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ABSTRACT

The integration-segregation framework is a popular first step to understand brain dynamics because it
simplifies brain dynamics into two states based on global vs. local signaling patterns. However, there is
no consensus for how to best define what the two states look like. Here, we map integration and
segregation to order and disorder states from the Ising model in physics to calculate state probabilities,

Py and Py, from functional MRI data. We find that integration/segregation decreases/increases with age

eg»
across three databases, and changes are consistent with weakened connection strength among regions

rather than topological connectivity based on structural and diffusion MRI data.
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The integration-segregation framework succinctly captures the tradeoff brains face between seamless
function (more integration) in light of energetic constrains (more segregation). Despite its ubiquitous use
in the field, there is no consensus on its definition with various graph theoretical properties being
proposed. Here, we define the two states based on the underlying mechanism of neuronal coupling
strength to provide a physical foundation for the framework. We find that younger adults’ brains are close
to perfectly balancing between integration and segregation, while older adults’ brains veer off towards

random signaling.

INTRODUCTION

Aging is the number one risk factor for almost all neurodegenerative diseases (Kennedy et al., 2014). For
every 5 years after the age of 65, the probability of acquiring Alzheimer’s disease doubles
(Bermejo-Pareja et al., 2008). An influential conceptual approach to begin making sense of brain
dynamics frames it in terms of a balance between integrated and segregated network states (Deco,
Tononi, Boly, & Kringelbach, 2015; Friston, 2009; Sporns, 2010, 2013; Tononi, Sporns, & Edelman,
1994; Wig, 2017). On one hand, the brain faces functional pressure to have as many regions directly
connected for quick communication. On the other hand, the brain is constrained to minimize metabolic
energy consumption because it consumes ten-times more of the body’s energy than expected by mass
(Raichle, 2006). Tuning the balance between extensive global signaling, referred to as integration, and
limited local signaling, referred to as segregation, optimally compromises between functional and
energetic constraints (Bullmore & Sporns, 2012; Cohen & D’Esposito, 2016; Manza et al., 2020; Wang
etal., 2021). Although these constraints remain throughout life, aging disrupts their balance.

Previous research found mixed aging results, depending on the metrics used to measure integration and
segregation (Chan, Park, Savalia, Petersen, & Wig, 2014; Chen et al., 2021; Onoda & Yamaguchi, 2013;
Zhang et al., 2021). Although most in the literature use the system segregation metric (Chan et al., 2014),
no consensus exists surrounding integration. In general, the problem facing the integration-segregation
framework is that there is no one way to define the two states. Many graph theoretical metrics could

potentially be used (Rubinov & Sporns, 2010) and it is unclear why one should take precedence over the
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other, particularly when their aging outcomes are mutually inconsistent. There is a need to more
fundamentally define integration and segregation to transform it from a proxy to a physical quantity.
Here, we provide a physical foundation for the framework by applying the mean field Ising model to
treat integration and segregation as physical 2-phase systems like magnets and liquids. After
demonstrating that the Ising model can capture global brain dynamics as measured by functional MRI
once the effective number of nodes is properly set, we proceed to calculate probabilities of being in the
integrated or segregated states and find that younger and older brains are bounded by optimal and random
signaling, respectively. We then explore diffusion and structural MRI data to ask if the age-related

changes in signaling are due to changes in topological network connectivity.

APPLYING THE ISING MODEL TO FMRI

We model human brain signaling patterns obtained from resting-state functional MRI (fMRI) data sets.
As in previous work (Weistuch et al., 2021), we capture those patterns with the Ising model, a widely
used theoretical method for expressing macroscale behaviors in terms of interactions among many
underlying microscale agents (Dill & Bromberg, 2012). We first transform the continuous fMRI data into
a representation as discrete Ising spins via binarization of the data (Figure 1). That is, we reduce the state
of the region as either —1 or 1 based on whether fMRI signaling is decreasing or increasing, respectively.
Second, we calculate the synchrony by summing over all spins in a given time interval and dividing by
the total number of spins (Figure 1). Synchronies are collected over the entirety of the scan to obtain a
distribution. Based on Ising model theory, the synchrony threshold delineating between integrated and
segregated states is set such that P, = P, = 1/2 at the Ising model’s critical point (Methods). P, is
the probability that the brain is in the segregated state and is defined as the relative number of time points
for which the absolute value of synchrony is less than the synchrony threshold (Figure 1). Py, is defined
as the relative number of time points for which the absolute value of synchrony is greater than the

synchrony threshold and trivially relates to Py, because Py + Py = 1.
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Figure 1. Calculating the probability that the brain exhibits integrated or segregated dynamics (FPip¢ or Fseg). The schematic demonstrates the
procedure for one individual’s fictitious functional MRI scan with 4 brain regions and only two time points shown. First, we binarize data based on nearest
neighbor scans in time. If the functional MRI (fMRI) signal increases, a value of 1 is assigned; decreases, -1. Then, we calculate the average spin state of
the brain, called synchrony. Finally, we collect synchrony values across the entire time series to create a synchrony distribution. We appropriately set the
synchrony threshold based on Ising model theory to delineate between integrated and segregated microstates. Additional details can be found in the Methods.

Figure created with Biorender.com.

