ag0y,
< ((ﬂp—)l/; + C(Il/Q(IoUI,) = O(Cdl/200(fp)l
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— - —1/2
where we use the condition that® = w((nP) / )

(t) g#(p)
Next we will move on to study the update of z:using the update results of<w1 & >|n Lemma C.11. Particularly, we can
again use the quantities I1,i;)’s and get the following decomposition

n
1
Z= LXOX XX (DY 6 (v) hwl?, €0

i1 q€[P]ij €[n] PEP]
I f7
n
1y x x 0 X A0 )y a0 ORPON
+ i - han X a7EP) 67 ) hwil, 601
%=1 q€[P]ij €[n] PEP]

| f7 V)

(W f) 6(1’ )
Recall the update results of\*" 1.7 in Lemma C.11: for any yi=1,

€)= 1 (RN RN i e o) i

2n? n Pn
d 2 d 2 . d 2
+ O(%) - (ng)r,u) :EO(%) . (wgf)r,v’) + O(W;;;P) : (wgt)ru’)
nA(l — )\)d(}"f ) 7]Cdo' :
o) 3 i o) 3 e
s:ya=1

(C.12)
2. A3 _ (9) 2l 2 g2
i) = 1 (NI 640|602 ) i v

n

ndo? ndo?p ndo?p
iO(P—T:> ( lr’ >i()(P—:j (W&fl,v’)io P—’.r;': (Wgtlu’>

_o(”)‘(%ﬁ)d"ﬁ). 3wl ¢ f’))iO(nCdo) Z|< ) e®))|

siya=1
(C.13)

For any yi= 2, we have

i ity2opelP) 2 (wi ey oo . .
We first prove the bound of the quantlty PE[P] Lusiys=1 o . First, using the standard concentration result gives

1/2 1/2,,1/2
| ZP\E[P] Zs:uazl <W1 " )‘ (d o000 ) Then, by the above update rule, we can get
ndo,
ZZWW)MWMZZWw
pE[P] siys=1 [JG [P] s:ys=1

+0(ndo;) - (w wi v) + O(ndo}) - (wi" u) + O(v pdo?) - (w(lfzv’)

+O(npdo?) - (wy (&) )iO(nCda ) Z Z| wi'l, €0))]

pe[P] s=1

_ -1 2
Then we can get that for anyt = O(m; /(dap)), we have
—1
Z Z < O(n”zplﬂdl/zagap + 0 qdcr Z |(W]1 |(W(IT,) u)\]
=0

I)E[P s:ys=1

t—1

+0(npda?) - 37w v+ |(wiT), u)]]

=0

o) T T e

T= U[JE[P s=1
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ng (p )

Moreover, similar result can be obtained forZs:r .?:2( and we omit the proof here.

(t) (t)
Now we are ready to upper bound [3. Particularly, let®1 anda'z be denoted as follows:

|
t ) t)
off = D7 D D by 2 ATED) 05 W) - (wil) €7)

i"iyr=1qge[P]i,j€[n] pE[P]
5 0 2 > by o 05 &) 07 () - (wi). &7)
i1y, =2 q€[P)i,j€[n] p€E[P]
(t) (t)

Then it is clear that{s = &~ + ay Then by (C.9) and (C.12), we can get

(t+1) _ ndoy, ndop\ ndop\
a; [1—0—0( - )] :l:O( Pn) (wl_,_,v):l:0< Py (wy . a)

r]pda (t) I]pda o)
:tO( P ) (wy; )iO( B (wy,,u’)

ndo;, (r ») nCdo, ®) ¢y
+0 (p) > 2w ‘ (P DIDLTRD
pE[P] siys=1 pe[P] s=1
Similarly, we can also obtain
2 2
i _ [, 4 ndoy nda ) ndo,, 0
ay = [1 O(n )] )+ O( P (Wi, v) 0 P (wil,u)

r;pdo (f) npdo o
= O( Pn ) (Wi, v) O( Pn (Wi

|3 X wien]+o(T7)- & Siminer

pE[P)] siys=2 pe[P] s=1

(p) ()
Then using the previous results on‘ ZPE [P] 2 s:ys=1 <w1 r&s Iandl ET’E[P 2 us—l<w1 r&s >|and (C.10), we can get
1
that for any! = O(nn~ /(dgp)),

