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Abstract

In modern computer experiment applications, one often encounters the situation where vari-
ous models of a physical system are considered, each implemented as a simulator on a computer.
An important question in such a setting is determining the best simulator, or the best combi-
nation of simulators, to use for prediction and inference. Bayesian model averaging (BMA) and
stacking are two statistical approaches used to account for model uncertainty by aggregating
a set of predictions through a simple linear combination or weighted average. Bayesian model
mixing (BMM) extends these ideas to capture the localized behavior of each simulator by defin-
ing input-dependent weights. One possibility is to define the relationship between inputs and
the weight functions using a flexible non-parametric model that learns the local strengths and
weaknesses of each simulator. This paper proposes a BMM model based on Bayesian Additive
Regression Trees (BART). The proposed methodology is applied to combine predictions from

Effective Field Theories (EFTs) associated with a motivating nuclear physics application.

Keywords: Computer Experiments; Effective Field Theories; Model stacking; Uncertainty quantifi-

cation

1 Introduction

In statistical learning problems, one often considers a set of plausible models, each designed to
explain the system of interest. A common practice is to select a best performing model based on
some pre-specified criteria. The ensuing inference for quantities of interest is then carried out using

the selected model as if it were the true data generating mechanism. The resulting uncertainty



quantification ignores any variability due to the underlying model structure (Draper, 1995). The
misrepresentation of uncertainties associated with such quantities can ultimately lead to misguided
interpretation or inappropriate decisions. Another shortcoming of the typical approach to modeling
is that the resulting inference may strongly depend on the selection criteria. In other words, different
sets of criteria could lead to noticeably different final models and inferential results. To account for
such uncertainties, one may elect to combine information across the set of models in some manner.

Any model set can be classified as M-closed, M-complete, or M-open (Bernardo and Smith,
1994). These three categories differ in their underlying assumptions regarding a true model, Mj,
and its relation to the model set. The M-closed setting assumes a mathematical representation
of My can be formulated and it is included in the model set. In this setting, model selection is
appropriate because M; can be recovered from the set of models under consideration. The M-
complete setting also assumes it is possible to construct M;, however it is not included in the
model set. For example, an expression for M; may exist, however it may be computationally
intensive or intractable compared to the models under consideration. The M-open case assumes
the true model may exist, however a lack of knowledge or resources prevents one from constructing
its mathematical representation. Consequently, M; is excluded from the model set. This work
is motivated by applications in nuclear physics which tend to fall within the M-open class as the
underlying truth regarding the physical system may not yet be understood. In such cases, one
may desire to leverage the known information about the physical system which is contained in the
model set along with experimental data to further understand the nuclear phenomena.

Assume a set of K models are considered when studying a particular system of interest. One
approach to account for model uncertainty is to combine the information across these K models.
This may involve combining the individual point predictions or probability density functions from
each model, usually in some additive manner. Traditional frequentist and Bayesian approaches
utilize global weighting schemes, where each model is weighted by a value intended to reflect overall
(global) model performance. For example, a classical global weighting scheme is Bayesian model
averaging (BMA) (Raftery et al., [1997), which combines the individual posterior densities from
each model using a convex combination. The BMA weights are given by the individual posterior
model probabilities, each which can be interpreted as the probability the individual model is the
true data generating one. Hence, BMA implicitly assumes the true model is contained within the
model set, which renders this method inappropriate outside of the M-closed setting (Bernardo and

Smith, 1994)). More recent Bayesian global weighting schemes adopt a model stacking approach,
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Figure 1: Three different EFT experimental settings. Each panel displays the true physical system

(solid) and the mean predictions from the EFTs under consideration (non-solid).

where model weights are assigned to minimize a specified posterior expected loss. This decision
theory viewpoint of global weighting can be used for combining point predictions (Le and Clarke,
2017)) or probability densities (Yao et al., [2018). Under some assumptions, stacking methods have
been shown to be more appropriate for both the M-open and M-closed settings (Yao et al., 2018)).

Though global weighting methods are effective, they still might lead to poor approximations of
the true system when the individual model performance is localized. In such a case, one may wish
to select a weighting scheme that reflects the localized characteristics of the models by constructing
input-dependent weights. With input-dependent weights, one would expect an individual model
to receive a higher weight in input regions where it exhibits strong predictive performance, while
receiving a weight close to 0 in regions of poor performance. Localized weighting schemes are
more appropriate for the M-open or M-complete settings where the true model may be better
characterized as a localized mixture of the model set under consideration.

This work is motivated by problems in nuclear physics modeled using a technique known as
Effective Field Theory (EFT) (Burgess, 2020; Petrov and Blechman, 2016; |Georgi, [1993). EFTs
are designed to perform well in a particular subregion(s) of the input domain, yet diverge in the
rest of the input domain. Prototypes of such models are the weak and strong coupling finite-
order expansions for the partition function of the zero-dimensional ¢* theory presented by Honda
(2014)). Examples of this problem are shown in Figure 1| where the various dashed and dotted lines
represent the mean predictions from a finite-order expansion and the solid line denotes the true

physical system. One can see that these models are highly accurate descriptions of the true system
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Figure 2: The posterior mean prediction of f;(x) when applying BMA to the 2nd order weak and

4th order strong coupling expansions.

in some regions of the domain, yet they are unable to provide a globally accurate model. Most EFT
problems fall within the M-open setting, as the true underlying description of the system across
the entire domain is unknown and thus is not contained within the model set. Instead, multiple
EFTs can be constructed based on the known physics to recover the true system across subsets of
the domain. This poses the question as to how to combine the predictions from multiple EFTs in
order to obtain a globally accurate prediction. Various interpolation methods (Honda, 2014]) exist,
however no data-driven approaches are currently available for EFTs.

To demonstrate why problems falling in the M-open class may not be suited for model averaging
schemes, consider applying BMA to the model set involving the two expansions as shown in Fig-
ure a). The posterior mean prediction from BMA results in a poor estimate of the true system as
shown in Figure [2| Essentially, BMA selects the dashed model rather than leveraging the localized
strengths contained in the model set. Given the characteristics of EFTs and the M-open setting
associated with these problems, a simple weighted average of the predictions from each model is
insufficient for recovering the true physical system. A better approach is to use an input-dependent
weighting scheme which leverages the localized behaviors of each model to ascertain appropriate
mean prediction and uncertainty quantification. Such an approach falls under the general class of
problems known as Bayesian model mixing (BMM) (Yao et al., 2021)).

A key challenge in BMM is to define the relationship between the inputs and the weight func-
tions. This work proposes a Bayesian treed model which specifies the weight functions as a sum-of-

trees. This representation relies on tree bases which are used to learn the localized model behavior.



