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Due to large pressure gradients at early times, standard hydrodynamic model simulations of relativistic heavy-
ion collisions do not become reliable until O(1) fm/c after the collision. To address this one often introduces
a pre-hydrodynamic stage that models the early evolution microscopically, typically as a conformal, weakly
interacting gas. In such an approach the transition from the pre-hydrodynamic to the hydrodynamic stage is dis-
continuous, introducing considerable theoretical model ambiguity. Alternatively, fluids with large anisotropic
pressure gradients can be handled macroscopically using the recently developed Viscous Anisotropic Hydrody-
namics (VAH). In high-energy heavy-ion collisions VAH is applicable already at very early times, and at later
times transitions smoothly into conventional second-order viscous hydrodynamics (VH). We present a Bayesian
calibration of the VAH model with experimental data for Pb–Pb collisions at the LHC at psNN = 2.76TeV. We
find that the VAH model has the unique capability of constraining the specific viscosities of the QGP at higher
temperatures than other previously used models.

I. INTRODUCTION

Atomic nuclei are made of fundamental particles called
quarks and gluons (a.k.a. partons). Due to the property of color
confinement, partons cannot be studied in isolation. Confine-
ment can be broken, however, in many-parton systems of very
high densities [1, 2]. Quark-Gluon Plasma (QGP) is one of
several such emergent phases in chunks of strongly interact-
ing matter. It is a hot and dense soup of quarks and gluons
with liquid properties that can be created in nucleus–nucleus
collisions at very high energies [3] and has strong similarity
with the matter that filled the universe right after the Big Bang
before it cooled down to produce the hadronic matter that we
observe today [4].

The largest experimental heavy-ion facility in the world,
the Large Hadron Collider (LHC) at CERN, collides nuclei at
center-of-mass energies of several TeV per nucleon pair. At
these high energies all of the baryon number carriers from
the incoming nuclei pass through each other without being
stopped, while a fraction of the total energy is deposited in the
mid-rapidity region of the collision, creating new matter with
approximately zero net baryon density [5]. Strong interactions
among its constituents quickly turn this matter into a baryon-
neutral QGP that rapidly cools via collective expansion, con-
verting into color-neutral hadrons when the temperature drops
below the hadronization temperature. These hadrons continue
to interact until their density becomes too low, after which un-
stable hadronic resonances decay and the stable decay products
fly out toward the detectors.

The QGP phase has an extremely short lifetime (⇠ 10�23 s)
and size (⇠ 10�14 m). It can only be studied by recording the
distributions of, and correlations among, the energies and mo-
menta of the thousands of finally emitted hadrons. A quanti-
tative theoretical analysis of these distributions requires their
simulation using sophisticated dynamical evolution models
and advanced statistical techniques [6].

Many large-scale heavy-ion simulation studies using
Bayesian statistical techniques have been carried out in re-
cent years to infer from the experimental measurements the
properties of the QGP [7–18]. One of the major limitations
of the current simulations is the breakdown of the hydro-
dynamic approach that describes the evolution of the QGP
phase at early times when the QGP is being formed. This
breakdown is caused by extremely large pressure gradients in
the incipient stage of the newly created matter. To circum-
vent this issue, almost all previous Bayesian model calibra-
tions invoked a weakly-coupled, gaseous pre-hydrodynamic
stage.1 In this stage the fireball medium evolves initially as a
conformal, weakly interacting gas. After a “switching time”
of order 1 fm/c the density and pressure gradients have de-
creased to a level where second-order viscous hydrodynam-
ics, the framework used to evolve the QGP fluid, becomes ap-
plicable. Strong interactions in the QGP break its conformal
symmetry; the matching between a conformally symmetric
pre-hydrodynamic stage to a non-conformal QGP fluid stage,
with a realistic equation of state (EoS) p(e) taken from lat-
tice QCD simulations, introduces considerable theoretical am-
biguity. The discontinuity of the EoS gives rise to a num-
ber of unphysical e�ects, including a large positive bulk vis-
cous pressure at the start of the hydrodynamic stage [19, 20].
The second-order viscous hydrodynamic equations must then
rapidly evolve the bulk pressure toward its first-order Navier-
Stokes value, which is of more moderate magnitude but has
the opposite sign [21].

1 A very recent study [18] employed the Color-Glass Condensate based IP-
Glasma model to dynamically evolve the pre-hydrodynamic stage. While
this is a significant conceptual improvement over free-streaming partons, it
shares with the latter approach that, being rooted in Classical Yang-Mills
dynamics for the interacting gluon fields, it keeps the system from naturally
approaching local thermal equilibrium.
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In this work we perform the first Bayesian model calibra-
tion of a novel dynamical evolution model based on viscous
anisotropic hydrodynamics (VAH) as described in Refs. [21,
22] instead of standard second-order viscous hydrodynam-
ics.2 We use the JETSCAPE simulation and model calibration
framework [17] for relativistic heavy-ion collisions but modify
it by eliminating the free-streaming pre-equilibrium module
and replacing the second-order viscous hydrodynamic (VH)
stage with the VAH module described in [21]. VAH can handle
the large anisotropy between the longitudinal and transverse
pressure gradients that characterizes the early expansion stage
in heavy-ion collisions much better than VH; this allows us
to start the hydrodynamic stage at such an early time that ne-
glecting the pre-hydrodynamic evolution completely becomes
a good approximation. VAH transitions automatically into stan-
dard second-order viscous hydrodynamics (although with an
algorithm based on a di�erent decomposition of the fluid’s
energy-momentum tensor) at later times [21]. All the simu-
lation data and code for the Bayesian parameter inference in
this work can be found at [30].

The rest of this paper is organized as follows. An overview
of the VAH hybrid evolution model for ultra-relativistic heavy-
ion collisions, including a description of its model parame-
ters, is presented in Sec. II. In Sec. III we briefly describe the
Bayesian model calibration workflow, including several inno-
vations introduced and tested in the present study. Section IV
describes the construction and training of fast emulators for
the VAH model. Closure test results for these emulators are
reported in Sec. V. The actual model calibration process is
described in Sec. VI, and the posterior probability distribu-
tions for the inferred parameters are described and discussed.
A model sensitivity analysis for the observables used in the cal-
ibration procedure is presented in Sec. VII. The performance
of the calibrated model in describing the calibration and other
experimental data is discussed in Sec. VIII. Our conclusions
are presented in Sec. IX. Appendices A–D provide technical
details related to procedures described in the main body of the
text.

II. OVERVIEW OF THE HYBRID MODEL FOR
RELATIVISTIC HEAVY-ION COLLISIONS

The dynamical evolution of relativistic heavy-ion collisions
involves physics ranging from small to large length scales and
demands a multistage modeling approach, with di�erent mod-
ules simulating di�erent stages of the evolution. In this sec-
tion, we briefly discuss each evolution stage and its simulation.

A. Initial conditions

Our simulation of a relativistic heavy-ion collision starts
right after the two incoming nuclei collide. In the lab frame

2 Our VAH approach di�ers from that used in Refs. [23–28] by including in
the hydrodynamic evolution equations all dissipative terms arising from the
residual viscous correction �f̃ [29].

both nuclei move initially close to the speed of light in op-
posite directions and, for an observer on the beam axis, ap-
pear as strongly Lorentz-contracted pancakes. As the nuclei
hit each other, their valence quarks (which carry their baryon
number) pass through each other without being fully stopped
in the center-of-momentum frame. Due to interactions be-
tween their gluon clouds they lose, however, a large fraction
of their energy, some of which is deposited in the form of
newly created matter near mid-rapidity (i.e., with low longi-
tudinal momenta in the lab frame) [6]. The spatial distribu-
tion of this matter is described phenomenologically with the
stochastic model TRENTo [31, 32].3
TRENTo models the incoming nuclei as a conglomerate of

nucleons whose positions in the plane perpendicular to the
beam are held fixed during the extremely short nuclear inter-
penetration time. The transverse density distribution of a nu-
cleon is parameterized by a three-dimensional Gaussian with
width parameter w, integrated over the beam direction z:

⇢(x?) =

Z 1

�1

dz

(2⇡w2)3/2
exp

✓
�
x2
? + z2

2w2

◆
. (1)

The positions of the nucleons inside each incoming nucleus
are sampled with a minimum pairwise separation dmin to sim-
ulate their repulsive hard core, but otherwise independently,
from Woods-Saxon distributions whose radius R and surface
di�usion parameter ↵ are adjusted such that, after folding with
the above nucleon density, the measured nuclear charge den-
sity distributions are reproduced.4 Next, assuming the experi-
ment measures collisions with minimum bias, an impact pa-
rameter vector b in the transverse plane is sampled from a
uniform distribution, and each nucleon in nucleus A (B) is
shifted by +b/2 (�b/2). For each pair of colliding nucle-
ons their collision probability is then sampled by taking into
account the proton-proton collision cross section at the speci-
fied center-of-mass energy (psNN = 2.76TeV for this work).
Nucleons that do not undergo any collisions and thus do not
contribute to mid-rapidity energy deposition are then thrown
away. The remaining nucleons in each nucleus are labeled as
participants, and their density distributions, integrated along
the z-direction, are added to get the areal densities in the trans-
verse plane of the participants in each of the two nuclei (their
so-called nuclear thickness functions):

TA,B(x?) =

NA,B
partX

i=1

�i

Z 1

�1
dz ⇢(x� xi). (2)

Here xi are the nucleon positions, and the �i are indepen-
dent random weights, sampled from a Gamma distribution
with unit mean and standard deviation �k. These parame-
terize the measured large multiplicity fluctuations observed in
minimum-bias proton–proton collisions. Note that the nuclear

3 For the default values of the TRENTo model parameters described in the
following please consult [31, 32].

4 We do not account for the possibility of a neutron skin.
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thickness functions fluctuate from event to event, due to the
fluctuating nucleon positions xi and their fluctuating “inter-
action strengths” �i. They describe how much longitudinally
integrated matter each nucleus contributes to the collision at
each transverse position x?.

The implementation chosen here then sets the initially de-
posited energy density at transverse position x? to

✏(x?) =
1

⌧0

dE

d⌘ d2x?
=

1

⌧0
N TR(x?; p), (3)

where the “reduced thickness function” TR is defined in terms
of the two nuclear thickness functions by their “generalized
mean” [31]

TR(x?; p) =

✓
T p
A(x?) + T p

B(x?)

