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ABSTRACT

The integration-segregation framework is a popular first step to understand brain dynamics because it12

simplifies brain dynamics into two states based on global vs. local signaling patterns. However, there is13

no consensus for how to best define what the two states look like. Here, we map integration and14

segregation to order and disorder states from the Ising model in physics to calculate state probabilities,15

Pint and Pseg, from functional MRI data. We find that integration/segregation decreases/increases with age16

across three databases, and changes are consistent with weakened connection strength among regions17

rather than topological connectivity based on structural and diffusion MRI data.18
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The integration-segregation framework succinctly captures the tradeoff brains face between seamless19

function (more integration) in light of energetic constrains (more segregation). Despite its ubiquitous use20

in the field, there is no consensus on its definition with various graph theoretical properties being21

proposed. Here, we define the two states based on the underlying mechanism of neuronal coupling22

strength to provide a physical foundation for the framework. We find that younger adults’ brains are close23

to perfectly balancing between integration and segregation, while older adults’ brains veer off towards24

random signaling.25

INTRODUCTION

Aging is the number one risk factor for almost all neurodegenerative diseases (Kennedy et al., 2014). For26

every 5 years after the age of 65, the probability of acquiring Alzheimer’s disease doubles27

(Bermejo-Pareja et al., 2008). An influential conceptual approach to begin making sense of brain28

dynamics frames it in terms of a balance between integrated and segregated network states (Deco,29

Tononi, Boly, & Kringelbach, 2015; Friston, 2009; Sporns, 2010, 2013; Tononi, Sporns, & Edelman,30

1994; Wig, 2017). On one hand, the brain faces functional pressure to have as many regions directly31

connected for quick communication. On the other hand, the brain is constrained to minimize metabolic32

energy consumption because it consumes ten-times more of the body’s energy than expected by mass33

(Raichle, 2006). Tuning the balance between extensive global signaling, referred to as integration, and34

limited local signaling, referred to as segregation, optimally compromises between functional and35

energetic constraints (Bullmore & Sporns, 2012; Cohen & D’Esposito, 2016; Manza et al., 2020; Wang36

et al., 2021). Although these constraints remain throughout life, aging disrupts their balance.37

Previous research found mixed aging results, depending on the metrics used to measure integration and38

segregation (Chan, Park, Savalia, Petersen, & Wig, 2014; Chen et al., 2021; Onoda & Yamaguchi, 2013;39

Zhang et al., 2021). Although most in the literature use the system segregation metric (Chan et al., 2014),40

no consensus exists surrounding integration. In general, the problem facing the integration-segregation41

framework is that there is no one way to define the two states. Many graph theoretical metrics could42

potentially be used (Rubinov & Sporns, 2010) and it is unclear why one should take precedence over the43
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other, particularly when their aging outcomes are mutually inconsistent. There is a need to more44

fundamentally define integration and segregation to transform it from a proxy to a physical quantity.45

Here, we provide a physical foundation for the framework by applying the mean field Ising model to46

treat integration and segregation as physical 2-phase systems like magnets and liquids. After47

demonstrating that the Ising model can capture global brain dynamics as measured by functional MRI48

once the effective number of nodes is properly set, we proceed to calculate probabilities of being in the49

integrated or segregated states and find that younger and older brains are bounded by optimal and random50

signaling, respectively. We then explore diffusion and structural MRI data to ask if the age-related51

changes in signaling are due to changes in topological network connectivity.52

APPLYING THE ISING MODEL TO FMRI

We model human brain signaling patterns obtained from resting-state functional MRI (fMRI) data sets.53

As in previous work (Weistuch et al., 2021), we capture those patterns with the Ising model, a widely54

used theoretical method for expressing macroscale behaviors in terms of interactions among many55

underlying microscale agents (Dill & Bromberg, 2012). We first transform the continuous fMRI data into56

a representation as discrete Ising spins via binarization of the data (Figure 1). That is, we reduce the state57

of the region as either −1 or 1 based on whether fMRI signaling is decreasing or increasing, respectively.58