Additionally, this flexible and non-parametric approach allows the user to avoid having to specify a
more restrictive model for the weight functions, such as a generalized linear model. Maintaining the
traditional conjugacy properties associated with Bayesian Additive Regression Tree (BART) mod-
els, the weight functions are regularized via a multivariate Gaussian prior. The prior is calibrated
so that the weight functions prefer the interval [0,1] without imposing any further constraints.
Additionally, this framework includes a simple strategy for incorporating prior information about
localized model performance when available. All together, this approach highlights the localized
behaviors of the candidate models and yields significant improvements in prediction, interpretation,
and uncertainty quantification compared to traditional model averaging methods.

In addition to proposing a novel non-parametric BMM method, this work introduces a new
data-driven approach for combining predictions from various EFTs. This is not only important for
prediction of the system, but also for the resulting inference. In particular, practitioners can better
understand the accuracy of each EFT while also advancing their knowledge about the underlying
physical system across areas which are not well explained by the EFTs under consideration.

The remainder of this paper is organized in the following manner. Section 2 highlights some rel-
evant work related to model averaging, model mixing, and BART. Section 3 introduces the essential
features of EFTs, while Section 4 outlines the specifics of the proposed BART-based framework.
Three motivating EFT examples are presented in Section 5. Finally, Section 6 provides a detailed
discussion of the results presented throughout this work. Full derivations of the methodology are
provided in the appendix. Additional examples and information regarding EFTs are provided in

the online supplement.

2 Background

This section provides an overview of the primary statistical methods discussed throughout
this work. Section 2.1 details popular model averaging and model mixing techniques. Section
2.2 summarizes the primary features of Bayesian tree models, which play an integral role in the

proposed model mixing approach described in this work.

2.1 Model Averaging and Model Mixing

Methods to address model uncertainty have been widely studied throughout the past few

decades. The majority of work in this area combines competing models through either mean or



density estimation. In either case, the combined result is generally computed via linear combination
of the individual predictive means or densities from the models under consideration. The weights in
this linear combination may or may not depend on the inputs for each model and are learned using
the set of training data D = {(x1,41), ..., (€n,yn)}. Many frequentist and Bayesian methods exist
for estimating the model weights. Popular frequentist approaches such as stacking (Breiman, 1996)
and model aggregation (Bunea et al., |2007) estimate the weights by minimizing a specified loss
function. Additionally, one may elect to impose constraints such as a non-negativity or sum-to-one
constraint on the weights or apply regularization techniques. Other frequentist approaches estimate
the weights using evaluation metrics such as the Akaike information criteria (Burnham et al., 1998)
or Mallow’s CP (Hansen, 2007)). These methods generally fall under the model averaging regime,
as the weights are independent of the model inputs, with the exception of |Sill et al. (2009). The
remainder of this section reviews popular Bayesian methods in further detail.
Bayesian Model Averaging: A classical approach for combining models Mi,. .., Mg is Bayesian
Model Averaging (Raftery et al., [1997)). Suppose @ is a quantity of interest. The posterior density
of Q is defined by 7(Q | D) = Zl[il w; ©(Q | D, M;), which is a weighted average of the posterior
densities with respect to each model. Each weight is defined in terms of its corresponding posterior
model probability, i.e. w; = w(M; | D) where

p(D | My)m(My)
>k P(D | M) m(My)

and p(D | M) is the marginal likelihood of the data with respect to the [th model. Though BMA is

(M| D) =

useful, it has been criticized for emphasizing a fit to the training data as opposed to out-of-sample
prediction, asymptotically selecting a single model (inappropriate in the M-complete and M-open
settings, e.g. Figure , and being sensitive to prior specification.
Bayesian Mean Stacking: Recent work has extended stacking to the Bayesian paradigm as an
approach for mean estimation (Clyde and Iversen, |[2013; [Le and Clarke, 2017). Given K competing
models, the stacked mean for a future observation ¢ at input & is constructed as a linear combination
of individual model predictors E[§ | %, D] = Y1, wy fi(&), where E[j | # D, M| = fi(Z). When
the individual models are unknown, stacking is conducted in a two-step procedure: (i) independently
fitting the individual models M;, I =1,... K, given the set of training data D, and (ii) estimating
the weights w = (w1, ..., wg)" for the stacked predictor given the fitted models.

In the first step, each model is fit and their corresponding mean predictions, fl(cci), are obtained

at each of the training points. In practice, cross validation techniques are used to reduce the risk



of overfitting the stacked predictor to the training data. In the second step, the coefficient vector
w = (wy,...,wg) ' is defined as the minimzer of a specified posterior expected loss. Additionally,
one may impose various constraints such as a simplex, non-negativity, or sum-to-m constraint on
the weights (Le and Clarke, [2017)). Other approaches include regularization via a penalty term or
a prior (Breiman, 1996; [Yang and Dunson, 2014)).

Bayesian Complete Stacking: Complete Stacking was motivated by the shortcomings of BMA
(Yao et al., [2018). This Bayesian stacking model emphasizes prediction, as the weights are se-
lected to minimize the Kullback-Leibler (KL) divergence between the true predictive density and
the stacked predictive density p(y | &) = Zfil w; p(y | &, D, M;), where g is a future obser-
vation with input . Similar to mean stacking, the leave-one-out (LOO) cross validated predic-
tive density can be used in place of p(y | &, D, M;) when the individual models are unknown.
Given training data, the weights are constrained to a K —dimensional simplex Sk and estimated
as W = argmax,,cg, > . log Z{il wy ply; | 25, DD, M;), where D% denotes the training set
excluding the pair (x;, y;).

Bayesian Hierarchical Stacking: Hierarchical Stacking (Yao et al., |2021) is a model mixing
approach which extends Complete Stacking by defining input-dependent weights that are estimated
in a fully Bayesian manner. One way to define the weight functions is through a parametric model.

First, K — 1 unconstrained weight functions are defined as,
J
wy (x;) = puy + Z auj gj(xi),
j=1

which depend on the sets of hyperparameters {ay;} and {4} along with user-specified basis func-
tions gj(x;), where j = 1,...,Jand = 1,..., K — 1. The K" function wj(z;) is set to 0 to serve
as a baseline. Then, a softmax transformation is applied to the unconstrained weights in order to
confine each model weight to the K-dimensional simplex, namely

exp (wl*(:cz))
exp (wi (@) -+ exp (w (@)

wy(x;) = l=1,... K.

The methods discussed above outline a number of strategies one can take to combine the
information across multiple models. In the setting of EFT experiments, the localized nature of
the predictions suggests an input-dependent weighing scheme like Bayesian Hierarchical Stacking
is more suitable. However, specifying the required basis functions may not be trivial. Thus, the
proposed method will adopt the notion of mean stacking within an additive tree basis model to

achieve localized weighting in a flexible and non-parametric manner.