2

◆1/p

. (4)

Here the longitudinal proper time ⌧0 marks the end of the en-
ergy deposition process and is taken as small as technically
possible (see below). The normalization N depends on p

sNN
and allows one to describe the growth of the energy deposited
at mid-rapidity with increasing collision energy.

In this work, we assume longitudinal boost invariance for
the collision system (i.e., ⌘-independence of all spatial dis-
tributions where ⌘ = 1

2 ln
⇥
(t+z)/(t�z)

⇤
is the space-time

rapidity, and y-independence of all momentum distributions
where y = 1

2 ln
⇥
(E+pz)/(E�pz)

⇤
is the momentum rapid-

ity) and use only observables measured at mid-rapidity as also
done in previous Bayesian calibrations of relativistic heavy-ion
collision models [15, 17, 18]. We start the viscous anisotropic
hydrodynamic evolution at ⌧0 = 0.05 fm/c. We use the above
TRENTo initial condition model to simulate Pb–Pb collisions
at psNN = 2.76TeV. The Woods-Saxon parameters used for
Pb are R = 6.62 fm and ↵ = 0.546 fm. The nucleon width w,
their minimum distance dmin, the normalization N , the har-
monic mean parameter p, and the standard deviation of the
Gamma distribution �k are model parameters of interest that
we infer from the experimental data using Bayesian parameter
estimation.

B. Viscous Anisotropic Hydrodynamics (VAH)

Hydrodynamics is an e�ective theory that can accurately
model the space-time evolution of macroscopic properties
of many dynamical systems found in nature, ranging from
large-scale galaxy formation to small-scale systems such as
cold atomic gases [6, 33]. At even smaller scales, hydrody-
namic modeling has also been extensively used for decades
in describing relativistic heavy-ion collisions [34–38]. Within
the framework of Bayesian parameter estimation it is the
workhorse for modeling the QGP stage of the collision fireball
[10, 15, 17, 18].

Taking the macroscopic degrees of freedom to be the energy
density ✏ and the fluid four velocity uµ (i.e., the four-velocity
of the local rest frame (LRF) relative to the global frame), the
energy momentum tensor for an ideal fluid (i.e., at zeroth-order
in gradients of the macroscopic degrees of freedom) can be

decomposed as

Tµ⌫ = ✏uµu⌫
� p�µ⌫ . (5)

Here, �µ⌫ = gµ⌫�uµu⌫ projects on the space-like part in the
LRF. The signature of the metric gµ⌫ is taken to be “mostly
minus” (+,�,�,�). p(✏) is the isotropic equilibrium pres-
sure in the LRF, given by the EoS which is a property of the
medium that reflects it microscopic degrees of freedom and
their interactions.

Ideal fluid dynamics embodies the unrealistic assumption
of instantaneous local equilibration of the medium, i.e., zero
mean free path for the microscopic constituents. For finite
microscopic relaxation times (i.e., non-zero mean free path)
an expanding fluid is always somewhat out of local equilib-
rium. These non-equilibrium e�ects can be written as first-
and higher-order gradient corrections to the energy momen-
tum tensor,

Tµ⌫ = ✏uµu⌫
� (p+⇧)�µ⌫ + ⇡µ⌫ , (6)

whose evolution is then described by viscous hydrodynamic
equations of motion. In second-order viscous hydrodynamics
one considers dissipative corrections ⇧,⇡µ⌫ given by a sum
of terms containing up to two derivatives of the macroscopic
degrees of freedom ✏ and uµ, multiplied by so-called trans-
port coe�cients that reflect the microscopic transport proper-
ties of the fluid medium. To ensure causality, these so-called
constituent relations can, however, not be imposed instanta-
neously (as done in Navier-Stokes theory), but must be im-
plemented via additional equations of motion describing their
dynamical evolution toward their Navier-Stokes limits, on time
scales related to the microscopic relaxation time. The result-
ing “Müller-Israel-Stewart (MIS) type” theories [39–41] intro-
duce additional non-hydrodynamic modes of higher frequen-
cies and shorter wavelengths [33] which dominate the macro-
scopic dynamics when the medium develops large spatial gra-
dients, leading to a breakdown of the gradient expansion and
eventually rendering the hydrodynamic approach invalid. In
particular, second-order viscous hydrodynamics is not appli-
cable for situations with very large pressure anisotropies such
as those encountered in the earliest stage of ultra-relativistic
heavy-ion collisions directly after nuclear impact.

State-of-the-art simulation models for relativistic heavy-
ion collisions circumvent this issue by introducing a pre-
hydrodynamic stage that evolves the out-of-equilibrium quark-
gluon system microscopically until the gradients have decayed
su�ciently that the medium can be fed into the hydrodynamic
evolution module. One of these pre-hydrodynamic models is
based on the simplifying assumption of free-streaming mass-
less partons for which the microscopic kinetic theory can be
solved exactly (see, for example, Refs. [19, 42–45]). In this
work we avoid this overly simplified picture by using a di�er-
ent formulation of hydrodynamics, viscous anisotropic hydro-
dynamics (VAH) [21–29], that significantly extends the range
of validity of hydrodynamics in the presence of large pres-
sure anisotropies like those encountered in the early stage
of heavy-ion collisions [21], and can even describe the far-
o�-equilibrium free-streaming limit in that situation, for both
massless [29] and massive partons [46, 47].
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The development of viscous anisotropic hydrodynamics
was motivated by the fact that the momentum distribution of
the QGP is highly anisotropic right after the relativistic heavy-
ion collision [48]. Initially, the medium has a large expan-
sion rate along the longitudinal beam direction and can be
approximated by a boost-invariant longitudinal velocity pro-
file (Bjorken flow [49]). The transverse expansion rate of
the medium is initially small, building up only gradually in
response to the transverse pressure gradients. The initially
highly anisotropic expansion rate engenders a large shear pres-
sure, resulting in a high degree of anisotropy between the pres-
sures in the transverse and longitudinal (beam) directions.

To formulate viscous anisotropic hydrodynamic one starts
by decomposing the spatial projector �µ⌫ further, splitting it
into projectors along the beam direction (zµ) and a transverse
projector ⌅µ⌫) as �µ⌫ = ⌅µ⌫

� zµz⌫ . Multiplying these pro-
jectors by di�erent longitudinal and transverse pressures, the
energy-momentum tensor is now decomposed as [50]

Tµ⌫ = ✏uµu⌫ + PLz
µz⌫ � P?⌅

µ⌫ + 2W (µ
?zz

⌫) + ⇡µ⌫
? . (7)

The decompositions (6) and (7) are mathematically equivalent
[50], but the VAH equations evolve the longitudinal and trans-
verse pressures PL and P? separately, treating them on par
with the thermal pressure in standard viscous hydrodynamics
and not by assuming that their di�erences from the thermal
pressure and from each other are small viscous corrections.

The evolution equations for the energy density and the flow
velocity are obtained from the conservation laws for energy
and momentum:

@µT
µ⌫ = 0. (8)

The equilibrium pressure p(✏) is taken from lattice QCD
calculations by the HotQCD collaboration [51]. The dy-
namical evolution equations for the non-equilibrium flows
PL, P?,W

(µ
?zz

⌫),⇡µ⌫
? are derived assuming that the fluid’s

microscopic physics can be described by the relativistic Boltz-
mann equation with a medium-dependent mass [22, 52, 53].
The relaxation times for PL and P? are written in terms of
those for the bulk and shear viscous pressures [22], which are
parameterized as

⌧⇡ =
⌘

s�⇡
, ⌧⇧ =

⇣

s�⇧
. (9)

�⇡ , �⇧, as well as all of the anisotropic transport coe�cients,
are computed within the quasiparticle kinetic theory model
discussed in Ref. [22].5

For the temperature-dependent specific shear and bulk vis-
cosities,

�
⌘/s

�
(T ) and

�
⇣/s

�
(T ), we use the same parameter-

izations as the JETSCAPE Collaboration [17]:
⇣⌘
s

⌘
(T ) = max

h ⌘
s

���
lin
(T ), 0

i
, (10)

with
⌘

s

���
lin
(T ) = alow (T�T⌘)⇥(T⌘�T ) + (⌘/s)kink

+ ahigh (T�T⌘)⇥(T�T⌘), (11)

5 Specifically, �⇡ and �⇧ are given by the temperature-dependent isotropic
thermodynamic integrals defined in Eq. (82) in Ref. [22].

and
⇣⇣
s

⌘
(T ) =

(⇣/s)max⇤2

⇤2 + (T � T⇣)
2 , (12)

with ⇤ = w⇣

⇣
1 + �⇣ sign (T�T⇣)

⌘
.

A figure illustrating these parameterizations can be found in
[17].

Apart from the eight parameters related to the viscosities,
there is one additional parameter that we will infer from the
experimental data: the initial ratio R = (PL/P?)0 at the time
⌧0 when VAH is initialized:

P?0 =
3

2+R
p0 , PL0 =

3R

2 +R
p0 . (13)

Here p0 ⌘ p(✏0) is the equilibrium pressure at time ⌧0. The
allowed range for R is restricted to R 2 (0.3, 1) for technical
reasons: For R < 0.3 the inversion of the relations expressing
the macroscopic densities in terms of the microscopic param-
eters of the distribution function (needed for the calculation
of the transport coe�cients) fails to converge.6 By using this
parameterization we also assume that the initial bulk viscous
pressure is⇧ = (2P?+PL)/3�p = 0. The initial flow profile
is assumed to be static in Milne coordinates, uµ = (1, 0, 0, 0),
and the residual shear stresses Wµ

?z and ⇡µ⌫
? are initially set to

zero.

C. Particlization

As the QGP expands and cools, it eventually reaches the
critical temperature for hadronization. Below that tempera-
ture, the fireball medium can be described as a hadron reso-
nance gas. Its constituents are color neutral and thus interact
much less strongly with each other than do the quarks and glu-
ons in the QGP just before hadronization. Correspondingly,
the mean free path increases rapidly below this transition, and
fluid dynamics quickly becomes inadequate [54]. This break-
down forces a transition back to a microscopic description, for
which we use the Boltzmann transport code SMASH [55] briefly
described in the following subsection.