(1) d' oo, oy o (7)
o1 = O 51z 172 | O T, W+ [T )]

=0

npdo? ) - n¢do;, il )
(") Sl + o) 3 3 3 i

=0 T=0pe[P] s=1

(0) ()
where we use the upper bound oflei | provided in Similarly, we can obtain the same results for®2 " as follows:

41 /2JDJP -udcrf, = )
\ |<O JEVEISYE) +0 Pn 'Z“(Wu V)| + [(wy,u)]
=0

o(™t) Z ) + o) 3 5 3 i)

=0 I)E[P s=1

Combining the above results leads to the bound of Is.

We will finally bound Is as follows: using the fact that | "1 - I1a)| = O({) and a similar characterization of (C.9), we can
get

I4<O( ) ZZK ® ¢y

s=1pe[P]
Combining the above bounds on Isand I4, we can finally get
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|2 < [L3] + [ 1]
d'2go0, ; ndo? =
<o(prs) +0(5:) 53 3 e+ o) il 2w

s=1pe[P] =0

nodo? t—1 ¢d 9 t—1 n ) 4
O(”?;:p) Y IV [wi )] +O(Tfn;;p) 33 S w €y

=0 =0 pe:P] s=1

This completes the proof.

Then the following lemma characterizes the growth of common feature learning.
_ 1/2 1
Lemma C.13. Assume maxke[z],i;j)es | Fs(W®;x;))| < { for some ¢ = o(d%a,1) Then for any t =

0 polylog[”)/n) that satisfies this condition, we have with probability at least 1 - 1/poly(n), there exists at least one r €
[m] such that

(Wit vy = [1+em)] - (wifl.v)

(0)
Proof. First, note that{W1,r V}followsN(0= 5), then it is easy to get that
">1-0mm>1-1/

B mae (w20 > 0| =1 (Peoniorp [l < o)
poly(n), (C.14)

r E[m]

where the last inequality is by our assumption that m = polylog(n) > Clog(n) for some sufficiently large constant C.
(t)
Recall the update rule of(Wir: V),

(Wi vy = [1+ i (v, v)] - (Wi ) i (u, v)-<w“) w) (v v) - (wit v

(W v) - (wi) +ZZm &” . v) - (witl eP).

i=1 pe[P]

Taking absolute value on both sides leads to
(t+1 t t t t t t
(Wit o) > [+ (v, )] - [ 3':v>|—n|w$)u,v)-<w-( | = | (v v) - (Wi V)|

- ’r,|ﬂylt (u,’ V) wl r rﬂ’(t g(i’ (w]_ o g(P >

i=1 pe[P]

(£)
Therefore, the next step is to show that these “negative” terms in the above inequality are dominated by "1 (v,v) "

(t)
W15 V)| e, showing that

hl uv) - (Wit s [ (v v) - i v (s v) - (Wi ] < (wi )|

t ] t ] t
D EP, v) - (wd, 6@ < |wlt) V)],
i=1 pe[P]

(1) — O]
where we use our result in Lemma C.3 that1 (V> V) = ©(1) Then we are able to get that

(Wi )l = [L i (vov) £ (1 poryioge)] - (Wi )] = [L+O(m)] - [(wi'), )] (C.15)

Regarding the first three terms, we will prove them by mathematical induction on a stronger argument (recall that
t (t t
1 v, v) = (1), i (u, v)], 11

verify the hypothesis

t
V. V)L (V)] = o

(1/polylog('”‘)), according to Lemma C.3): we aim to
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t t t 2 t
(wiowle [wil V)] [wilu)| < e log? ()l (wil). v)| (C.16)
where c is some sufficiently small constant.

