
Model Mixing Using Bayesian Additive

Regression Trees

John C. Yannotty, Thomas J. Santner, Richard J. Furnstahl, and Matthew T. Pratola

The Ohio State University

May 8, 2023

Abstract

In modern computer experiment applications, one often encounters the situation where vari-

ous models of a physical system are considered, each implemented as a simulator on a computer.

An important question in such a setting is determining the best simulator, or the best combi-

nation of simulators, to use for prediction and inference. Bayesian model averaging (BMA) and

stacking are two statistical approaches used to account for model uncertainty by aggregating

a set of predictions through a simple linear combination or weighted average. Bayesian model

mixing (BMM) extends these ideas to capture the localized behavior of each simulator by defin-

ing input-dependent weights. One possibility is to define the relationship between inputs and

the weight functions using a flexible non-parametric model that learns the local strengths and

weaknesses of each simulator. This paper proposes a BMM model based on Bayesian Additive

Regression Trees (BART). The proposed methodology is applied to combine predictions from

E↵ective Field Theories (EFTs) associated with a motivating nuclear physics application.

Keywords: Computer Experiments; E↵ective Field Theories; Model stacking; Uncertainty quantifi-

cation

1 Introduction

In statistical learning problems, one often considers a set of plausible models, each designed to

explain the system of interest. A common practice is to select a best performing model based on

some pre-specified criteria. The ensuing inference for quantities of interest is then carried out using

the selected model as if it were the true data generating mechanism. The resulting uncertainty
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quantification ignores any variability due to the underlying model structure (Draper, 1995). The

misrepresentation of uncertainties associated with such quantities can ultimately lead to misguided

interpretation or inappropriate decisions. Another shortcoming of the typical approach to modeling

is that the resulting inference may strongly depend on the selection criteria. In other words, di↵erent

sets of criteria could lead to noticeably di↵erent final models and inferential results. To account for

such uncertainties, one may elect to combine information across the set of models in some manner.

Any model set can be classified as M-closed, M-complete, or M-open (Bernardo and Smith,

1994). These three categories di↵er in their underlying assumptions regarding a true model, M†,

and its relation to the model set. The M-closed setting assumes a mathematical representation

of M† can be formulated and it is included in the model set. In this setting, model selection is

appropriate because M† can be recovered from the set of models under consideration. The M-

complete setting also assumes it is possible to construct M†, however it is not included in the

model set. For example, an expression for M† may exist, however it may be computationally

intensive or intractable compared to the models under consideration. The M-open case assumes

the true model may exist, however a lack of knowledge or resources prevents one from constructing

its mathematical representation. Consequently, M† is excluded from the model set. This work

is motivated by applications in nuclear physics which tend to fall within the M-open class as the

underlying truth regarding the physical system may not yet be understood. In such cases, one

may desire to leverage the known information about the physical system which is contained in the

model set along with experimental data to further understand the nuclear phenomena.

Assume a set of K models are considered when studying a particular system of interest. One

approach to account for model uncertainty is to combine the information across these K models.

This may involve combining the individual point predictions or probability density functions from

each model, usually in some additive manner. Traditional frequentist and Bayesian approaches

utilize global weighting schemes, where each model is weighted by a value intended to reflect overall

(global) model performance. For example, a classical global weighting scheme is Bayesian model

averaging (BMA) (Raftery et al., 1997), which combines the individual posterior densities from

each model using a convex combination. The BMA weights are given by the individual posterior

model probabilities, each which can be interpreted as the probability the individual model is the

true data generating one. Hence, BMA implicitly assumes the true model is contained within the

model set, which renders this method inappropriate outside of the M-closed setting (Bernardo and

Smith, 1994). More recent Bayesian global weighting schemes adopt a model stacking approach,
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Figure 1: Three di↵erent EFT experimental settings. Each panel displays the true physical system

(solid) and the mean predictions from the EFTs under consideration (non-solid).

where model weights are assigned to minimize a specified posterior expected loss. This decision

theory viewpoint of global weighting can be used for combining point predictions (Le and Clarke,

2017) or probability densities (Yao et al., 2018). Under some assumptions, stacking methods have

been shown to be more appropriate for both the M-open and M-closed settings (Yao et al., 2018).

Though global weighting methods are e↵ective, they still might lead to poor approximations of

the true system when the individual model performance is localized. In such a case, one may wish

to select a weighting scheme that reflects the localized characteristics of the models by constructing

input-dependent weights. With input-dependent weights, one would expect an individual model

to receive a higher weight in input regions where it exhibits strong predictive performance, while

receiving a weight close to 0 in regions of poor performance. Localized weighting schemes are

more appropriate for the M-open or M-complete settings where the true model may be better

characterized as a localized mixture of the model set under consideration.

This work is motivated by problems in nuclear physics modeled using a technique known as

E↵ective Field Theory (EFT) (Burgess, 2020; Petrov and Blechman, 2016; Georgi, 1993). EFTs

are designed to perform well in a particular subregion(s) of the input domain, yet diverge in the

rest of the input domain. Prototypes of such models are the weak and strong coupling finite-

order expansions for the partition function of the zero-dimensional �4 theory presented by Honda

(2014). Examples of this problem are shown in Figure 1 where the various dashed and dotted lines

represent the mean predictions from a finite-order expansion and the solid line denotes the true

physical system. One can see that these models are highly accurate descriptions of the true system
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Figure 2: The posterior mean prediction of f†(x) when applying BMA to the 2nd order weak and

4th order strong coupling expansions.

in some regions of the domain, yet they are unable to provide a globally accurate model. Most EFT

problems fall within the M-open setting, as the true underlying description of the system across

the entire domain is unknown and thus is not contained within the model set. Instead, multiple

EFTs can be constructed based on the known physics to recover the true system across subsets of

the domain. This poses the question as to how to combine the predictions from multiple EFTs in

order to obtain a globally accurate prediction. Various interpolation methods (Honda, 2014) exist,

however no data-driven approaches are currently available for EFTs.

To demonstrate why problems falling in theM-open class may not be suited for model averaging

schemes, consider applying BMA to the model set involving the two expansions as shown in Fig-

ure 1(a). The posterior mean prediction from BMA results in a poor estimate of the true system as

shown in Figure 2. Essentially, BMA selects the dashed model rather than leveraging the localized

strengths contained in the model set. Given the characteristics of EFTs and the M-open setting

associated with these problems, a simple weighted average of the predictions from each model is

insu�cient for recovering the true physical system. A better approach is to use an input-dependent

weighting scheme which leverages the localized behaviors of each model to ascertain appropriate

mean prediction and uncertainty quantification. Such an approach falls under the general class of

problems known as Bayesian model mixing (BMM) (Yao et al., 2021).

A key challenge in BMM is to define the relationship between the inputs and the weight func-

tions. This work proposes a Bayesian treed model which specifies the weight functions as a sum-of-

trees. This representation relies on tree bases which are used to learn the localized model behavior.
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Additionally, this flexible and non-parametric approach allows the user to avoid having to specify a

more restrictive model for the weight functions, such as a generalized linear model. Maintaining the

traditional conjugacy properties associated with Bayesian Additive Regression Tree (BART) mod-

els, the weight functions are regularized via a multivariate Gaussian prior. The prior is calibrated

so that the weight functions prefer the interval [0, 1] without imposing any further constraints.

Additionally, this framework includes a simple strategy for incorporating prior information about

localized model performance when available. All together, this approach highlights the localized

behaviors of the candidate models and yields significant improvements in prediction, interpretation,

and uncertainty quantification compared to traditional model averaging methods.

In addition to proposing a novel non-parametric BMM method, this work introduces a new

data-driven approach for combining predictions from various EFTs. This is not only important for

prediction of the system, but also for the resulting inference. In particular, practitioners can better

understand the accuracy of each EFT while also advancing their knowledge about the underlying

physical system across areas which are not well explained by the EFTs under consideration.