2.2 Bayesian Tree Models

Bayesian additive regression trees (BART') have become increasingly popular for modeling com-
plex and high dimensional systems (Chipman et al., |[2010)). This additive approach involves sum-
ming together the predictions made from m trees and is facilitated through a Bayesian backfitting
algorithm (Hastie and Tibshirani, [2000). Each tree T} is characterized by its structure, comprised
of internal and terminal nodes, along with its associated set of terminal node parameters, M;. The
internal nodes define binary partitions of the input space according to a specified splitting rule. A
given node 7 is defined to be an internal node with probability p( is internal) = a(1+d,)~? where
d, is the depth of n and « and § are tuning parameters. By construction, this prior penalizes tree
complexity and thus ensures each tree maintains a shallow and simple structure. Given d different
predictors, xy, ..., x4, splitting rules are of the form x, < ¢ for v € {1,...,d} and cutpoint ¢ from
a discretized subset of R. In the simplest approach, the predictor and cutpoint associated with
each splitting rule are randomly selected from discrete uniform distributions. The probabilities
associated with the designation of each node along with the splitting rules for internal nodes are
used to define the stochastic tree-generating prior for each tree.

The m trees are learned through MCMC, where a slight modification to each structure is
proposed at every iteration of the simulation. Generally, such modifications to the tree include
birth, death, perturb, or rotate as described by Chipman et al. (1998) and Pratola (2016). Proposals
are then accepted or rejected using a Metropolis-Hastings step. To avoid a complex reversible jump
MCMC, the algorithm depends on the integrated likelihood, which is obtained by integrating over
the terminal node parameters associated with the given tree. A closed form expression for this
density can be obtained with conditional conjugate priors for the terminal node parameters.

Given the tree structure, prior distributions can be assigned to each terminal node parameter.
In the BART model, the priors ensure each tree explains a small yet different source of variation
in the data. For continuous data, BART assigns Gaussian priors to the terminal node parameters.
Assuming the data is mean centered, the prior assigned to terminal node parameter p,; in node
Npj is given by pyi | Tj ~ N(0,7%) where 7 = (Ymaz — Ymin)/(2k/m) with tuning parameter k.
Additionally, a scaled inverse chi-squared prior is assigned to the variance, i.e. 02 ~ v\/x2.

The traditional Bayesian regression tree model can be extended to allow for a more complex
structure in the terminal nodes. Existing extensions include linear regression (Chipman et al., 2002;

Prado et al., 2021) and Gaussian processes (Gramacy and Lee, 2008). For the setting of model



mixing, this work utilizes a multivariate Gaussian terminal node model.

3 Towards Model Mixing with EFTs

An EFT forms an expansion (or multiple expansions) as a ratio of an input parameter to
a physically relevant scale. Computer models implement EFTs as simulators. The theoretical
predictions of the physical system are approximations from each simulator plus a discrepancy term,
which is designed to account for the remaining unexplained portions of a system. These two
components may have specific properties which can be leveraged when working with observational
data. This section summarizes these details in the context of EFTs, while a further discussion is

provided in the supplementary material.

3.1 DMotivating EFT Example

Consider the EFT example where the true physical system is the partition function of the
zero-dimensional ¢* theory defined by
oo u2 9 4
fT(az):/ exp(f?fxu)du, (1)
—00
where x denotes the coupling constant (Honda, 2014). Two types of finite-order expansions exist

for this partition function and are given by and for ng or n; > 1, namely

- N %(—4)@/2) t is even
h') (z) = Zstx where s; =

S
t=0 0 t is odd

(0.5t + O.25)< 1)t ;

ny
hl("l)(:z) = Z lLiz~" where I; = 571
t=0 )

The weak coupling expansion in ([2)) is an asymptotic Taylor-like series of order ns centered about
zero. Thus, hﬁ”s)(x) will yield high-fidelity predictions for smaller coupling constants and diverge
as the value increases. The reverse behavior is observed for the strong coupling expansion in ,
hl(m)(:n), which is convergent. Example predictions of the physical system using these finite-order
expansions can be seen in Figure [1] and are discussed in detail in Section

The theoretical predictions of the physical system using the weak and strong coupling expansions



are expressed using and , respectively.

£ @) = W) () + 60 (@) (@

(@) = h{™ (z) + 6" (). (5)

where the truncation errors 6" () and él(m) (x) are modeled with Gaussian processes (GPs) (Gra-

macy, 2020; Santner et al., [2018]). As described by Melendez et al. (2019), the parameters in both
truncation error models are dependent upon the evaluations of their corresponding finite-order
expansions (described in and , respectively) over a sparse grid of points. The discrepancy
model also depends on physical quantities, Q(x) and yef(2), which are chosen based on domain
expertise. The relationship between these quantities and the discrepancy are summarized in the
supplementary material. When Q(z) and y,f(z) are unknown, one can alternatively use the error
approximation described by [Semposki et al.| (2022).

The features present in this example from Honda (2014) are commonly found across the land-
scape of EFT problems. For instance, the physical system can be expressed as an additive model
involving a finite-order expansion and the induced truncation error. The finite-order expansions
are designed to provide high-fidelity predictions in specific subregions of the domain. There exists
a subregion of the domain where none of the finite-order expansions yield accurate theoretical pre-
dictions. All together, this motivating example serves as a prototype for the EFTs that may be

encountered in a general experimental setting.

3.2 The Model Set for EFT Experiments

One may encounter various experimental settings when working with EFTs. Such scenarios are
introduced in the context of the motivating example presented in Section First, consider the
most basic case where the model set contains a single EFT. With one EFT, the overall predictive
accuracy of the true system is poor, despite the good performance in a localized region. For
example, suppose the model set M contains the 2nd order weak coupling expansion f§2) (). Mean
predictions constructed from and are shown by the dashed line in Figure a). Clearly, this
model is limited to strong predictive accuracy in only the left subregion of the domain.

When available, one can consider different finite-order approximations of the same EFT. For
example, consider the 2nd, 4th, and the 6th order coupling expansions which are shown in Fig-
ure c). The three models are very similar for lower coupling constants yet drastically differ in

the remainder of the domain. Despite each expansion’s poor theoretical predictions, one can still

10



leverage the available information to improve the overall prediction of the physical system. For
instance, the 2nd and 6th order expansions (dashed and dashed-dotted) are concave functions while
the 4th order expansion (dotted) is convex. This suggests the true physical system lies between the
expansions under consideration and can be recovered by re-weighting the corresponding predictions.

A third situation is to consider EFT's centered about different areas of the domain. For example,
a model set can contain a finite-order weak coupling expansion (dashed) and the 4th order strong
coupling expansion (dotted) as shown in Figures a) and (b) The addition of the strong coupling
expansion allows for a high-fidelity approximation of the physical system to be considered in the
rightmost subregion of the domain. The model set listed in panel (a) implies the true system lies
between the two expansions. This is particularly useful in the intermediate range where neither
of the EFTs are accurate. Meanwhile, the set in panel (b) presents an interesting case where the
physical system lies below both EFTs in the intermediate range. In this case, the information in
the observational data can be leveraged to help recover the true system.