In particular, we can first consider the initialization where t = 0, then by (C.14) and standard concentration bound of
Gaussian random variable, we have with probability at Ieast 1 -1/poly(n),

|(wl T >| = Uﬂ) | wl ;s | — 101% ."l JD)
|{ w§”, | = 0(log(n)ag), [{ wl“g, )| =

log n)ag)
. (= (d 1/2071) . . . . .
Therefore, using the fact that p J, it is easy to verify the hypothesis. We will then assume the hypothesis
(t)
holds for all T < t and aim to verify it for t + 1. Particularly, recall the update rules of<wl T ) we have
t+1 t
(Wi )] < (1= (w )] - [y )|+ nh ) - (wi) |+l (v v) - (wi v

+ n|fy£t)(u’, u) - wﬁtﬁ | +

i (€7 u) - (wi), €7

i=1pe[P]

t
<[]+ 1Y b (v, §T,?1v>|+n2h¥’(v’,v (Wi V)|
=0 T7=0

t
+ ) @) - (wi) )|

=0

u) - (wi’) &)
7=0"i=1 pe[P]

t t
tpr da
< O(log(n)ay) + O(n(¢ +a)) - E [(wiT) v |+O(ﬁp ! ’ )
7=0

5 S [wi v+ w7 )]
7=0
tnd" 2 ay0, 1‘?} ' ) )
O( p1/2.n1/2! +0 Zu (w0, v) |<W1r U)”
nC  tnp? Cda ‘ )
+O(Pn ZZ 3 IwiT) e (C.17)
7=0s=1 pg[P]

(7)
where the last inequality is by Lemma C.12. Then by (C.12), we have the following results regardlng|(

wiT) 7))
max |<w(r+1 E(r))H <140 lo . max |(W E(p)H ndgfz’ X [|<W(T) )I + |<W U)|]
i€[n],pe[P] ad n i€[n],pe[P) Lr Pn Lr Lr

0522 ) - izl vl + It )

O(dvgga,,)m(”ﬁi )-me )|+ [(w )]

s=0

npdo? T .
+O( PnJ) SSTHwWEL V) W]

s=0

Therefore, we can accordmgly get the foIIowmg upper bound regarding the last term in the RHS of (C.17),

nP ZZ Z I( Wl r g(p )| < Z max 1‘7_15?)))'

7=0 5= 1p€ le[n PG[P

1/2 tndo, =1
SO(fr] (700'[,)"‘0( PTF, )'Z“(w]r‘v)l+|<wlr U)‘]

7=0

+O( MR ) 3 wov [

7=0

(C.18)
Then using the fact that tn = 0 polylog(n)) and n = w(doy?), we can further get the following on (C.17)
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(W )] < O(log(m)on) + O(n(C + ) - 3w |+o(””)§:[|<w V)| + [ )]
7=0 7=0

tnd'/?ayo. 7 r -
+ O(—P1/2n1/2p +tn¢d %oyo, | + O 5) Z [|(wﬁgv)| + \(wgr)u)”

=0
Then according to the Hypothesis C.16 for any T < ¢, it is easy to get that
t41) 0
(Wi ) = (Wi w) = > i )

("+1)

Then we can get|< w)| = Q(UUJ, applying the fact that tn = O(polylog(n)) further gives

O(log(n)ag) + O M + ty¢d % ogo = o(log*(n)o )—o(log (n)|{w (¢41) u)|)
g 0 PL21/2 [ 00p g 0 1r . (€.19)
Besides, note that the Hypothesis C.16 holds for all T < t, we have
Wiz Wl [w T V)L i) w)] < e log?(n) - [(wiT), v) < Tog?(n) - [(wWi5 )] (e 20
t
(¢ +a)) - S Wi v < O(tn(¢ +a) - [(wiF . v)| = o(log?(n) - [(w{'[,v)))
=0
t
T T —~ 17 ’
O(”—;)-Z[|<w$,3,v’>|+|<w§ L)) < () Il ) = oftog*(a) 1wl )
=0
tn :
o(3): Z w2+ L] < O( ) - Iowli vl = oflog o) - [owl v,
=0 (C.21)

we can immediately get that

Putting the above results together, we can verify that
[(wi' Y w)| = o(log?(n) - |(wi' ), v)),

(t+1)
Wr, T

!
We will then verify the Hypothesis for< v ) By its update rule, Lemma C.7, and Lemma C.12, we have
(t+1)