The remainder of this paper is organized in the following manner. Section 2 highlights some rel-

evant work related to model averaging, model mixing, and BART. Section 3 introduces the essential

features of EFTs, while Section 4 outlines the specifics of the proposed BART-based framework.

Three motivating EFT examples are presented in Section 5. Finally, Section 6 provides a detailed

discussion of the results presented throughout this work. Full derivations of the methodology are

provided in the appendix. Additional examples and information regarding EFTs are provided in

the online supplement.

2 Background

This section provides an overview of the primary statistical methods discussed throughout

this work. Section 2.1 details popular model averaging and model mixing techniques. Section

2.2 summarizes the primary features of Bayesian tree models, which play an integral role in the

proposed model mixing approach described in this work.

2.1 Model Averaging and Model Mixing

Methods to address model uncertainty have been widely studied throughout the past few

decades. The majority of work in this area combines competing models through either mean or
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density estimation. In either case, the combined result is generally computed via linear combination

of the individual predictive means or densities from the models under consideration. The weights in

this linear combination may or may not depend on the inputs for each model and are learned using

the set of training data D = {(x1, y1), . . . , (xn, yn)}. Many frequentist and Bayesian methods exist

for estimating the model weights. Popular frequentist approaches such as stacking (Breiman, 1996)

and model aggregation (Bunea et al., 2007) estimate the weights by minimizing a specified loss

function. Additionally, one may elect to impose constraints such as a non-negativity or sum-to-one

constraint on the weights or apply regularization techniques. Other frequentist approaches estimate

the weights using evaluation metrics such as the Akaike information criteria (Burnham et al., 1998)

or Mallow’s CP (Hansen, 2007). These methods generally fall under the model averaging regime,

as the weights are independent of the model inputs, with the exception of Sill et al. (2009). The

remainder of this section reviews popular Bayesian methods in further detail.

Bayesian Model Averaging: A classical approach for combining modelsM1,. . . ,MK is Bayesian

Model Averaging (Raftery et al., 1997). Suppose Q is a quantity of interest. The posterior density

of Q is defined by ⇡(Q | D) =
PK

l=1wl ⇡(Q | D,Ml), which is a weighted average of the posterior

densities with respect to each model. Each weight is defined in terms of its corresponding posterior

model probability, i.e. wl = ⇡(Ml | D) where

⇡(Ml | D) =
p(D | Ml)⇡(Ml)PK

k=1 p(D | Mk)⇡(Mk)

and p(D | Ml) is the marginal likelihood of the data with respect to the lth model. Though BMA is

useful, it has been criticized for emphasizing a fit to the training data as opposed to out-of-sample

prediction, asymptotically selecting a single model (inappropriate in the M-complete and M-open

settings, e.g. Figure 2), and being sensitive to prior specification.

Bayesian Mean Stacking: Recent work has extended stacking to the Bayesian paradigm as an

approach for mean estimation (Clyde and Iversen, 2013; Le and Clarke, 2017). Given K competing

models, the stacked mean for a future observation ỹ at input x̃ is constructed as a linear combination

of individual model predictors E[ỹ | x̃,D] =
PK

l=1wl fl(x̃), where E[ỹ | x̃,D,Ml] = fl(x̃). When

the individual models are unknown, stacking is conducted in a two-step procedure: (i) independently

fitting the individual models Ml, l = 1, . . .K, given the set of training data D, and (ii) estimating

the weights w = (w1, . . . , wK)> for the stacked predictor given the fitted models.

In the first step, each model is fit and their corresponding mean predictions, f̂l(xi), are obtained

at each of the training points. In practice, cross validation techniques are used to reduce the risk
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of overfitting the stacked predictor to the training data. In the second step, the coe�cient vector

w = (w1, . . . , wK)> is defined as the minimzer of a specified posterior expected loss. Additionally,

one may impose various constraints such as a simplex, non-negativity, or sum-to-m constraint on

the weights (Le and Clarke, 2017). Other approaches include regularization via a penalty term or

a prior (Breiman, 1996; Yang and Dunson, 2014).

Bayesian Complete Stacking: Complete Stacking was motivated by the shortcomings of BMA

(Yao et al., 2018). This Bayesian stacking model emphasizes prediction, as the weights are se-

lected to minimize the Kullback-Leibler (KL) divergence between the true predictive density and

the stacked predictive density p(ỹ | x̃) =
PK

l=1wl p(ỹ | x̃,D,Ml), where ỹ is a future obser-

vation with input x̃. Similar to mean stacking, the leave-one-out (LOO) cross validated predic-

tive density can be used in place of p(ỹ | x̃,D,Ml) when the individual models are unknown.

Given training data, the weights are constrained to a K�dimensional simplex SK and estimated

as bw = argmaxw2SK

Pn
i=1 log

PK
l=1wl p(yi | xi,D(�i)

,Ml), where D(�i) denotes the training set

excluding the pair (xi, yi).

Bayesian Hierarchical Stacking: Hierarchical Stacking (Yao et al., 2021) is a model mixing

approach which extends Complete Stacking by defining input-dependent weights that are estimated

in a fully Bayesian manner. One way to define the weight functions is through a parametric model.

First, K � 1 unconstrained weight functions are defined as,

w
⇤
l (xi) = µl +

JX

j=1

↵lj gj(xi),

which depend on the sets of hyperparameters {↵lj} and {µl} along with user-specified basis func-

tions gj(xi), where j = 1, . . . , J and l = 1, . . . ,K � 1. The K
th function w

⇤
K(xi) is set to 0 to serve

as a baseline. Then, a softmax transformation is applied to the unconstrained weights in order to

confine each model weight to the K-dimensional simplex, namely

wl(xi) =
exp

�
w

⇤
l (xi)

�

exp
�
w

⇤
1(xi)

�
+ · · ·+ exp

�
w

⇤
K(xi)

� , l = 1, . . . ,K.

The methods discussed above outline a number of strategies one can take to combine the

information across multiple models. In the setting of EFT experiments, the localized nature of

the predictions suggests an input-dependent weighing scheme like Bayesian Hierarchical Stacking

is more suitable. However, specifying the required basis functions may not be trivial. Thus, the

proposed method will adopt the notion of mean stacking within an additive tree basis model to

achieve localized weighting in a flexible and non-parametric manner.
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2.2 Bayesian Tree Models

Bayesian additive regression trees (BART) have become increasingly popular for modeling com-

plex and high dimensional systems (Chipman et al., 2010). This additive approach involves sum-

ming together the predictions made from m trees and is facilitated through a Bayesian backfitting

algorithm (Hastie and Tibshirani, 2000). Each tree Tj is characterized by its structure, comprised

of internal and terminal nodes, along with its associated set of terminal node parameters, Mj . The

internal nodes define binary partitions of the input space according to a specified splitting rule. A

given node ⌘ is defined to be an internal node with probability p(⌘ is internal) = ↵(1+d⌘)�� where

d⌘ is the depth of ⌘ and ↵ and � are tuning parameters. By construction, this prior penalizes tree

complexity and thus ensures each tree maintains a shallow and simple structure. Given d di↵erent

predictors, x1, ..., xd, splitting rules are of the form xv < c for v 2 {1, ..., d} and cutpoint c from

a discretized subset of R. In the simplest approach, the predictor and cutpoint associated with

each splitting rule are randomly selected from discrete uniform distributions. The probabilities

associated with the designation of each node along with the splitting rules for internal nodes are

used to define the stochastic tree-generating prior for each tree.

