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The binding energy of an isotope is a sensitive indicator of the underlying shell structure as it
reflects the net energy content of a nucleus. Since magic nuclei are significantly lighter, or more
bound, compared to their neighbors, the presence of nucleonic shell structure makes an imprint on
nuclear masses. In this work, using a carefully designed binding-energy indicator, we catalog the
appearance of spherical and deformed shell and subshell closures throughout the nuclear landscape.
After presenting experimental evidence for shell and subshell closures as seen through the lens of
nuclear masses, we study the ability of global nuclear mass models to predict local binding-energy

variations related to shell effects.

I. Introduction

Nuclei with 2, 8, 20, 28, 50, 82, and 126 nucleons
have been found to be special by having an exception-
ally high natural abundance or being locally lighter than
their neighbors [1]. These magic nucleon numbers were
explained by the nuclear shell model [2, 3] in terms of
completely filled nucleon shells. The nuclei with such
numbers of nucleons are referred to as magic, like doubly-
magic 55Cagg or semi-magic 120Snzg. Experimentally,
there are numerous signatures of magic gaps of shell clo-
sures. They include: locally enhanced binding energies,
rapid changes of separation energies, low-lying collective
excitations, kinks in charge radii, and spectroscopic fac-
tors, among other things [4-6].

The quantal stability of the atomic nucleus is deter-
mined by the behavior of the single-particle level den-
sity p(e) of the mean-field (intrinsic) Hamiltonian. As
the ground state for many-fermion systems should cor-
respond to the lowest possible degeneracy, the nucleus
is expected to be more bound if the nucleonic level den-
sity near the Fermi level is low. Exceptionally stable
systems (doubly magic nuclei) are indeed those with the
least degenerate single-particle level density around the
Fermi level. Quantitatively, the extra stability due to
the presence of shell gaps can be encapsulated in the mi-
croscopic shell energy EPe!l [7-9] that fluctuates with
particle number and reflects the non-uniformities of the
single-particle level distribution. Formally, the shell en-
ergy can be approximated by:

A
=S i [ eptee. (1)
=1

where e;’s are single-particle (Hartree-Fock) energies and
p(e) is the smoothed single-particle density that averages
out single-particle energies within large energy interval of
the order of the energy difference between major shells.
The total binding energy of a nucleus can be roughly
given by [7, §]

B — pmacr 4 Eshell7 (2)

where B™?" is the “macroscopic” energy that gradu-
ally depends on the number of nucleons and thus associ-
ated with the smooth distribution of single-particle levels
given by p(e).

The behavior of Es"!! changes periodically with par-
ticle number. The lowest shell energy is expected in the
regions of low single-particle level density, e.g., for the
spherical magic numbers 8, 20, 28, 50, 82, and 126. How-
ever, below and above these magic numbers, the level
density becomes large [(2j+1)-fold degeneracy of spher-
ical orbitals] and a Jahn-Teller transition takes place to-
wards deformed shapes [10, 11]. The stabilisation of
deformed nuclei can be associated with energy gaps in
deformed s.p. levels, i.e., deformed sub-shell closures
[8, 9, 12]. Examples of deformed s.p. diagrams, or Nils-
son plots, can be found in, e.g., Appendix on Nuclear
Structure of Ref. [13].

II. Binding-energy indicators

Empirical information on the magnitude of nucleonic
correlations is often extracted from experimental data
using binding-energy relations (filters, indicators) based
on measured masses of neighboring nuclei [14, 15].

Usually, the binding-energy indicators are the finite-
difference expressions representing various derivatives of
(positive) nuclear binding energy B(N, Z) with respect
to N and Z. Their role is to isolate some specific parts
of the correlation energy by filtering out that part of
the binding energy which behaves as a polynomial of a
required order in N and Z. The commonly used mass
differences are one-nucleon separation energies S, (7 =
n,p). For neutrons:

Sn(N,Z)=B(N,Z)— B(N —-1,2). (3)
The two-neutron separation energy is
Son(N,Z) = B(N.Z) = B(N - 2,2). (4

The difference s, = So2,(N,Z) — So2n (N + 2, 7) is the
so-called two-neutron shell gap indicator that represents
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twice the gap in the corresponding single-particle spec-
trum [16]. The neutron chemical potential A, can be
expressed through two-neutron separation energies [17—
19]:

1
(N = 1,2) m =2 Sau(N = 2k, 2), (5)

where 2k indicates an even number. We note that A,, is
negative for bound systems. In addition,

Sn(N =2k, 2) = — Ay(N = 1,2) — %W

+An(N —1,2), (6)

where A, (N — 1,7) is the average neutron pairing gap
17, 18].