This so-called particlization transition is not a physical
phase transition but simply a change of language, from fluid
dynamical degrees of freedom in VAH to particle degrees of
freedom in SMASH. Following earlier calibration e�orts [11–
18], we keep the particlization temperature as a model param-
eter to be inferred from the experimental data and denote it
by the switching temperature Tsw. Fluid cells that reach the
switching temperature and their surface normal vector s3�µ

are identified using the code CORNELIUS [56]. The parti-
clization hypersurface is passed to the iS3D hadron sampler

6 This can be avoided (Kevin Ingles, private communication) when using the
modified Romatschke-Strickland distribution introduced in [46, 47] but this
modification has not yet been implemented in the Bayesian calibration code
used here.
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[57, 58]. There, the Cooper-Frye prescription is used to con-
vert all energy and momentum of the fluid into di�erent hadron
types and momenta emitted from the switching hypersurface.

According to the Cooper-Frye formula [59], the Lorentz-
invariant particle momentum distribution is given by

p0
dNi

d3p
=

gi
(2⇡)3

Z

⌃
d3�µ(x)p

µfi(x; p). (14)

Here p is particle four-momentum, x is the position four-vector
of the fluid cell, fi(x, p) is the phase-space distribution func-
tion for the particle species i, and ⌃ is the switching hypersur-
face, with volume element d3�µ(x) at point x 2 ⌃.

For a locally equilibrated hadron resonance gas the distribu-
tion function takes the form

feq,i(x, p) =
gi

exp
⇥
p·u(x)/T (x)� ↵i(x)

⇤
+⇥i

. (15)

Here gi =2si+1 is the spin degeneracy for species i, u(x)
is the 4-velocity of the fluid, T (x) is the temperature,
↵i(x) = biµB(x)/T (x) is the baryon chemical potential-to-
temperature ratio for a hadron with baryon number bi, and
⇥i 2 [�1, 1] accounts for the quantum statistics of fermions
and bosons, respectively. In the present work µB =0 since at
midrapidity the fireball is taken to have zero net baryon num-
ber.

On the switching hypersurface⌃ the QGP liquid is still char-
acterized by large dissipative flows and thus cannot be mod-
eled as a locally equilibrated hadron resonance gas. The dis-
tribution functions must be modified such that the momentum
moment

P
ihp

µp⌫ii = Tµ⌫ matches the energy-momentum
tensor (7) on the particlization surface, including the dissipa-
tive flows. There are many types of modifications that fulfill
this constraint – here we choose the Pratt-Torrieri-McNelis-
Anisotropic (PTMA) prescription [60]:7

fPTMA
a,i (x, p) =

Z(x) gi

exp
hp

p02(x)+m2
i

⇤(x)

i
+⇥i

. (16)

The normalization Z , e�ective temperature ⇤(x), and the
transformation relating p0(x) with p depend on the dissipative
terms in the VAH-decomposition (7) of the energy-momentum
tensor at point x; the interested reader is referred to Ref. [60]
for details. Compared to some other prescriptions (see discus-
sion in [57, 60]) the PTMA distribution (16) has the advantage
of being positive definite by construction.

7 The theoretical uncertainty introduced by di�erent assumptions for the form
of the momentum dependence of fi(x, p) on the particlization surface
and its importance in Bayesian model parameter inference is discussed in
Refs. [14, 57, 60]. In the absence of a full microscopic kinetic description
of the evolution preceding particlization it cannot be avoided. A maximum
entropy (minimum information) approach to defining fi(x, p) at particliza-
tion was proposed in [61] but has not yet been implemented in the Bayesian
parameter inference framework. A full Bayesian assessment of the contri-
bution to the error budget of the model parameters arising from the parti-
clization and other model uncertainties will have to await the development
of suitably adapted Bayesian model mixing tools [62].

D. Hadronic afterburner

For the final decoupling stage of the fireball evolution, the
hadrons sampled from the particlization surface are fed into the
hadronic Boltzmann transport code SMASH [55], which allows
the hadrons to rescatter and the unstable resonances to decay
and to be recreated in hadronic interactions, until the system
becomes so dilute and collisions so rare that first the chemi-
cal composition and then the momentum distributions fall out
of equilibrium and eventually freeze out [63–70]. To obtain
su�cient particle statistics at limited computational cost, we
limit the full hydrodynamic runs to a representative sample of
the initial-state quantum fluctuations between 200 and 1600
hydro events, distributed over all collision centralities, per de-
sign point in parameter space (see App. A), but oversample the
switching hypersurface for each hydro event many times until
a su�cient number of emitted hadrons has been generated for
good statistical precision of all observables of interest [7–18].
In practice we oversample each hypersurface until a total of
105 hadrons has been generated per hydrodynamic event, but
not more than 1000 times. Finally, the experimental observ-
ables measured by the ALICE detector [71–74] are calculated
from the final ensemble of hadrons generated by the SMASH
output, following the experimental procedures.

III. BAYESIAN CALIBRATION

This section provides a brief conceptual summary of
Bayesian model calibration; details will be fleshed out in
later sections. Let us represent a generic simulation model
by a mathematical function ysim(·) that takes values of
parameters8 x=(x1, . . . , xq)2X and returns output with
mean ysim(x)2Rd. A Bayesian parameter estimation pro-
cess uses experimental observations, denoted by a vector
yexp =(yexp,1, . . . , yexp,d), to infer the simulation parameters
x [75]. In this paper we carry out a Bayesian calibration of the
VAH simulation for relativistic heavy-ion collisions, to align the
simulation outputs ysim(x) with the experimental data yexp.
To do so we write down a statistical model of the form

yexp = ysim(x) + ✏✏✏, (17)

where the residual error, ✏✏✏, follows a multivariate normal
(MVN) distribution with mean 0 and covariance matrix ⌃.
In this work, we consider d = 98 experimental observables
for Pb–Pb collisions at a center-of-mass energy of psNN =
2.76TeV (see Sec VI A for details). The experimental mea-
surements have experimental uncertainties due to finite mea-
surement statistics and other instrumental e�ects. Our simula-
tions are also stochastic, and thus the simulation outputs also
have uncertainties (included in the error ✏✏✏ in (17)). Hence,
finding the model parameter values that would fit the experi-
mental data (i.e., solving “the inverse problem” of determin-

8 The reader is asked to distinguish this use of x to describe sets of model
parameters from its use as a spatial position vector elsewhere in the text. Its
meaning should be clear from the context.
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ing the model parameters by analyzing the model output), tak-
ing into account all of the uncertainties, requires an advanced
probabilistic framework.

In a Bayesian viewpoint, probability is defined as the degree
of belief about an hypothesis considering all available informa-
tion [75]. Parameter inference for physical model simulations
is based on Bayes rule:

P(x|yexp) =
P(yexp|x)P(x)

P(yexp)
. (18)

The term P(x|yexp) on the left-hand side of Eq. (18) is called
the posterior (short for “the posterior probability density"),
which is the probability of the model parameter x to take a
particular value given the experimental data yexp. It is the
primary focus of Bayesian parameter inference. On the right-
hand side of Eq. (18), P(x) represents the prior probability
density for the parameters to take values x, given information
from previous experiments and/or independent theoretical in-
put. P(yexp|x) is the likelihood function, describing the prob-
ability density that the model output for a given set of model
parameters x agrees with the experimental data yexp. Given
the distribution of ✏✏✏, the likelihood P(yexp|x) is

1p
|2⇡⌃|

exp
h
�
1

2
(ysim(x)�yexp)

>⌃�1(ysim(x)�yexp)
i
,

(19)
where the d⇥ d matrix ⌃ represents the total uncertainty, ob-
tained by adding the experimental and simulation uncertain-
ties.

The posterior generally does not have a closed-form ex-
pression, in particular not for heavy-ion collisions. To find
the posterior for the parameters x and to quantify their uncer-
tainty therefore in practice requires numerical techniques that
directly produce samples from the posterior. This is typically
achieved by using Markov Chain Monte Carlo (MCMC) tech-
niques [76, 77]. These techniques require only relative prob-
abilities, so the normalization P(yexp) in the denominator on
the right of Eq. (18) (which is independent of the parameters
to be inferred) does not need to be calculated.

To produce each sample, MCMC techniques have to eval-
uate the right-hand side of Eq. (18) many times for di�erent
values of x. When the simulation model is computationally in-
tensive, evaluating the likelihood P(yexp|x) becomes compu-
tationally expensive. Typically, MCMC methods require very
many evaluations of the likelihood; this can make Bayesian pa-
rameter estimation computationally prohibitive for expensive
simulation models such as the one described in the preceding
section.

A popular solution is to build a computationally cheaper em-
ulator to be used in place of the simulation model [78, 79].
Gaussian Process (GP) emulators can serve as computationally
cheap surrogates to replace an expensive simulation [80, 81].
GP emulators have to be trained on simulation data before they
can be used to predict the simulation outputs at any other pa-
rameter set x. Once the emulator is built, it returns the predic-
tion mean µµµ(x) and the covariance C(x) to represent the sim-
ulation output ysim(x). In this case, the likelihood in Eq. (19)

is approximated as [78]

1p
|2⇡V(x)|

exp
h
�
1

2
(µµµ(x)�yexp)

>V(x)�1(µµµ(x)�yexp)
i
,

(20)
where V(x) = C(x) + ⌃. MCMC techniques can then use
Eq. (20) to draw samples from the posterior in order to avoid a
sampling process that depends on extensive evaluation of the
expensive computer simulation.

IV. EMULATORS FOR THE VAH MODEL

Relativistic heavy-ion collision simulations are computa-
tionally expensive. Due to irreducible quantum fluctuations
in the initial state, for each set of model parameters the sim-
ulation has to run multiple times, with stochastically fluctuat-
ing initial conditions, in order to produce output that can be
meaningfully compared with the experimental measurements.
For example, in the JETSCAPE framework for a single set of
model parameters, the full-model simulations for 2000 fluc-
tuating initial conditions take approximately 1000 core hours
[17]. A majority (⇡80%) of the core hours is spent on the
hadron transport stage after particlization; the remaining frac-
tion of core hours is mostly utilized by the hydrodynamic QGP
evolution code. The MCMC techniques employed in Bayesian
parameter estimation require many evaluations of the simula-
tion that, without the use of e�cient emulators, renders the
inference for heavy-ion collision models computationally in-
feasible.