The m trees are learned through MCMC, where a slight modification to each structure is

proposed at every iteration of the simulation. Generally, such modifications to the tree include

birth, death, perturb, or rotate as described by Chipman et al. (1998) and Pratola (2016). Proposals

are then accepted or rejected using a Metropolis-Hastings step. To avoid a complex reversible jump

MCMC, the algorithm depends on the integrated likelihood, which is obtained by integrating over

the terminal node parameters associated with the given tree. A closed form expression for this

density can be obtained with conditional conjugate priors for the terminal node parameters.

Given the tree structure, prior distributions can be assigned to each terminal node parameter.

In the BART model, the priors ensure each tree explains a small yet di↵erent source of variation

in the data. For continuous data, BART assigns Gaussian priors to the terminal node parameters.

Assuming the data is mean centered, the prior assigned to terminal node parameter µpj in node

⌘pj is given by µpj | Tj ⇠ N(0, ⌧2) where ⌧ = (ymax � ymin)/(2k
p
m) with tuning parameter k.

Additionally, a scaled inverse chi-squared prior is assigned to the variance, i.e. �2 ⇠ ⌫�/�
2
⌫ .

The traditional Bayesian regression tree model can be extended to allow for a more complex

structure in the terminal nodes. Existing extensions include linear regression (Chipman et al., 2002;

Prado et al., 2021) and Gaussian processes (Gramacy and Lee, 2008). For the setting of model
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mixing, this work utilizes a multivariate Gaussian terminal node model.

3 Towards Model Mixing with EFTs

An EFT forms an expansion (or multiple expansions) as a ratio of an input parameter to

a physically relevant scale. Computer models implement EFTs as simulators. The theoretical

predictions of the physical system are approximations from each simulator plus a discrepancy term,

which is designed to account for the remaining unexplained portions of a system. These two

components may have specific properties which can be leveraged when working with observational

data. This section summarizes these details in the context of EFTs, while a further discussion is

provided in the supplementary material.

3.1 Motivating EFT Example

Consider the EFT example where the true physical system is the partition function of the

zero-dimensional �4 theory defined by

f†(x) =

Z 1

�1
exp

⇣
� u

2

2
� x

2
u
4
⌘
du, (1)

where x denotes the coupling constant (Honda, 2014). Two types of finite-order expansions exist

for this partition function and are given by (2) and (3) for ns or nl � 1, namely

h
(ns)
s (x) =

nsX

t=0

stx
t where st =

8
>><

>>:

p
2�(t+0.5)
(t/2)! (�4)(t/2) t is even

0 t is odd

(2)

h
(nl)
l (x) =

nlX

t=0

ltx
�t where lt =

�(0.5t+ 0.25)

2t!

⇣
� 1

2

⌘t
, t = 0, ..., nl. (3)

The weak coupling expansion in (2) is an asymptotic Taylor-like series of order ns centered about

zero. Thus, h(ns)
s (x) will yield high-fidelity predictions for smaller coupling constants and diverge

as the value increases. The reverse behavior is observed for the strong coupling expansion in (3),

h
(nl)
l (x), which is convergent. Example predictions of the physical system using these finite-order

expansions can be seen in Figure 1 and are discussed in detail in Section 3.2.

The theoretical predictions of the physical system using the weak and strong coupling expansions
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are expressed using (4) and (5), respectively.

f
(ns)
s (x) = h

(ns)
s (x) + �

(ns)
s (x) (4)

f
(nl)
l (x) = h

(nl)
l (x) + �

(nl)
l (x). (5)

where the truncation errors �(ns)
s (x) and �

(nl)
l (x) are modeled with Gaussian processes (GPs) (Gra-

macy, 2020; Santner et al., 2018). As described by Melendez et al. (2019), the parameters in both

truncation error models are dependent upon the evaluations of their corresponding finite-order

expansions (described in (2) and (3), respectively) over a sparse grid of points. The discrepancy

model also depends on physical quantities, Q(x) and yref(x), which are chosen based on domain

expertise. The relationship between these quantities and the discrepancy are summarized in the

supplementary material. When Q(x) and yref(x) are unknown, one can alternatively use the error

approximation described by Semposki et al. (2022).

The features present in this example from Honda (2014) are commonly found across the land-

scape of EFT problems. For instance, the physical system can be expressed as an additive model

involving a finite-order expansion and the induced truncation error. The finite-order expansions

are designed to provide high-fidelity predictions in specific subregions of the domain. There exists

a subregion of the domain where none of the finite-order expansions yield accurate theoretical pre-

dictions. All together, this motivating example serves as a prototype for the EFTs that may be

encountered in a general experimental setting.

3.2 The Model Set for EFT Experiments

One may encounter various experimental settings when working with EFTs. Such scenarios are

introduced in the context of the motivating example presented in Section 3.1. First, consider the

most basic case where the model set contains a single EFT. With one EFT, the overall predictive

accuracy of the true system is poor, despite the good performance in a localized region. For

example, suppose the model set M contains the 2nd order weak coupling expansion f
(2)
s (x). Mean

predictions constructed from (2) and (4) are shown by the dashed line in Figure 1(a). Clearly, this

model is limited to strong predictive accuracy in only the left subregion of the domain.

When available, one can consider di↵erent finite-order approximations of the same EFT. For

example, consider the 2nd, 4th, and the 6th order coupling expansions which are shown in Fig-

ure 1(c). The three models are very similar for lower coupling constants yet drastically di↵er in

the remainder of the domain. Despite each expansion’s poor theoretical predictions, one can still
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leverage the available information to improve the overall prediction of the physical system. For

instance, the 2nd and 6th order expansions (dashed and dashed-dotted) are concave functions while

the 4th order expansion (dotted) is convex. This suggests the true physical system lies between the

expansions under consideration and can be recovered by re-weighting the corresponding predictions.

A third situation is to consider EFTs centered about di↵erent areas of the domain. For example,

a model set can contain a finite-order weak coupling expansion (dashed) and the 4th order strong

coupling expansion (dotted) as shown in Figures 1(a) and 1(b). The addition of the strong coupling

expansion allows for a high-fidelity approximation of the physical system to be considered in the

rightmost subregion of the domain. The model set listed in panel (a) implies the true system lies

between the two expansions. This is particularly useful in the intermediate range where neither

of the EFTs are accurate. Meanwhile, the set in panel (b) presents an interesting case where the

physical system lies below both EFTs in the intermediate range. In this case, the information in

the observational data can be leveraged to help recover the true system.

In this example, the predictions from the weak coupling expansion degrade slowly compared to

those from the strong coupling expansions. Consequently, the weak coupling expansions generally

appear to have a better overall predictive performance across the entirety of the domain. When

combining these two types of EFTs using global weighting schemes such as BMA, the resulting

prediction will favor the weak coupling expansion due to its drastic advantage in the overall model

performance. The undesirability of the BMA solution is evident in Figure 2, which demonstrates

that BMA e↵ectively matches the 2nd order weak coupling expansion. Hence, a weighting scheme

which captures the localized behaviors of each model is preferred in the EFT setting.

The proceeding sections consider a general set of K di↵erent EFTs, which are denoted by

f1(x), . . . , fK(x). In this motivating example, fl(x) = hl(x) + �l(x) where hl(x) can denote either

a weak or strong coupling expansion of order Nl, where l = 1, . . . ,K. Meanwhile, �l(x) is the

associated truncation error and is modeled by a GP as described in the supplementary material.

3.3 Predictions from EFTs

Prior to model mixing, each of the K EFTs are independently emulated. Without loss of

generality, consider the lth EFT denoted by fl(x). It is assumed this EFT is accompanied by a set

of simulator runs across a fixed set of inputs xc
l1, . . . ,x

c
lnl

. Information regarding the design of the

computer experiment for each EFT can be found in Melendez et al. (2021). The simulator runs

are evaluations of the finite-order expansion, hl(·), at the specified inputs. Using these runs, one
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can extract the set of Nl + 1 coe�cients c0(·), . . . , cNl(·) at each of the fixed inputs. The training

set for the lth EFT is then defined by Dl =
��

xc
l1,C(xc

l1)
�
, . . . , (xc

lnl
,C(xc

lnl
)
� 

where C(·) denotes

the vector of known finite-order coe�cients at the specified model input. The resulting coe�cients

and the set of inputs can di↵er across the K models, thus the sets D1, . . . ,DK will contain di↵erent

information.