RESULTS

The number of functionally effective brain regions

Before proceeding to calculate Py, we first check whether the model can capture the experimental
synchrony distributions. A mean field Ising model only considering pairwise interactions has one
quantity of interest. The strength of connection A between any two regions corresponds to the degree to
which signals between any two brain regions are correlated. However, we find that a naive fit of A based
on maximum entropy (Dill & Bromberg, 2012; Schneidman, Berry, Segev, & Bialek, 2006; Weistuch et
al., 2021) fails to capture the synchrony distribution from fMRI data (Figure 2, orange). To improve upon
a standard Ising model approach, here we introduce a hyper-parameter N.¢. Brain atlas parcellations
provide NV brain regions, however, those N regions must be identically distributed across time for the
Ising model to apply. We find that when setting /N to a lower value N, fixed for all individuals within a

data set, the Ising model accurately captures synchrony distributions (Figure 2). The optimal value of
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Nt = 40 1s determined by scanning across Vg multiples of 5 to find which best captures the next order
moment not fit by our maximum entropy setup across all individuals (Methods, Figure 6). For our
particular preprocessing (Methods), we find that N = 40 for individuals in the Cambridge Center for
Ageing and Neuroscience (CamCAN) (Taylor et al., 2017) and the Human Connectome Project Aging
(HCP) (Harms et al., 2018). For the UK Biobank (UKB) (Alfaro-Almagro et al., 2018), Neg = 30
performs best (Figure 6).

Based on identified N.i hyper-parameter values, brains act as if they have a few tens of functional
units. If different preprocessing decisions are considered, such as atlas resolution, N.g values are still
within an order of magnitude. At the voxel-level (/N = 125, 879), we obtain an N value of 65 for
CamCAN and 125 for HCP using the same procedure as for the Seitzman atlas (/N = 300) considered in
the previous paragraph (Figure S2). Future work will pinpoint how N depends on preprocessing to
enable a future study creating a physics-based parcellation of the brain.

We also tried an alternative fitting strategy by fitting N per individual rather than having the same
value for all individuals in a respective data set. We show that individually fitted N.g values trivially
relate to A as expected by theory (Figure S1). Moreover, individually fitted N.g are not found to be

related to global differences in anatomical brain connectivity (Figure S3).

1.5

human subject (300 reg|ons)
=== |Sing model (300 regions)

Ising model (40 effective regions)
y =

-1 -0.5 0 0.5 1
synchrony s

Figure 2. Adjusting the number of brain regions (Neg) helps capture experiment. The modified Ising model with N = 40 (yellow line) better
captures the synchrony distribution (blue histogram) of an arbitrarily chosen individual in the Cambridge Centre for Ageing and Neuroscience data set (subject

id: CC110045). The orange line corresponds to the Ising model with [V equal to the number of regions in the Seitzman atlas (Seitzman et al., 2020).

The aging brain becomes functionally more segregated
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With an appropriately determined N, we can accurately set the same synchrony threshold s* for all
individuals within a data set to calculate P,. The value of s* is set such that at the Ising model’s critical
point in connection strength ), Py, equals to 1/2 for the ideal synchrony distribution based on Ising
model theory (Methods) . This enables P, comparisons across data sets that may have different N
values. For CamCAN and HCP, s* = 0.33 because N.; = 40 for both data sets. For UKB, s* = 0.36
(Table S1).

1—
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Figure 3. Pieg rises in aging brains across three data sets. Data points correspond to medians, while error bars correspond to standard errors for bins
of 5 years. The variable p corresponds to the Spearman correlation coefficient between age and P calculated over all N individuals, with the p-value in

parenthesis.

Across the three publicly available data sets, we find that the balance shifts towards more segregation
at older ages (Figure 3). Note that if we plotted P, rather than Py, Figure 3 would be horizontally
flipped, where P, goes from high to low values as a function of increasing age because Py + P = 1.
There is large variation among subjects (Figure S4). However, the correlation between age and P, is
significant with the largest coefficient being 0.40 for CamCAN, while the lowest being 0.08 for UKB.
Discrepancies in study designs may explain correlation magnitude differences: CamCAN and HCP are
designed to study healthy aging (Bookheimer et al., 2019; Shafto et al., 2014), while the goal of UKB is
to identify early biomarkers for brain diseases (Sudlow et al., 2015).

To better highlight how P, changes across CamCAN’s large age range, we present violin plots for

younger, middle age and older individuals’ Py, (Figure S5). We also investigate how Py, varies across
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time for a given individual. In Figure S6, we show that the per individual P, standard deviations
decrease across age for CamCAN and HCP individuals. Finally, we perform a multiple linear regression
with sex and handedness as additional covariates and show that age still strongly explains increasing
segregation (Table S2, S3 and S4; Figures S7, S8 and S9).

Informed by the Ising model, increases in segregation result from network reorganization to more local
signaling because of weakened connection strength between regions. Interestingly, younger individuals
exhibit segregation behavior closer to the Ising model’s critical point of connection strength (Figure S10).
At the critical point, we define Py, = 1/2 (Methods) and find experimental Py, values closer to 1/2 for
younger individuals (Figure 3). Older individuals on the other hand, approach Py, = 1 on average. This
limit corresponds to functionally uncoupled brain regions that are randomly activating. Our results
support the critical brain hypothesis that healthy brains operate near a critical point (Beggs, 2022: Beggs
& Plenz, 2003; Ponce-Alvarez, Kringelbach, & Deco, 2023; Tagliazucchi, Balenzuela, Fraiman, &

Chialvo, 2012) and implicate aging as pushing brain dynamics further away from criticality.