(Wit v < L+ (vov)] - [wd) v’>\+-n|-'§”(v.v) <w“,v>|+n|w“) V) - (wi'l u)

Z S v) - (wit €7

+ (V) - (il )

=1 pé[P
(0)
< 2|(wi’),v') \+WZ|71 (v, V') - (wy +TIZ|”f1 (u,v') - (wi7), u)|
=0 T=0
t
Y 7 W) - wi) ED V) (i €
=0 7=0"i=1 pg[P]
L tﬂ?? da} () nCp ti’pda pdcr !
(log(n)rm)—}—o Z| wy V)| 40 Z|
=0
nCp?  tp° fz 2do? tnpd"2aya,
+O( P * Zl u)[+0 P1/2,1/2

tn?Cpd ! M elo
o ”nfp")zzw 6

7=0 5= lpg[P]

: _ n = w(do?) :
Then by (C.18) and using the fact that tn = O(polylog(n)) and »/, we can finally get
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(wli. ¥ < 0(log(men) + 05 ) 3 it 2o 3 il )

T=0 T7=0

T tnpd'2ogo
ro(") - i ’>|+O(W+ww1f?aaop)

7=0
Then applying (C.19), (C.20), and (C.21), we can also verify that

(Wit v = o(log(n) - [(wi' !V, v)])

The using exactly the same proof, we are also able to verify that
1 < 1
(w0 = o(log(n) - [(wi'F ) v))),

Lastly, we will prove that

SN AER V) (Wi €| < e (wif) v

i=1 pe[P] (C.22)
for some sufficiently small constant cand all t= 0 polylog(”)/”) This can be proved by the combination of Lemma C.12,
(C.18), and our previous characterizations (C.19), (C.20), (C.21). In particular, using the fact that| <W1 PV =0 ) we
have

v) - (wlt), g® >\
i=1 pE

d / G'U(Tp (T) T}do‘i t—1 (T
= O(PI/QRI/Q) O(Pn) Z Z [{w O( Pn ) Z wlr |<W177u>‘]

s= lpe P]

o) i[uw,,, w7, u’>]+0(”?,ff§3) S Y Sl

p— T=0pe[P] s=1

T ‘l

t—1

d"oyoy ndo r r
<O+t o) + O(1iE ) - L w2+ v

=0

npdo?\ =1, (-
£O(M) S vl i)
7=0
d 2oy, da
= O(W +¢d'/? ooop) + O( e ) Jwi v
dl/QCTI 1/: d0'2
i /2 _’p (t)
SO((PI/QRI/Z +(d 7 oy + Pn) (Wi s V))

Then using the facts that { = o(d-1/20,71) and do,? = o(n), we are able to complete the proof of (C.22).

(C.23)

O
ofdV2077),
0 polylog("‘)/n) that satisfies this condition, we have with probability at least 1 — 1/poly(n),
(t) 0 < 1
v =i <o )
. polylog(

Lemma C.14. Assume maxke[2) ,)es | Fe(W®;xij)| < { for some ¢ = Then forany t =

N(f)(
Proof. Recall1 "V, V) we have

(t) Z f 3 Z [9(?))
(i,4)

i,J€[n] pEe|P|
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1 x (X P 2. L X (X g o2
= 2 1,(ij ) 6 (V)] + n2 1,(ij ) [6;;” (v)]".
iESg orjES(; pE[P] iESa andjesa pEI[P]
I fz Vo f7 )

Regarding Iz, using the similar proof in Lemma C.3, we can obtain that =0 1/polylog(”)). For I1, using the condition
that maxke[2),(ij)es |Fr(W©);Xij)| < ¢, we have

1 )
h=— Y sy 2 B ®P+0Q)

1'650' orje.S{ peE P]

s

where I1,i;) € {0.5,-0.5,0.5 - A,A - 0.5} denotes the loss derivative of data (xi;yi;) when its neural network output is

t)
forced to be zero. To this end, using the similar decomposition for’Yé (u,u) gng noting ¢ = o(1/polylog(n)), we can

obtain
1 . 1
= 2 b 2 OHOP - Y by D05 W)
PE[P]

f
iES, or jJES, PE[P] €S, orjeS,

+0 1/polylog(™). (C.24)
Moreover, for any’ € 30+, note that

XX@2XX@2XX @2 [0i (V)] = i [0if (V)] + 116 [Oij (V)] jeln] pelP] jeln] pePy (v) j€[n]
p6€EP;;* (V)