As described in the supplementary material, an EFT is fit using the finite-order coe�cients

to learn the unknown parameters which characterize the GP assigned to the truncation error.

This information can be extracted from Dl, which implies the set of field observations is not

required to fit each EFT. Consequently, the desired theoretical predictions across the input domain

can be obtained without using any of the observational data. The resulting posterior predictive

distribution is a Gaussian process, which can be characterized by the corresponding mean and

covariance functions as described in Melendez et al. (2019) (see also the supplementary material).

The predictions for an EFT are then computed through the posterior mean.

4 Bayesian Additive Model Mixing Trees

4.1 Defining a Mixed Model

The proposed BMM model is trained using a set of observational data, Y1, ..., Yn, which are

assumed to be independently generated at fixed inputs x1, ...,xn according to

Yi = f†(xi) + ✏i, ✏i
iid⇠ N(0,�2)

where f†(xi) represents the true and unknown physical system. Conditional on the theoretical

predictions at a given point, f1(xi), . . . , fK(xi), the data can be modeled as

Yi | f(xi),w(xi),�
2 ind⇠ N

�
f>(xi)w(xi),�

2
�

(6)

where f(xi) =
�
f1(xi), ..., fK(xi)

�>
and w(xi) = (w1(xi), ..., wK(xi))>. This formulation is an

example of Bayesian mean stacking with an input-dependent weighting scheme. In practice, the

predictions from each model are unknown and must be estimated.

The proposed BMM model relies on a two-step approach for combining the predictions across

K EFTs. This implies each EFT is first fit independently and the estimated predictions f̂l(xi) are

obtained for l = 1 . . . ,K and i = 1, . . . , n prior to learning the weight functions w1(xi), . . . , wK(xi).

The proposed two-step approach is tailored to EFTs by taking advantage of the sources of data de-

scribed in Section 3.3 as well as the properties described in the supplementary material. Conditional
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on the estimated predictions, the model for the observational data becomes

Yi | f̂(xi),w(xi),�
2 ind⇠ N

�
f̂
>
(xi)w(xi),�

2)

where f̂(xi) =
�
f̂1(xi), . . . , f̂K(xi)

�>
. The weight functions are then learned using the set of

field data. The next section outlines the proposed model mixing scheme which defines the weight

functions using Bayesian Additive Regression Trees (BART).

4.2 Model Mixing using BART

The weight functions w(x) = (w1(x), . . . , wK(x))> are modeled using a sum-of-trees

w(xi) =
mX

j=1

g(xi, Tj ,Mj), (7)

where g(xi, Tj ,Mj) is the K-dimensional output of the jth tree using the set of terminal node

parameters, Mj , at the input, xi. This approach defines the weight functions using tree bases which

are learned from the data. The amount of flexibility in the weight functions can be controlled by

changing the number of trees or tuning the hyperparameters in the prior distributions.

In this application of BART, each terminal node parameter is a K-dimensional vector which is

assigned a multivariate Gaussian prior. The parameter is regularized so that each tree accounts for

a small amount of variation in the weight functions. For the proceeding statements, let ⌘pj represent

the pth terminal on the jth tree and define its corresponding parameter by µpj = (µpj1, ..., µpjK)>.

Now assume the observations (x1, y1), ..., (xnp , ynp) lie in the hyper-rectangle defined by ⌘pj , where

np is the number of observations assigned to this subregion. The model at each terminal node

amounts to fitting a localized Bayesian linear regression with parameter vector µpj . Due to condi-

tional independence, the likelihood in this node is defined by

L(r1, ..., rnp | Tj ,µpj ,�
2) = (2⇡�2)�np/2 exp

⇣
� 1

2�2

npX

i=1

⇣
ri � f̂

>
(xi)µpj

⌘2⌘

where f̂(xi) =
�
f̂1(xi), ..., f̂K(xi)

�>
is a vector of mean predictions from each EFT and ri is the

ith residual given by ri = yi �
P

q 6=j f̂
>
(xi)g(xi, Tq,Mq).

Conditional on the tree structure, Tj , the terminal node parameter, µpj is assigned a conjugate

multivariate Gaussian prior, namely

µpj | Tj
ind⇠ NK

⇣
�, ⌧2IK

⌘
(8)
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where � = (�1, ...,�K)> is a K-dimensional mean vector and IK is the identity matrix. This prior is

non-informative in the sense that the mean is fixed regardless of how the input space is partitioned.

In model mixing, each simulator may perform strongly in one subregion of the input space but

weakly in another. This belief can be reflected in the prior distribution of µpj by allowing the

hyperparameters to depend on the partition of input space assigned to the given terminal node.

Thus, an informative prior for µpj can be constructed as

µpj | Tj
ind⇠ NK

⇣
�pj , ⌧

2IK

⌘

where �pj = (�pj1, ...,�pjK)>. This allows the prior mean to vary depending on the tree partitions

and thus reflect some sense of localized model performance. Meanwhile, the assumed covariance

structure implies the K vector components µpj1, ..., µpjK are independent apriori.

Both of the proposed priors are conjugate, which is an important choice in BART, as it allows for

a closed form expression for the marginal likelihood for the vector of residuals Rpj = (r1, .., rnp)
>
,

Additionally, the conjugate priors result in closed form expressions for the full conditional distribu-

tions of the terminal node parameters and the error variance. The derivations of these distributions

are found in the Appendix. In particular, the full conditional distribution for the pth terminal node

in Tj is given by

µpj | Rpj , Tj ,�
2 ind⇠ NK

 ⇣ 1

�2
F̂

>
pjF̂ pj +

1

⌧2
IK

⌘�1⇣ 1

⌧2
�pj +

1

�2
F̂

>
pjRpj

⌘
,

⇣ 1

�2
F̂

>
pjF̂ pj +

1

⌧2
IK

⌘�1
!

where F̂ pj is the np ⇥K design matrix with the ith row vector given by the vector f̂
>
(xi). The

full conditional distribution for �2 is a scaled inverse chi-squared, i.e. �2 | · ⇠ ⌫
0
�
0
/�

2
⌫0 , where

⌫
0 = n+ ⌫ and �

0 =
1

n+ ⌫

⇣ nX

i=1

⇣
yi � f̂

>
(xi)w(xi)

⌘2
+ ⌫�

⌘
,

with ⌫ and � denoting the prior shape and scale parameters, respectively.

4.3 Calibrating Priors

First consider the prior for the terminal node parameters. The calibration of the hyperparam-

eters di↵ers for the non-informative and informative priors, however both approaches are designed

to ensure that each model weight wl(x) should prefer the interval [0, 1] and be centered at a value

within this region. Moreover, the functions w1(x), . . . , wK(x) are assumed to be independent apriori

at a fixed input. This enables the prior for each weight to be calibrated marginally.
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4.3.1 Non-Informative Prior

Consider a non-informative prior for the terminal node parameters. In this setting,

µpj | Tj
iid⇠ NK

�
�, ⌧2IK

�
for the pth terminal node parameter in the jth tree. First, fix l 2 {1, ...,K}

and i 2 {1, ..., n} to calibrate the prior for wl(xi). Since the terminal node parameters are indepen-

dent and identically distributed with a diagonal covariance structure, the prior induced on wl(xi)

is the same for the remaining weight and input combinations. From (7) and (8), the induced prior

on the lth model weight is wl(xi) ⇠ N(m�l,m⌧
2). Since it is believed wl(xi) 2 [0, 1] with high

probability, it is plausible to set m�l = 0.5. Consequently, �l = 0.5/m. Thus, each weight has an

equal chance to reach the “extreme” values of 0 or 1 regardless of the input location. The prior

standard deviation, ⌧ , can be selected so that wl(xi) 2 [0, 1] with high probability. To do this, a

confidence interval for wl(xi) is constructed such that 0 = 0.5� k⌧
p
m and 1 = 0.5 + k⌧

p
m. Sub-

tracting the first equation from the second and solving for ⌧ yields ⌧ = 1/2k
p
m. This calibration

approach is very similar to the one proposed by Chipman et al. (2010). The main di↵erence is

due to the context of the problem, as it is believed the weights are predominately contained in an

interval [0, 1] rather than the observed range of the data, [ymin, ymax].