The single-particle (s.p.) neutron energy splitting at
the Fermi level, Ae,, can thus be defined in terms of
one-nucleon separation energy differences [20, 21]:

Aen(N =2k, Z) = Su(N,Z) — Sp(N +2,2). (7

As demonstrated in Refs. [20, 21], if variations of the
mean field and pairing are smooth along isotopic or iso-
tonic chains, the filter Ae, represents the energy differ-
ence between the lowest particle level and the highest
hole (occupied) level. For instance:

Aen(N =2k, Z) = e}, — €. (8)

Similar relations to Egs. (3 - 8) hold for protons. It di-
rectly follows from Egs. (6) and (7) that Ae, is propor-
tional to the derivative of A\, with respect to the particle
number N, (N, = Z or N for 7 = p or n), ie., it is
inversely proportional to the level density [22]. The indi-
cator Ae, is thus sensitive to small changes of the level
density at the Fermi level. Indeed, the regions of the
low level density are expected to correspond to increased
values of Ae..

Since for the smoothly varying mean-field potentials
the chemical potential gradually increases with particle
number, Ae, should be positive in general. The devia-
tions from the monotonic behavior of A.(N;) do occur,
and are usually associated with the rapid change of nu-
clear mean fields due to configuration changes. In some
cases, usually associated with shape transitions, Ae, < 0;
this corresponds to a backbending in the gauge space of
N- (M) [19, 22, 23].

As an illustrative example, Fig. 1 shows Aé,, for the Zr
isotopic chain. The local maxima in Ae, can be asso-
ciated with spherical and deformed s.p. gaps discussed
in Sec. V. The negative value of Ae, at N = 58 re-
flects the well-known spherical-to-deformed shape tran-
sition around %®Zr [24, 25].

While the goal of our work is to demonstrate that
Ae, is a superb measure of spherical and deformed shell
closures, this indicator can also be used to study mean
level spacing, or mean level density, at the Fermi en-
ergy. Indeed, beyond the regions of low level density as-
sociated with gaps, Ae, represents mean level splitting
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FIG. 1. Experimental values and model predictions of Ae,
across zirconium isotopes. Extrapolated values from experi-
mental data are marked with stars. Strong peaks appear for
the deformed gap at N=40, the magic gap at N=>50, and the
spherical gap at N=>56. See text for details.

at the Fermi energy. In the simplest scenario assuming
Kramers and isospin degeneracy, the mean level spacing
equals € = 4/p()\), where p(\) = 6a/7? and a stands for
the level density parameter, the value of which is uncer-
tain. In the simplest isoscalar scenario assuming domi-
nant volume-like A-dependence the estimates for a vary
from A/10 (which is the harmonic oscillator limit [26]) to
A/8 MeV~! [27-29]. This, in turn, gives £ ~ (60 +6)/A
MeV. Note, that for the Zr isotopic chain presented in
Fig.1 it varies from 0.75(8) MeV for A = 80 to 0.60(6)
MeV for A = 100. The estimates agree relatively well
with the data shown in Fig. 1 outside the regions of low
level density associated with deformed and spherical en-

ergy gaps.

III. Datasets and models

In our analysis we use the most recent measured values
of nuclear binding energies from the AME2020 dataset
[30]. In this analysis we do not consider experimental
errors and theoretical uncertainties as their proper in-
clusion would require the knowledge of underlying co-
variances. While in many nuclei the experimental mass
errors are well below theoretical uncertainties and can be
ignored, this is no longer the case for very exotic nuclei
far from stability. In the simplest case where one as-
sumes completely uncorrelated errors, the total error of
mass filters grows substantially as several masses are in-
volved. A detailed error analysis of Ae, and other mass
filters will be a subject of forthcoming study.

As for prediction, we consider seven theoretical mod-
els based on the energy density functional theory (EDF)
which are capable of describing the whole nuclear chart:
SkM* [31], SkP [32], SLy4 [33], SV-min [34], UNEDF0



[35], UNEDF1 [36], and UNEDF2 [37]. The above set of
EDF models was augmented by a well-fitted mass model
FRDM-2012 [38] that has significantly more parameters
than the (less phenomenological) DFT models, resulting
in a better fit to measured masses.