Increasing segregation is not related to structural degradation

In the previous subsection, we discussed the disruption of the integration and segregation balance from
the perspective of phase transitions in physics. Here, we explore the physiological mechanism underlying
increasing segregation in the aging brain. We consecutively simulate the Ising model on a hypothetically
degrading brain structure and show that random removal of edges yields qualitatively similar results to
those of fMRI (Figure 4). Note that Figure 4 is horizontally flipped from those of Py, (Figure 3) because
average degree (relative number of edges) is on the x-axis. It is presumed that edges are lost as age
increases. In Figure 4, edges are lost linearly in time, however, more complicated monotonic functions
can be employed to yield a quantitative match with experimental data in Figure 3. We can also capture
variability among individuals by assuming connection strengths within an individual are drawn from a
distribution, rather than all being equal (Figure S11). In the supplement, we also demonstrate that similar
qualitative trends are obtained when starting with other individuals’ structures, regardless of their age

(Figure S12).
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Figure 4. Simulating the random removal of edges results in Pseg increases. Five edges are randomly removed from a starting diffusion MRI structure
(arbitrarily chosen UK Biobank individual, subject ID: 6025360 , 51 years old), under the Harvard-Oxford atlas (64 regions). An Ising system is simulated
with Nef = N = 64 for the corresponding diffusion MRI structure. Spin states, denoted by dark blue and red node colors in the schematic, are recorded
across 2500 time steps to calculate Pseg. Then, the entire procedure is repeated for the updated structure after edge removal, for a total of 83 times (Methods).
Orange data points on the right plot correspond to individual Ising systems, where N reflects the total number. The variable p corresponds to the Spearman
correlation coefficient calculated over all orange data points between average degree and Pseg, with the p-value in parenthesis. Magenta data points correspond

to medians, while error bars correspond to upper and lower quartiles for bin sizes of one degree. The schematic on the left is created with Biorender.com.

We now begin to investigate possible mechanisms of connection degradation. First, we find that our
simulation is agnostic to the detailed mechanism of connection degeneration because connection strength
is essentially modulated by the probability that a given edge exists (Figure S13). In other words, the
simulation cannot inform whether connections are degraded based on some targeted property. Thus, we
turn to structural MRI and diffusion MRI data from UKB to investigate possible properties being
degraded with age. In Figure S15, we confirm that white matter volume decreases as a function of adult
age, as previously reported (Bethlehem et al., 2022; Lawrence et al., 2021; Lebel et al., 2012). However,
this decrease does not correspond to a loss of anatomical connections because we find that neither
average degree, average tract length nor average tract density monotonically decrease with age when
analyzing diffusion MRI scans using the Q-Ball method (Figure S16). This seems to contradict previous

findings which report decreases (Betzel et al., 2014; Lim, Han, Uhlhaas, & Kaiser, 2015). However,
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previous results employed the more simple diffusion tension imaging (DTI) method which is known to be
less accurate at performing tractography (Garyfallidis et al., 2014; Jones, Knosche, & Turner, 2013;
Rokem et al., 2015). When rerunning our analysis for DTI, we can reproduce previously reported tract
properties’ anticorrelations with age (Figure S16). We also investigate a graph property that captures
polysynaptic connectivity called communicability (Andreotti et al., 2014; Estrada & Hatano, 2008;
Seguin, Sporns, & Zalesky, 2023) and find that it also does not decrease age when using Q-Ball derived
tract density (Figure S17).

We propose that observed white matter volume reduction (Figure S15) and brain dynamics change
corresponds to less myelin covering axons as function of age. Despite rejecting anatomical connections
as a possible mechanism in the previous paragraph, it remains inconclusive whether myelin underlies
trends because we are not aware of such data being publicly available. Although axons are still physically
present, myelin coverage disruption causes regions to no longer be functionally connected because
signals do not arrive on time. Previously reported results from Myelin Water Imaging confirm reduction
in myelin at advanced ages (Arshad, Stanley, & Raz, 2016; Buyanova & Arsalidou, 2021). We also
investigated whether degraded functional connections are likely to be longer than average with age, as
previously reported for certain brain regions (Tomasi & Volkow, 2012). Although we indeed find that the
average correlation of the 25% longest connections is slightly more strongly anticorrelated with age
compared to the average correlation of the 25% shortest connections for CamCAN (Figure S18, left), we
find the opposite trend for HCP (Figure S18, right). Thus, myelin reduction does not seem to have a
stronger impact on longer connections and conclude that the loss of functional connections happens

randomly with respect to length at the brain-wide scale.

DISCUSSION

We apply the mean field Ising model to physically quantify integration and segregation at the emergent
scale of the whole brain. From resting-state fMRI scans across three publicly available data sets, we find
that brain dynamics steadily becomes more segregated with age. Physically, aging leads to brain
dynamics moving further away from its optimal balance at the critical point. Physiologically, analyses of
white matter properties point to random functional connection losses due to myelin degeneration as the

possible culprit for more segregated dynamics. This expands upon our previous work finding metabolic

—9_
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dysfunction to underly brain aging (Weistuch et al., 2021), hinting that myelin may be especially
vulnerable to energy imbalances.