4.3.2 Informative Prior

In the informative setting, the prior mean directly depends on the partitions of the input

space induced by the given tree, i.e. µpj | Tj ⇠ NK
�
�pj , ⌧

2IK
�
. This prior is tailored towards

EFTs, where the functional variance, vl(xi), indicates the severity of the truncation error. A larger

variance within a particular subregion of the domain indicates the presence of larger truncation

error meaning the EFT provides a poor approximation of the true system.

Given this interpretation of the truncation error variances, one strategy for combining EFTs is

precision weighting (Phillips et al., 2021). For example, the precision weight for the lth EFT at xi

is given by

�l(xi) =
1/vl(xi)

1/v1(xi) + ...+ 1/vK(xi)
.

The precision weight �l(xi) can be interpreted as an initial guess for the weight function wl(xi) for

l = 1, . . . ,K and i = 1, . . . , n.

Since the prior of the terminal node parameter changes conditional on the tree structure, each

�pj is chosen separately from the other terminal node parameters. Given the precision weights for
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the EFTs and n training points, each component of the the prior mean vector, �pjl, is chosen by

�pjl =
1

m
Pn

i=1 1(xi 2 ⌘pj)

nX

i=1

�l(xi) 1(xi 2 ⌘pj),

where 1(xi 2 ⌘pj) is the indicator that xi is assigned to the terminal node ⌘pj . A confidence interval

for each terminal node parameter can be set to have a length of 1/m in order to ensure each tree

is a weak learner. This is done by setting ⌧ = 1/2km.

4.3.3 Variance Prior

A conjugate scaled inverse chi-squared distribution with hyperparameters ⌫ and � is assigned to

the error variance �
2. To calibrate the prior, first select a value of ⌫ to reflect the desired shape of

the distribution. Common values of ⌫ range from 3 to 10. Before selecting a value for �, one needs

an initial estimate of the error variance to help set the prior around a range of plausible values of �2.

Given the model set and the corresponding point predictions at each of the training points f̂ l(xi),

one can use a lightly data informed prior by setting �̂
2 = maxl=1,..,K

n
mini=1,..,n

⇣
yi � f̂l(xi)

⌘2o
.

Since a common belief is that each model yields accurate approximations of the true system over

some subregion of the domain, one should expect the set of minimum squared di↵erences across the

K models will unveil reliable information about the true error variance. Given this information,

one strategy is to set �̂2 to be the mean or mode of a �⌫/�
2
⌫ distribution. The value of � is then

found by solving the resulting equation.

5 EFT Examples

This section applies the proposed model mixing methodology to three di↵erent examples. Sec-

tion 5.1 demonstrates the success of the BART-based mixing approach on two univariate EFT

examples, which are introduced in Section 3. A multi-dimensional example is highlighted in Sec-

tion 5.2 using simulators which are based on Taylor series expansions of a trigonometric function.

Though this last example does not involve a true underlying physical system, the model set consid-

ers simulators which have similar qualities of EFTs with double expansions (see Burgess (2020)).

Each example highlights specific features of the proposed BART-based mixing model such as flexible

basis functions for the weights and the associated prior regularization.
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5.1 Example 1: Mixing Univariate EFTs

This section applies the BART model mixing (BART-BMM) method to various EFTs over a

one-dimensional domain. For comparison, Hierarchical Stacking (HS) is also applied to the same

set of EFTs. In both EFT examples, 20 observations are independently generated according to

Yi = f†(xi) + ✏i, ✏i ⇠ N(0,�2)

where i = 1, ..., 20, � = 0.005, and f†(x) is defined in (1). The 20 training points are located at

inputs which are evenly spaced over the interval of 0.03 to 0.50. The error standard deviation of

0.005 was selected to mimic a controlled experiment setting. Each EFT model is fit using nc = 4

evaluations of the corresponding finite-order expansion.

5.1.1 Example 1a: Mixing Two EFTs

First consider mixing the EFTs based on the second order weak coupling expansion, f (2)
s (x) and

the fourth order strong coupling expansion, f (4)
l (x) as shown in Figure 1(a). The true system f†(x)

lies between both EFTs across the entire domain, hence a convex combination of the predictions

from both EFTs is appropriate for recovering the true system. The BART-BMM model is fit

using 10 trees and k = 5.0. Meanwhile, the HS unconstrained weight function is defined by

w
⇤
1(x) = µ1 + ↵1x. The results of the BART-BMM method and HS are shown in Figure 3.

In terms of the root mean squared error (RMSE) between the predicted system and the true

f†(x), the BART-BMM model results in more accurate mean predictions compared to HS, which

have RMSE values of 0.0053 and 1.9460 respectively. The RMSE for the HS result is inflated by

the diverging mixed prediction in the left portion of the domain. For example, the RMSE for the

HS model over the interval [0.1, 0.5] drops to 0.0717. Additionally, from Figure 3 it is evident

BART-BMM results in predictions of f†(x) which have lower uncertainty than those from HS.

The weight functions in Figure 3 also take similar sigmoid-like shapes, however the HS solution

displays a high degree of uncertainty. The most noticeable di↵erence between the two methods

can be seen in the weight function of f (4)
l (x) (dotted). In particular, the curve in the BART-BMM

result increases at a quicker rate in the sub-region [0.3, 0.4] compared to the HS result. This slower

rate of increase contributes to the poor prediction from HS in this sub-region. Another di↵erence

is observed in the region of [0.03, 0.15], as the weight of f (4)
l (x) under the HS approach is near 0,

however it is not small enough to negate the e↵ect of the drastically diverging mean prediction from

f
(4)
l (x). Meanwhile, the BART-BMM weight is shrunk close to 0 with minimal uncertainty due to
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Figure 3: The predicted mean (dark gray) and 95% credible intervals (shaded) when mixing f
(2)
s (x)

(dashed) and f
(4)
l (x) (dotted). Results are obtained from a BART-BMM model with 10 trees and

a Hierarchical Stacking model with a linear unconstrained weight function (bottom).

the mean estimation objective, which directly re-weights the mean prediction from an individual

model, and the lack of a simplex constraint.

Another advantage of BART-BMM is that the weight functions are learned throughout the

MCMC via the tree models. This di↵ers from HS, which requires specification of a basis for the

unconstrained weights apriori. In this example, one may consider a di↵erent basis function, as the

specified linear basis appears to be inadequate for ascertaining high-fidelity mean predictions across

the entire domain.

5.1.2 Example 1b: Mixing Two Convex EFTs

Now, consider a second model set which is shown in Figure 1(b) and replaces f
(2)
s (x) with

f
(4)
s (x). Both EFTs overestimate f†(x) in the intermediate range, hence weights which are confined

18



to a simplex are unable to recover the true system. In this case, a piecewise basis function is

assigned to the unconstrained HS weight as shown below,

w
⇤
1(x) = µ1 + ↵11(x < 0.15) + ↵21(0.15  x < 0.25) + ↵31(0.25  x < 0.35).