In this example, the predictions from the weak coupling expansion degrade slowly compared to
those from the strong coupling expansions. Consequently, the weak coupling expansions generally
appear to have a better overall predictive performance across the entirety of the domain. When
combining these two types of EFTs using global weighting schemes such as BMA, the resulting
prediction will favor the weak coupling expansion due to its drastic advantage in the overall model
performance. The undesirability of the BMA solution is evident in Figure [2| which demonstrates
that BMA effectively matches the 2nd order weak coupling expansion. Hence, a weighting scheme
which captures the localized behaviors of each model is preferred in the EFT setting.

The proceeding sections consider a general set of K different EFTs, which are denoted by
fi(x),..., fx(z). In this motivating example, fj(z) = hi(x) + &;(z) where h;(x) can denote either
a weak or strong coupling expansion of order N;, where [ = 1,..., K. Meanwhile, ¢;(z) is the

associated truncation error and is modeled by a GP as described in the supplementary material.

3.3 Predictions from EFTs

Prior to model mixing, each of the K EFTs are independently emulated. Without loss of
generality, consider the Ith EFT denoted by f;(x). It is assumed this EFT is accompanied by a set
of simulator runs across a fixed set of inputs @}, ..., @, . Information regarding the design of the
computer experiment for each EFT can be found in Melendez et al.| (2021). The simulator runs

are evaluations of the finite-order expansion, hj(-), at the specified inputs. Using these runs, one

11



can extract the set of N; + 1 coefficients co(-),...,cn,(+) at each of the fixed inputs. The training
set for the lth EFT is then defined by D; = {(zf,, C(xf,)), ..., (zf,, C(a:lcm))} where C(+) denotes
the vector of known finite-order coefficients at the specified model input. The resulting coefficients
and the set of inputs can differ across the K models, thus the sets Dy, ..., Dk will contain different
information.

As described in the supplementary material, an EFT is fit using the finite-order coefficients
to learn the unknown parameters which characterize the GP assigned to the truncation error.
This information can be extracted from D;, which implies the set of field observations is not
required to fit each EFT. Consequently, the desired theoretical predictions across the input domain
can be obtained without using any of the observational data. The resulting posterior predictive
distribution is a Gaussian process, which can be characterized by the corresponding mean and
covariance functions as described in Melendez et al.| (2019) (see also the supplementary material).

The predictions for an EFT are then computed through the posterior mean.

4 Bayesian Additive Model Mixing Trees

4.1 Defining a Mixed Model

The proposed BMM model is trained using a set of observational data, Y7, ...,Y,, which are
assumed to be independently generated at fixed inputs 1, ..., ¢, according to

Y = fi(xi) + €, € w N(0,0%)

where fi(x;) represents the true and unknown physical system. Conditional on the theoretical

predictions at a given point, fi(x;),..., fk(x;), the data can be modeled as
ind
Y; | fzi), w(z), 0 % N(f T (@)w(x;),0”) (6)

where f(x;) = (fl(alci),...,fK(acZ-))T and w(x;) = (wi(x;),...,wx(x;)) . This formulation is an
example of Bayesian mean stacking with an input-dependent weighting scheme. In practice, the
predictions from each model are unknown and must be estimated.

The proposed BMM model relies on a two-step approach for combining the predictions across
K EFTs. This implies each EFT is first fit independently and the estimated predictions fl(ml) are
obtained for/ =1...,K andi = 1,...,n prior to learning the weight functions wi(x;), ..., wx(x;).
The proposed two-step approach is tailored to EFTs by taking advantage of the sources of data de-
scribed in Section [3.3]as well as the properties described in the supplementary material. Conditional

12



on the estimated predictions, the model for the observational data becomes

Vi | fzi), wz:), o> " N(F (z)w(z), o)

where f(z;) = (fl(wz),,fK(wz))T The weight functions are then learned using the set of
field data. The next section outlines the proposed model mixing scheme which defines the weight

functions using Bayesian Additive Regression Trees (BART).

4.2 Model Mixing using BART

The weight functions w(z) = (w1 (z), ..., wk(x))' are modeled using a sum-of-trees
j=1

where g(x;, T}, M;) is the K-dimensional output of the jth tree using the set of terminal node
parameters, M;, at the input, «;. This approach defines the weight functions using tree bases which
are learned from the data. The amount of flexibility in the weight functions can be controlled by
changing the number of trees or tuning the hyperparameters in the prior distributions.

In this application of BART, each terminal node parameter is a K-dimensional vector which is
assigned a multivariate Gaussian prior. The parameter is regularized so that each tree accounts for
a small amount of variation in the weight functions. For the proceeding statements, let n,; represent
the pth terminal on the jth tree and define its corresponding parameter by p,,; = (fipj1, -, Hp; x)
Now assume the observations (1,%1), ..., (Zn,, Yn,) lie in the hyper-rectangle defined by 7,;, where
n, is the number of observations assigned to this subregion. The model at each terminal node
amounts to fitting a localized Bayesian linear regression with parameter vector p,;. Due to condi-
tional independence, the likelihood in this node is defined by

n
B 1 <& T 2
L(rh "'7rnp | ij,[J,pj,O'Q) = (271—0-2) np/2 exXp ( - ﬁ E <7’7; - f (ml)l'l'p]) )
i=1

where f(x;) = (fl (i), ..., fK(a:Z))T is a vector of mean predictions from each EFT and r; is the
=T
ith residual given by r; = y; — >_ ., f (:)g(2i, Ty, My).
Conditional on the tree structure, 7}, the terminal node parameter, p,,; is assigned a conjugate

multivariate Gaussian prior, namely

ind
poi | T~ NK(BJZIK> (8)
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where 8 = (B4, ..., Bx) | is a K-dimensional mean vector and Ik is the identity matrix. This prior is
non-informative in the sense that the mean is fixed regardless of how the input space is partitioned.

In model mixing, each simulator may perform strongly in one subregion of the input space but
weakly in another. This belief can be reflected in the prior distribution of p,; by allowing the
hyperparameters to depend on the partition of input space assigned to the given terminal node.

Thus, an informative prior for p,; can be constructed as
ind
Hpj | Tj '~ Nig ('Bpj’TZIK>

where B,,; = (Bpj1; - Bpj &) . This allows the prior mean to vary depending on the tree partitions
and thus reflect some sense of localized model performance. Meanwhile, the assumed covariance
structure implies the K vector components fipj1, ..., tipjx are independent apriori.

Both of the proposed priors are conjugate, which is an important choice in BART, as it allows for
a closed form expression for the marginal likelihood for the vector of residuals R,; = (71, .., rnp)T,
Additionally, the conjugate priors result in closed form expressions for the full conditional distribu-
tions of the terminal node parameters and the error variance. The derivations of these distributions
are found in the Appendix. In particular, the full conditional distribution for the pth terminal node

in T} is given by

2 ind 1 .72 1 -1,1 1 .7 1 .74 1 -1
Py | Byj, Ty 0" % NK<<ngijm+T21K> (5280 + g2 Fustn ) (o FuFoi + 51k

. . . 5T
where F'p,; is the n, x K design matrix with the ith row vector given by the vector f (a;). The

full conditional distribution for o2 is a scaled inverse chi-squared, i.e. o2 | - ~ v/\// X?j,, where

L (52 (- £ @aw(en)” +).
n+v -

1=

V=n+4+v and N =

with v and A\ denoting the prior shape and scale parameters, respectively.