The Ising model and integration-segregation frameworks are considered as the simplest approaches to
capture dynamics in their respective fields. Thus, it is fitting to map segregated and integrated states in
neuroscience to disordered and ordered Ising model phases in physics, respectively. One general
challenge in applying graph theory to MRI-level data is identifying what constitutes a node (DeFelipe,
2010; Lacy & Robinson, 2020; Seung, 2012; Sporns, 2010; Wig, Schlaggar, & Petersen, 2011; Yeo &
Eickhoff, 2016). We identify the best number of effective brain regions N, such that the Ising model
accurately captures individuals’ synchrony distributions across the corresponding data set, improving
upon our original application of the Ising model which lacked the N, hyper-parameter (Weistuch et al.,
2021). Future work will utilize N.g calculations to guide the creation of a parcellation in which brain
regions are constrained to be physically independent based on their collective functional activity.

The field is inundated with integration and segregation metrics that have different aging trends. We go
beyond heuristic definitions, such as one that we previously proposed based on matrix decomposition
(Weistuch et al., 2021), by self-consistently defining the two states within the Ising model framework.
This makes our metric mechanistically based on the connection strength between regions and further
stands out because P, and Py, are naturally at the emergent scale of the brain. We do not calculate a
local property and then average over nodes to yield a brain-wide value ((Wang et al., 2021)’s metric also
has this advantage). In addition, Py, and Py, are directly related because Py, + P = 1. Most
integration and segregation metrics (Chan et al., 2014; Rubinov & Sporns, 2010; Tononi et al., 1994;
Wang et al., 2021) are not defined to be anti-correlated. This could be advantageous because greater
complexity can be captured (Sporns, 2010).

Taken together, it is not surprising that P, and P, results are not consistent with some previous aging
reports. For example, a property called system segregation, defined as the difference between inter- and
intra-correlations among modules, was found to decrease with age (Chan et al., 2014). Although most
report that segregation decreases with age, regardless of the specific metric (Chan et al., 2014;
Damoiseaux, 2017; King et al., 2018; Zhang et al., 2021) (see (Chen et al., 2021) for an exception),
integration trends are less clear. Global efficiency, taken from graph theory, was found to increase with

age (Chan et al., 2014; Yao et al., 2019); however, others found different integration metrics decreasing

—-10-—
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with age (Chong et al., 2019; Oschmann, Gawryluk, & Initiative, 2020; Zhang et al., 2021), consistent
with results reported here.

The utility of the integration-segregation framework lies in its simplicity. However, its simplicity has
led to various heuristic definitions that have qualitatively different aging trends. By physically defining
integration and segregation based on connection strength between regions, we provide an interpretable
foundation for more detailed studies going beyond the two-state approximation to investigate brain

dynamics.

METHODS

JMRI preprocessing

We access three publicly available resting-state functional MRI data sets: Cambridge Centre for Ageing
and Neuroscience (CamCAN) (Taylor et al., 2017), UK Biobank (UKB) (Alfaro-Almagro et al., 2018),
and Human Connectome Project (HCP) (Harms et al., 2018). Acquisition details such as field strength

and repetition time can be found in Table S5. Demographic details can be found in Table S6.

UKB and HCP fMRI data are accessed in preprocessed form (for details see (Alfaro-Almagro et al.,
2018) and (Glasser et al., 2018, 2013), respectively). We preprocessed CamCAN data as done in our
previous work (Weistuch et al., 2021). For all three data sets, the cleaned, voxel space time series are
band-pass filtered to only include neuronal frequencies (0.01 to 0.1 Hz) and smoothed at a full width at
half maximum of 5 mm. Finally, we parcellate into 300 regions of interest according to the Seitzman
atlas (Seitzman et al., 2020). For our voxel-wide analysis presented in the Supporting Information, we do

not perform parcellation and just consider gray mater voxels by masking.

Applying the Ising model requires the data to only take two possible values: —1 or 1. After performing
the preprocessing outlined in the previous paragraph, we binarize the continuous signal for a given region
based on the sign of the slope of subsequent time points (Weistuch et al., 2021). We previously showed
that such binarization still yields similar functional connectivities as that of the continuous data

(Weistuch et al., 2021).

Finally, we only consider brain scans that have the same number of measurements as the predominant

number of individuals in the respective data set (Table S5). If the fitted connection strength parameter A

—11-
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is less than 0, reflecting a nonphysical value, we do not include that individual’s brain scan in our
analysis. In the HCP data set, we excluded individuals aged 90 years or older because their exact age,

considered protected health information, is not available.

Identifying the N hyper-parameter

In Figure 2, our maximum entropy fit (orange line) fails to qualitatively capture the synchrony
distribution for an arbitrary individual. To rescue the fit, we replace N with N (Equation S1). In the
right plot of Figure 5, we demonstrate that a mean field Ising model with N = 40 accurately captures
the fourth moment of synchrony (s*) across all individuals in CamCAN preprocessed under the Seitzman
atlas. Note that N is not a parameter like A; rather it is a hyper-parameter because it takes the same
value across all individuals within the data set. N, is necessary because the Ising model systematically
underestimates (s*) when A > 0 (left plot of Figure 5). Note that A corresponds to rescaling A such that

A = 0 is at the critical point (Equation S13).

5Cambridge Centre for Ageing §ambridge Centre for Ageing

0.1 0.1
> data (300 regions) ‘ > data (300 regions)

=== |sing model (300 regions) Ising model (40 effective regions)|

0 R - -
-0.2 -0.1 0 0.1 -1 -0.5 0

rescaled connection strength A rescaled connection strength A
Figure 5. Adjusting the effective number of brain regions (N¢g) helps capture synchrony distributions’ variances across individuals in the Cam-

bridge Centre for Ageing data set. Each data point corresponds to an individual.