For Ae, extraction from the data, the Wigner energy
has to be removed from experimental binding energies as
it represents an irregularity (kink) in the mass surface
around |N = Z| and hence impacts mass difference indi-
cators aiming at extracting shell structure effects [39, 40].
In Ref. [41], the Wigner term has been parameterized as

Ew(2) = aw|N — Z|/A, 9)

where ay = 47MeV. However, this expression notably
underestimates the Wigner energy for °Zr and 5°Ni, two
locations of shell closures that are later discussed. For
this reason, we supplement Eyy(2) with the model of Ref.
[42]:

2
Ew(1) = Vipe MWD LV |IN — Z|e_(“%) (10)

where Vi = 1.8MeV, Ay = 380, Vj;, = —0.84MeV,
and Ag = 26. In our analysis, the average of Ey (1) and
Eyw (2) has been subtracted from all experimental binding
energies. The effect of such subtraction is illustrated in
Fig.1 for Ae, along the Zr chain (see Ref. [40] for the
discussion of the 8Zr case).

IV. BMEX web application

The exploration of the experimental and theoreti-
cal data was performed using the Bayesian Mass Ex-
plorer (BMEX) [43] web application and the associated
database. An evolution of the Mass Explorer project [44],
BMEX contains a suite of online plotting and compari-
son tools that were used to produce the draft figures in
the current work. The BMEX database and software are
hosted in a cloud computing environment and do not re-
quire any downloads or installation by the end user to
access the tool. To save the user’s sessions, plot export-
ing and link sharing is also included without the need for
any user accounts or logins. A screenshot of the applica-
tion can be found in Fig. 8 in Appendix B.

V. Systematic trends

In order to remove the average mass and isospin depen-
dence of shell gaps, we scale Ae, by the average oscillator
frequency [45]:

N—-Z

huwo = 41A7Y3(1 + ) MeV, (11)

where the plus sign holds for neutrons and the minus sign
for protons. In the following, we discuss the dimension-
less splittings

A&, = Ae, /hu. (12)

When interpreting the patterns of shell gaps in the (N, Z)
plane, it is important to recall that nuclei close to the
spherical magic gaps at Z = 20, 28, 50, 82, and 126
are nearly spherical and that the quadrupole collectivity
primarily depends on the distance of Z and N to the
closest magic proton and neutron number [46, 47]. That
is, the largest quadrupole deformations are expected in
the regions between spherical magic gaps.

A. Experimental single-nucleon shell gaps

Figure 2 shows the proton shell gaps A€, extracted
from experimental binding energies. The experimental
neutron shell gaps Aé,, are displayed in Fig. 3. The spher-
ical magic gaps are clearly seen for both protons and neu-
trons. In addition, isotopic and isotonic bands of locally
enhanced values of Aé, are present; they can be asso-
ciated with local subshell closures, both spherical and
deformed. They are discussed in the following.

1. Spherical magic gaps

In the protons, the pronounced Z = 50 gap extends
across the nuclear landscape. The Z = 82 gap is large
for N > 126 but it seems to gradually fade away in neu-
tron deficient Pb isotopes. This is consistent with the
presence of shape coexistence effects in these nuclei, in
which spherical, prolate, and oblate structures coexist
(and interact) at low energies [24, 48]. While the Z = 28
proton shell gap is generally pronounced, the Z = 20 gap
becomes fairly diluted below N = 24.

The neutron magic gaps N = 50,82, and 126 are well
pronounced. The N = 28 gap deteriorates in the lightest
isotones, and a similar situation is seen at N = 20. The
disappearance of N = 20 and 28 magic gaps in neutron-
rich nuclei is supported by an appreciable experimental
evidence for deformed structures below 4*S and 32Mg [4,
24].

2. Spherical subshell closures

Several local spherical shell gaps can be identified in
Figs. 2 and 3. They include: Z = 14 subshell closure in
the Si isotopes [49]; Z = 64 subshell closure in 146Gd [19];
N = 16 subshell closure in 3°Ca [50] and 240 [51]; N = 32
subshell closure in ®2Ca [52]; N = 56 subshell closure in
96Zr [53]; and N = 64 subshell closure in Sn [54]. The
single 2p; /o orbital separates the N = 126 magic gap
from the N = 124 spherical subshell [55]. Consequently,
these two shell closures overlap in Fig. 3.