Getting the training data necessary for the GP emulators
from the full heavy-ion model is the most computationally de-
manding step in Bayesian parameter estimation. In this work,
we employ several novel methods to significantly reduce this
computational cost: a) we use a novel Minimum Energy De-
sign (MED) [82] for selecting the model parameter values at
which we run the full simulation, replacing the Min-Max Latin
Hypercube Design [83] used in most previous works [7–17];
(b) instead of getting all the simulation data at once, we fol-
low a sequential process to obtain batches of simulation data
with increasing accuracy in the most probable parameter re-
gion; (c) we test several GP emulation methods for relativistic
heavy-ion collisions and use a thorough validation to select the
best one. All of these features are explained in detail below.

A. Generating the simulation data for emulator training

The popular Latin Hypercube Design (LHD) fills the multi-
dimensional model parameter input space in a way that ensures
that each parameter is broadly distributed within its full range
[83]. The emulators that are built using LHD e�ectively treat
all regions of the parameter space as important.

Building emulators for Bayesian parameter estimation is a
unique application of emulators. In theory the emulators built
for this purpose need to accurately predict the simulation out-
put only in the high posterior regions of the model parame-
ter space. Following this idea naturally leads to a sampling
method where some regions of the input parameter space have
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a higher density of design/training points than others, devi-
ating strongly from a LHD. This targeted sampling approach
saves computational cost by requiring a smaller overall num-
ber of high-precision simulations, by sacrificing emulation ac-
curacy in uninteresting (low posterior probability) regions of
the model parameter space for higher precision simulations in
regions of interest (high posterior probability). This idea of
building emulators by sequentially sampling with a bias to-
wards the interesting regions while still exploring, albeit with
less model precision, the full parameter space domain speci-
fied by the prior P(x) is known as active learning in the ma-
chine learning and statistics literature (see Chapter 6 in [80]
for a detailed review).

In this work, we adopt an active learning approach to gen-
erate the VAH simulation data for training our emulators. Our
simulation is inherently stochastic due to the random initial
energy depositions and the probabilistic conversion of QGP
fluid to hadrons at particlization. Our final aggregated observ-
ables are calculated from the stochastic simulation by evalu-
ating it multiple times with random initial conditions at any
given model parameter set. We refer to each of these eval-
uations as an event. As the number Nevents of events simu-
lated for a given design point increases, the statistical accuracy
of the final simulation output observables increases roughly
proportional to

p
Nevents while the computational expense in-

creases linearly. In the following we describe the sequential
design approach to simulate design points with varying pre-
cision (from 200 events per design to 1600 events per design,
which we refer to as low-precision and high-precision simula-
tions, respectively) to build emulators for Bayesian parameter
estimation.

First, we use low-precision simulations on a very sparse set
of initial design points to estimate an intermediate posterior
for potential additional intermediate design point. Informed
by the initial design, we decide on which regions in the pa-
rameter space we should put more weight when sampling the
next batch of design points, and use maximum energy design
(MED) to do intelligent sequential sampling. MED selects the
points that minimize the total “potential energy” as defined in
[84], and fast procedures for generating MED samples are pro-
vided in [82]. Suppose that we start with j samples of the
q-dimensional parameter space and their corresponding simu-
lation outputs. According to the MED selection criterion, the
(j+1)th point is selected at

xj+1 = argmax
x2L

min
i=1:j

P
1/2q(yexp|x)P

1/2q(yexp|xi)d(x,xi)

(21)
where L represents a candidate list of design parameters that
we generate from a LHD and d(x,xi) represents the Euclidean
distance between x and xi. Since model simulations have not
yet been performed for any of the points x2L, the likelihood
P(yexp|x) at such an “unseen” point x must be estimated us-
ing Eq. (20) with the emulator built using the simulation data
retrieved at design points {xi|i = 1, . . . , j}. After generating
a batch of design points in regions of large estimated values
for the posterior via Eq. (21), high-precision full-model simu-
lations with increased event statistics per design are performed
for this batch, and their output is added to the previously sim-

ulated events and used to build new emulators with improved
precision. The process is iterated until the desired emulator
precision has been reached. Full details are given in App. A.

B. Gaussian process emulation

In this study, we leverage a GP-based emulator using the
basis vector approach [85] since the simulation returns a
length d=98 vector. Principal component analysis (PCA)
[86] is used to project the high-dimensional outputs into a low-
dimensional space where the projection is a collection of latent
outputs. Then, each latent output is modeled using an indepen-
dent GP model. We have tested di�erent emulation strategies,
and we provide the results for stochastic kriging [87] since it
returns the best prediction accuracy on the test data. Relativis-
tic heavy-ion collision simulations are stochastic, meaning that
each time the simulation model is evaluated with the same pa-
rameter setting the simulation output is di�erent. The stochas-
tic kriging approach incorporates both the intrinsic uncertainty
inherent in a stochastic simulation and the extrinsic uncertainty
about the unknown simulation output. Additional information
on other emulators we explored are presented in App. B.

For the rest of this section, let {xtr
1 , . . . ,x

tr
n } denote the

n unique parameter samples used to train each of the emu-
lators. Let ȳsim(xtr

i ) be a d-dimensional aggregated output
vector of observables from the simulation model evaluated at
the model parameter value xtr

i across a number of random ini-
tial conditions. The standardized outputs are stored in a d⇥ n
matrix ⌅ where the ith column is (ȳsim(xtr

i ) � h)/c (com-
puted element-wise); and h and c are the centering and scal-
ing vectors. Principal component analysis finds a d⇥ p lin-
ear transformation matrix A = [a1, . . . ,ap], which projects
d-dimensional simulation outputs ⌅ to a collection of latent
outputs Z = [z1, . . . , zp] = A>⌅ in a p-dimensional space.
In this work, we find that keeping twelve principal components
(p=12) explains 98% of the variance in the original simula-
tion data set. After transformation, we build an independent
GP for each latent output zt(·) = a>t G

�1(ȳsim(·)�h) where
G = diag(c). The GP model results in a prediction with mean
mt(x) and variance s2t (x) such that

zt(x)|zt ⇠ N(mt(x), s
2
t (x)), for t = 1, . . . , p. (22)

Following the properties of GPs [88], the mean mt(x) and
variance s2t (x) are given by

mt(x) = k>
t K

�1
t zt

s2t (x) = kt(x,x)� k>
t K

�1
t kt,

(23)

where kt(·, ·) is the covariance function, kt =
⇥
kt(x,xtr

i )
⇤n
i=1

is the covariance vector between n parameters {xtr
1 , . . . ,x

tr
n }

and any parameter x, and Kt =
⇥
kt(xtr

i ,x
tr
j ) + �ij

rt,i
ai

⇤n
i,j=1

is the covariance matrix between n parameters used to train
the GP (see App. C for additional details). Here, rt,i repre-
sents the intrinsic uncertainty due to the stochastic nature of
the simulation output across di�erent events (i.e., di�erent ran-
dom initializations), ai is the number of events, and �ij is the
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Kronecker-�. For the covariance function, there are several
popular choices including Gaussian,9 Matérn, and cubic co-
variances [81].

Once the GP is fitted, the goal is to predict the simula-
tion output at an unseen point x as follows. Equations (22)–
(23) provide the basis for emulator modeling: the posterior
mean mt(x) serves as the emulator model prediction at a new
point x, and the posterior variance s2t (x) quantifies the em-
ulator model uncertainty. A key appeal of GP emulators is
that both their prediction and uncertainty can be e�ciently
computed via such closed-form expressions. For a predic-
tion of the model output at any test point x, we first obtain
the mean mt(x) and variance s2t (x) in Eq. (23) for each of
the corresponding latent outputs t = 1, . . . , p. These are
then transformed back to the original d-dimensional space
through the inverse PCA transformation as follows: Define
the p-dimensional vector m(x) = (m1(x), . . . ,mp(x)) and
a p ⇥ p diagonal matrix S(x) with diagonal elements s2t (x)
(t = 1, . . . , p). Then the inverse PCA transformation yields

ysim(x) ⇠ MVN(µµµ(x),C(x)), (24)

where µµµ(x) = h+GAm(x) is the emulator predictive mean
and C(x) = GAS(x)A>G is the covariance matrix. By
plugging µµµ(x) and C(x) into Eq. (20) we obtain the approxi-
mate likelihood at parameter point x. We then use Eq. (18) to
compute the posterior P(x|yexp).

In this way, by employing the MCMC method on the se-
quentially updated emulators, we extract posterior distribu-
tions for the parameters of the VAH simulations of heavy-ion
collisions without running the computationally expensive sim-
ulation model when doing the MCMC sampling.

Once the emulators are fitted with training data, and before
using them for Bayesian parameter inference, we test the ac-
curacy of the emulators. To do that, we use the model simula-
tion output from a batch of m design points that was put aside

FIG. 1. R2 scores calculated using the test simulations and emu-
lator predictions for principal component stochastic kriging (PCSK)
for eleven observable types. Each observable type is represented by a
unique color, and each dot corresponds to measurements of that ob-
servable type at increasing centrality when going from left to right.

9 In the statistics literature the Gaussian function is often called a “squared-
exponential", indicated here by the superscript SE.

and not used for emulator training (specifically batch (b) de-
scribed in App. A). The emulator accuracy is measured using
the coe�cient of determination (R2 score) for the lth observ-
able (l = 1, . . . , d) defined by

R2
l = 1�

Pm
i=1(ȳsim,l(xtest

i )�µµµl(xtest
i ))2Pm

i=1(ȳsim,l(xtest
i )� ¯̄ysim,l(xtest

i ))2
, (25)

where ¯̄ysim,l(x
test
i ) =

Pm
i=1 ȳsim,l(xtest

i )

m
.

The maximum possible value for R2
l is R2

l =1, which occurs
only when the emulation predictions for observable l are iden-
tical to the simulation output for all m test designs (i.e., the
emulator is perfect on the test designs). The R2 score can as-
sume negative values when the emulator predictions deviate
strongly from the simulation outputs for the test designs.

The R2 scores we obtain for the VAH emulators trained
by using the principal component stochastic kriging (PCSK)
method10 are shown in Fig. 1. Each color corresponds to a dif-
ferent type of observable, and each dot corresponds to a di�er-
ent collision centrality, ordered from left to right by increasing
centrality. In total there are 98 dots, corresponding to the 98
observables considered in this work.