To identify N = 40 as the best value, we perform a parameter scan over multiples of 5 and identify
the Neg at which the root mean square error (RMSE) between (s%)ex, and (s*)moqer is minimized (Figure
6). We choose the fourth moment because it is the next order moment that our maximum entropy fit does
not constrain. It is not the third moment because the distribution is assumed to be even as indicated by

our prior (Equation S1).
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Cambridge Centre for Ageing UK Biobank Human Connectome Project
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Figure 6. The effective number of regions N is identified by minimizing the root mean square error (RMSE) of the fourth moment of synchrony
between theory and experiment across all individuals. Each data point corresponds to the sum over all individuals’ RMSEs in the respective data set. Note

that the y-axis should be scaled by 10~3.

Calculating P,

The probability of the brain network being in the segregated state is the sum over all microstates

corresponding to the segregated state.

Negrs™
Pe= Y. P(n) (1)
n=—Nefrs*
Negrs™
]_ Neff by 2 N2
P€€ = — TL/ eff 2
"z ZN *((Neff+n)/2>e @
N=—INeffS

In the second line, the mean field Ising model’s P(n) is inserted (Equation S2). Z corresponds to the
partition function and ensures that P(n) is normalized. The constant s* is the synchrony threshold for
which segregated and integrated microstates are delineated. We set s* such that P, = 1/2 when A = 0
according to theory. More specifically, we numerically calculate Py, (A = 0) for a given Neg and
extrapolate to find s* (Figure S19). Proper calibration ensures that the theory is accurate and enables
apples to apples Pi., comparisons across data sets with different N.g. The list of s* values for the three

publicly available data sets studied can be found in Table S1.

Ising model simulation
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We simulate the Ising model on an initial structure informed by diffusion MRI under the Harvard-Oxford
atlas (Makris et al., 2006) (64 regions) for an arbitrarily chosen UK Biobank individual (subject ID:
6025360). If no edge exists between two regions, then the regions are uncoupled. If an edge does exist,
then regions ¢ and j are coupled and contribute A * o; * o; to the system’s energy; where A corresponds to
the connection strength and o corresponds to the spin state of the corresponding region (—1 or 1). Under
the standard notation of the Ising model, A = .J/T, where .J corresponds to the coupling constant and 7'
is the temperature of the bath. The starting \ is set to 34.4, which is above \’s critical point (starting

Py, = 0.2). By definition, N = N = 64 in the simulations. Based on atlas resolution, simulating the
Harvard-Oxford atlas provides an N, similar to those found for the experimental data (N = 40 for
CamCAN and HCP; N = 30 for UKB).

The simulation for a given structure starts by randomly assigning the 64 nodes up or down spins. Then,
for each time step, we attempt 10 spin flips 64 times, for a total of 2500 time steps. Spin flips are
accepted according to the Metropolis-Hastings algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, &
Teller, 1953). The exact number of spin flip attempts or total time points does not matter, as long as
equilibrium is reached. For example, we find that for )\ values larger than those presented in the text,
synchrony distributions become asymmetric and exhibit only one of the two peaks corresponding to the
integrated state because of the high kinetic barrier of going from all down spins to all up spins.

Although the starting structure is informed by diffusion MRI, resulting structures after computational
edge removals are based on the posited removal strategy. Edges informed by dMRI are undirected and
removal maintains undirectedness. Effectively two times as many edges are removed because both
forward and backward edges are concurrently eliminated. In Figure S14, we demonstrate how synchrony
distributions change as edges are computationally removed for a UK Biobank individual (subject ID:
6025360), with a starting A = 34.4.

We also investigate other individuals’ structures in the UK Biobank to test the robustness of our
qualitative results. We arbitrarily chose the following six individuals to widely sample different ages;
subject IDs: 6025360 (51y), 4712851 (57y), 3081886 (61y), 1471888 (65y), 4380337 (72y), and
1003054 (74y) (Figure S12). To ensure that the starting A\ are comparable despite differing in the
probability that two regions are connected (Pedge), We set Ao = 86.0 for all simulations such that

A = Ao * Pedge- For example, for subject ID: 6025360, peqse = 0.40, thus the starting A = 34.4.

14—
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Diffusion MRI analysis

Diffusion MRI processing to obtain structural information such as tract length and streamline count,
which we call tract density, is outlined in our previous work (Razban, Pachter, Dill, & Mujica-Parodi,
2023). Briefly, we take preprocessed dMRI scans from the UK Biobank (Sudlow et al., 2015) and
calculate connectivity matrices using the Diffusion Imaging in Python software (Garyfallidis et al.,
2014). We input the Talairach atlas (Lancaster et al., 2000) to distinguish between white and gray matter.
We perform deterministic tractography and reconstruct the orientation distribution function using
Constant Solid Angle (Q-Ball) with a spherical harmonic order of 6 (Aganj et al., 2010). For Figure S16,
we also do reconstruction using diffusion tensor imaging (Garyfallidis et al., 2014). To generate the
starting structure for Ising model simulations, we input the Harvard-Oxford atlas for tractography
because it parcellates the brain into fewer regions, making it more computationally tractable to carry out

simulations and closer to N values found for experimental data.