4.3 Calibrating Priors

First consider the prior for the terminal node parameters. The calibration of the hyperparam-
eters differs for the non-informative and informative priors, however both approaches are designed
to ensure that each model weight w;(x) should prefer the interval [0, 1] and be centered at a value
within this region. Moreover, the functions wq (), . .., wx (x) are assumed to be independent apriori

at a fixed input. This enables the prior for each weight to be calibrated marginally.
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4.3.1 Non-Informative Prior

Consider a non-informative prior for the terminal node parameters. In this setting,
iid

Nk (6, TQIK) for the pth terminal node parameter in the jth tree. First, fix [ € {1,..., K}
and 7 € {1,...,n} to calibrate the prior for w;(x;). Since the terminal node parameters are indepen-
dent and identically distributed with a diagonal covariance structure, the prior induced on wy(x;)
is the same for the remaining weight and input combinations. From and , the induced prior
on the Ith model weight is w;(x;) ~ N(mp;, m7?). Since it is believed w;(x;) € [0,1] with high
probability, it is plausible to set m/; = 0.5. Consequently, 3; = 0.5/m. Thus, each weight has an
equal chance to reach the “extreme” values of 0 or 1 regardless of the input location. The prior
standard deviation, 7, can be selected so that wi(x;) € [0,1] with high probability. To do this, a
confidence interval for w;(x;) is constructed such that 0 = 0.5 — k7y/m and 1 = 0.5 + k7y/m. Sub-
tracting the first equation from the second and solving for 7 yields 7 = 1/2ky/m. This calibration
approach is very similar to the one proposed by Chipman et al. (2010). The main difference is

due to the context of the problem, as it is believed the weights are predominately contained in an

interval [0, 1] rather than the observed range of the data, [Ymin, Ymaz]-

4.3.2 Informative Prior

In the informative setting, the prior mean directly depends on the partitions of the input

space induced by the given tree, i.e. p,; | Tj ~ Nk (ﬁ I K). This prior is tailored towards

pJ>
EFTs, where the functional variance, v;(x;), indicates the severity of the truncation error. A larger
variance within a particular subregion of the domain indicates the presence of larger truncation
error meaning the EFT provides a poor approximation of the true system.

Given this interpretation of the truncation error variances, one strategy for combining EFTs is

precision weighting (Phillips et al., [2021). For example, the precision weight for the ith EFT at «;

is given by
1/vi(2:)

Bilw;) = /v (@) + .o+ 1o ()

The precision weight 5;(x;) can be interpreted as an initial guess for the weight function w;(x;) for
[=1,...,Kandi=1,...,n.
Since the prior of the terminal node parameter changes conditional on the tree structure, each

Bp; 1s chosen separately from the other terminal node parameters. Given the precision weights for
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the EFTs and n training points, each component of the the prior mean vector, 3, is chosen by

n

1
m iy L(xi € ny;) ;5;(@-) (@i € 1p5),

ﬁpjl =

where 1(x; € 7,;) is the indicator that x; is assigned to the terminal node 7,;. A confidence interval
for each terminal node parameter can be set to have a length of 1/m in order to ensure each tree

is a weak learner. This is done by setting 7 = 1/2km.

4.3.3 Variance Prior

A conjugate scaled inverse chi-squared distribution with hyperparameters v and A is assigned to
the error variance 2. To calibrate the prior, first select a value of v to reflect the desired shape of
the distribution. Common values of v range from 3 to 10. Before selecting a value for A, one needs
an initial estimate of the error variance to help set the prior around a range of plausible values of o2.
Given the model set and the corresponding point predictions at each of the training points f'l(cci),
one can use a lightly data informed prior by setting 62 = maxj—i K { min;—q, (yl - fl(mz)f}
Since a common belief is that each model yields accurate approximations of the true system over
some subregion of the domain, one should expect the set of minimum squared differences across the
K models will unveil reliable information about the true error variance. Given this information,
one strategy is to set 62 to be the mean or mode of a A\v/x? distribution. The value of \ is then

found by solving the resulting equation.

5 EFT Examples

This section applies the proposed model mixing methodology to three different examples. Sec-
tion demonstrates the success of the BART-based mixing approach on two univariate EFT
examples, which are introduced in Section 3. A multi-dimensional example is highlighted in Sec-
tion using simulators which are based on Taylor series expansions of a trigonometric function.
Though this last example does not involve a true underlying physical system, the model set consid-
ers simulators which have similar qualities of EFTs with double expansions (see Burgess (2020))).
Each example highlights specific features of the proposed BART-based mixing model such as flexible

basis functions for the weights and the associated prior regularization.
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5.1 Example 1: Mixing Univariate EFTs

This section applies the BART model mixing (BART-BMM) method to various EFTs over a
one-dimensional domain. For comparison, Hierarchical Stacking (HS) is also applied to the same

set of EFTs. In both EFT examples, 20 observations are independently generated according to
Yi = fi(z:) + e, & ~N(00%)

where i = 1,...,20, 0 = 0.005, and f;(x) is defined in . The 20 training points are located at
inputs which are evenly spaced over the interval of 0.03 to 0.50. The error standard deviation of
0.005 was selected to mimic a controlled experiment setting. Each EFT model is fit using n, = 4

evaluations of the corresponding finite-order expansion.

5.1.1 Example la: Mixing Two EFTs

First consider mixing the EFTs based on the second order weak coupling expansion, fﬁz) () and
the fourth order strong coupling expansion, fl(4) () as shown in Figure a). The true system f;(x)
lies between both EFTs across the entire domain, hence a convex combination of the predictions
from both EFTs is appropriate for recovering the true system. The BART-BMM model is fit
using 10 trees and k = 5.0. Meanwhile, the HS unconstrained weight function is defined by
wi(z) = p1 + aqz. The results of the BART-BMM method and HS are shown in Figure 3]

In terms of the root mean squared error (RMSE) between the predicted system and the true
fi(x), the BART-BMM model results in more accurate mean predictions compared to HS, which
have RMSE values of 0.0053 and 1.9460 respectively. The RMSE for the HS result is inflated by
the diverging mixed prediction in the left portion of the domain. For example, the RMSE for the
HS model over the interval [0.1,0.5] drops to 0.0717. Additionally, from Figure [3| it is evident
BART-BMM results in predictions of f;(x) which have lower uncertainty than those from HS.