V. CLOSURE TESTS

Following Ref. [17], we perform closure tests before pro-
ceeding to the model calibration stage. By using Bayesian in-
ference to reconstruct the model parameters from simulated
(“mock”) data generated by model runs for a known point in
model parameter space, closure tests are an important check of
the ability of the inference framework to correctly infer model
parameters from real experimental measurements, and they
also provide a deeper understanding of the behavior of the un-
certainties associated with the inference process.

We randomly pick nine design points from our most accu-
rate simulation data set (batch (e) in App. A), which has 1600
events per design. We train our emulators without including
these nine design points in our training data. Then, the simu-
lation outputs of these nine design points are taken as pseudo-
experimental data and we perform the Bayesian parameter in-
ference to find the most probable values of the model parame-
ters that can reproduce the pseudo-experimental data. Finally,
we compare the inferred model parameter values with the
known truth values that generated these pseudo-experimental
data and validate our Bayesian parameter estimation frame-
work.

Figure 2 shows the closure test results for the temperature-
dependent specific bulk and shear viscosities. One sees that in

10 Two other types of emulators, obtained with the principal component Gaus-
sian process regression (PCGP) and the principal component Gaussian pro-
cess regression with grouped observables (PGPRG) methods, respectively,
were also studied (see App. B for a description and the corresponding R2

values). The R2 values exhibit a general tendency to decrease as we switch
from PCSK to PCGPR emulators, and then again as we move to PCGPRG
emulators. For the analysis in the rest of the paper we have therefore chosen
the PCSK emulators as the most accurate ones.
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FIG. 2. Closure tests for the temperature-dependent specific (a) shear and (b) bulk viscosities. The colored bands show di�erent confidence
intervals (C.I.).

most of the nine cases the true model parameter values (giving
rise to the dotted lines) are well captured by the 90% inferred
posteriors for these model parameters (indicated by lighter and
darker colored regions for the 90% ad 60% confidence in-
tervals (C.I.), respectively). We expect the true value (black
dashed line) to lie inside the 90% confidence interval 90% of
the time. We also observe that for some pseudo-experimental
data values (e.g., left column, middle row in both panels (a)
and (b)) the closure can be poor. There are several possible
reasons for this to happen: a) emulators are not well trained to
capture the simulation behavior around some of the parameter
values used to generate pseudo-experimental data; b) in some
regions of the parameter space the temperature-dependent vis-
cosities are not sensitive enough to be accurately inferred us-
ing the currently used experimental observables; a similar is-
sue was reported in Section V.B of Ref. [18]. The observation
of such instances of poor closure highlights the importance of
further validation tests after completing the model calibration.
For this purpose we perform posterior predictive tests for the
experimental data as discussed in Sec. VIII. For the closure
tests shown here, in addition to the viscosities we also checked
the consistency of the posteriors for the remaining model pa-
rameters with their true values; we found all of them to be
inferred accurately.

VI. BAYESIAN CALIBRATION OF VAH WITH LHC DATA

A. Calibration procedure

With our Bayesian tool set in place we perform Bayesian
parameter inference using experimental data for Pb–Pb colli-

sions at center-of-mass energy p
sNN = 2.76TeV collected at

the LHC. For ease of comparison, we use (almost11) the same
set of measurements as the recent JETSCAPE analysis [17]
(98 measurements in total):

• the charged particle multiplicity dNch/d⌘ [71] for cen-
trality bins covering 0�70% centrality;

• the transverse energy dET /d⌘ [72] for centrality bins
covering 0�70% centrality;

• the multiplicity dN/dy and mean transverse momenta
hpT i of pions, kaons, and protons [73] for centrality bins
covering 0�70% centrality;

• the two-particle cumulant harmonic flows vn{2}
(n=2, 3, 4) for centrality bins covering 0�70% central-
ity for n=2 and 0�50% centrality for n=3, 4 [74].

The 15 model parameters that we infer and their pri-
ors are listed in Table I. Since VAH has no free-streaming
stage, the associated JETSCAPE parameters are missing from
the table. The additional parameter R2 [0.3, 1], defined in
Eq. (13), controls the initial pressure anisotropy (PL/PL)0
and is unique to VAH.

11 We omit the fluctuations in the mean transverse momentum, �pT /hpT i

[89], for centrality bins ranging from 0 to 70% centrality in our analysis.
We found that excluding this observable increases the validation scores R2

for all observables. We suspect this is due to the current number of events
per design being insu�cient to calculate the mean transverse momentum
accurately.
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parameter prior range
N [10, 30]
p [�0.7, 0.7]
w [fm] [0.5, 1.5]
dmin [fm] [0.0, 1.7]
�k [0.3, 2.0]
Tsw [GeV] [0.135, 0.165]
R [0.3, 1]
T⌘/s,kink [GeV] [0.13, 0.3]
(⌘/s)kink [0.01, 0.2]
ahigh [GeV�1] [�1, 2]
alow [GeV�1] [�2, 1]
(⇣/s)max [0.01, 0.25]
T⇣ [GeV] [0.12, 0.3]
w⇣ [GeV] [0.025, 0.15]
�⇣ [�0.8, 0.8]

TABLE I. List of VAH model parameters. We use uniform priors
throughout, with prior ranges (specified in the right column) that
agree with the ones used in Ref. [17].

For the likelihood function we use the multivariate normal
distribution (19). The variances characterizing the experimen-
tal and simulation uncertainties are added together to obtain
the total uncertainty appearing in the likelihood.

The posterior is found by combining the (multivariate Gaus-
sian) likelihood with the (multivariate uniform) prior accord-
ing to Bayes’ rule (18). The resulting 15-dimensional poste-
rior probability distribution is analyzed by sampling it using
MCMC [90, 91]. Specifically, we use the Parallel Temper-
ing MCMC technique [92–94], on account of its robustness in
sampling multi-modal posterior distributions. For the temper-
ature ladder we choose 500 values for the tempering tempera-
ture, evenly distributed between 0 and 1000. For each temper-
ature in the ladder we run 100 randomly initialized chains (see
[94] for technical details of the parallel tempering algorithm).
In each chain we discard the first 1000 steps as burn-in. The
final posterior samples are obtained from the next 5000 steps,
after thinning the chains by a factor 10, by saving only every
10th sample.

B. Posterior for the model parameters

The joint marginal posterior distributions (obtained by pro-
jecting the posterior on two dimensions in all possible ways)
for all the model parameters are shown in Fig. 3; the diago-
nal shows the marginal posterior distributions for each model
parameter. These marginal distributions are obtained by inte-
grating the posterior over all other model parameters, except
the chosen one or two. The model parameter values that max-
imize the high-dimensional posterior (the “mode” of the dis-
tribution) are called Maximum a Posteriori (MAP) parameters
— they are indicated by blue dotted vertical lines in the diag-
onal panels.

In each panel the lilac color shades the uniform prior dis-
tribution density; shades of red color indicate the projected
density of the posterior distribution. In cases where the avail-

able experimental data have insu�cient constraining power on
a parameter one expects the prior (blue) and posterior (red)
marginal distributions to largely agree. In these cases the pos-
terior essentially returns the information already contained in
the prior. Figure 3 shows that two of our model parameters
related to the very early stage of the fireball, the initial pres-
sure ratio R and the minimum distance dmin between nucle-
ons, are not well constrained by the experimental data.12 The
shape of the probability density contours in the o�-diagonal
panels conveys information about correlations among the in-
ferred model parameters. When considering parameters unre-
lated to the viscosities one observes slight positive correlations
between the nucleon width parameter w, as well as the multi-
plicity fluctuation parameter �k, and the TRENTo normaliza-
tion N , and between �k and the minimum nucleon distance
dmin; the power p in the TRENTo parameterization (4) of the
reduced thickness function TR is slightly anti-correlated with
N andR. More striking is the bimodal structure of the TRENTo
normalization parameter N . In all previous Bayesian parame-
ter inferences for heavy-ion collision simulations for Pb–Pb at
p
sNN = 2.76TeV energy, the marginal distribution of N was

well constrained to a Gaussian-like distribution [7–17]. Since
N determines the initial energy deposited after the collision,
it is also closely related to the initial entropy. This causes the
final particle yields to directly scale with N . Using primar-
ily the final measured particle yields and transverse energy,
all previous Bayesian studies were able to tightly constrain N .
The deviation from this in the VAH model warrants further in-
vestigation into the sub-dominant peak that appears at higher
N values closer to the prior bound.

As a first step towards understanding the bimodal structure,
we look at all the correlations seen in the joint marginal dis-
tributions between N and the other model parameters, shown
in the leftmost column of Figure 3. Five parameters are seen
to correlate most strongly with the two peaks in the marginal
posterior for N : p, w, �k, ahigh, and R all prefer di�erent val-
ues for the two peaks of N . This suggests that one of these
parameters, or some combination of them, acts to compensate
the e�ect that a large N value has on the final observables.13

To narrow things down further requires going beyond the
pairwise joint marginal posterior distributions. We therefore
jump ahead to the model sensitivity shown in Fig. 5 which will
be discussed in greater detail in Sec. VII below. Figure 5 shows
that the charged particle yields for central collisions show sig-
nificant sensitivities only to N and the specific shear viscosity
⌘/s. Further checking along these lines points to the possibil-
ity that the two-peak structure in N might be related specif-

12 To the extent that the very early fireball expansion stage respects Bjorken
symmetry [48] (an approximation expected to hold well in collisions be-
tween large nuclei at LHC energies), the dynamical evolution of R is con-
trolled by a far-from-equilibrium hydrodynamic attractor to which it decays
rapidly on a time scale ⇠ ⌧0, irrespective of its initial value, following a
power law decay [46, 47, 95–97], and which is well described by viscous
anisotropic hydrodynamics [46, 47]. This may be the main reason for our
inability to constrain it well using final-state experimental measurements.

13 We note that increasing N causes all the final observables considered in
this work to increase.
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FIG. 3. Joint marginal distributions of the posterior for all model parameters, for VAHwith PTMA viscous corrections at particlization and using
experimental data from Pb–Pb collisions at psNN = 2.76TeV. Posterior distributions are represented by shades of red while the (uniform) prior
distributions are shown in lilac. Cyan numbers and vertical dotted lines in the diagonal panels indicate the MAP values for each parameter.
(See Table I for the units of the model parameters.)
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ically to the high-temperature slope of the specific shear vis-
cosity, ahigh.