This basis was chosen to roughly reflect the areas where the mean predictions begin to change at

di↵ering rates. Other selections of the partitions for a piecewise basis are equally valid.

The BART-BMM and HS results are shown in Figure 4. Once more, the BART-BMM approach

outperforms HS in terms of mean prediction, with RMSE values of 0.0057 and 0.1141 respectively.

Most notably, the HS solution is unable to accurately predict the true system in the intermediate

range of the domain due to the simplex constraint on the model weights. Meanwhile, the BART-

BMM approach is able to recover the system across the entirety of the domain due to the prior

regularization approach taken with the weights, which does not impose such strict constraints.

In this HS result, it appears the piecewise basis was more e↵ective than the linear basis in terms

of predicting the true system in the left and right portion of the domain. This further poses the

question of how to select the partitions induced by the piecewise basis, as di↵erent choices may lead

to drastically di↵erent results. This question served as the motivation for defining a BART-based

model, which adaptively learns these partitions based on the observational data and the model set.

5.2 Example 2: Multi-Dimensional Mixing

The proposed model mixing approach is also applicable for computer experiments which depend

on multi-dimensional inputs. To demonstrate this, consider a 2-dimensional problem where the true

underlying system is defined by

f†(x) = sin(x1) + cos(x2),

where x = (x1, x2)> 2 [�⇡,⇡] ⇥ [�⇡,⇡]. A set of 80 training points are generated from this true

system with observational error standard deviation of 0.1. Additionally two candidate models are

considered, each with simulators defined in terms of Taylor series expansions of s(xi) := sin(x1)

and c(x2) := cos(x2). For this example, the simulators are defined by

h1(x) =
7X

j=0

s
(j)(x1)

j!
(x1 � ⇡)j +

10X

k=0

c
(k)(x2)

k!
(x2 � ⇡)k

h2(x) =
13X

j=0

s
(j)(x1)

j!
(x1 + ⇡)j +

6X

k=0

c
(k)(x2)

k!
(x2 + ⇡)k
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Figure 4: The predicted mean (dark gray) and 95% credible intervals (shaded) when mixing f
(4)
s (x)

(dashed) and f
(4)
l (x) (dotted). Results are obtained from a BART-BMM model with 10 trees (top)

and a Hierarchical Stacking model with a piecewise unconstrained weight function (bottom).

where s
(j)(x1) and c

(k)(x2) denote the jth and kth derivatives of sin(x1) and cos(x2), respectively.

Note, the first simulator h1(x) centers both Taylor series expansions about ⇡, hence it produces

relatively accurate predictions of the system in upper right corner of the domain and diverges when

moving towards the negative portion of the domain. Meanwhile, the h2(x) is composed of Taylor

series expansions centered about �⇡ which produces accurate predictions in the negative portion

of the domain. One key di↵erence between the simulators is that h2(x) contains a highly accurate

approximation of sin(x1) across the entire interval [�⇡,⇡] because its corresponding Taylor series

expansion is composed of 7 non-zero terms. Thus, even though the expansion sin(x1) and cos(x2)

are centered about �⇡, one would expect h2(x) to result in accurate predictions of f†(x) across

the rectangle [�⇡,⇡]⇥ [�⇡, 0].

The theoretical predictions from each model f1(x) and f2(x) can be defined using the additive
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Figure 5: (Left) The mean di↵erence between the predicted system f†(x), and the true system

f†(x). (Center) The mean weight function for h1(x). (Right) The mean weight function for h2(x).

form fl(x) = hl(x) + �l(x), where �l(x) represents the unknown higher-order corrections and

l = 1, 2. Due to the nature of this example, no model is postulated for �l(x). Consequently, the

estimated theoretical predictions at each training point xi are obtained by f̂l(xi) = hl(xi). Note,

in a multi-dimensional EFT setting, the strategy discussed from Section 3 remains applicable.

The results from a 30-tree BART-BMM model are shown in Figure 5. The leftmost plot displays

the absolute value of the mean residuals, |f̂†(x)� f†(x)| where f̂†(x) denotes the mean prediction

from the BMM model. Based on the residual plot, it appears f†(x) is adequately recovered across

the majority of the domain with an RMSE of 0.2575. As expected, the error in the mean prediction

noticeably increases in the upper left corner of the domain, where only two training points are

included and both simulators are inaccurate.

The second and third plots illustrate the posterior mean weight functions for each simulator.

Based on the middle plot, the first simulator has increasing utility as x1 and x2 both increase. This

is to be expected, as h1(x) is composed of two expansions centered about ⇡. Note, the mean value

of w1(x) does not reach 1 in the upper right corner of the domain because the simulator slightly

overestimates the peak of f†(x) in this region. Meanwhile, the posterior mean of w2(x) indicates

h2(x) has high utility for x 2 [�⇡,⇡] ⇥ [�⇡, 0], which is to be expected given the nature of the

expansions included in this simulator. Moreover, the predictions from h2(x) appear to align closely
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with the data, and thus f†(x), as is evident by the weights approaching values near 1 in the bottom

half of the domain.

6 Discussion

A variety of frequentist and Bayesian approaches are available for model averaging and mixing.

Each method involves estimating the overall predictive mean or density based on the individual

models. The selection between these two objectives should ultimately be guided by the underlying

statistical inference one wishes to ascertain. In computer experiments, a primary objective is to

recover the underlying system, which is generally expressed as the mean function in an additive

model for the observational data. Hence, a mean estimation approach is more desirable when

working within this setting compared to a predictive density estimation, which is modeled with the

intention of predicting a future observation ỹ.

Example 5.1 compares the proposed mean estimation method versus a density estimation

method in Hierarchical Stacking (HS). In HS, the weight functions are learned relative to leave-

one-out (LOO) predictive densities under a simplex constraint. These LOO densities incorporate

information regarding the mean and variance of each EFT at a given x. In portions of the domain

where a model may rapidly diverge, the resulting LOO predictive density is shrunk towards 0. In

turn, the corresponding weight function will approach 0, however it may struggle to obtain a small

enough value to shrink out the e↵ect of the diverging mean. Meanwhile, shrinking the e↵ect of a

diverging prediction appears to be easier when mixing the mean predictions from each EFT.

The primary objective of the weight functions is to re-scale the predictions given by each in-

dividual model so that a linear combination of these predictions can adequately recover the true

system. Given the prior regularization method applied to the weight functions, exact interpreta-

tion of the resulting values can be unclear. However, using this regularization perspective, one can

conclude that weight functions which fall close to 0 within a particular subregion indicate that the

corresponding model is unnecessary for the overall prediction. Meanwhile, a model which is the

unique local expert within a particular region should be weighted by values close to 1. Overall, a

joint interpretation of the weight functions is appropriate, particularly in regions where the weights

concentrate around values away from 0 or 1. These features are observed across each example.

The benefit of the proposed regularization approach can further be understood through the

posterior distribution of the sum of the weight functions, wsum(x) =
PK

l=1wl(x), as shown in
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Figure 6: (Left) The posterior mean estimates and 95% credible intervals (shaded) of the sum of

weight functions from Examples 1a and 1b (solid and dashed). (Right) The posterior mean estimate

of the sum of weight functions in Example 2.

Figure 6. The posterior of wsum(x) from Example 1a (left panel, solid) is centered very close to

1 with relatively small amounts of uncertainty. This results because: (i) the prior regularization

and (ii) f†(x) lies between the selected EFTs, which indicates a convex combination is appropriate.