The weight functions in Figure [3|also take similar sigmoid-like shapes, however the HS solution
displays a high degree of uncertainty. The most noticeable difference between the two methods
can be seen in the weight function of fl(4) () (dotted). In particular, the curve in the BART-BMM
result increases at a quicker rate in the sub-region [0.3,0.4] compared to the HS result. This slower
rate of increase contributes to the poor prediction from HS in this sub-region. Another difference
is observed in the region of [0.03,0.15], as the weight of fl(4) (z) under the HS approach is near 0,
however it is not small enough to negate the effect of the drastically diverging mean prediction from

fl(4) (z). Meanwhile, the BART-BMM weight is shrunk close to 0 with minimal uncertainty due to
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Figure 3: The predicted mean (dark gray) and 95% credible intervals (shaded) when mixing f§2) (x)
(dashed) and f1(4) (x) (dotted). Results are obtained from a BART-BMM model with 10 trees and

a Hierarchical Stacking model with a linear unconstrained weight function (bottom).

the mean estimation objective, which directly re-weights the mean prediction from an individual
model, and the lack of a simplex constraint.

Another advantage of BART-BMM is that the weight functions are learned throughout the
MCMC via the tree models. This differs from HS, which requires specification of a basis for the
unconstrained weights apriori. In this example, one may consider a different basis function, as the
specified linear basis appears to be inadequate for ascertaining high-fidelity mean predictions across

the entire domain.

5.1.2 Example 1b: Mixing Two Convex EFTs

Now, consider a second model set which is shown in Figure b) and replaces f&gz) (z) with

5(4) (x). Both EFTs overestimate f;(x) in the intermediate range, hence weights which are confined
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to a simplex are unable to recover the true system. In this case, a piecewise basis function is

assigned to the unconstrained HS weight as shown below,
wi(z) =1 + aql(zr < 0.15) + a21(0.15 < x < 0.25) + @31(0.25 < = < 0.35).

This basis was chosen to roughly reflect the areas where the mean predictions begin to change at
differing rates. Other selections of the partitions for a piecewise basis are equally valid.

The BART-BMM and HS results are shown in Figure[4dl Once more, the BART-BMM approach
outperforms HS in terms of mean prediction, with RMSE values of 0.0057 and 0.1141 respectively.
Most notably, the HS solution is unable to accurately predict the true system in the intermediate
range of the domain due to the simplex constraint on the model weights. Meanwhile, the BART-
BMM approach is able to recover the system across the entirety of the domain due to the prior
regularization approach taken with the weights, which does not impose such strict constraints.

In this HS result, it appears the piecewise basis was more effective than the linear basis in terms
of predicting the true system in the left and right portion of the domain. This further poses the
question of how to select the partitions induced by the piecewise basis, as different choices may lead
to drastically different results. This question served as the motivation for defining a BART-based

model, which adaptively learns these partitions based on the observational data and the model set.

5.2 Example 2: Multi-Dimensional Mixing

The proposed model mixing approach is also applicable for computer experiments which depend
on multi-dimensional inputs. To demonstrate this, consider a 2-dimensional problem where the true
underlying system is defined by

fi(x) = sin(x1) + cos(x2),

where © = (z1,22)" € [~m, 7] x [-7,7]. A set of 80 training points are generated from this true
system with observational error standard deviation of 0.1. Additionally two candidate models are
considered, each with simulators defined in terms of Taylor series expansions of s(x;) := sin(x;)

and c(xy) := cos(xz). For this example, the simulators are defined by

hl(m)zz ](' 1)(1,1_7.[.)J_’_ZM($2_7T)1€
i=0 k=0

<

5, 50D (z)

J!

ha(x) =

™

I () (z2) .
(331 + TF)j + Z T(l'Q + 7T)
j=0 k=0 )
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Figure 4: The predicted mean (dark gray) and 95% credible intervals (shaded) when mixing f§4) ()
(dashed) and fl(4)(a:) (dotted). Results are obtained from a BART-BMM model with 10 trees (top)

and a Hierarchical Stacking model with a piecewise unconstrained weight function (bottom).

where sU)(z;) and ¢*)(25) denote the jth and kth derivatives of sin(z;) and cos(x), respectively.
Note, the first simulator hj(x) centers both Taylor series expansions about 7, hence it produces
relatively accurate predictions of the system in upper right corner of the domain and diverges when
moving towards the negative portion of the domain. Meanwhile, the ha(x) is composed of Taylor
series expansions centered about —7m which produces accurate predictions in the negative portion
of the domain. One key difference between the simulators is that ho(x) contains a highly accurate
approximation of sin(z;) across the entire interval [—m, 7] because its corresponding Taylor series
expansion is composed of 7 non-zero terms. Thus, even though the expansion sin(z1) and cos(x2)
are centered about —m, one would expect ha(x) to result in accurate predictions of fi(x) across
the rectangle [—m, 7] x [—,0].

The theoretical predictions from each model fi(x) and fa(x) can be defined using the additive
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Figure 5: (Left) The mean difference between the predicted system fi(x), and the true system
fi(x). (Center) The mean weight function for hi(x). (Right) The mean weight function for ha(x).

form fi(x) = hi(x) + 6;(x), where &;(x) represents the unknown higher-order corrections and
[ = 1,2. Due to the nature of this example, no model is postulated for §;(x). Consequently, the
estimated theoretical predictions at each training point x; are obtained by fl(mz) = hy(x;). Note,
in a multi-dimensional EFT setting, the strategy discussed from Section 3 remains applicable.

The results from a 30-tree BART-BMM model are shown in Figure[5l The leftmost plot displays
the absolute value of the mean residuals, | fT (x) — fi(x)| where fT (z) denotes the mean prediction
from the BMM model. Based on the residual plot, it appears fi(x) is adequately recovered across
the majority of the domain with an RMSE of 0.2575. As expected, the error in the mean prediction
noticeably increases in the upper left corner of the domain, where only two training points are
included and both simulators are inaccurate.

The second and third plots illustrate the posterior mean weight functions for each simulator.
Based on the middle plot, the first simulator has increasing utility as x1 and x5 both increase. This
is to be expected, as hi(x) is composed of two expansions centered about m. Note, the mean value
of wi(x) does not reach 1 in the upper right corner of the domain because the simulator slightly
overestimates the peak of fi(x) in this region. Meanwhile, the posterior mean of wo () indicates
ha(x) has high utility for & € [—m, 7| x [—7, 0], which is to be expected given the nature of the

expansions included in this simulator. Moreover, the predictions from ho(x) appear to align closely
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with the data, and thus f;(x), as is evident by the weights approaching values near 1 in the bottom
half of the domain.

6 Discussion

A variety of frequentist and Bayesian approaches are available for model averaging and mixing.
Each method involves estimating the overall predictive mean or density based on the individual
models. The selection between these two objectives should ultimately be guided by the underlying
statistical inference one wishes to ascertain. In computer experiments, a primary objective is to
recover the underlying system, which is generally expressed as the mean function in an additive
model for the observational data. Hence, a mean estimation approach is more desirable when
working within this setting compared to a predictive density estimation, which is modeled with the
intention of predicting a future observation g.

