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We show the system of a heavy charged particle and a neutral atom can be described by a low-
energy e↵ective field theory where the attractive 1/r4 induced dipole potential determines the long-
distance/low-energy wave functions. The 1/r4 interaction is renormalized by a contact interaction
at leading order. Derivative corrections to that contact interaction give rise to higher-order terms.
We show that this “Induced-dipole EFT” (ID-EFT) reproduces the ⇡+-hydrogen phase shifts of a
more microscopic potential, the Temkin-Lamkin potential, over a wide range of energies. Already
at leading order it also describes the highest-lying excited bound states of the pionic-hydrogen ion.
Lower-lying bound states receive substantial corrections at next-to-leading order, with the size of
the correction proportional to their distance from the scattering threshold. Our next-to-leading
order calculation shows that the three highest-lying bound states of the Temkin-Lamkin potential
are well-described in ID-EFT.

I. INTRODUCTION

When a charged particle interacts with a neutral atom
in an S state at distances significantly larger than the
Bohr radius, it experiences an attractive 1/r

4 potential
with a strength given by the atom’s polarizability ↵ [1].
The theory of singular potentials [2] therefore governs
this situation, producing a particular pattern of bound
states and scattering of the charged particle from the
atom as a function of energy. Low-energy properties are
given by 1/r

4 dynamics, just as the 1/r
6 potential de-

termines the phase shifts and bound states of atom-atom
systems for wave numbers of order one over the van der
Waals length scale. The analog of the van der Waals
length scale is �4 ⌘

p
µ↵/4⇡✏0meaB , where µ/me is the

reduced mass of the atom-particle system in units of the
electron mass and aB is the Bohr radius.

Traditionally most attention has been devoted to elec-
tron scattering [3], in particular the simplest case of
the hydrogen ground state, whose polarizability is ↵H =
9a

3
B/2 [1, 4]. Of particular current interest is the scatter-

ing of a heavier particle such as a negative muon (µ�),
a positive pion (⇡+), or a proton. These systems have
richer spectra than the electron case does, and rearrange-
ment channels open up when the projectile is negatively
charged, or positively charged and heavier than the pro-
ton.

Negatively charged heavy particles can also be cap-
tured in states with high orbital quantum number and
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cascade down to lower states, where they provide sensi-
tive probes of nuclear properties [5]. The quantum me-
chanics of their higher ionic levels is determined by the
atomic polarizability and so it can also be explored with
positively charged heavy particles.

Such ions have �4 � aB . This scale separation en-
ables an e↵ective field theory (EFT) treatment of this
problem. EFT is a general tool that uses the separa-
tion of scales within a system, or class of systems, to
make systematically improvable predictions for observ-
ables within a well-defined energy window. (For an in-
troduction to EFT, see Ref. [6], while Ref. [7] constitutes
a pedagogical guide to implementing EFT principles in a
Schrödinger equation setting.) EFTs can be used in all
areas of physics to account systematically for small ef-
fects which are frequently simply neglected. Nuclear and
atomic systems are particularly interesting because they
require the most important, leading-order (LO) interac-
tions to be treated nonperturbatively and generate bound
states and resonances. They also frequently involve long-
range interactions, such as the Coulomb potential. Non-
singular long-range interactions do not impose significant
modifications to the case of purely short-range interac-
tions (see, for example, Ref. [7]). Singular long-range
interactions, on the other hand, dramatically a↵ect the
theory at small distances. EFTs for singular potentials
have been studied extensively [8–16] for their relevance
in atomic and nuclear physics [17]. They update and
systematize the work of Case [18] and others on singular
potentials in quantum mechanics [2]. The 1/r

3 potential
is especially relevant as it is a leading piece of the inter-
action between two nucleons in Chiral EFT [17, 19–24]
in the limit that the pion mass is taken to zero [25, 26].

The impact on observables of the 1/r
6 potential in a
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“van der Waals EFT” has been discussed recently [27].
Van der Waals EFT is similar to Quantum Defect The-
ory, which has been applied extensively to predict bound
states and scattering in the situation that a 1/r

6 po-
tential determines the long-distance wave function of an
atom-atom system [28, 29]. Similar calculations have
been done for the attractive 1/r

4 potential [30].
In contrast to the goals of EFT, where an accurate de-

scription of low-energy physics is primary, the semiclas-
sical Wentzel–Kramers–Brillouin (WKB) approximation
is relevant in energy regimes where potential variations
are “slow” in comparison to the wavelength of the wave
function. The WKB predictions for attractive 1/r

n po-
tentials were derived in Ref. [31]. At low energies, and
certainly at threshold, the WKB approximation does not
work well. Near threshold, the e↵ective-range expansion
(ERE) developed for finite-range potentials can be modi-
fied to account for the long-range tail; doing so generates
additional terms that are non-analytic in energy. For
1/r

4, these terms can be expanded [32, 33] as a series
in powers of the wave number in units of �4, k�4 times
powers of �4/a0, where a0 is the scattering length. The
series starts with a linear correction to k cot �.

Instead of using either the ERE or a WKB approach,
here we develop an EFT, Induced-dipole EFT (ID-EFT),
that does not employ an expansion in k�4, but instead
expands observables in powers of the ratio aB/�4 and
the wave number in atomic units, kaB [34]. At LO in
this expansion the e↵ect of the finite size of the atom
on observables is captured in a smeared delta function.
The Schrödinger equation is then solved for a potential
consisting of that delta function and the 1/r

4 induced-
dipole potential. While the strength of the 1/r

4 potential
is fixed to be �2

4 , the strength of the delta-function piece
depends on short-distance details of the atom-charged
particle interaction and must be fit to one datum. Accu-
racy is improved in a next-to-leading-order (NLO) calcu-
lation, which introduces an additional piece of the short-
distance potential, with an additional coupling constant,
that must be fit to an additional datum. The same pro-
cedure is repeated at higher orders.