Even though a sum-to-one property is not strictly imposed, it appears to naturally occur in this

situation where an interpolation of the competing models is appropriate. Meanwhile, the posterior

of wsum(x) from Example 1b (left, dashed) significantly drops below 1 in the intermediate range of

the domain because both EFTs overestimate the true system, which renders a convex combination

to be inappropriate. Similar features are observed in the 2-dimensional example, as the mean of

wsum(x) concentrates around 1 in areas where at least one of the simulators aligns well with the true

system. Meanwhile, when neither simulator is accurate (i.e. the top left corner) the the mean value

of wsum(x) is drastically below 1. From these observations, it appears the BART-BMM approach

benefits by not imposing strict assumptions, such as a simplex constraint, on the weights.

Finally, the weight functions can be used to better understand the M-open assumption asso-

ciated with the model set. An initial confirmation of the M-open setting can be made when the

weight functions noticeably change as a function of the inputs. This observation indicates localized

performance of each model, hence one can confirm the true system is not contained in the set. If

the weight functions are nearly constant, one may also wish to check the posterior of wsum(x) to

see if the sum of the weights is fixated close to 1. Such a case may suggest model averaging with

a simplex constraint could also be an appropriate solution. This alone is not enough to confirm
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or deny the M-open assumption, however it may indicate that the M-complete or M-closed as-

sumptions are possible for the model set. A final case to consider is the situation where a single

model receives a weight near 1 while the e↵ects of the competing models are shrunk to 0 across a

subregion of the domain. This situation may indicate the model set is M-closed conditional on the

subregion of interest despite falling in the M-open case when considering the entire domain.

In conclusion, this work proposes a Bayesian treed framework to mix predictions from a set of

competing models, each of which are intended to explain the physical system across a subregion

of the domain. This approach falls within the class of problems referred to as Bayesian model

mixing, as input-dependent weights are defined to reflect the localized behavior of each model.

The weight functions are modeled using a sum-of-trees and are regularized via a multivariate

Gaussian prior. The tree bases coupled with the regularization approach allows for the weights

to be learned in a flexible non-parametric manner free of strict constraints. Using the weight

functions, predictions from the individual models are mixed via a linear combination. The success

of this mixing approach is demonstrated on three examples, each of which considers models with

localized predictive performances. Leveraging the localized behavior of the individual models leads

to significant improvements in the posterior prediction and uncertainty quantification of f†(x) and

the overall interpretation of the system compared to existing global and local weighting schemes.
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Yao, Y., Pirš, G., Vehtari, A. and Gelman, A. (2021), “Bayesian hierarchical stacking: Some models

are (somewhere) useful”, Bayesian Analysis 1(1), 1–29.

Yao, Y., Vehtari, A., Simpson, D. and Gelman, A. (2018), “Using stacking to average Bayesian

predictive distributions”, Bayesian Analysis 13(3), 917–1007.

27



Appendix

Let ⌘pj denote the pth terminal node in the jth tree. Without loss of generality, assume

(x1, y1), ..., (xnp , ynp) lie in the hyper-rectangle defined by ⌘pj . Furthermore, define each residual as

ri = yi �
X

q 6=j

f̂
>
(xi) g(xi, Tq,Mq), i = 1, . . . , np

These are collected in an np dimensional vector Rpj = (r1, ..., rnp)
>. Finally, let F̂ pj denote the

np ⇥K matrix whose lth column is (f l(x1), ...,f l(xnp))
>. Due to the independence and constant

variance assumptions, the model for the vector of residuals along with the associated priors is

defined by

Rpj | µpj , Tj ,�
2 ⇠ Nnp

⇣
F̂ pjµpj ,�

2
Inp

⌘

µpj | Tj
ind⇠ NK(�pj ,⌃)

�
2 ⇠ �⌫/�

2
⌫

where it is assumed ⌃ = ⌧
2
IK .

The Marginal Likelihood

The marginal likelihood of the residuals in node ⌘pj is defined by

L(Rpj | Tj ,�
2) =

Z
L(Rpj | Tj ,µpj ,�

2)⇡(µpj | Tj) dµpj (9)

Then, it follows,

L(Rpj | Tj ,�
2) =

Z
(2⇡�2)�np/2 exp

⇣
� 1

2�2
(Rpj � F̂ pjµpj)

>(Rpj � F̂ pjµpj)
⌘
⇥

(2⇡⌧2)�K/2 exp
⇣
� 1

2⌧2
(µpj � �pj)

>(µpj � �pj)
⌘
dµpj

= (2⇡�2)�np/2(2⇡⌧2)�K/2⇥
Z n

exp
⇣
� 1

2�2
(R>

pjRpj � 2µ>
pjF̂

>
pjRpj + µ>

pjF̂
>
pjF̂ pjµpj

⌘
⇥

exp
⇣
� 1

2⌧2
(µ>

pjµpj � 2µ>
pj�pj + �>

pj�pj)
⌘
dµpj

o

= (2⇡�2)�np/2(2⇡⌧2)�K/2 exp
⇣
� 1

2�2
R>

pjRpj �
1

2⌧2
�>
pj�pj

⌘
⇥

Z
exp

✓
� 1

2
µ>
pj

⇣ 1

�2
F̂

>
pjF̂ pj +

1

⌧2
IK

⌘
µpj +

⇣ 1

⌧2
�pj +

1

�2
F̂

>
pjRpj

⌘>
µpj

◆
dµpj .
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Now let A�1 = 1
�2 F̂

>
pjF̂ pj +

1
⌧2 IK and b =

⇣
1
⌧2�pj +

1
�2 F̂

>
pjRpj

⌘
. Substituting these terms into the

above expression yields

L(Rpj | Tj ,�
2) = (2⇡�2)�np/2(2⇡⌧2)�K/2 exp

⇣
� 1

2�2
R>

pjRpj �
1

2⌧2
�>
pj�pj

⌘
⇥ (10)

Z
exp

✓
� 1

2
µ>
pjA

�1µpj + b>µpj

◆
dµpj

Using Lemma B.1 from Santner et al. (2018) the integral simplifies as
Z

exp

✓
� 1

2
µ>
pjA

�1µpj + b>µpj

◆
dµpj = (2⇡)K/2|A|1/2 exp

⇣1
2
b>Ab

⌘
. (11)

Then, from (10) and (11), the marginal likelihood simplifies as

L(Rpj | Tj ,�
2) = (2⇡�2)�np/2(⌧2)�K/2|A|1/2 exp

⇣
� 1

2�2
R>

pjRpj �
1

2⌧2
�>
pj�pj +

1

2
b>Ab

⌘
.

= (2⇡�2)�np/2(⌧2)�K/2

����
⇣ 1

�2
F̂

>
pjF̂ pj +

1

⌧2
IK

⌘�1
����
1/2

⇥ exp

✓
� 1

2

⇣ 1

�2
R>

pjRpj +
1

⌧2
�>
pj�pj � b>Ab

⌘◆

where b>Ab =
⇣

1
⌧2�pj +

1
�2 F̂

>
pjRpj

⌘>⇣
1
�2 F̂

>
pjF̂ pj +

1
⌧2 IK

⌘�1⇣
1
⌧2�pj +

1
�2 F̂

>
pjRpj

⌘
.

The Full Conditional Distribution of µpj

Now consider the full conditional posterior distribution of the terminal node parameter µpj .

Using Bayes rule,

⇡(µpj | Rpj , Tj ,�
2) / L(Rpj | Tj ,µpj ,�

2)⇡(µpj | Tj)

A conjugate prior is assumed for µpj , thus the terms in the likelihood and prior can be rearranged

to obtain a Normal kernel for the posterior distribution. This process is summarized below.

⇡(µpj | Rpj , Tj ,�
2) / exp

⇣
� 1

2�2
(Rpj � F̂ pjµpj)

>(Rpj � F̂ pjµpj)
⌘
⇥

exp
⇣
� 1

2⌧2
(µpj � �pj)

>(µpj � �pj)
⌘

/ exp

(
� 1

2

 
µ>
pj

⇣ 1

�2
F̂

>
pjF̂ pj +

1

⌧2
IK

⌘
µpj � 2µ>

pj

⇣ 1

⌧2
�pj +

1

�2
F̂

>
pjRpj

⌘!)