Closer inspection of the joint marginal distribution between
ahigh and N in Figure 3 shows that these two parameters are
anti-correlated. The peak at large N -values correlates with
negative slope ahigh < 0 (i.e. a specific shear viscosity that
decreases with temperature) whereas ahigh > 0 (i.e. ⌘/s in-
creases with temperature) for smaller values of N .

The VAH model starts the hydrodynamic evolution at the
very early time of ⌧0 = 0.05 fm/c, thus probing much higher
temperatures than any other hydrodynamic model for heavy-
ion collisions used so far. Smaller (but still positive) high-
temperature values of ⌘/s result in reduced viscous heating
during the earliest evolution stage and, therefore, in lower final
particle yields as well as smaller mean transverse momenta and
flow anisotropies. To hold these observables constant as N in-
creases, the Bayesian fit compensates by reducing the specific
shear viscosity in particular at early times (i.e. at high temper-
ature) when the rate of viscous entropy production is largest.
This is accomplished by selecting a negative slope parameter
ahigh.14 This unique characteristic of the VAH model explains
the bimodal structure of the marginal posterior for N which
has not been observed in any other model for heavy-ion col-
lisions. We note that a similar bimodal structure is also seen
in the joint marginal distributions of several other parameter
pairs but hidden in their individual marginal distributions.

For the VAH model the MAP value for the harmonic mean
parameter p in TRENTo (see Eq. (4)) is 0.038, close to the pre-
ferred value of zero found in all previous Bayesian parame-
ter inferences using a free-streaming pre-hydrodynamic stage
[7–17]. However, its marginal posterior distribution is shifted
toward slightly negative values. Its correlation with N sug-
gests that this shift is associated with the large posterior density
around negative values of ahigh, which we argued above corre-
sponds to small specific shear viscosity values at early times.
The small specific shear viscosity causes the fluid to behave
more ideal, quickly erasing all initial momentum anisotropies
and thereby reducing all finally measured flow harmonics. To
compensate for this e�ect the harmonic mean parameter p
tends negative, which, as observed in [31] and confirmed with
the VAH widget in [98], increases all flow harmonics. Decreas-
ing the specific shear viscosity also correlates with a growth
of the multiplicity fluctuation parameter �k, compensating for
the faster decay of initial momentum anisotropies with larger
initial density fluctuations to keep the final anisotropic flow
response strong.

We note that the marginal posterior peak at the larger N
values correlates not only with a reduced specific shear vis-
cosity at high temperatures, but also with a large value R ⇡ 1
of the initial pressure ratio PL/P? (i.e. a small value for
the initial shear stress). We point out that the degeneracy in
probability between the two peaks seen in the marginal poste-

14 The interested reader is invited to confirm these claims with the help
of the emulator-based “VAH widget” which can be found at https:

//danosu-visualization-vah-streamlit-widget-wq49dw.

streamlit.app/ [98]

rior for R can be broken, at the level of the prior distribution
for R, by invoking additional “prior theoretical” input: In the
widely considered Color Glass Condensate (CGC) model [99],
which is expected to apply to heavy-ion collisions at LHC en-
ergies, the longitudinal pressure PL is predicted to be initially
negative, rising very quickly (on a time scale ⇠ 1/Qs where
Qs ⇠ 1� 3GeV is the saturation momentum of the CGC) to
positive values and approaching the transverse pressure P?
from below at late times as the system moves closer to ther-
mal equilibrium [100]. This picture would definitely tilt the
prior for R in the lower right panel of Fig. 3 strongly toward
the left, assigning very low prior (and therefore also posterior)
probability to initial pressure ratios near R=1.

Similar to earlier Bayesian model calibrations [12, 13, 15,
17, 101] we find the nucleon width parameter w constrained to
a value around 1 fm. Since this value is larger than the nucleon
width needed to match the recently measured total hadronic
cross sections for p–Pb [102] and Pb–Pb [103] collisions at
p
sNN =5.02GeV at the LHC [104], this suggests that a suc-

cessful description of the experimental data used in our model
calibration requires an initial density profile (3) for the energy
density deposited near mid-rapidity that fluctuates on a larger
length scale than the strong interaction radius of the proton.
The VAH widget [98] (see footnote 14) shows that bumpier
initial conditions whose density fluctuates on shorter length
scales increase the radial and anisotropic flows (reflected in
the average momenta hpT i and harmonic flow coe�cients vn
of the emitted hadrons) which must be compensated by larger
values for the shear and bulk viscosities. Thus, the choice of w
has direct consequences for the viscosity coe�cients inferred
from the experimental data.

The fluctuation length scale of the initially deposited matter
should be larger than that of the nuclear thickness functions of
the colliding nuclei makes immediate sense once one realizes
that the matter created by a collision of two colored partons
at transverse position x?, which is characterized by a typical
transverse momentum scale p? . 1GeV, cannot be deposited
at precisely the same point x?: the uncertainty relation re-
quires it to be distributed around x? in a cloud of transverse
radius �r? ⇠O(1/p?). Unfortunately, the TRENTo ansatz
(3,4) does not allow to change the width parameter w indepen-
dently in the nuclear thickness functions TA,B (which control,
among other observables, the total inelastic p–Pb and Pb–Pb
cross sections [102–104]) and in the reduced thickness func-
tion TR (4) which controls the fluctuation length scale of the
initially deposited transverse density profile. We suggest that
future implementations of the TRENTo model should allow for
an additional Gaussian smearing in Eq. (3),

✏(x?) =
N

⌧0

Z
d2r?TR(r?; p, w)

e�
1
2

�
x?�r?
�r?

�2

2⇡(�r?)2
, (26)

where TR is characterized by a nucleon width w matched to
reproduce the total inelastic p–Pb and Pb–Pb cross sections
[104] while the additional smearing scale �r?, setting the
length scale of the initial energy density fluctuations, is taken
as a model parameter to be inferred from the heavy-ion colli-

https://danosu-visualization-vah-streamlit-widget-wq49dw.streamlit.app/
https://danosu-visualization-vah-streamlit-widget-wq49dw.streamlit.app/
https://danosu-visualization-vah-streamlit-widget-wq49dw.streamlit.app/
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FIG. 4. Posteriors for the temperature-dependent specific (a) shear and (b) bulk viscosities in the VAH model with PTMA viscous corrections
at particlization, using experimental data from Pb–Pb collisions at psNN = 2.76TeV for model calibration. Grey bands show the 90% prior
interval. The colored regions corresponds to 90% (light) and 60% (dark) posterior credible intervals. Dashed lines indicate the 90% posterior
credible intervals within the parameter subspaces corresponding to TRENTo normalization N > 25 (red) and N  25 (blue), respectively. See
text for discussion.

sion data by Bayesian inference.15

Our Bayesian model calibration leaves the minimum dis-
tance dmin between nucleons unconstrained. This has also
been observed in other Bayesian parameter estimation stud-
ies done with the TRENTo model [17]. The switching temper-
ature Tsw where the QGP is converted into hadrons is con-
strained to a somewhat lower temperature than in previous
studies [15, 17]. While its MAP value TMAP

sw = 146MeV
is compatible with earlier analyses, its marginal posterior is
tilted toward lower temperatures and abuts the lower edge of
its prior interval. This shift toward lower particlization temper-
atures suggests that the very tight constraints for Tsw observed
in earlier Bayesian analyses using di�erent evolution models
are a�ected by significant model uncertainties, and that in fu-
ture Bayesian parameter studies with the VAH model the prior
for this parameter should be extended toward lower tempera-
ture values.

C. Posteriors for the temperature-dependent specific shear
and bulk viscosities

The posterior probability distributions for the temperature-
dependent specific shear and bulk viscosities of the QGP, in-
ferred from experimental data for Pb–Pb collisions at psNN =
2.76TeV, are shown in Fig. 4.

Comparing with two other recent Bayesian parameter stud-
ies [15, 17] we observe improved posterior constraints espe-
cially in the upper temperature range. The specific bulk vis-
cosity is constrained to very low values (⇣/s< 0.01 with 60%

15 As suggested by Weiyao Ke (private communication) the above uncertainty
argument �r? ⇠O(1/p?) implies that the smearing radius �r? could
be smaller for the production of hard particles than for the soft matter con-
sidered here which makes up the QGP medium.

confidence) at temperatures above 350 MeV; at temperatures
below 220 MeV the constraints are similar to those in Ref. [17].
For the specific shear viscosity ⌘/s we find posterior con-
straints that again are consistent with previous Bayesian pa-
rameter inference studies at temperatures below 250 MeV, but
are much tighter and weighted toward lower ⌘/s values at
higher temperatures when using VAH than found with the ear-
lier models that assumed a free-streaming pre-hydrodynamic
stage.

The better constraints at higher temperatures make sense
when noting that in our VAH model the specific bulk and shear
viscosities enter as model parameters into the description of
the dynamical evolution at much earlier times, when the energy
density (which controls the associated equilibrium tempera-
ture by Landau matching) is much higher. In the JETSCAPE
[17] and Trajectum [15] models ⌘/s and ⇣/s do not enter un-
til the beginning of the viscous hydrodynamic stage after about
1 fm/c or later, when the energy density has already dropped by
a factor 20 or more, corresponding to a decrease by more than
factor 2 in temperature. The initial free-streaming stage as-
sumed in Refs. [15, 17] can in fact be thought of as a fluid with
infinite shear and bulk viscosities. The present work shows
that by replacing the unphysical free-streaming stage by vis-
cous anisotropic hydrodynamics we can achieve a description
of the experimental measurements that is at least as good as
achieved in the previous model calibrations (see further dis-
cussion below) and which allows us to probe the temperature
dependence of the QGP viscosities to much higher tempera-
tures than possible before. An additional benefit of the VAH
approach is that it eliminates the unphysical switching time
from free-streaming to hydrodynamics as a model parameter,
and also avoids the large and positive (i.e., wrong-signed) ar-
tificial starting values of the bulk viscous pressure that arise
from matching the conformal free-streaming stage to a hydro-
dynamic fluid with a realistic, non-conformal EoS.