In this problem the standard ERE is limited to wave
numbers k for which k�4 . 1. In contrast, ID-EFT can
handle wave numbers comparable to 1/�4. ID-EFT can
be regarded as a systematic implementation of a modified
ERE [35] that includes the long-range e↵ects of the 1/r

4

potential on the relevant matrix elements. It can there-
fore be derived by expanding the short-range potential in
local operators, and considering matrix elements of that
operator on the basis of distorted waves [20, 36–38]. The
standard ERE in powers of k described above then results
if the induced-dipole potential is treated in perturbation
theory as a higher-order e↵ect.

As a specific example, we consider here a heavy
charged particle for which we can expect several bound
states within the regime of validity of the theory. Since a
LO description of this system in which the potential con-
sists solely of a delta function can support at most one

bound state, an EFT description of multiple bound states
relies on the (singular) interaction being included as a
leading e↵ect. To be definite, we study the bound states
and phase shifts of the ⇡+-hydrogen ion. The spectrum is
rich but scattering is not a✏icted by open rearrangement
channels. We use the pion-atom scattering length to fix
the strength of the LO delta function. At NLO, the ad-
ditional short-range parameter is fitted to the shallowest
bound-state energy. Other energy levels in the system, as
well as the scattering phase shifts, are then predicted by
ID-EFT, up to corrections to each observable that have a
fractional size ⇠ k

4
a
4
B , where k is the characteristic wave

number of the scattering or bound state. An important
aspect of our calculation is that by carrying it out for
several di↵erent choices of the delta-function smearing
we can assess which of our observable predictions are in-
dependent of the details of this short-distance piece of
the potential.

Several studies, some of which treated ⇡
+
H as a two-

body system, and some of which treated it as a three-
body system, have been conducted previously [39–41].
In the two-body treatment the pion-atom interaction was
taken to be an analytical, parameter-free potential—the
Temkin-Lamkin polarization potential [3, 42, 43]—that
superposes some short-range e↵ects onto the 1/r

4 tail.
(The Temkin-Lamkin potential is also useful in comple-
menting approximate solutions of the three-body system
[44].) We take the Temkin-Lamkin potential’s results
for the ⇡+

H system’s bound-state energies and S-wave
scattering phase shifts as data that allow us to assess the
e�cacy of ID-EFT for this system. We use those results
as a laboratory to demonstrate the ability of ID-EFT
to capture the low-energy portion of the rich spectrum
and multi-faceted phase-shift behavior that results from
the induced-dipole interaction. We are particularly inter-
ested in the fact that in many other applications of sin-
gular potentials —for example in nuclear physics— one
contends with a single bound state, while the Temkin-
Lamkin potential produces seven bound states in the
⇡

+
H system. It is therefore interesting to see how cer-

tain details of the EFT renormalization and calculation
play out in this more complex situation. Results from
the Temkin-Lamkin potential are clean and allow sharp
conclusions about the convergence of the EFT and its
breakdown scale—conclusions that were much fuzzier in
other contexts where a LO singular interaction was con-
sidered, for example Ref. [45].

Nevertheless, the Temkin-Lamkin treatment of ⇡+
H is

an approximation, and there are significant corrections to
that approximation in a full three-body treatment [39].
Having developed the basic ideas of ID-EFT in this work
we intend to return to this problem in subsequent pa-
pers. There we will instead use data from three-body
treatments of the ⇡+

H system as input to our EFT.

The remainder of our paper is structured as follows.
Our theoretical formulation is given in Sec. II, with de-
tails of its implementation relegated to Apps. A, B and
C. The bound-state and scattering results at LO and
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NLO are presented and discussed in Sec. III, while de-
tails of extrapolations to small cuto↵s are given in App.
D. Appendix E describes the evaluation of WKB phase
shifts to which we compare our results. Conclusions and
future prospects are discussed in Sec. IV.

II. THEORY

A. Leading Order

The LO interaction in ID-EDT takes the coordinate-
space form

V (r) = �
C4

r4
⇢(r; R) + gLO(R)�(r; R) , (1)

which, for context, is input to the radial Schrödinger
equation at energy E,


�
~2

2µ

d
2

dr2
+ V (r)

�
u(r) = Eu(r) , (2)

where µ is the reduced mass of the charged particle-atom
system. The regulator functions ⇢(r; R) and �(r; R) act,
respectively, to overcome the 1/r

4 potential and mimic
the delta function at short distances. Both interactions
are regulated at the radius, R, related to the short-
distance physics that we account for at LO through a con-
tact interaction of strength gLO(R). The precise forms of
⇢(r; R) and �(r; R) are not important, only that

lim
r!0

⇢(r; R)/r
4 = 0 , (3)

lim
R!0

�(r; R) / �(r) . (4)

Here we take

�(r; R) = e
�(r/R)4

, (5)

⇢(r; R) =
h
1 � e

�(r/R)2
i4

. (6)

Once gLO(R) is determined from one low-energy datum,
LO is renormalized [8], namely, other low-energy observ-
ables converge as 1/R increases beyond the breakdown
scale of the theory, ⇤b ⇠ 1/aB .