3. Deformed subshell closures

In the regions between spherical magic gaps, the in-
dicator Aé, provides important information about de-
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FIG. 2. Experimental values of the dimensionless splitting Aé, (12) throughout the nuclear landscape. The nuclei for which
the expression (8) involves binding energies extrapolated from systematic trends in [30] are marked by circles. Shell closures
corresponding to the bands of locally elevated values of Aé, are clearly seen.
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FIG. 3. Similar as in Fig. 2 but for Aé,. The nuclei with negative values of Aé,, are marked by an asterisk.

formed shell gaps. The region of deformed nuclei around
64Cr [56-58] can be associated with the deformed subshell
closures Z = 24 and N = 40 [59]. In Fig. 2, the proton
shell gap Aé, is well pronounced for neutron-rich Cr iso-
topes. Of particular interest are deformed shell closures
at Z = 38,40 that are responsible for very large ground-
state deformations around "°Sr [60], 89Zr [40], and 192Zr
[24]. The Z = 80 oblate gap is responsible for weakly

deformed ground states of the Hg isotopes [55]. It is sep-
arated from the Z = 82 magic gap by a single 2s; /5 orbit
so these two shell closures overlap in Fig. 2.

The deformed neutron gaps in the rare-earth nuclei
seen in Fig.3 include: N = 98 gap in the Gd-Dy region
[22, 61]; N = 104 gap around '7Yb [19]; and N = 108
gap known around ¥2W [22].

In the actinide and transfermium regions, the most



pronounced deformed neutron closures are N = 152
[62, 63] and N = 162 [19, 64-66]. In the protons, the de-
formed shell gap at Z = 108 is particularly pronounced
[64, 65, 67-69]. These subshells are essential for the sta-
bilization of nuclear binding in the transactinides.

In addition to the above list of shell and subshell clo-
sures that can be straightforwardly identified, there are
other regions in Figs. 2 and 3 with moderately enhanced
values of Aé,. For instance, the N = 92 shell effect
around '°2Nd can probably be attributed to octupole cor-
relations.

4. Shape transitions

Negative values of Ae, are associated with shape tran-
sition. Several regions of shape-transitional behavior are
seen in Fig.3. They include the region of shape coex-
istence around ?®Zr and the transition regions to well
deformed prolate shapes around N = 88 [22, 24].

It is interesting to notice that rapid shape transitions
are clearly seen in Aé,, in Fig.3 but not in Aé,. Indeed,
no regions of Aé, < 0 can be seen in Fig. 2, which in-
dicates that the proton chemical potential A, increases
monotonically with Z throughout the nuclear landscape.

5. Two-nucleon shell gap indicator

The plots of experimental Jo, are shown in Figs. 6
and 7 in Appendix A. As seen, this indicator behaves
in a similar way as Ae,, though, in practice, the resolv-
ing power of the Jo, for identifying subshell closures is
slightly below that of Ae,. Indeed, as shown in Ref. [39],
0o, = Ae, + AP, where AP, represents a pairing correc-
tion. Consequently, do, is more affected by correlations,
which tend to smear out shell effects.

B. Model predictions

Figures 4 and 5 illustrate the performance of the repre-
sentative UNEDF1 mass model with respect to Aé, and
Aé,, respectively. The predictions of other models can be
obtained by using the BMEX tool [43]. The predictions
extend beyond the region of nuclei with experimentally-
known masses, and hence provide useful guidance for the
future experiments at radioactive ion beam facilities. For
instance, it is seen that the magic gaps Z = 50 and
7 = 82 are significantly weakened around N = 106 and
N = 150, respectively.

The overall performance of the mass models with re-
spect to Aé, is illustrated in Table I. As expected,
FRDM-2012 performs fairly well overall. Several de-
formed subshell closures are robustly predicted in almost
all models: Z = 70,80,92,108 and N = 92,104, and 162.
The same holds for spherical subshell closure N = 56.
While the peak at N = 56 predicted by UNEDF1 is un-

5

TABLE 1. Performance of different mass models with re-
spect to Aé; corresponding different subshell closures seen in
experimental data. The models are: SM=SkM*, SP=SkP,
SL=SLy4, SV=SV-min, UO=UNEDFO0, Ul=UNEDF1I,
U2=UNEDF2, and FR=FRDM-2012.

Aer SM Sp SL Sv. U0 U1l U2 FR

Protons

38
40
44
70
74
80
88
92
108

SN N SR NEN
AN N N N
N N N NEN
SN N SR NEN
AN N

SN N NN
SN N SR NEN
N N NS

Neutrons

56
70
92
98
104
108
124 v
152
162

SSEENENEN

ENEN

SNEN
S N NN NEN
N N
SN N N NN
SN N NN NEN
AN N N N N

ENEN

derestimated in Fig. 1 the subshell closure is clearly seen
in Fig. 5.