Example 5.1 compares the proposed mean estimation method versus a density estimation
method in Hierarchical Stacking (HS). In HS, the weight functions are learned relative to leave-
one-out (LOO) predictive densities under a simplex constraint. These LOO densities incorporate
information regarding the mean and variance of each EFT at a given x. In portions of the domain
where a model may rapidly diverge, the resulting LOO predictive density is shrunk towards 0. In
turn, the corresponding weight function will approach 0, however it may struggle to obtain a small
enough value to shrink out the effect of the diverging mean. Meanwhile, shrinking the effect of a
diverging prediction appears to be easier when mixing the mean predictions from each EFT.

The primary objective of the weight functions is to re-scale the predictions given by each in-
dividual model so that a linear combination of these predictions can adequately recover the true
system. Given the prior regularization method applied to the weight functions, exact interpreta-
tion of the resulting values can be unclear. However, using this regularization perspective, one can
conclude that weight functions which fall close to 0 within a particular subregion indicate that the
corresponding model is unnecessary for the overall prediction. Meanwhile, a model which is the
unique local expert within a particular region should be weighted by values close to 1. Overall, a
joint interpretation of the weight functions is appropriate, particularly in regions where the weights
concentrate around values away from 0 or 1. These features are observed across each example.

The benefit of the proposed regularization approach can further be understood through the

posterior distribution of the sum of the weight functions, wsym(z) = Z{i Lwi(z), as shown in
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Figure 6: (Left) The posterior mean estimates and 95% credible intervals (shaded) of the sum of
weight functions from Examples 1a and 1b (solid and dashed). (Right) The posterior mean estimate

of the sum of weight functions in Example 2.

Figure @ The posterior of wsym(x) from Example la (left panel, solid) is centered very close to
1 with relatively small amounts of uncertainty. This results because: (i) the prior regularization
and (ii) fi(z) lies between the selected EFTs, which indicates a convex combination is appropriate.
Even though a sum-to-one property is not strictly imposed, it appears to naturally occur in this
situation where an interpolation of the competing models is appropriate. Meanwhile, the posterior
of wgym (z) from Example 1b (left, dashed) significantly drops below 1 in the intermediate range of
the domain because both EFTs overestimate the true system, which renders a convex combination
to be inappropriate. Similar features are observed in the 2-dimensional example, as the mean of
Wsum () concentrates around 1 in areas where at least one of the simulators aligns well with the true
system. Meanwhile, when neither simulator is accurate (i.e. the top left corner) the the mean value
of wgym () is drastically below 1. From these observations, it appears the BART-BMM approach
benefits by not imposing strict assumptions, such as a simplex constraint, on the weights.

Finally, the weight functions can be used to better understand the M-open assumption asso-
ciated with the model set. An initial confirmation of the M-open setting can be made when the
weight functions noticeably change as a function of the inputs. This observation indicates localized
performance of each model, hence one can confirm the true system is not contained in the set. If
the weight functions are nearly constant, one may also wish to check the posterior of wgym(z) to
see if the sum of the weights is fixated close to 1. Such a case may suggest model averaging with

a simplex constraint could also be an appropriate solution. This alone is not enough to confirm
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or deny the M-open assumption, however it may indicate that the M-complete or M-closed as-
sumptions are possible for the model set. A final case to consider is the situation where a single
model receives a weight near 1 while the effects of the competing models are shrunk to 0 across a
subregion of the domain. This situation may indicate the model set is M-closed conditional on the
subregion of interest despite falling in the M-open case when considering the entire domain.

In conclusion, this work proposes a Bayesian treed framework to mix predictions from a set of
competing models, each of which are intended to explain the physical system across a subregion
of the domain. This approach falls within the class of problems referred to as Bayesian model
mixing, as input-dependent weights are defined to reflect the localized behavior of each model.
The weight functions are modeled using a sum-of-trees and are regularized via a multivariate
Gaussian prior. The tree bases coupled with the regularization approach allows for the weights
to be learned in a flexible non-parametric manner free of strict constraints. Using the weight
functions, predictions from the individual models are mixed via a linear combination. The success
of this mixing approach is demonstrated on three examples, each of which considers models with
localized predictive performances. Leveraging the localized behavior of the individual models leads
to significant improvements in the posterior prediction and uncertainty quantification of f;(z) and

the overall interpretation of the system compared to existing global and local weighting schemes.
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Appendix

Let 7,; denote the pth terminal node in the jth tree. Without loss of generality, assume

(1,91), -+, (Tn,, Yn,) lie in the hyper-rectangle defined by 7,;. Furthermore, define each residual as

Z gz, Ty, M), i=1,...,n,
q#j

These are collected in an n, dimensional vector R,; = (r1, ...,rnp)T. Finally, let I:"pj denote the
np X K matrix whose Ith column is (f;(z1), ..., f;(@n,)) . Due to the independence and constant
variance assumptions, the model for the vector of residuals along with the associated priors is

defined by

o2
pJ|NpgvTJ?‘7 ~ Ny, ( piMpj> O Inp)
ind
Hp; |T ~ NK(Bpp )
o’ ~ /X

where it is assumed ¥ = 721

The Marginal Likelihood

The marginal likelihood of the residuals in node 7,; is defined by

LBy | T500%) = [ LRy | Tty 0Pty | T5) it o)
Then, it follows,
. 1 : :
L(Rpj | 1—3702) = /(27'('0'2) p/2 exp ( — T‘Q(RW — ijﬂp])T(Rpj — Fp]/,l/p])> X
_ 1
(27TT2) K2 exp ( - ﬁ(l‘l’p] - ﬁp])—r(l“l‘p] - Igp])) dl‘l'p]

= (2m0?) "2 (2mr?) TR/

Lo
/{exp ( — ﬁ(Rpﬂ'R 2,up]F R, + uij F J“pj) X

1

—_n — 1
= (2n0®) ™ /2(@mr?) N R exp (- G Ry By = 5 B8,)

(Hap s — 2“17]619] + B8y, ,Bm)) d“pj}

1 1 1 .7 T
/eXp( 2“pj< F FPJ+ IK)“pJ (ﬁﬂpj+§ijRpj> “pj> dpry;-
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AT T
Now let A= = %ijij + T%IK and b = (T%Bpj + %ijRpj). Substituting these terms into the

above expression yields
n _ 1
L(R,; | Tj,O’Q) = (2m0?) P/2(27T7‘2) K/2 exp ( — ﬁR]LRpj 2/8 ,Bm) (10)
1 T
exXp\ — ﬁumA Bpj + 0" By ) dpy;
Using Lemma B.1 from Santner et al. (2018) the integral simplifies as
1
/exp ( fuij My + bTupJ> dpp,; = (2m) 52| A|V/? exp (ibTAb). (11)
Then, from and , the marginal likelihood simplifies as
n _ 1 1 1
L(Ry; | Tj,0%) = (2m0%) /(1) P A exp (= g Ry Ry — 5 58,8, + 5b' Ab).