The short-range interactions of ID-EFT capture the
low-energy e↵ects of physics at distances comparable to
the atom’s size. While the asymptotic form of the po-
tential is 1/r

4, as the charged particle approaches its im-
pact on the atom’s distortion can no longer be accounted
for solely by the polarizability [46]. Here, as an illus-
tration of the method, we tune gLO(R) at each value of
R to match the scattering length, a0, obtained with the
Temkin-Lamkin (TL) potential [3, 42, 43],

VTL(r) = �
e
2

8⇡✏0

↵(r)

4⇡✏0

1

r4
, (7)

where e is the electron charge, ✏0 is the vacuum permit-
tivity, and

↵(r)

4⇡✏0
=

9

2
a
3
B

n
1 � e

�2r/aB
⇥
1 + 2r/aB + 2(r/aB)2

+
4

3
(r/aB)3 +

2

3
(r/aB)4 +

4

27
(r/aB)5

��
. (8)

The TL potential is one of several semi-phenomenological
polarization potentials [47] that account for various ef-
fects associated with the interaction of the charged par-
ticle with the full charge distribution of the atom. How-
ever, at distances r � aB only the 1/r

4 piece of the po-
tential survives. Matching to Eq. (1) we determine the
length-scale associated with this piece of the potential as
�

2
4 ⌘ 2µC4/~2, where

C4 =
e
2

8⇡✏0
lim

r!1

↵(r)

4⇡✏0
=

1

2

✓
e

4⇡✏0

◆2

↵H (9)

represents the strength of the 1/r
4 potential and ↵H =

9a
3
B/2 is the polarizability of the hydrogen atom [1, 4].

Details at short distances are not important in this appli-
cation, and other potentials that curb the growth of 1/r

4

would do as well. The TL potential is a rich example as
it supports many bound states when the charged particle
is heavy.
�4, and the scattering length, a0, are the two phys-

ical scales that are inputs to ID-EFT at leading order.
In atomic units (a.u.), where ~ = e = me = 4⇡✏0 = 1,
lengths are given in Bohr radii, aB = 4⇡✏0~2

/mee
2, ener-

gies are given in Hartrees, Eh = ~2
/mea

2
B , and ↵H = 9/2.

For the pion-hydrogen system, �4 = 32.7 a.u. and the TL
potential gives a0 = �65 a.u. Details of the determina-
tion of a0 in the presence of a 1/r

4 tail are given in App.
A. In addition, since this is a local theory, there are,
in principle, infinitely many values of gLO that yield the
desired scattering length a0. Each such value produces
a di↵erent number of bound states [8]. Here we choose
the branch of the implicit function gLO(a0) that corre-
sponds to fourteen S-wave bound states, as described in
App. B. There are only seven states allowed by the
TL potential, but in order to study the renormalization
of continuum and bound-state observables above the ap-
proximate breakdown scale of the theory, we choose a
“lower” branch such that the repulsion of the LO coun-
terterm is not numerically prohibitive.

With �4 and a0 fixed we can predict all binding ener-
gies at LO. We also compute the phase shifts

�
(LO) = tan�1

✓
t
(LO)

1 + it(LO)

◆
(10)

from

t
(LO) = VLO + VLOG0t

(LO)
, (11)

in a short-hand notation where an integral over the mo-
mentum in the two-body propagator G0 is implicit.
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We note that the LO potential (1) contains no direct
information on ⇤b. As is typical in EFTs, quantitative
information on the breakdown scale enters the calculation
only in the context of higher-order corrections.

B. Next-to-Leading Order

At next-to-leading-order (NLO) the interaction is mod-
ified to

V (r) = �
C4

r4
⇢(r; R) + (gLO(R) + EgNLO(R))�(r; R) ,

(12)
where we have chosen an energy-dependent NLO con-
tribution to the short-distance potential. As is typical,
a momentum-dependent NLO term was first tried. It
was found to cause unnecessary numerical di�culty. The
energy-dependent scheme is less singular and therefore
more tractable [37, 48]. The new parameter gNLO(R) is
obtained from a second low-energy datum, and other ob-
servables converge as R decreases as long as perturbation
theory is employed. Corrections to the long-range polar-
ization potential from the quadrupole polarizability and
non-adiabatic contributions are / 1/r

6 [47]. They should
be included at this order if a phenomenological analysis
were to be performed. Here, we do not consider these cor-
rections as we are interested only in demonstrating the
ability of ID-EFT to reproduce the low-energy e↵ects of a
given underlying potential (chosen to be the parameter-
free TL). There is no di�culty of principle in including
them along the lines of Ref. [14], where a 1/r

4 correc-
tion to an attractive 1/r

2 potential was considered. The
additional long-range potential would give rise to pertur-
bative corrections at large distances as well as a di↵erent
running of gNLO(R) with R.

For bound states NLO corrections to the LO calcula-
tion are computed using standard first-order perturba-
tion theory, i.e.,

B
(n)
NLO = B

(n)
LO

⇣
1 + gNLO(R)h (n)

LO |�| 
(n)
LOi

⌘
. (13)

The value of gNLO(R) is determined here by demanding
that the binding energy of the shallowest S-wave state,

B
(6)
NLO, is fixed to the Temkin-Lamkin result for the pion-

hydrogen system, 1.2 ⇥ 10�4 a.u.
Phase shifts are similarly computed in first-order per-

turbation theory according to the distorted-wave Born
approximation (DWBA), described in detail for example
in Ref. [49], where the scattering amplitude at on-shell
momentum k =

p
2µE is

t
(NLO) = t

(LO)
�

2µ

k
h�

(LO,�)
|VNLO|�

(LO)
i , (14)

with � denoting an outgoing wave. At NLO, we compute
the phase shift perturbatively according to

�
(NLO) = �

(LO)
�

2µ

k
h�

(LO,�)
|VNLO|�

(LO)
ie

�2i�(LO)

.

(15)

Alternative but equivalent ways to calculate the NLO
scattering amplitude are discussed in App. C.