Code and data availability

Scripts necessary to reproduce figures and conclusions reached in the text can be found at
github.com/rrazban/2state _brain. Please refer to the respective publicly available data set to access
previously published data (CamCAN, UKB and HCP) (Alfaro-Almagro et al., 2018; Harms et al., 2018;
Taylor et al., 2017).
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SUPPORTING INFORMATION
Deriving the Ising model with N

Many have derived the probability distribution of the mean field Ising model, otherwise known as the
fully connected or Curie-Weiss Ising model (Friedli & Velenik, 2017; Kochmanski, Paszkiewicz, &
Wolski, 2013; Weistuch et al., 2021). Here, we demonstrate how to introduce N.¢ in a Maximum Entropy
framework. The tricky part is that N.g defines the state space over which the probability distribution is

summed.

Adding a global pairwise correlation constraint, we obtain the following Lagrangian function £ over

Nefr

the net displacement of spin states n = ) ;" o;, where o; can take a value of 1 or —1.

L= ZP 1—:+ (ZP ) ( Zn2P >exp> (S1)

P is the probability distribution. ¢ corresponds to the prior and is set to the binomial distribution
( (N Ji\; ) /2) 2~ where the binomial coefficient captures the number of ways individual spins can organize
for a given n. o and A correspond to the Lagrange multipliers that enforce the constraints that the
probability distribution is normalized and the mean pairwise correlation equals (s?), respectively. The
variable s corresponds to the synchrony, or commonly referred to as the magnetization in ferromagnetic

applications, and is limited to vary from —1 to 1 because n = Ngs. This is the reason N does not have to

be the same for (s?)exp and (s%)moder; (%) is always bounded between —1 and 1.

Maximizing the Lagrangian function (Equation S 1) with respect to P, we obtain the following

distribution:

_ —1 Neff )\n2/ 2

Pin) =2 ((Neff + n)/2> 2
. 1 Neff )\82

P(s)=2 (Neff(l N s)/2) e (S3)

Z corresponds to the partition function and ensures that P is normalized. The o Lagrange multiplier is

not present in the final expression because it is subsumed by Z.
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wo Ising model phase transitions

©

so The Landau model is a general formulation to study phase transitions (Dill & Bromberg, 2012; Landau,

i 1937). 1t takes the following form,

5

=}

F(T) = A(T - T.)n* + Bn* (S4)

s 1) corresponds to the order parameter. F' is the free energy and can be expressed as the probability for
ss being in microstate ¢ by the following relationship F; = kT In P;. T' is the temperature and 7.
s« corresponds to the critical temperature at which a second-order phase transition occurs. A and B are

ss constants.

ss  Here, we will express the Ising model’s probability distribution (Equation S3) in terms of the Landau
s formalism (Equation S4) by approximating the binomial coefficient as an exponential to order (s*). For
s brevity, we will write N to represent N.g. First, we use Stirling’s approximation to expand the binomial

s0 coefficient.

(N(l Jis)m) = N!'[(N(1+5)/2) (N1 —s)/2)]" (S5)
() T ()
= NV (g)w (1 +3)M <%)w (1— s)w 7 (S7)
- N :(Q)N (1L + 8l[t — ) (%)N/] h s
[ (1]

so  To make further headway, we assume that s approaches 0 and expand Equation S9 to order s*.

2
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We can insert our approximate expression for the binomial coefficient back into P(s) (Equation S3)

and obtain,

P(s) ~ Z7'2" exp KA — E) s% — 554} (S12)

Note that Equation S12 (after transforming into free energy space) maps onto Landau theory (Equation
S4). s corresponds to the order parameter and A\, = N/2. At A = \., P(s) switches from unimodal to
bimodal, corresponding to a second order phase transition. We report a rescaled version of A called A in
Figure 5 and in other places in the Supporting Information to easily gauge how far an individual’s

connection strength is from the critical point.

. A — )\critical

)‘critical

A (513)

Alternative N fitting approach

Rather than choose one N for all individuals in the data set as done in the main text, we could fit N
for each individual. Figure S| demonstrates that such a procedure results in N values that are highly
linearly related with \. In other words, more precise N fits do not provide any more insight than

maximum entropy fits of A for all individuals in a data set under one optimal Ng.
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s22  Figure S1. Treating Nsr as a parameter and fitting it per individual yields a strong correlation with A. Each point reflects an individual brain scan and N
523 reflects the total number analyzed. The value of the slope corresponds to that of the best-fit line for the data and is close to the predicted value of 0.5 (Equation
524 S15). N is smaller than that of Figure 3 because some scans failed to have a minimum (34) RMSE within the explored bounds of Neg (4-500) or A values were

525 nonphysical by being less than 0.

2 The Neg-) relationship can be reasoned from the analytical expression for P(s) (Equation S12). When

27 A < 0, which many individuals satisfy (Figure S10), P(s) is well-approximated as a Gaussian.

P(s) x exp KA - ]\;‘3“) 32] (S14)

Thus, the analytical form for (s?) is:

1

2y -
) =~ (S15)

2 Since \ is fit in the Maximum Entropy framework to exactly match (s?), Equation S15 indicates that a
o larger N requires a larger \ for a fixed (s?). Indeed, we find in Figure S| that the best fit line of the

s Negr-A relationship has an approximate slope of 0.5, in agreement with Equation S15.