In Section VI B we found that the entropy generated by vis-
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cous heating drives the unique bimodal structure seen in the
posterior shown in Fig. 3. The dashed lines in Fig. 4 pro-
vide additional support for our analysis: In order to identify
the contribution from each of the two modes to the final poste-
riors for the temperature dependent viscosities, we divide the
15-dimensional parameter space into subspaces with TRENTo
normalization parameter N > 25 and N  25. The red and
blue dashed lines in Fig. 4 delineate the corresponding 90%
posterior credible intervals for the specific viscosities when the
range of N is restricted in this way to capture one or the other
of these two modes.

For large initial entropy (N > 25) the specific shear vis-
cosity ⌘/s is seen to most likely remain small (close to
1/4⇡) as the temperature increases, thereby suppressing ad-
ditional shear viscous entropy production during the earliest
and hottest expansion stage. For small initial entropy deposi-
tion (N  25), ⌘/s rises with increasing temperature, entail-
ing significant shear viscous heating during the hottest earliest
stage. Panel (b) shows that complex constraints provided by
the experimental data correlate an increase of the shear vis-
cosity ⌘/s at high T with a concomitant decrease of the bulk
viscosity ⇣/s, and vice versa. The model sensitivity analysis
in the next section reveals an overall rather weak sensitivity of
the observables used for model calibration to the bulk viscos-
ity ⇣/s: only the proton yield and the pion and proton hpT i
respond significantly to changes in ⇣/s, but at the same time
they respond much more strongly to several other model pa-
rameters. The anti-correlation between ⌘/s and ⇣/s at high
temperature seen in Fig. 4 when comparing the regions encir-
cled by the dashed red and blue lines is therefore likely caused
by a combination of several small e�ects that requires retuning
multiple parameters simultaneously in the VAH widget [98].

VII. MODEL SENSITIVITY

In this section, we perform a sensitivity analysis on our
model emulators to understand how the VAH model observ-
ables respond to changes in the model parameters. The first-
order Sobol’ sensitivity analysis performed here measures the
global sensitivity of the model to its parameters [105, 106].
Here we have grouped the parameters related to shear and bulk
viscosity into two separate groups and measure the overall sen-
sitivity of the model to these grouped sets for the ease of pre-
sentation [107]; see App. D for details.

Figure 5 shows the first-order Sobol’ sensitivity indices cal-
culated for 6 types of observables for the VAH model. The blue
color is for observables measured in the most central colli-
sions (0-5% centrality) while the purple color represents ob-
servables in the mid-centrality range (40-50% centrality).

We observe that charged and identified particle yields for
pions and protons are mostly sensitive to the TRENTo normal-
ization, N . The normalization directly scales the magnitude
of the initial energy deposition profile from TRENTo and thus
controls the number of particles produced at freeze out. In-
terestingly, we find that the charged particle and pion yields
display their second strongest sensitivity to the grouped spe-
cific shear viscosity ⌘/s. Further exploration reveals that this

FIG. 5. First-order Sobol’ sensitivities (App. D) for the VAH model.

sensitivity is caused by viscous heating e�ects during the fire-
ball evolution, especially at very early times. We invite the
interested reader to further verify this by using the VAH widget
link in footnote 14. In the widget, reducing the high temper-
ature slope of the specific shear viscosity, keeping everything
else fixed, results in a dramatic decrease of the charged par-
ticle and pion yields, showing the e�ect of viscous heating.
This strong sensitivity is a specific feature of VAH which starts
the (anisotropic) hydrodynamic evolution very early (from
0.05 fm/c) when the temperature is high, providing a strong
lever arm for the slope parameter ahigh.
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The same observables measured in peripheral collisions, but
not in central collisions, are sensitive to the TRENTo harmonic
mean parameter p, which controls how the nucleon thickness
functions for each of the nucleus are combined to produce the
initial energy profile.

The mean transverse momenta of both pions and protons are
most sensitive to the grouped specific shear viscosity param-
eters, with somewhat weaker sensitivity to the normalization
parameter N . The same observables also have high sensitivity
to the nucleon width w measured in peripheral collisions but
not in central collisions.

The elliptic flow observables measured in the most cen-
tral collisions exhibit the strongest sensitivity to the multiplic-
ity fluctuation parameter �k. The average shape of the nu-
clear overlap region being perfectly azimuthally symmetric in
the most central collisions, flow anisotropies arise only from
event-by-event fluctuations in these collisions, explaining their
sensitivity to �k. The elliptic flow also shows unsurprisingly
significant sensitivities to the grouped specific shear viscosity
parameters and the TRENTo parameters p and w, in both cen-
tral and peripheral collisions. The latter again reflects the roles
of these parameters in the event-by-event fluctuation spectrum
characterizing the initial conditions.

None of the selected observables exhibit any appreciable
sensitivity to the initial pressure anisotropy parameter R or
the minimum distance dmin between nucleons when sampling
their positions from the Woods-Saxon distribution. This obser-
vation is consistent with the very broad marginal posteriors for
these two parameters shown in Fig. 3. These suggest that addi-
tional novel observables (to sharpen their marginal posteriors)
and/or trustworthy additional theoretical arguments (to bet-
ter constrain their priors) are needed to better constrain these
model parameters.

In Ref. [108] the author tried to keep all except two param-
eters in the VAH model fixed at the MAP values of the recently
calibrated JETSCAPE SIMS model [17], seeking VAH values
only for the normalizationN and nucleon widthw. The result-
ing fit [108] agreed surprisingly well with the experimental
data. The above sensitivity can explain this unexpected suc-
cess: Fig. 5 shows that N and w are the two parameters to
which most of the selected observables exhibit significant sen-
sitivity, so adjusting them captures most of the variation of the
observables under model parameter change. For this reason we
have also included the VAH parameter set proposed in [108] as
their “best guess" as one of our design points when training
emulators.

Our trained emulators for the VAH model can be accessed by
following the link in footnote 14 and Ref. [98]. The “VAH wid-
get” produces the centrality dependent observables in real time
for any model parameter values within their prior bounds. As
long as only model predictions for the set of experimental data
used in the VAH calibration are desired, the widget can serve
as a fast and quantitatively precise emulator of the full VAH
model. We found it very useful for developing intuition for the
response of the observables to changes in single or combina-
tions of model parameters. While no substitute for the full so-
lution of the “inverse problem” (i.e., the inference of the model
parameters from the observables), it can help to develop an in-

depth understanding of such a solution.

VIII. PREDICTIONS FROM THE MAXIMUM A
POSTERIORI PROBABILITY

The final result of the Bayesian parameter estimation work
presented here are computationally cheap samples of the ex-
perimental observables from the most probable region in the
multidimensional posterior distribution for the model param-
eters. To visualize and understand the full posterior distribu-
tion we have used plots of the 1- and 2-dimensional (single or
joint) marginal distribution in Figs. 3 and 4. In this section we
will show how to find a point estimate from the posterior, i.e.,
the set of model parameters that can best fit the experimen-
tal data. The comparison between the simulation predictions
for this set of model parameter values (the MAP values) and
the experimental measurement will be a final test for the va-
lidity of the Bayesian parameter inference framework that we
have used in this work. We note, however, that model pre-
dictions that quantitatively include the full uncertainty range
arising from the uncertainties of the inferred model parame-
ters require a posterior-weighted sample from the entire high-
probability region in the multidimensional parameter space.

The model parameters that correspond to the mode of the
posterior distribution are called maximum a posterior proba-
bility (MAP) values. The MAP values are found using nu-
merical optimization algorithms that find the model parame-
ter values that minimize the negative log posterior distribution
[109, 110]. The MAP values for the posterior obtained in this
work are listed in Table II.

In Fig. 6 we compare how the MAP prediction from the VAH
model compares with another recent Bayesian parameter esti-
mation study published in Ref. [17]. The left column of Fig. 6
is obtained by using the JETSCAPE SIMS model [17] with its
MAP parameter values and running 3000 events with fluctu-
ating initial conditions. The right column is obtained by the

parameter MAP values
N 20.013
p 0.038
w [fm] 0.985
dmin [fm] 0.878
�k 1.184
Tsw [GeV] 0.146
R 0.653
T⌘/s,kink [GeV] 0.219
(⌘/s)kink 0.094
ahigh [GeV�1] 0.493
alow [GeV�1] �0.383
(⇣/s)max 0.044
T⇣ [GeV] 0.235
w⇣ [GeV] 0.032
�⇣ 0.037

TABLE II. Model parameters corresponding to the mode of the pos-
terior distribution (MAP) for the VAH model. These model parame-
ters provide simulation outputs that agree best with the experimental
measurements.



16

FIG. 6. MAP predictions for the JETSCAPE SIMS model with Grad
14-moment viscous corrections at particlization from Ref. [17] (left
column) compared with those for the VAH model with PTMA viscous
corrections at particlization (right column).

same procedure using the VAH model with its MAP parameter
set. In both columns the black triangles show the experimen-
tal measurements taken with Pb–Pb collisions at the LHC at
p
sNN = 2.76TeV. While both fits look good, closer inspection

reveals several detailed features in the data that are better de-
scribed by VAH and none that are significantly better described
by JETSCAPE SIMS. It is likely, however, that the two sets of
model predictions are statistically consistent with each other16

once a full sample of the posterior probability distribution is
generated. We leave this for a future study aimed at a quanti-
tative comparison between the two models and improved ob-
servable predictions obtained by combining the models (and
variations of them) with Bayesian model mixing techniques
[62].

It is important to note that the Bayesian parameter estima-
tion carried out here did not use the experimental data for
the transverse momentum fluctuations of charged particles,
�pchT /hpchT i, in the model calibration, nor any model predic-
tions for this observable when training the model emulators.
The fact that the MAP values for the VAH model successfully
reproduce this observable (bottom right panel in Fig. 6) can

16 Perhaps with the exception of the mean hpT i for kaons.

be interpreted as a successful prediction of the calibrated VAH
model.

IX. CONCLUSIONS

In this work we performed a Bayesian calibration of a novel
relativistic heavy-ion collision model, VAH, which treats the
early far-from-equilibrium stage of the collision with viscous
anisotropic hydrodynamics that is optimized for the particu-
lar symmetries that characterize this stage. The experimental
input in this study were data taken with Pb–Pb collisions at
p
sNN = 2.76TeV at the LHC. The VAH model can be used

from very early times onward (here we use ⌧0 =0.05 fm/c),
which largely obviates the need for any pre-hydrodynamic evo-
lution at all. This eliminates model parameters and other con-
ceptual uncertainties associated with the free-streaming mod-
eling of the pre-hydrodynamic stage employed in similar anal-
yses that employed standard viscous hydrodynamics to model
the QGP.