III. RESULTS

In this section we present numerical results for the scat-
tering of a charged pion on hydrogen, and for the bound
states of this system. Solutions to Eq. (2) are computed
with the Runge-Kutta method of order 8 with a relative
tolerance of 10�8 and absolute tolerance of 10�12. As R

decreases, gLO(R) becomes very large so it can provide
the repulsion necessary to keep a0 and the number of
bound states fixed as more of the 1/r

4 attraction is ex-
posed. Although working with the fourteen-state branch
alleviates the problem, we were unable to find accurate
LO and NLO solutions once �4/R became larger than
70. In order to calculate su�ciently precise phase shifts
at LO, �4/R = 70, g(R) was tuned to a relative accuracy
of 10�12. The total range of R values presented in this
work is �4 = [20, 70] (or R = [1.59, 0.47] a.u.). As we
are going to see, this range in �4 extends high enough
for many conclusions to be drawn about the scope of
ID-EFT. At small R, a0 must be calculated to high pre-
cision — approximately 0.01%. This limit was reached
using the results of App. A. Convergence with respect to
maximum r in the solution of Eq. (2) was demonstrated
across a range of upper values up to 1000 a.u. The re-
quired precision was not reached until approximately 600
a.u.

A. Scattering

The e�cacy of our proposed EFT is first tested in the
continuum where we study the LO and NLO S-wave
phase shifts. Figure 1 shows the ID-EFT predictions
for the phase shifts, alongside the Temkin-Lamkin re-
sults, the ERE, and the WKB prediction of Ref. [31].
We find that the variation of the ID-EFT phase shifts
for cuto↵s near the breakdown scale is minimal: were we
to draw bands of cuto↵ variation for �4/R above, say,
50, they would be barely visible on the scale of the fig-
ure. Therefore, our results are plotted at minimum R

(or maximum �4/R ⇡ 70). We find excellent agreement
between ID-EFT and the Temkin-Lamkin phase shifts al-
ready at LO over a momentum range that extends well
beyond k�4 ⇡ 1, indicating that the breakdown scale of
the theory is relatively high. In other words, the higher
momentum range over which this agreement holds sug-
gests that the curvature of the 1/r

4 potential is a crucial
piece of physics in the Temkin-Lamkin phase shifts. The
agreement at lower momenta is due to two factors. First,
the inclusion of the 1/r

4 interaction allows us to capture
physics at the k ⇠ 1/�4 scale. Second, by fixing a0 at
LO, we demand agreement at threshold. For comparison,
the inset of Fig. 1 shows also the first two terms in the
ERE from the inverse scattering length a0 and a correc-
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FIG. 1. The S-wave phase shifts are shown as a function of
the dimensionless quantity, (k�4)

2. The EFT at LO (solid
blue line) and NLO (green dashed line) at a cuto↵ R = �4/70
are compared with the Temkin-Lamkin potential (orange dot-
dashed line) [3, 42, 43] and a WKB approach [31] with R
varied between �4/45 and �4/70 in the classically forbidden
region (red band). ERE results are included in the inset.
The purple dotted line represents the a0 term. The black,
densely dotted line includes the term linear in k as found in
Refs. [32, 33]. The LO prediction is included in the inset but
overlapped by the TL and NLO lines.

tion linear in k�4 [32, 33]. While they approach the TL
results for k�4 ⌧ 1, ID-EFT captures the sign change
of the phase shifts already at LO. At NLO, as expected,
the agreement between ID-EFT and TL improves signif-
icantly at larger momenta.

Figure 2 o↵ers a closer look into the errors in the LO
and NLO predictions at minimum R. The most impor-
tant features are the slopes of the LO and NLO lines —
the rates at which the error grows — as k�4 gets very
large. To interpret this accurately, it is important to
keep in mind that the LO and NLO predictions are both
dependent on the cuto↵, ⇤ ⇠ 1/R, and breakdown scale,
⇤b. Where k is greater than the typical momentum scales
of the problem, but less than ⇤b, we expect the ⇤ depen-
dence to dominate the errors, as our cuto↵ is not very
large. This appears in Figure 2 between (k�4)2 ⇡ 103

and 104 where the slope of the NLO line is clearly greater
than the slope of the LO line. This is of course by de-
sign because at NLO we have suppressed the ⇤ (or R)
dependence. Finally, one can expect that these two lines
cross above (k�4)2 ⇠ 104. This intersection indicates the
breakdown scale of ID-EFT in this system,

⇤b ⇠ 100/�4 ⇡ ⇡/aB . (16)

Thus, the phase-shift results indicate that ID-EFT holds
in a region somewhat larger than naively expected.

Bearing this in mind also yields qualitative under-
standing of other features of Fig. 2. At low momenta,
the NLO prediction is significantly closer to the Temkin-

101 102 103 104

(k�4)2

10�5

10�4

10�3

10�2

10�1

100

|�
�=

0
/
�
�=

0
,T

L
�

1|

LO

NLO

WKB

FIG. 2. Relative errors with respect to the Temkin-Lamkin S-
wave phase shifts are shown for the LO (solid, blue line) and
NLO (dashed, green line) predictions at maximum �4/R ⇡ 70.
The dot-dashed, red line represents the WKB prediction [31].
Both scales are logarithmic.

Lamkin result than the LO one is. However, the slopes of
the LO and NLO deviations on the log-log plot of Fig. 2
are similar for (k�4)2 . 103 even though NLO is con-
sistently almost an order of magnitude more accurate at
these low values of k. (Note that k�4 is still markedly
larger than 1 there, so e↵ective-range theory does not
apply.) The similarity of the slopes is not coincidental.
Forcing the NLO calculation to reproduce B6 induces an
error in the NLO calculation of order (k�4)22µB6/⇤2

b .
For k�4 . 103 this e↵ect is larger than the (k�4)4 errors
that dominate in the upper end of the EFT’s validity
range.