Second, we calculate the synchrony by summing over all spins in a given time interval and dividing by59

the total number of spins (Figure 1). Synchronies are collected over the entirety of the scan to obtain a60

distribution. Based on Ising model theory, the synchrony threshold delineating between integrated and61

segregated states is set such that Pint = Pseg = 1/2 at the Ising model’s critical point (Methods). Pseg is62

the probability that the brain is in the segregated state and is defined as the relative number of time points63

for which the absolute value of synchrony is less than the synchrony threshold (Figure 1). Pint is defined64

as the relative number of time points for which the absolute value of synchrony is greater than the65

synchrony threshold and trivially relates to Pseg because Pint + Pseg = 1.66
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Figure 1. Calculating the probability that the brain exhibits integrated or segregated dynamics (Pint or Pseg). The schematic demonstrates the

procedure for one individual’s fictitious functional MRI scan with 4 brain regions and only two time points shown. First, we binarize data based on nearest

neighbor scans in time. If the functional MRI (fMRI) signal increases, a value of 1 is assigned; decreases, -1. Then, we calculate the average spin state of

the brain, called synchrony. Finally, we collect synchrony values across the entire time series to create a synchrony distribution. We appropriately set the

synchrony threshold based on Ising model theory to delineate between integrated and segregated microstates. Additional details can be found in the Methods.

Figure created with Biorender.com.
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RESULTS

The number of functionally effective brain regions73

Before proceeding to calculate Pseg, we first check whether the model can capture the experimental74

synchrony distributions. A mean field Ising model only considering pairwise interactions has one75

quantity of interest. The strength of connection λ between any two regions corresponds to the degree to76

which signals between any two brain regions are correlated. However, we find that a naive fit of λ based77

on maximum entropy (Dill & Bromberg, 2012; Schneidman, Berry, Segev, & Bialek, 2006; Weistuch et78

al., 2021) fails to capture the synchrony distribution from fMRI data (Figure 2, orange). To improve upon79

a standard Ising model approach, here we introduce a hyper-parameter Neff. Brain atlas parcellations80

provide N brain regions, however, those N regions must be identically distributed across time for the81

Ising model to apply. We find that when setting N to a lower value Neff, fixed for all individuals within a82

data set, the Ising model accurately captures synchrony distributions (Figure 2). The optimal value of83
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Neff = 40 is determined by scanning across Neff multiples of 5 to find which best captures the next order84

moment not fit by our maximum entropy setup across all individuals (Methods, Figure 6). For our85

particular preprocessing (Methods), we find that Neff = 40 for individuals in the Cambridge Center for86

Ageing and Neuroscience (CamCAN) (Taylor et al., 2017) and the Human Connectome Project Aging87

(HCP) (Harms et al., 2018). For the UK Biobank (UKB) (Alfaro-Almagro et al., 2018), Neff = 3088

performs best (Figure 6).89

Based on identified Neff hyper-parameter values, brains act as if they have a few tens of functional90

units. If different preprocessing decisions are considered, such as atlas resolution, Neff values are still91

within an order of magnitude. At the voxel-level (N = 125, 879), we obtain an Neff value of 65 for92

CamCAN and 125 for HCP using the same procedure as for the Seitzman atlas (N = 300) considered in93

the previous paragraph (Figure S2). Future work will pinpoint how Neff depends on preprocessing to94

enable a future study creating a physics-based parcellation of the brain.95

We also tried an alternative fitting strategy by fitting Neff per individual rather than having the same96

value for all individuals in a respective data set. We show that individually fitted Neff values trivially97

relate to λ as expected by theory (Figure S1). Moreover, individually fitted Neff are not found to be98

related to global differences in anatomical brain connectivity (Figure S3).99

Figure 2. Adjusting the number of brain regions (Neff) helps capture experiment. The modified Ising model with Neff = 40 (yellow line) better

captures the synchrony distribution (blue histogram) of an arbitrarily chosen individual in the Cambridge Centre for Ageing and Neuroscience data set (subject

id: CC110045). The orange line corresponds to the Ising model with N equal to the number of regions in the Seitzman atlas (Seitzman et al., 2020).