An important advantage of being able to start the hydrody-
namic modeling so much earlier is that transport coe�cients
enter as parameters of the dynamical description at a stage of
much higher energy density and temperature. By using the
VAH approach we can therefore constrain the specific shear and
bulk viscosities at higher temperatures than accessible in other
approaches that invoke an extended pre-hydrodynamic stage
modeled microscopically in a way that cannot be meaning-
fully parameterized by hydrodynamic transport coe�cients.
We find that within the VAH approach the specific bulk vis-
cosity is well constrained by the LHC data to very low val-
ues, ⇣/s< 0.03 at 90% confidence level and < 0.01 at 60%
confidence level, for temperatures above 350 MeV. Also the
specific shear viscosity is more tightly constrained at tempera-
tures above 250 MeV than in previous analyses, with the 60%
and 90% confidence intervals both pushed toward lower ⌘/s
values than before. At lower temperatures below 220 MeV
the VAH constraints agree with those obtained from previous
Bayesian parameter estimation studies.

The joint marginal posterior distributions for pairs of model
parameters exposed a bimodal posterior which, in the case of
the TRENTo normalization N , is even visible at the level of
the individual marginal posterior. We were able to trace this
back to a nontrivial interplay between the initial entropy de-
position controlled by N and the additional entropy gener-
ated by viscous heating during the subsequent evolution. The
Bayesian calibration found two di�erent solutions with similar
posterior probabilities, corresponding to di�erent trade-o�s
between these two mechanisms. The use of VAH exposed the
possibility of such a trade-o� for the first time since previous
hybrid evolution models were not able to explore reliably the
large viscous heating e�ects occurring during the very early
evolution stage when the longitudinal expansion rate is huge
and the fluid is very far from local thermal equilibrium. VAH is
optimized to handle this extreme situation within an adapted
hydrodynamic approach. We argued that there may be addi-
tional theoretical arguments that, in future Bayesian calibra-
tion campaigns, can be implemented by appropriate modifica-
tion of the prior probability distributions for some of the model
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parameters, in order to resolve the ambiguity between the two
modes exposed in this work.

We demonstrated that the primary mode of the full 15-
dimensional posterior parameter probability distribution (i.e.,
its MAP parameter set) leads to a very good description of the
data used in the model calibration, with no significant tensions
between the calibrated model and the experimental data. The
calibrated VAH model was shown to improve on several fea-
tures where earlier Bayesian model fits exhibited weaknesses.
In particular, the MAP parameters of our calibrated VAHmodel
led to a quite successful prediction of the mean-pT fluctua-
tions, a set of data that was not used in the model calibration
on account of its high demand on event statistics but was still
correctly predicted by the model after calibration with other,
statistically less demanding experimental observables.

The comparison of our results here with those obtained ear-
lier with di�erent variants of the heavy-ion collision evolution
model shines a light on model uncertainties and their e�ects
on the uncertainty ranges for the fireball parameters inferred
with these models from the experimental data. While state-of-
the-art Bayesian analyses provide principled uncertainty quan-
tification given the known experimental uncertainties, there is
nothing principled about the way the heavy-ion community
presently tries to assess theoretical and modeling uncertain-
ties. The availability of several Bayesian calibrated heavy-ion
evolution models now opens the window to, and underlines the
urgency for developing new statistical tools that enable princi-
pled uncertainty quantification in Bayesian model parameter
inference that accounts for experimental and theoretical un-
certainties on an equal footing.
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Appendix A: Details of training data collection procedure

The following are, in chronological order, the five batches
of design points for which we ran full model simulations.

a) We start with a Latin Hypercube Design (LHD) with
300 design points, simulating 200 events per design
point. We use this relatively low statistics of simulated
events as our starting point to build an initial set of em-
ulators and compute a preliminary posterior.

b) We then generate another, coarser LHD with 90 design
points and run 800 full-model events per design. These
simulations are used as test data to check emulation ac-
curacy.

c) We use the Minimum Energy Design (MED) algorithm
to generate a first batch of 90 MED design points at
which we run another 800 events per design.

d) Based on revised emulators trained on all the simulation
data above, the second batch of 90 MED design points
is identified at which another 800 events per design are
simulated.

e) Based on revised emulators trained on all the simulation
data above, we identify a first batch of 70 MED design
points for which we simulate a larger number of 1600
events per design, to increase statistical precision of the
training data in the parameter region which the emula-
tors suggest to have a high posterior probability.

f) The last step is repeated to identify a last batch of
30 MED design points in the high-posterior region for
which we again simulate 1600 events per design. A final
set of high-precision emulators is trained using all of the
simulation data accumulated.

When training and testing emulators we first discard design
parameter sets for which more than 5% of the simulations fail
to complete. This ensures that the emulators are not contam-
inated by large errors in parameter regions where the model
starts to break down (i.e., it becomes inapplicable).

Appendix B: Additional emulation strategies

1. The Principal Component Gaussian Process Regression
(PCGPR) emulation method

PCGPR has been the standard emulation method used in all
previous Bayesian parameter studies for relativistic heavy-ion
collisions [7–18]. The PCGPR method emulates each of the
principal components using independent Gaussian processes.
In our study we employed the anisotropic Gaussian covari-
ance function, widely used for computer experiment emulators
[88]. The PCGPR method di�ers from the PCSK method used
in this study mainly due to the fact that PCSK takes into ac-
count the intrinsic uncertainty associated with stochastic simu-
lation models. As discussed in the following we find the PCSK
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method is better suited over PCGPR to build emulators with
simulation data of varying accuracies.

2. Principal Component Gaussian Process Regression with
Grouping (PCGPRG) emulation method

PCGPRG is an extension of the PCGPR emulation method,
obtained by modifying it as follows: we first separate
the observables into two groups, knowing that some of
the observables are more prone to noise and might be-
have very di�erently when emulated compared to the oth-
ers. In this study we separate the anisotropic flow observables�
v(ch)2 {2}, v(ch)3 {2}, v(ch)4 {2}

�
from the rest, on account of

the fact that they require many more events for a precise mea-
surement and thus tend to be more noisy when computed from
the simulated events. Then, we perform PCGPR emulation for
each subgroup separately, i.e., the emulators for each of the
groups of observables are trained only with full-model output
for the observables in the group. We do so while keeping the
total number of principal components at 12, for fair compari-
son with other methods. The PCGPR emulators for the flow
observables produce 8 principal components which cumula-
tively explain a fraction of 0.965 of their total variance. The
PCGPR emulators for the collection of all other observables
produce 4 principal components which cumulatively explain a
fraction of 0.98 of their total variance. The di�erence in the
number of principal components needed confirms the assump-
tion that the flow observables are more complex and more dif-
ficult to model accurately than the rest of the observables.

Fig. 7 shows the R2 scores for the PCGPR and PCGPRG
emulators for the VAH model. They are generically smaller
than those for the PCSK emulators. In particular one sees that
in our situation grouping of the observables does not improve
the performance of the emulators – the disadvantages of using
only a fraction of the simulated data for emulator training in
each group obviously outweigh the advantages of exploiting
the reduced noisiness of the non-flow data when training their
emulators.

Appendix C: Gaussian process fitting procedure

There exist several choices for the covariance function;
here we parameterize it using a Matérn kernel with hyper-
parameters ✓ [81]. There are many ways to infer the hyper-
parameters of the covariance function kt(·) for latent output t.
One common way is to maximize the likelihood due to zt ⇠

MVN(0,Kt). In this study, since the maximum likelihood es-
timation is computationally e�cient, the hyper-parameters are
estimated by maximizing the log likelihood

�
1

2
(z>

t K�1
t zt)�

1

2
log(|Kt|)�

n

2
log(2⇡) (C1)

and then plugged into the predictive Eqs. (23) for emulation
(see [88] for further details on plug-in predictors).

Appendix D: First-order Sobol’ sensitivity indices

Here we briefly summarize how to calculate the first-order
Sobol’ index for a single model output Y of a model that can
have multiple outputs (observables). A more detailed descrip-
tion of this approach, as it applies to relativistic heavy-ion
collision models, can be found in Ref. [106]. The first-order
Sobol’ index for the sensitivity of observable Y to model pa-
rameter xj is defined as

VarXj (EX�j (Y (X)|Xj))

VarX(Y (X))
, j = 1, . . . , q. (D1)

Here, Xj is an independent uniform random variable for pa-
rameter xj over its parameter range, and X = (X1, · · · , Xq)
is its corresponding random vector for all parameters. The
term EX�j (Y (X)|xj) is called the main e�ect of parame-
ter xj : given fixed j-th parameter Xj = xj , it averages
the model output Y uniformly over the remaining parameters
X�j = X \Xj . It is formally defined as

EX�j (Y (X)|Xj) = (D2)
Z

X�j

�(x1, . . . , xq) dU(x1, . . . , xj�1, xj+1, . . . , xq),

where U(x1, . . . , xj�1, xj+1, . . . , xq) is the uniform proba-
bility measure over X�j , the parameter space X omitting the
j-th parameter. The first-order Sobol’ index (D1) thus quan-
tifies the importance of parameter xj , by taking the ratio of
VarXj (EX�j (Y (X)|Xj)), the variance accounted for by the
main e�ects EX�j (Y (X)|Xj), over VarX(Y ), the total vari-
ance of model output Y over all parameters.

FIG. 7. R2 scores calculated using the test simulations and emula-
tor predictions for two di�erent emulation methods: (a) PCGPR, (b)
PCGPRG.
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One can further modify the Sobol’ indices in (D1) by group-
ing together similar model input parameters. The grouped
Sobol’ indices in [107] accomplish this. The q input parame-
ters X = (X1, . . . , Xq) (assumed again to be uniformly dis-
tributed) are first divided into J groups (X1, . . . ,XJ), given
by

(X1, . . . , Xq) = (X1, . . . , Xk1| {z }
X1

, . . . , XkJ�1+1, . . . , Xq| {z }
XJ

).

The first-order grouped Sobol’ indices can then be defined as:

Sj =
VarXj (EX�j (Y |Xj))

VarX(Y (X))
, j = 1, . . . , J, (D3)

where X�j = X \ Xj consists of all parameters except for
those in group j.
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