This analysis shows that ID-EFT is systematically im-
provable. The deviation from the underlying theory—
the Temkin-Lamkin potential—is parametrically smaller
at NLO than it is at LO. In contrast with the systematic
improvement in ID-EFT, the WKB approximation [31]
works as well as LO at high momenta but fails at low
momenta. Details of the calculation of the WKB phase
shifts are given in App. E and results are plotted in
Fig. 1 as a band to indicate the variation with respect
to R in the range of the classically forbidden region. It
nearly overlaps with the LO curve, but di↵erences are
highlighted in the inset of Fig. 1: its assumptions are
clearly not applicable at smaller values of k. Figure 2
reveals that the WKB approach describes the Temkin-
Lamkin phase shift to better than 2% once (k�4)2 � 10
— and as long as kaB remains small. The WKB curve
crosses the Temkin-Lamkin curve at (k�4)2 ⇡ 3·102 lead-
ing to the dip seen in Fig. 2, and for (k�4)2 & 103 it nearly
agrees with LO.
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FIG. 3. Binding energies from both LO (solid, blue lines)
and NLO (dash-dotted, green lines) are shown relative to the

Temkin-Lamkin binding energies, B(n)

TL
. The results are plot-

ted against the ratio of length scale associated with each state
— defined in Eq. (17) — to the short-distance cuto↵, R. Ver-
tically stacked pairs are shown successively for n = 3 (left-
most) through to n = 6 (rightmost). States with n < 3 are
not shown as it is clear the EFT convergence breaks down for
them.

B. Bound States

Given the success of our description of phase shifts, we
now turn to information from the bound-state spectrum,
in order to obtain a parallel assessment of the ability of
the EFT to capture the energy dependence below thresh-
old for |E| ⌧ ⇤2

b/2µ. As a0 ⇡ �2�4 is negative and not
dramatically larger than �4, we do not expect that a
very shallow bound state of size much greater than �4 is
present in this system, i.e., we anticipate that B

(6) is not
fine tuned.

The LO and NLO results for the binding energies B
(n)

of the four shallowest S-wave bound states are shown in
Fig. 3 relative to the Temkin-Lamkin states. Each state

is plotted against �(n)
TL /R where

�
(n)
TL ⌘ 1/

q
2µB

(n)
TL (17)

is the characteristic size of the nth Temkin-Lamkin
bound state with binding energy B

(n)
TL . Because the char-

acteristic size decreases as we go down the spectrum the
lines do not cover the same horizontal span even though
they are generated with the same R values. One can
see the energies converge as R increases towards 70/�4,
but much smaller values of R would be needed to see the
deeper states “flatten out”.

The shallowest, n = 6, state turns out to be two orders
of magnitude deeper than the typical low-energy scale
associated with �4 in this system,

✏4 ⌘
1

2µ�
2
4

⇡ 1 ⇥ 10�6 a.u. . (18)

Nevertheless, we obtain excellent agreement at LO with
the Temkin-Lamkin result for this state, which is repre-
sented by the rightmost solid, blue line in Fig. 3. This
state is still of low energy compared to the energies of
states in atomic hydrogen and corresponds to a length
scale of approximately 4 a.u. The fact that this length
scale is markedly smaller than a0 demonstrates that our
prediction is not a consequence of large-scattering length
universality. We predict B

(6) so well using only �4 and
a0 as inputs because we included the attractive 1/r

4 po-
tential at LO in our EFT and most of the state’s wave
function extends well outside hydrogen’s electron cloud.
At NLO, we renormalize gNLO(R) to the Temkin-Lamkin
binding energy of this state, so agreement is by construc-
tion.

But introducing the NLO interaction reduces the dis-
agreement between the other binding energies and the
Temkin-Lamkin energies. The deeper states in Fig. 3 at

smaller �(n)
TL /R values are an excellent visualization of

how the theory scales with energy. B
(5), the fifth excited

state, second pair of lines from the right, is captured to
within ⇡10% at LO and ⇡1% at NLO. Moving down-
ward in the spectrum, where the pion’s wave function
has more overlap with the hydrogen atom, the NLO er-
ror for B

(4) and B
(3) grows systematically larger. This is

a natural outcome in ID-EFT. We are fixing the scatter-
ing amplitude at threshold and continuing it to negative
energies to find poles, including the analyticity proper-
ties implied by the 1/r

4 potential in that continuation.
In fact, by the time we reach B

(3), NLO is not an im-
provement — both LO and NLO are o↵ by 50%. This
indicates that the series does not converge, which is why
the ground and first two excited states are not shown in
Fig. 3. As the continuation is made over a bigger energy
range our prediction becomes less accurate.

In order to extrapolate our results to the R ! 0 limit
we assume that the e↵ects associated with finite R can be
accounted for via an expansion in R/�4. Therefore, we
rely on the assumed convergence behavior of observables
close to the renormalization point to extract asymptotic
estimates. We expand

O(R) = O1

"
1 +

1X

m=1

cm

✓
R

�4

◆m
#

, (19)

with O1 being the asymptotic result for the LO or NLO
energy of these bound states in ID-EFT and cm the co-
e�cients of the expansion. In the leading-order case the
ID-EFT results for all seven binding energies are found
by fitting the first coe�cient of the expansion (19) and
then reporting only O1 in Table I. At NLO the situation
is more complicated: both the m = 1 and m = 4 term
are needed to accurately fit the data. The rationale for
this fit function is explained in App. D.