1/2

1 —1
:(27'(0'2)_”7’/2(7‘2)_K/2( P By + IK)

1 1 T 1 T T

where b” Ab = (%8, + L F )R, ) (&F,Fp+ B1x) 1(726p]+02F Ry

The Full Conditional Distribution of u,;

Now consider the full conditional posterior distribution of the terminal node parameter p,;.
Using Bayes rule,
(e | Ry;,Tj,0%) o< L(Ry; | ijﬂpj702)ﬂ(ﬂpj | )
A conjugate prior is assumed for 7, thus the terms in the likelihood and prior can be rearranged

to obtain a Normal kernel for the posterior distribution. This process is summarized below.

1 5 - .
T‘Q(Rm' = Fpjny;) (Byj — Fm'“pj)) x

1
exXp ( - 277_2(u/p] - ﬁp])—r(“’pj - ﬂpj))

1 /1 1.7
x exp{ (um( F ij + IK>up] 2p,; (ﬁ'@m’ + O'QijRpj)> }

1 _
o exp{ 5 (umA Ky — Q;L;J»A 1Ab)}

where A7t = %F i Fpj + 2[ x and b= 2,8 Rp] The previous expression simplifies as

W(u’pj | RpjvT‘jv 02) X exp ( -

1 f—
(b | Ry, Tj, 0%) o< exp ( - §(upj ~ Ab)T A"} (s, — AD))
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This is the kernel of a Multivariate Gaussian distribution with mean Ab and covariance matrix A.
Thus it follows

oy | Ry, Ty, 0" ™ Nic (b, A)
replacing A and b with their respective definitions implies

9 ind 1 .72 1 1,1 1 .7 1 .74 1 -1
pj | Ryj, Tj, 07 ~ Nk <(02ijij + ﬁIK> <§5pj + ngjRpj) <§ijij + ﬁfK>

The Full Conditional Distribution of o2

Finally, consider the full conditional posterior for the error variance, which is defined by
(o? | Y, T,M) < L(Y | T, M, c*)n(c?)

where Y = (y1, ..., %), T = {11, ..., Tin}, and M = {My, ..., M,,}.

Further, assume a conjugate prior for o2, namely 0? ~ vA/x2 which has a probability density

function defined by

v/2)V/2 v
7(0?) = (1“{3;2) Au/2(0,2)7(1//2+1) exp ( _ T‘)‘Q)

Due to conjugacy, the full conditional distribution is given by

(yz‘ - fT(wi)’w(zci)>2}(02)*(V/2+1) exp{ _ ﬂ}

202

n

1
202 <

=1

oc (0%) (22D exp { - 2;(2”: <yi - fT(a’i)w(wi)>2 + V/\)}
=1

7(0®| Y, T, M) x (c2)7"/? exp{ —

This is the kernel of another scaled inverse-y? distribution, namely o2 ~ v/\’/ XZ, where

n 41- y(zn; <yz — fT(mz)’w(mz))Z + V)\)

1=

V=n+v and N =
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Supplementary Material

An Overview of EFT

EFTs model physical systems by an infinite expansion of terms organized in order of decreasing
importance according to the power counting principle (Burgess, 2020; Petrov and Blechman, 2016;
Georgi, (1993). Exact theoretical predictions of the system are obtained by summing over these
terms. In practice, only a finite number of lower-order terms are known. Thus, the theoretical
prediction can be decomposed using a Taylor-like series which includes the known finite-order
expansion along with the induced truncation error. Predictions of experimental quantities can then

be represented using an additive model

Y(x) = fM (@) + ()
F™M (@) = (@) + 6 (x)

where & € R? denotes an independent variable associated with the system, h(N) (x) represents the
known finite-order expansion of degree N, §(N)(x) is the associated truncation error, and e(z) is
the random observational error. The accuracy of the finite-order expansion may vary significantly
across a subregion of the domain. For example, a finite-order expansion centered about zero may
yield a high-fidelity approximation in the lower regions of the domain. However, the accuracy of
the prediction quickly degrades in higher regions of the domain.

It is further assumed the finite-order expansion can be modeled as a stochastic process. First,
the finite-order expansion can factorized as

N

h(N)(m> = yref(x) Z Ck<x)Qk(w)a (12)

k=0
where y.f(x) sets the scale of variation, co(x), ...,cn(x) are dimensionless observable coefficients,
and Q(x) is a dimensionless expansion parameter. When the scale and expansion parameters are
known based on theoretical arguments, the coefficients cy(x), ..., ¢y () appear to behave as a set
of independent and identically distributed curves from a stochastic process (Melendez et al., [2019).

Thus, a common model for the coefficients is a Gaussian process

cx(x) | 0 ~ GP(u,&r(x, ;1)) (13)

0 = (ILL’ 5276)7
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where 1 denotes a constant mean function and r(x,x’; ¢) represents the covariance function. A
common assumption is to set 4 = 0, while prior distributions can be assigned to the remaining
parameters in the model (Melendez et al., 2019)).

The parameters in are learned using a set of evaluations from the kth-order expansion,

for k = 0,...,N, at n. design inputs x{, ...,z

n.- Define the set of evaluations of the expan-

sions at the ith design point by H(z¢) = {hO(x¢),..., AV (xf)}. Given Q(x) and yrt(x),
these evaluations are used to extract the observed finite-order coefficients at each design point
C(xf) = {co(xf),...,en(xf)}. A likelihood is formed using C(zf),...,C(x;, ) and (13). The
unknown parameters 6 are estimated through their resulting posterior distributions given these
observed coeflicients.

The truncation error accounts for the remaining unknown terms in the series, thus §(™) (z) is

modeled using a similar factorization

o0

V(@) = rrl@) Y @)@ (@), (14)

k=N+1
Using and along with properties of the multivariate normal distributions (Ravishanker

et al., [2021)), the induced prior on the truncation error term is given by
M(@) | 8,Q ~ GP(ms(@), & Rs(x, 2’ 1)), (15)

with mean and covariance functions

_ Q¥ (z)
T N+1
Rs(a, - 0) = (@i >[1Q( e (7)

The unknown parameters in - originate from the coefficient model in (12). Thus, the
mean and covariance functions which characterize the discrepancy model are also learned using the
set of evaluations of the finite-order expansions at the n. design points. This is a unique property
of EFTs, as observational data is not required to learn the model discrepancy.

When the finite-order expansion is computationally inexpensive to evaluate, the induced prior

on the theoretical predictions, f(V)(x) = AN (x) + 6(V)(x) is given by

fM(x)|0,Q,hN) ~ GP(m(z), Sz, x')),

where my, (x) = AN (x) + ms(x) and By, (z, ') = E2Rs(x, «';£). In the expensive case, a GP can

be used to emulate the finite-order expansion and is defined by
M) (x) | 6,Q ~ GP(my(x), Ry (z,2';0)).
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The resulting prior on the theoretical prediction is a GP with mean and covariance functions
men(z) = my(x) + ms(x) and Sy (x,2') = Ry (z, x';f) + ZRs(x, ;). In either case, given a
set of model runs H(x{),...,H(x;, ), one can obtain posterior predictions F (&), ..., fN) (&,,)

at new inputs &i,...,Tym-
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