Other shells are predicted by a subset of models. In
some cases, the “theoretically-fragile” gaps have been dis-
cussed discussed in literature. See, e.g., Ref. [70] for the
N = 152 gap predictions. Interestingly, the models con-
sistently predict deformed proton shell gaps at Z = 46
around N = 70 and Z = 56 around N = 72, and the
deformed neutron gap N = 72 around Z = 62. These
features are not clearly seen in the experimental data.
In general, the predictive power of the mass models used
in this study with respect to Aé, is quite reasonable.
Moreover, the experimental finding that Aé, is usually
positive is nicely confirmed by theory, see Fig. 4. The
predicted regions of Aé,, < 0 in Fig. 5 are broader than
in experiment. This is to be expected as the shape tran-
sitions predicted by mean-field models are too abrupt
due to the missing dynamical (zero-point) correlations.
While the mean-field models are generally expected to
reproduce shell and subshell closures at correct particle
numbers, the actual size of the predicted A€, is expected
to depend on zero-point correlations and small model dif-
ferences (e.g., due to poorly known spin-isospin terms
[25, 70] of EDFs).

VI. Summary

The s.p. energy splitting at the Fermi level Ae, has
been extracted from measured nuclear masses and com-
pared with predictions of mean-field models. As demon-
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FIG. 5. Similar as in Fig. 3 but for the mass model UNEDF1. The range of experimental data is marked by a solid black line

and asterisks denote negative values.

strated in this work, Ae, is indeed a superb indicator of
shell closures in spherical and deformed nuclei. In partic-
ular, this quantity can be very useful when studying the
appearance and disappearance of nucleonic shell gaps in
exotic nuclei.

After cataloging experimental shell and subshell clo-
sures obtained by means of Aé,, we showed that EDF-
based models yield the placements of s.p. energy splitting
maxima consistently with experiment. Indeed, mean-

field models are expected to perform well in this regard
as the concept of intrinsic s.p. orbits and energies is nat-
urally present there. In some cases, such as the deformed
A =~ 80 and A = 100 regions, theory sometimes poorly
predicts the spherical-to-deformed shape transition due
to missing zero-point correlations [25]. This deficiency of
current models will need to be addressed. In this con-
text, we wish to emphasize that the intent of this work
in not to exhaustively quantify the fidelity of theoretical



models’ predictions of Ae,.

Additionally, this work highlights the potential for
user-focused scientific software to aid discovery and pro-
vide guidance for future experimental campaigns. To this
end, the BMEX tool used in this work will be continually
updated to include new experimental data and extended
to a broader set of nuclear models. A broader set of un-
certainty estimates for both experimental and theoretical
data will also be added to the tool. The new features will
include estimates of experimental and theoretical errors
on mass filters, and a Bayesian model mixing module
that will combine the knowledge from multiple models
[71-73].
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A. Experimental landscapes of 527

The two-nucleon shell gap indicators are usually de-
fined as d2p, = Son(N,Z) — Son(N + 2,Z) and dy, =
Son(N, Z) — S2p(N, Z +2). Figures 6 and 7 show the di-
mensionless single-particle splitting 821 extracted from
experimental values of do, scaled as da, = 2, /2hwo,
where fuvg is given by Eq. (11).

B. The Bayesian Mass Explorer

The Bayesian Mass Explorer (BMEX) project aims to
provide a user-friendly interface to theoretical model pre-
dictions with quantified uncertainties. To enable this vi-
sion, BMEX utilizes a cloud-based infrastructure that al-
lows for efficient data retrieval, plotting, and light com-
putation to be performed server-side and then delivered
to the user in their browser. The web application uses
the Plotly Dash framework and a Python backend that
takes advantage of multiple server workers to better han-
dle several users simultaneously. The application is con-
tinuously built as a Docker container which eases de-
ployment to arbitrary server architectures and can also
easily be self-hosted locally for development or for lo-
cal deployments. Should the load on the server pass a
certain threshold, independent instances of the container
can also be deployed onto new servers and access to each
one can be load balanced. This improves availability and
stability of the application, at the cost of needing to have
a separately hosted database instance to manage user-
saved sessions. A separate mechanism for saving user ses-
sions is also implemented via link encoding, though this

is less scalable and presents issues for backwards com-
patibility. Figure 8 presents a sample screenshot of the
BMEX web interface in a configuration similar to what
was used for the present investigation of single-particle
energy splittings.
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