The NLO results show convergence to the TL results
for the shallowest three states, but for the lowest three
states NLO repulsion is so strong that they are no longer
bound. (This further supports the use of the 14-state
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n BLO (a.u.) BNLO (a.u.) BTL (a.u.)

6 1.19e-04 1.20e-04 1.20e-04
5 1.75e-03 1.56e-03 1.56e-03
4 8.59e-03 5.39e-03 6.12e-03
3 2.72e-02 4.91e-03 1.47e-02
2 6.84e-02 -3.02e-02 2.74e-02
1 1.49e-01 -1.84e-01 4.42e-02
0 2.98e-01 -6.95e-01 6.48e-02

TABLE I. Asymptotic (R ! 1) results for LO and NLO
binding energies compared to the Temkin-Lamkin spectrum.
LO results are obtained from a fit to Eq. (19). Details about
the NLO fit are given in Appendix D. Negative values indicate
that the state is not bound.

102 103 104

[�4/�
(n)
TL ]2

10�2

10�1

100

101

|B
(n

) /
B

(n
)

T
L

�
1|

FIG. 4. The relative error between the Temkin-Lamkin bind-
ing energies, BTL, and those obtained with ID-EFT. LO re-
sults are shown as blue circles. NLO results are shown in
green — squares indicate bound states while x’s indicate that
the NLO correction pushes the state above the continuum.

branch in our local regulator scheme.) This reordering of
the states at NLO occurs already for the n = 3 state: its

repulsive NLO correction is so large that it renders B
(3)
NLO

smaller than B
(4)
NLO. The matrix element in Eq. (13) is

clearly no longer a perturbation for n  3.
The error of these binding energies relative to the

Temkin-Lamkin result is shown in Fig. 4. It ranges from
1% for the sixth excited state, to 12% for the fifth excited
state, to a factor of 4 for the ground state. It is notable
that the LO error grows linearly with the energy of the
bound state: the slope is ⇡ 1. The NLO interaction re-
moves this error but leaves errors quadratic in energy,
and indeed at NLO the slope is ⇡ 2.

Thus, we find evidence that the three shallowest states
are within the regime of validity of ID-EFT, even though
their binding energies vary by a factor of ⇡ 100. The
breakdown binding energy ⇠ 10�2 a.u. inferred from
where the LO and NLO trends intersect in Fig. 4 implies
⇤b ⇠ 100/�4. This value is in good agreement with the
determination from scattering.

IV. CONCLUSIONS

We presented an e↵ective field theory, ID-EFT, to de-
scribe the low-energy scattering of a heavy charged par-
ticle on a neutral atom, and the associated shallowest
bound states. This EFT captures at leading order the
physics of the long-range, but singular attractive, poten-
tial created by the atom’s polarization. Renormalization
requires at LO also a short-range interaction that is fixed
by one datum. At next-to-leading order a second short-
range interaction, determined by a second datum, sys-
tematically improves results for observables till momenta
reach the breakdown scale.

We illustrated the workings of the EFT above and be-
low threshold when the charged particle is a pion and the
atom is hydrogen. We took as data results of the Temkin-
Lamkin potential — the scattering length at LO and the
shallowest binding energy at NLO — and compared the
EFT outcomes with the exact results for other predic-
tions using the same potential. Because the scattering
length is not particularly large nor the shallowest state
particularly shallow in the scale set by the long-range
potential, there is no fine tuning in this system and the
EFT goes well beyond the e↵ective range expansion.

We found a momentum breakdown scale somewhat
larger (by a factor ⇡ ⇡) than the inverse of the Bohr
radius, 1/aB . For smaller momenta, phase shifts are well
described at LO and the description improves system-
atically at NLO. The three shallowest bound states are
also better reproduced at NLO than at LO. For larger
momenta, the pion probes the inside of the atom; the
atom can no longer be treated as a single unit. The four
lowest-lying states of the pion-hydrogen ion have sizes
somewhat smaller than aB and are outside the regime of
validity of the EFT.

Although here we used the Temkin-Lamkin potential
as an example, ID-EFT o↵ers a simple way to account for
the long-range properties of this type of system without
requiring detailed knowledge of the dynamics inside the
atom. ID-EFT can be applied to other heavy charged
particles and/or atoms and compared to data and/or
other calculations where atomic structure is taken into
account. For example, the proton-hydrogen system has
been studied with a three-body model and a uniquely
shallow state predicted [39]. A comparison with our
methods would be useful and the ability to quantify the
uncertainties associated with the prediction of this shal-
low bound state could motivate experimental measure-
ments. Regardless, we expect to find a similar conver-
gence pattern, although details will depend on the values
of leading-order parameters and the breakdown scale.
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Appendix A: Accurate Calculations of the
Scattering Length in the Presence of a 1/r4 Potential

The zero-energy solution to the reduced radial
Schrödinger equation for a finite-range potential goes
asymptotically like

u(r) / 1 � r/a0 . (A1)

In general, the solution can be calculated numerically
and the long-range portion of the wave function can be
fit to a straight line such that the slope and intercept give
an accurate and stable estimate of the scattering length.
However, once a “long-range” potential is introduced, the
tail of the interaction can make this extraction slow to
converge.