=160+ XIL(j) - zij2+ 0 n/polylog('”’)),
j6=i
whereZij = (1 = A)?if j € ST US; US gnqg

(
1 with probability 1/P;

Zl = (1-2A)2+2A2 with probability (P - 1)/P,
if] € 83-. Consequently, applying Hoeffeding’s inequality regarding the random variable Zi,j(Whenj € 33-), we have with
probability at least 1 - 1/poly(n),

1 ) ()2 1 - \)2
n_z Z J(i,3) Z [6)([ ? % Z l|.(¢"j) +o

iESﬂ} .jgs' ’ngn{ ‘.:'-651{ usS, us, polylog(

1 oz GG [ 1HI =N+ NP -1) 1
n_z Z il«(i-j) Z [8;{; (VH = ?12 + P72-2 . Z l'l.('iej) +o n)

€St .jeS] pe(P] i€S) JEST i

. polylog( Similarly, we can also obtain
L w _ 1=N?
n2 Z b (i) Z 635 = n? Z
igS] €S, PELP] €8 US, US, JEST 1) * 0 1/polylog(“))

Therefore, combining the above results, we can get

1 )
=2 haa 2B

ieSt orjesd PE(P]
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1

, 1 I )
=2 Yo by Y [H'E.IJ)(V)FJF 3 > hag Y [(’Efj)(v)}hr 2 S g Y [9-5,2)(")]2

ies;, jest pe[P]

i€S) . ieST p€[P] igSy . jess PE[P]
(1-N)? Uy | T+H[(1 = A2+ N|(P 1)
T 2 Z by + n? + Pn? ’ Z b i)
iest . jgst origs)t jest ieSt . jest . i#i
1
0
polylog( mn)
Similarly, we can get
1 *) (y
r D DENURE B
iES, or jES, pe(P]
1 () (yy2 o L 2 ) (u
=— D gy D05 WP+ — S g Y (07 (u)]? + ﬂz > G 6]
€Sy ,j#Sy pE[P] i€S, JESy PE[P] €Sy JESy PE[P]
(1—\)2 by TH[(L=X24+ AP -1)
= Tz Z fl.(a‘.j) + n2 + Pn2 ) Z [1.(1,3')
1€S, J#So— origS, JES,

€8, JES, LiFi

1
’ ( polylog( n) )

K +
Then note that the positive and negative data are generated with equal probability, we havelSo | and|SU | are different by
at most o 1/polylog[”)), therefore, it is easy to get that

! ®) 12 L (®) (1112

n2 Z b (i) Z [0;5 (v)]° — 0z Z la (i) Z [0 (w)]7| < o(1/

i€8) or jeSS PE[P] 1ES, or JES, pE[P]

polylog(n‘}).
Plugging the above inequality into (C.24) we can conclude that

1
P - 1)

. polylog(

This completes the proof. L]

Finally, we state the outcome of noise learning, common feature learning, and rare feature learning in the following
Lemma.

Lemma C.15. Let { be a preset quantity satisfying { = [w(dop%/(Pn)),0(d-1/20,71)] and T be the smallest iteration number

such that maxxez),ijjes | Fk(WD;xi5)| = {/2, then with probability at least 1 — 1/poly(n), it holds that

- L/2 - - 1/2
max |(W(11,) V)|,In'@x |(wi") u)| = SZ( ¢ ) max |(W(,fr},v')|. max |(Wg1,) u')| = Q( S )

Pml/2
X 3/2 . (T) . () Ay (3/2
me |(W2 RARIR IIldX|< u)| = 0(¢*?), max [(wy [, v')|, max [(w; 7, u')| = O(C7)

(t) (t) (f) (t)
Proof. We will only prove the results for the inner products<W1 2 Vs (W ), (W V) (W

(t)
2,17
proof for the remaining inner products will be exactly the same.