@

sst  More supporting information
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532 Table S1. Data set values for Pyg calculations under our particular fMRI preprocessing procedure (Methods).
Data set effective number of regions Nz  synchrony threshold s*
Cambridge Centre for Ageing 40 0.334
UK Biobank 30 0.357
Human Connectome Project 40 0.334

Cambridge Centre for Ageing Human Connectome Project
1073 -4
1.44f 5.22 %10
N 1.42 g 321
= =
e« x 52
Yo 1.4 N
~ ~5.19
1.38 518
55 60 65 70 75 115 120 125 130 135
effective number of regions Neff effective number of regions Neﬁc

533 Figure S2. Identifying the effective number of regions Ng for brain scans processed at the voxel-level. Each data point corresponds to the sum over all

s34 individuals’ RMSEs in the respective data set.
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18

Figure S3. Individually fitted Neg values from Figure S1 are not related to the average number of white matter tracts per brain region (average degree) as
determined by diffusion MRI. The Q-Ball tractography method is used to analyze diffusion MRI scans (Methods). Data points correspond to individuals.

The variable p corresponds to the Spearman correlation coefficient between average degree and N calculated over all N individuals, with the p-value in

parenthesis.
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539 Figure S4. Py rises on average in aging brains but varies greatly among individuals with the same age. Blue data points correspond to individuals. The

540 variable p corresponds to the Spearman correlation coefficient between age and Pseg calculated over all N individuals, with the p-value in parenthesis. Magenta

541 points are the exact same data points presented in Figure 3 for the corresponding data set. Note that the corresponding error bars are not visible in these plots.
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Cambridge Centre for Ageing

youhger middle age older

Figure S5. P, rises in aging brains across three Cambridge Centre for Ageing and Neuroscience age groups. Violin plots are presented, where middle
horizontal lines correspond to medians while lower and upper lines correspond to minimum and maximum values, respectively. Younger individuals are those

less than 35 years old (N=117); middle age, 40-60y (N=187); older, above 65y (N=209).
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Figure S6. Standard deviations of Pyeg per individual decreases as a function of age for CamCAN and HCP data sets. Data points correspond to medians,
while error bars correspond to standard errors for bins of 5 years. The variable p corresponds to the Spearman correlation coefficient between age and Pseg
calculated over all N individuals, with the p-value in parenthesis. Here, fMRI time-series data for an individual are equally split into 5 chunks and Py, is
calculated for each chunk before taking its standard deviation. In the main text, fMRI data are not split up and the entire time-series is considered in calculating

Pseg .
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Table S2. Linear regression results for Pyeg as a function of age

CamCAN coefficient ¢ statistic ~ Prob> |t| | UK Biobank coefficient ¢ statistic ~Prob> ||
intercept 0.575 40.0 8.66E-176 | intercept 0.556 69.1 <1E-300
age 0.0028 11.1 3.03E-26 | age 0.0013 9.92 4.06E-23
HCP coefficient ¢ statistic ~ Prob> [t
intercept 0.650 38.1 1.08E-171
age 0.0021 7.58 1.14E-13
Table S3. Multiple linear regression results for Pseg as a function of age and sex across the data sets.
CamCAN  coefficient ¢ statistic  Prob> |¢| || UK Biobank coefficient ¢ statistic =~ Prob> |¢|
intercept 0.583 39.0 1.22E-170 || intercept 0.561 70.8 <1E-300
sex(T.male)  -0.0163 -1.75 8.03E-02 || sex(T.male) -0.0445 -23.7 6.17E-122
age 0.0028 11.1 1.58E-26 || age 0.0015 12.1 8.79E-34
HCP coefficient ¢ statistic ~ Prob> ||
intercept 0.668 39.6 1.92E-179
sex(T.male) -0.0500 -6.17 1.20E-09
age 0.0022 8.03 421E-15

Table S4. Multiple linear regression results for Pseg as a function of age, sex and handedness for the Human Connectome Project.

HCP coefficient ¢ statistic ~ Prob> [¢|
intercept 0.677 32.8 5.75E-143
sex(T.male) -0.0504 -6.20 9.72E-10
handedness(T.right) -0.0095 -0.76 4.48E-01
age 0.0022 8.00 5.59E-15
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553 Figure S7. P rises in aging brains across three data sets regardless of sex. Data points correspond to medians, while error bars correspond to standard

554 errors for bins of 5 years. For UKB and HCP, we find that females’ brains have higher shifted Pieg values across age.
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ss5  Figure S8. Sex is fairly well-represented across age across the three data sets. Thus, observed Pieg aging trends cannot be attributed to the increasing

556 over-representation of one sex.
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557 Figure S9. Py roughly rises in aging brains regardless of handedness. Data points correspond to medians, while error bars correspond to standard errors for

s58  bins of 5 years. Large error bars are seen for left-handed individuals because of small sample sizes (left plot).
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s59  Figure S10. The rescaled connection strength parameter A moves further away from the critical point (A = 0) as age increases. Trends are similar in form
se0  to Figure 3 because Pieg is a function of A (Equation 2). Data points correspond to medians, while error bars correspond to standard errors for bins of 5 years.

561 The variable p corresponds to the Spearman correlation coefficient between age and A calculated over all N individuals, with the p-value in parenthesis.