In order to overcome this challenge, we derive the
so-called “infrared corrections” perturbatively assuming
that the 1/r

4 potential is weak at large distances. The
exact solution becomes a sum

u(r) =
1X

i=0

u
(i)(r) . (A2)

The first-order correction at zero energy is then

�
d
2

dr2
u

(1)(r) =
�

2
4

r4
u

(0)(r) , (A3)

where u
(0)(r) is taken to be Eq. (A1) up to an overall

factor. After integration, we obtain

u
(1)(r) =

�
2
4

2a0

✓
1

r
�

a0

3r2

◆
, (A4)

and a better approximation for u(r) (again, up to an
overall factor),

u(r) ⇡ 1 �
r

a0
+

�
2
4

2a0

✓
1

r
�

a0

3r2

◆
. (A5)

With this corrected form of the zero-energy solution, we
are able to fit the coe�cients of

u(r) = b0 + b1r + b�1/r + b�2/r
2

, (A6)

and reliably extract a0 = �b0/b1 at much lower r. Addi-
tionally, we are able to compare the fit to the predicted
coe�cients of the 1/r and 1/r

2 terms where

�
2
4

2a0
= b�1

b0
, (A7)

�
2
4

6
= b�2

b0
. (A8)
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FIG. 5. The running of the LO coupling for the n = 7 (solid,
purple) and n = 14 branches (dashed, black).

We find excellent agreement between the fit results and
the analytical predictions.

Appendix B: Local Branches

Several aspects of renormalization studies depend
strongly on the ability to numerically approximate the
limit �4/R ! 1. In local systems characterized by sin-
gular interactions, as R decreases and more of the singu-
lar well is exposed, the strength of the repulsive countert-
erm grows quickly. For these same local systems, there
are an infinite number of “branches”, each corresponding
to a unique number of bound states—as noted in Ref. [8].
In order to achieve the practical �4/R ! 1 limit for the
seven states mimicking the Temkin-Lamkin states, we
chose to leverage this option and work on the n = 14
branch.

The advantages of this choice are highlighted in Fig. 5,

where g
(n=7)
LO begins to increase rapidly at R ⇡ �4/40,

but g
(n=14)
LO does not reach the same value until R ⇡

�4/70. Using this deeper branch, shallower states reach
the asymptotic regime — where Eq. (19) is valid — faster.
On the n = 14 branch, the seven states of interest are now
the shallowest states, and we are able to capture far more
of the asymptotic behavior.

Appendix C: NLO Implementation Comparison

The NLO amplitude can be written in di↵erent forms,
some of which we briefly compare here. In all cases, we
define

t
(NLO)

⌘ t
(LO) + �t , (C1)

and the LO t matrix is given by Eq. (11).
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In the first method, presented in Sec. II B,

�t = �
2µ

k
h�

(LO,�)
|VNLO|�

(LO)
i . (C2)

From the relation between scattering wave function and
the scattering amplitude, we can write instead

�t = (1 + t
(LO)

G0)VNLO(G0t
(LO) + 1) . (C3)

This form is used, for example, in Ref. [50]. By substi-
tuting Eq. (11) in Eq. (C3),

�t = VNLO + VNLOG0t
(LO)

+VLOG0(1 + t
(LO)

G0)VNLO(G0t
(LO) + 1)

= VNLO + VNLOG0t
(LO) + VLOG0 �t , (C4)

which is the form used in Refs. [51, 52]. We have checked
numerically that these three equivalent forms for �t in-
deed give the same result.

Since the calculation of �t respects unitarity only per-
turbatively there are then di↵erent ways to express the
relation between t

(NLO) and �
(NLO). Starting with the

standard (unitary) relationship between the scattering
amplitude and the phase shift,

t
(NLO) =

1

2i

⇣
e
2i�(NLO)

� 1
⌘

, (C5)

we write �(NLO) = �
(LO) + ✏ and expand in small ✏, ig-

noring O(✏2) terms and higher. This yields

t
(NLO)

⇡
1

2i

h
e
2i�(LO)

(1 + 2i✏) � 1
i

. (C6)

Simplifying, we get

t
(NLO) = t

(LO) + ✏ e
2i�(LO)

, (C7)

where

t
(LO) =

1

2i

⇣
e
2i�(LO)

� 1
⌘

(C8)

and the NLO correction to the scattering amplitude is
related to the NLO piece of the phase shift by

✏ = e
�2i�(LO)

�t . (C9)

This relation is strictly perturbative, in the sense that
all quantities are computed to NLO accuracy and not
further.

If instead one computes �
(NLO) from �t “non-

perturbatively”, via Eq. (C5), thereby assuming that uni-
tarity remains strictly valid at NLO, two key di↵erences
emerge. First, the real part of the phase shift is less ac-
curate, as seen in the upper panel of Fig. 6. Second, an
imaginary component accumulates at higher momenta —
shown explicitly in the lower panel Fig. 6. Consistently
computing the scattering amplitude and phase shifts per-
turbatively produces not only formally correct results but
more accurate predictions.
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FIG. 6. (Upper panel) The real parts of the NLO phase shifts
computed using Eq. (C9) (solid, green line) and Eq. (C5)
(dashed, orange line). The TL results are shown as a dash-
dotted, red line. (Lower panel) Imaginary components of the
NLO phase shifts (colors and styles are the same as in the up-
per panel). The (strictly real) di↵erence between the TL re-
sults and the LO phase shifts is indicated with a dash-dotted,
red line.

Note that the imaginary component of the phase shift
accumulated in such a calculation, although unphysical,
does provide insight into the expected size of the NNLO
correction. The first term omitted in the expansion of
exp(2i✏) in Eq. (C6) is real and O(✏2). If we consider
also the prefactors in Eq. (C6), we conclude that this is
the piece of Eq. (C5) that generates the leading piece of
the imaginary part of the non-perturbative phase shift,
and hence =(�(NLO)) should also be O(✏2). In the lower
panel of Fig. 6, we see in the context of the O(✏) di↵erence
between the TL phase shifts and our LO phase shifts that
this conclusion is well-supported.