/ exp

(
� 1

2

 
µ>
pjA

�1µpj � 2µ>
pjA

�1Ab

!)

where A�1 = 1
�2 F̂

>
pjF̂ pj +

1
⌧2 IK and b = 1

⌧2�pj +
1
�2 F̂

>
pjRpj . The previous expression simplifies as

⇡(µpj | Rpj , Tj ,�
2) / exp

⇣
� 1

2
(µpj �Ab)>A�1(µpj �Ab)

⌘
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This is the kernel of a Multivariate Gaussian distribution with mean Ab and covariance matrix A.

Thus it follows

µpj | Rpj , Tj ,�
2 ind⇠ NK

⇣
Ab,A

⌘

replacing A and b with their respective definitions implies

µpj | Rpj , Tj ,�
2 ind⇠ NK

 ⇣ 1

�2
F̂

>
pjF̂ pj +

1

⌧2
IK

⌘�1⇣ 1

⌧2
�pj +

1

�2
F̂

>
pjRpj

⌘
,

⇣ 1

�2
F̂

>
pjF̂ pj +

1

⌧2
IK

⌘�1
!

The Full Conditional Distribution of �2

Finally, consider the full conditional posterior for the error variance, which is defined by

⇡(�2 | Y , T,M) / L(Y | T,M,�
2)⇡(�2)

where Y = (y1, ..., yn)>, T = {T1, ..., Tm}, and M = {M1, ...,Mm}.

Further, assume a conjugate prior for �
2, namely �

2 ⇠ ⌫�/�
2
⌫ which has a probability density

function defined by

⇡(�2) =
(⌫/2)⌫/2

�(⌫/2)
�
⌫/2(�2)�(⌫/2+1) exp

⇣
� ⌫�

2�2

⌘

Due to conjugacy, the full conditional distribution is given by

⇡(�2 | Y , T,M) / (�2)�n/2 exp
n
� 1

2�2

nX

i=1

⇣
yi � f̂

>
(xi)w(xi)

⌘2o
(�2)�(⌫/2+1) exp

n
� ⌫�

2�2

o

/ (�2)�(n/2+⌫/2+1) exp
n
� 1

2�2

⇣ nX

i=1

⇣
yi � f̂

>
(xi)w(xi)

⌘2
+ ⌫�

⌘o

This is the kernel of another scaled inverse-�2 distribution, namely �
2 ⇠ ⌫

0
�
0
/�

2
⌫0 where

⌫
0 = n+ ⌫ and �

0 =
1

n+ ⌫

⇣ nX

i=1

⇣
yi � f̂

>
(xi)w(xi)

⌘2
+ ⌫�

⌘
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Supplementary Material

An Overview of EFT

EFTs model physical systems by an infinite expansion of terms organized in order of decreasing

importance according to the power counting principle (Burgess, 2020; Petrov and Blechman, 2016;

Georgi, 1993). Exact theoretical predictions of the system are obtained by summing over these

terms. In practice, only a finite number of lower-order terms are known. Thus, the theoretical

prediction can be decomposed using a Taylor-like series which includes the known finite-order

expansion along with the induced truncation error. Predictions of experimental quantities can then

be represented using an additive model

Y (x) = f
(N)(x) + ✏(x)

f
(N)(x) = h

(N)(x) + �
(N)(x)

where x 2 Rd denotes an independent variable associated with the system, h(N)(x) represents the

known finite-order expansion of degree N , �(N)(x) is the associated truncation error, and ✏(x) is

the random observational error. The accuracy of the finite-order expansion may vary significantly

across a subregion of the domain. For example, a finite-order expansion centered about zero may

yield a high-fidelity approximation in the lower regions of the domain. However, the accuracy of

the prediction quickly degrades in higher regions of the domain.

It is further assumed the finite-order expansion can be modeled as a stochastic process. First,

the finite-order expansion can factorized as

h
(N)(x) = yref(x)

NX

k=0

ck(x)Q
k(x), (12)

where yref(x) sets the scale of variation, c0(x), ..., cN (x) are dimensionless observable coe�cients,

and Q(x) is a dimensionless expansion parameter. When the scale and expansion parameters are

known based on theoretical arguments, the coe�cients c0(x), ..., cN (x) appear to behave as a set

of independent and identically distributed curves from a stochastic process (Melendez et al., 2019).

Thus, a common model for the coe�cients is a Gaussian process

ck(x) | ✓ ⇠ GP (µ, c̄2r(x,x0; `)) (13)

✓ = (µ, c̄2, `),
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where µ denotes a constant mean function and r(x,x0; `) represents the covariance function. A

common assumption is to set µ = 0, while prior distributions can be assigned to the remaining

parameters in the model (Melendez et al., 2019).

The parameters in (13) are learned using a set of evaluations from the kth-order expansion,

for k = 0, . . . , N , at nc design inputs xc
1, . . . ,x

c
nc
. Define the set of evaluations of the expan-

sions at the ith design point by H(xc
i ) = {h(0)(xc

i ), . . . , h
(N)(xc

i )}. Given Q(x) and yref(x),

these evaluations are used to extract the observed finite-order coe�cients at each design point

C(xc
i ) = {c0(xc

i ), . . . , cN (xc
i )}. A likelihood is formed using C(xc

1), . . . , C(xc
nc
) and (13). The

unknown parameters ✓ are estimated through their resulting posterior distributions given these

observed coe�cients.

The truncation error accounts for the remaining unknown terms in the series, thus �
(N)(x) is

modeled using a similar factorization

�
(N)(x) = yref(x)

1X

k=N+1

ck(x)Q
k(x). (14)

Using (13) and (14) along with properties of the multivariate normal distributions (Ravishanker

et al., 2021), the induced prior on the truncation error term is given by

�
(N)(x) | ✓, Q ⇠ GP

�
m�(x), c̄

2
R�(x,x

0; `)
�
, (15)

with mean and covariance functions

m�(x) = µ yref(x)
Q

N+1(x)

1�Q(x)
(16)

R�(x,x
0; `) = yref(x)yref(x

0)
[Q(x)Q(x0)]N+1

1�Q(x)Q(x0)
. (17)

The unknown parameters in (15) - (17) originate from the coe�cient model in (12). Thus, the

mean and covariance functions which characterize the discrepancy model are also learned using the

set of evaluations of the finite-order expansions at the nc design points. This is a unique property

of EFTs, as observational data is not required to learn the model discrepancy.

When the finite-order expansion is computationally inexpensive to evaluate, the induced prior

on the theoretical predictions, f (N)(x) = h
(N)(x) + �

(N)(x) is given by

f
(N)(x) | ✓, Q,h(N) ⇠ GP

�
mth(x),⌃th(x,x

0)
�
,

where mth(x) = h
(N)(x) +m�(x) and ⌃th(x,x0) = c̄

2
R�(x,x0; `). In the expensive case, a GP can

be used to emulate the finite-order expansion and is defined by

h
(N)(x) | ✓, Q ⇠ GP

�
mN (x), c̄2RN (x,x0; `)

�
.
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The resulting prior on the theoretical prediction is a GP with mean and covariance functions

mth(x) = mN (x) +m�(x) and ⌃th(x,x0) = c̄
2
RN (x,x0; `) + c̄

2
R�(x,x0; `). In either case, given a

set of model runs H(xc
1), . . . , H(xc

nc
), one can obtain posterior predictions f̂ (N)(x̃1), . . . , f̂ (N)(x̃m)

at new inputs x̃1, . . . , x̃m.
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