u)’ andW1,m u’>, as the

We first recall the update of hwy,, v0i:

(Wit vy = L V] WV P (v v - (W) et (v - (wi) )

“‘7?'71)(11 V) - W1,~u +Z Z U’Ym g(ii)svl) (le* p))

i=1 pe[P]
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The using Lemma C.7 and the similar proof of Lemma C.13, we can get

. . Cplog?(m) |\
1) - il =05 ) (w0 = 0 L) v
¢p*log’(n)
) (| =05 ) w0 (L) v
pd' 2, .
> 3 -] <o (s + st ) v

i=1 pe[P]

_ 1
Therefore, noting that we have assumed dop = o(n/P) andC o O(Pd“zﬂr ),

ZZ% GRROR <w“),s§“>\ P (v, v - (wi V)|

i=1 pe[P]

[ vy - (Wit ] () - (w )

for some sufficiently small constant ¢ < 0.5. Therefore, further applying Lemma C.7, we can get that
(wit! Vv = [L+O(mp)] - (Wil V') + O(mp/P) - (Wi}, v) (€.25)
Given the above equation, we are able to complete the proof by combining it with Lemma C.13:
(witiV vy = [1+00m)] - (wi),v) (C.26)

(Wi, v)] = Qo)
In particular, given the fact that!\ ™ 1.+ - 0/, we can get the following

(T) QO ¢1/2
il = (ml/"z) (c.27)
T — O(h)g((/(*mau)))
for some n . Besides, by Lemma C.14 and (C.15), we have for any ro € [m],
witt o) wi )l (1 +m” (v.v) £ o(n/ n))) polylog(
[hw2 ( ”))
(t+1) () (t)
’ ’ll>| I(W r 'I.l)l 1+ my (l.l 'I.l j: 0(?7/1 2r 2 poly]og(
(w3 V)]
= ) [1+7n-(v SL (v,v) — "fg )( u))+o(n/ polylog(”))]
|< )| W2,ro,u
(Wi, V)|

|<w(20')” wl- [1+ O(’#polylog(”))]l

w“+”1u wv(“r v
[wir —wl a(1) - I{ (10} il

Note that t < T = Oe(1/n), we can further get Iws! ”)‘“H (W proud], This immediately implies that
T .

max, |(wh,), u)| = ©(max, |(wi%), v)[) = Q(¢1/2/m1/2),

Moreover, (C.25) implies that
T-1

T T 0 t t
(win) V) = [1+0mp)]" - (Wil V) +O(np/P) - Y [L+0(mp)] - (wii).v)

t=0 .

(1)
Further note that <W1:‘f" v) has the same sign forall t< Tand [1 + O(np)]t= ©(1) for all t < T, then define T°=T - 0(1/7),
we have

T—1
(Wi v = [01) - (wi%) V) + O (np/P) - 3 (wi)v)

t=0
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> O(np/P) - i<wf2 )| - 1) [(w®,v)|
>0(np/P) - Z | W1 T 6(00).

Then by (C.26) and (C.27), we have for all t € [T°, T - 1], it holds that
‘ 7 <1/2
(w291 = B (lwi ) = 257 )

Therefore, we can finally get

vz oL (€0 - Oten)

1/2
_q 28 Y
Pml/z
(1)

. . . . . o wi ) a), wl )
The remaining part is to establish the upper bounds in terms of incorrect feature learning, i.e.,\ ™ 1.7 > “/and\ " 1,r * = /,
Particularly, recall their update forms as follows:

(wit o) = [1 =i u, )]-(wi*? u) + i (vo) - (wi') )+l (Vo) - (wi V)
) () + 3 S € ) (w6
1=1 pe[P]
(Wi = [1 -t )] - Wiy o vy - (wi vy Y () - (i) )

D) - (wl v +szm (€7 u') - (will eP).