1Isﬂ'lg model simulations, A ~ N({( A ), 3*( 1))
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se2 Figure S11. Greater variance in simulations is seen when edges’ connection strengths A are drawn from a normal distribution with mean (\) and standard
s63  deviation 3 * (X). At each consecutive step, () is attenuated such that 5 edges are effectively removed per step ((A’) = (A)pegge) from the same starting
s64 dMRI structure as in Figure 4 (UK Biobank subject ID: 6025360). Data points correspond to medians, while error bars correspond to standard errors for bins
s65 of 5 years. Orange data points on the right plot correspond to individual Ising systems, where N reflects the total number. The variable p corresponds to the
s66 Spearman correlation coefficient calculated over all orange data points between average degree and Pgeg, with the p-value in parenthesis. Magenta data points

567 correspond to medians, while error bars correspond to upper and lower quartiles for bin sizes of one degree.
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ses Figure S12. Similar results for Ising simulations are seen as in Figure 4 for different UK Biobank individuals with different ages. Edges are randomly
s69 removed as in Figure 4. Starting diffusion MRI structures are used from following subject IDs: 6025360 (51y), 4712851 (57y), 3081886 (61y), 1471888 (65y),

50 4380337 (72y), and 1003054 (74y).
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s71  Figure S13. Edge removal mechanisms only matter in so much as they attenuate average degree for Ising simulations. In addition to randomly removing
s72 edges as shown in Figure 4, we computationally remove edges based on targeted attack of tract density, tract length, and a node’s GLUT4 receptor density.
573 Edges are removed in sequential order, such that those with the largest value are removed first. For all properties except for random, we remove edges until

574 none are present for the same starting dMRI structure as in Figure 4 (UK Biobank subject ID: 6025360).
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575 Figure S14. Synchrony distributions transform from bimodal to unimodal as edges are randomly removed from UK Biobank subject ID: 6025360. The
576 parameter \ relates to edge removal because A = Ao * peqge, Where Ao is a constant throughout the edge removal process and peqge is the probability that

577 two nodes share an edge (Methods).
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75

Figure S15. White matter volume decreases with age. White matter volume is measured by structural MRI provided by the UK Biobank. Data points

correspond to medians, while error bars correspond to standard errors for bins of 5 years. The variable p corresponds to the Spearman correlation coefficient

between age and white matter volume calculated over all N individuals, with the p-value in parenthesis. Error bars are plotted but are not visible because of

their minuscule size. N is larger than that of Figure 3 because all individuals with structural MRI scans are considered.
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Figure S16. White matter tract properties do not degrade as a function of age when using the Q-Ball method for tractography. However, they do degrade

with age when using the less accurate diffusion tensor imaging method. Data points correspond to medians, while error bars correspond to standard errors for

bins of 5 years. The variable p corresponds to the Spearman correlation coefficient between age and the corresponding property calculated over all available

individuals (N=16,649), with the p-value in parenthesis. Error bars are plotted but are not visible because of their minuscule size.
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Figure S17. Mean communicability across all brain region pairs does not decrease with age. Communicability is calculated based on tract density as measured
by the Q-Ball method for tractography (Methods). Data points correspond to medians, while error bars correspond to standard errors for bins of 5 years. The
variable p corresponds to the Spearman correlation coefficient between age and white matter volume calculated over all N individuals, with the p-value in

parenthesis. Note that the y-axis should be scaled by 106 and shifted by 1.0008.
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Figure S18. For the Cambridge Centre for Ageing and Neuroscience data set, the shortest edges (lower quartile) have average Pearson correlations or average
functional connectivities which correlate less than those of the longest edges (upper quartile). For the Human Connectome Project, the opposite is the case.
Edge distances are measured by center of mass coordinates of the brain regions based on the Seitzman atlas. Shortest and longest edges correspond to the
lower and upper quartile (25%), respectively. Only positive correlations are considered and diagonal elements are ignored. Data points correspond to medians,
while error bars correspond to standard errors for bins of 5 years. The variable p corresponds to the Spearman correlation coefficient between age and average

correlation calculated over all available individuals (Ncamcan = 640 and Ngcp = 700), with the p-value in parenthesis.
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596 Table S5. Functional MRI acquisition parameters of the data sets.
Data set field strength  repetition time echo time flip angle voxel size total time points
CamCAN 3T 1970 ms 30 ms 78° 3x3x4.44 mm? 241
UK Biobank 3T 735 ms 39 ms 52° 2.4x2.4x2.4 mm? 490
HCP 3T 800 ms 37 ms 52° 2x2x2 mm?3 1912
597 Table S6. Demographic information of the data sets for those individuals in Figure 3.
Data set agerange (age)=std(age) sex
CamCAN 18-87 54.2+18.6 323F/313M
UK Biobank 45-79 54.8+7.4 8769F/7892M
HCP 36-90 59.6£14.9 380F/311M

A =0, N=64nodes

0.7}
0.6} o**

0.5f---==mmmmmmmm e g

0.4} o®

Q 0.3f o®
0.2} °®

0.1f _o°

0.0 . . . . .

0 5 10 15 20 25

eg

so8  Figure S19. The synchrony threshold s* is chosen such that it delineates between integrated and segregated states when Pseg = Py = 1/2 (red line) at the
599 critical point (A = 0). This particular figure is created for 64 nodes; it must be set to the corresponding data set’s N to determine the appropriate synchrony

600 threshold.
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TECHNICAL TERMS

Integration a network state composed of global signaling.
Segregation a network state limited to local signaling.

State a particular combination of physical properties. Here, we assume that brain networks can only

occupy either the integrated or segregated state.

Ising model a classic model in physics that was first applied to ferromagnetism. It includes pairwise

interactions between binary spin states.
Phase interchangeable with the word ‘state’ for the purposes of this text.

Critical Point the point where two phases coexist. In this text, it is where the synchrony distribution

dramatically changes from bimodal (primarily integrated) to unimodal (primarily segregated).
Maximum Entropy fit a fitting strategy that satisfies user-defined constraints in the most agnostic way.

White Matter bundles of axons connecting brain regions.