Retaining <(�(NLO)) from Eq. (C5), and simply ignor-
ing =(�(NLO)), accounts for some e↵ects beyond NLO.
But this is an incomplete NNLO calculation. The line
this produces in Fig. 2 has approximately the same slope
as the NLO line, which is based on Eq. (C9). However,
as <(�(NLO)) calculated “non-perturbatively” gives worse
results (compared to the TL phase shifts) than the con-
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sistent perturbative calculation, the line this produces in
Fig. 2 is displaced up, towards the LO curve. It then
intersects the LO curve at a smaller momentum, leading
to an underestimate of the breakdown scale. This is just
a new example of a well-known phenomenon: including
a partial subset of small corrections does not necessar-
ily improve the result. For another example of the same
type, see Fig. 5 of Ref. [53], and for a more dramatic
example, with far-reaching consequences, Ref. [54].

Appendix D: R Dependence of the NLO Binding
Energies

Extracting asymptotic binding energies at LO is rela-
tively straightforward, but it turns out to be markedly
more complicated at NLO. First we observe that the NLO
binding energy formula, Eq. (13), contains two di↵erent
R-dependent terms. The first is BLO(R). The second
includes a matrix-element ratio when the NLO renormal-
ization condition

gNLO(R) =

 
B

(6)
TL

B
(6)
LO

� 1

!
1

h 
(6)
LO|�| 

(6)
LOi

(D1)

is inserted. B
(n)
LO(R) is well-described with a straight line,

i.e. without including any of the m > 1 terms in Eq. (19).
The matrix-element ratio is more complicated: we expect
it to be even in R because of analyticity in the regulator
parameter. But whether the non-linear piece of the NLO
binding energy is proportional to R

2 (simplest depen-
dence) or R

4 (which is the leading R dependence of the
regulator) is not immediately apparent. Consequently,
we have tried several approaches to fit the NLO binding
energies and record them here for posterity.

We require two features of our NLO binding energy
analysis. First, we expect that the NLO renormalization
procedure ought to reduce the linear R dependence for
states where the binding momentum is not far from the
additional fixed point, �(6): for these states the coe�cient
of the linear-in-R term will be smaller than those found
when fitting the LO binding energies. Second, we expect
that the EFT fails systematically. The NLO corrections
ought to increase with a positive power of the binding
momentum.

Figure 7 displays the steps we took to understand the
R dependence of the binding energy of the fourth ex-
cited state in our NLO calculation. The upper panel of
Fig. 7 shows the R dependence of this quantity is not
exclusively linear. A successful fit to Eq. (19) is shown
together with the data. While the ability of the fit to
describe the data is clear (and highlighted in the bottom
panel), it seems odd at first glance that data that is de-
creasing as R decreases leads to an asymptotic value that
is larger than any value in the data set. The minimum,

and subsequent change in derivative, of B
(4)
NLO with re-

spect to R, is due to the linear term in the fit assuming

a dominant role, a role that it does not have for the R

values at which the fit is performed.
The middle panel of Fig. 7 shows that we can confi-

dently extract the linear coe�cient in the region where
we have data on the bound state energy. In this panel we
have subtracted the asymptotic value and quartic term
from the data, leaving only the linear dependence. A lin-
ear fit is clearly an excellent description of the residuals:
the linear dependence that dominates at small R is in-
deed present in the data even where the quartic term is
more significant.

The bottom panel of Fig. 7 then shows the residuals
once the linear-in-R term in our fit is subtracted. The
residuals show no systematic trend with R and are of
order 10�7 in atomic units. Any remaining R dependence
will therefore not a↵ect the extrapolation at the level of
accuracy we are quoting in this paper.

To be thorough, we also fitted out data using R + R
2

and R+R
2+R

4 forms. While these approaches did align
with the data in the region 0.467 < R < 0.54, they also
produced coe�cients of the linear-in-R term that were
larger than the LO value of the same coe�cient for states
with n � 4, i.e., states where including NLO corrections
and renormalizing to B6 should have decreased the linear
dependence on R. These fits also yielded asymptotic val-
ues of the binding energies that had no systematic trend
with n, and showed clear signs of over-fitting. We defer
the question of why there is no R

2 term present in the
function BNLO(R) to future work, only commenting here
that we do not believe this behavior will prevail for all
regulators.

Appendix E: Details About the WKB Calculation

Reference [31] derives the phase shift at momentum k

to be

�0(k) = � +
⇡

4
� In[�2/(n�2)

n k]2/(n�2)
, (E1)

for singular potentials of the form 1/r
n where n > 2. In

this expression In is a straightforward integral while the
calculation of

� =

Z 1

r0

dr

p
�2µV (r) , (E2)

is a little more delicate. Here r0 is the classical turning
point where V (r) = 0. It is the point where the potential
crosses zero from below as the short-distance repulsion
takes over at shorter distances. This point was found
with the FORTRAN library MINPACK for each value
of R tested in this manuscript. In the relevant range of
R, r0 < R. The integral was then computed numer-
ically with another FORTRAN library, QUADPACK.
The variation of � is O(10�2) in radians.
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FIG. 7. Results of a fit to Eq. (19) where only m = 1 and
m = 4 terms are included. (Top panel) Binding energy as
a function of the cuto↵ distance, R. Both quantities are in
atomic units. Data are indicated as blue circles. The fit is
represented with a solid, green line. The asymptotic value of
the binding energy is indicated on the y axis as a green square.
Purple regions highlight the range of R over which the fit was
conducted. (Middle panel) Data and fit results for the linear
term of our fit are shown with the asymptotic binding energy
and the best-fit quartic R dependence subtracted. (Bottom
panel) The residuals of our R+R4 fit. Note that the y-scale
in the bottom panel is expanded roughly 100 times compared
to the top panel. Note also that the di↵erence x-axis range
gets progressively smaller as one moves from top to middle to
bottom panel.