+ 07
i=1 pe[P]

Then by Lemmas C.6 and C.10, we have
, (&) 0 1) ' < mi (1) (!)
max { |7, (0, u)|, 7" (w,u')[} < min {3;" (u,u), 3" (v, u)}’

the above equations further yield
1 1)
(wi D >|+|<w]‘,+ )|
< [(wi'l )| + [(wi' )|+ O(¢) - [(wi'), >|+o nCp/P) - [(wi) V")
Z Z ,,,n(f) £(P <W1 ) ,g(P Z 7?“/1 g(ﬁ) (Wl ), g(ﬂ )

i=1 pe[P] i=1 pe[P]

Then using the fact that Tn = O(polylog(n)), we can further obtain
(Wil ] + [l )] < Ofo0) + O(Q) - max | (wi'), V)] + O(Cp/ P) - mae [(wil} v/)

te[T]
+z{zzml (€D u) - (wit), £7)

t=0 1= 11)6

i€ w) - (wif 6|

i=1 pe[P]

Moreover, following the same procedure of (C.23), we can get

T-1 n
I3 X e w6 30 3 e ) ol )‘
t=0 ! i=1 pe[P] t=0 1 i=1 pe[P]

~ ~ (do?
< Oton) + O B2 ) s w21+ Lt w2+ )]
Finally, using the assumption that { = w(dop2/(Pn)), we can get that
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|<W1 r U)‘ + |<wl T ‘-ur>|

(t) (t) 7 /
< . a. é a
< O(00) +0(¢) [{Igﬁl(wl.,,\fﬂ+}IEI[6}I§\(W1., V)Iﬂlel[}ﬁ [HwS )]+ [(wi'), U)IH_

Besides, note that the above inequality actually holds for any T°< T, thus

(wil )+ [(wi) )|

< O(o0) + 0(0) - | mmace (i, v) |+ mae (i, v)] + ma (1wl )]+ [(wi), )]

< O(00) + 0O(() - hg?ﬁl(ﬂlz-s"”+{2%’~§|<W1‘rs\">l+§gﬁﬁ [1(wi w] + [(wif), U’>I]]-

This further implies that

) (t) (t)
?elfﬁ (w0 w4+ [(wi ., u')]

<0 Y . 2 () A ’
< Olo0) +0(0) - [ mae (wil), V)] + max | (wil), V)| + ma [ wi2) )] + [ (wil. W)

Then, rearranging terms will readily give the following result:

it )+ L) )| < e [ (i) w) 4 [, ) ]

A (1) ()
< . a. N
< O(o0) +O(C) [ 1o [1(wi . V)] + max [|(wi 7, V)]

< 0e(3/2),

I i quuality holds since we must have
max VW.(L) vl max (.’,) ! O(log(n) - 1/2

as otherwise, we cannot have maxke[2),(ij)es |Fk(Wm Xij)| < {/2 for all t < T, which contradicts the condition made in this

) )y .
lemma. This completes the upper bounds ofl (Wl 2w andelﬂ‘ u H

O
C.5 Proof of Theorem 4.2

Proof of Theorem 4.2. We will evaluate the test error for common feature data and rare feature data separately. In
particular, take the positive data (x,1) as an example. Then note that the data x consists of the common feature v, we
can obtain the following by Lemma 5.6:

9 =300 (WA 230 Y (i) =600
r=1p=1 r=1 p:x(p)=v

(T) 2 (202
On the other hand, we can follow the similar proof of Theorem 4.1 to show that‘ (Wi, QI = O(UP” )
at

least 1 — 1/poly(n), then it follows that

with probability

(W x ZZ x(P) < O(ba?¢?) +O(a n?) < F,(W®, x)

r=1p=1

where we use the fact that ba? = o(1/polylog(n)) and d = w(n3P). This clearly suggests that

P(xy)~Deommon[argmaxFr(W,x) 6=y]s__ 1
Lk poly(n)
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Then let’s move on to the rare feature data. In particular, consider the positive rare feature data (x,1), which contains the
rare feature v9, we have
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r=1p=1 r=1 p:x(i’):v’
On the other hand, it holds that

m
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r=1p=1
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where we use the fact that ba2{? = o(p) and d = w(n3P3/p?). Therefore, this implies that

P(xy)~Drare[argmaxFx(W(g,X) 6=y] <
Lk poly(n)

Putting the results for common feature data and rare feature data together, we are able to complete the proof.
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