100

101

102

The aging brain becomes functionally more segregated103
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With an appropriately determined Neff, we can accurately set the same synchrony threshold s∗ for all104

individuals within a data set to calculate Pseg. The value of s∗ is set such that at the Ising model’s critical105

point in connection strength λ, Pseg equals to 1/2 for the ideal synchrony distribution based on Ising106

model theory (Methods) . This enables Pseg comparisons across data sets that may have different Neff107

values. For CamCAN and HCP, s∗ = 0.33 because Neff = 40 for both data sets. For UKB, s∗ = 0.36108

(Table S1).109

Figure 3. Pseg rises in aging brains across three data sets. Data points correspond to medians, while error bars correspond to standard errors for bins

of 5 years. The variable ρ corresponds to the Spearman correlation coefficient between age and Pseg calculated over all N individuals, with the p-value in

parenthesis.

110

111

112

Across the three publicly available data sets, we find that the balance shifts towards more segregation113

at older ages (Figure 3). Note that if we plotted Pint rather than Pseg, Figure 3 would be horizontally114

flipped, where Pint goes from high to low values as a function of increasing age because Pseg + Pint = 1.115

There is large variation among subjects (Figure S4). However, the correlation between age and Pseg is116

significant with the largest coefficient being 0.40 for CamCAN, while the lowest being 0.08 for UKB.117

Discrepancies in study designs may explain correlation magnitude differences: CamCAN and HCP are118

designed to study healthy aging (Bookheimer et al., 2019; Shafto et al., 2014), while the goal of UKB is119

to identify early biomarkers for brain diseases (Sudlow et al., 2015).120

To better highlight how Pseg changes across CamCAN’s large age range, we present violin plots for121

younger, middle age and older individuals’ Pseg (Figure S5). We also investigate how Pseg varies across122
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time for a given individual. In Figure S6, we show that the per individual Pseg standard deviations123

decrease across age for CamCAN and HCP individuals. Finally, we perform a multiple linear regression124

with sex and handedness as additional covariates and show that age still strongly explains increasing125

segregation (Table S2, S3 and S4; Figures S7, S8 and S9).126

Informed by the Ising model, increases in segregation result from network reorganization to more local127

signaling because of weakened connection strength between regions. Interestingly, younger individuals128

exhibit segregation behavior closer to the Ising model’s critical point of connection strength (Figure S10).129

At the critical point, we define Pseg = 1/2 (Methods) and find experimental Pseg values closer to 1/2 for130

younger individuals (Figure 3). Older individuals on the other hand, approach Pseg = 1 on average. This131

limit corresponds to functionally uncoupled brain regions that are randomly activating. Our results132

support the critical brain hypothesis that healthy brains operate near a critical point (Beggs, 2022; Beggs133

& Plenz, 2003; Ponce-Alvarez, Kringelbach, & Deco, 2023; Tagliazucchi, Balenzuela, Fraiman, &134

Chialvo, 2012) and implicate aging as pushing brain dynamics further away from criticality.135

Increasing segregation is not related to structural degradation136

In the previous subsection, we discussed the disruption of the integration and segregation balance from137

the perspective of phase transitions in physics. Here, we explore the physiological mechanism underlying138

increasing segregation in the aging brain. We consecutively simulate the Ising model on a hypothetically139

degrading brain structure and show that random removal of edges yields qualitatively similar results to140

those of fMRI (Figure 4). Note that Figure 4 is horizontally flipped from those of Pseg (Figure 3) because141

average degree (relative number of edges) is on the x-axis. It is presumed that edges are lost as age142

increases. In Figure 4, edges are lost linearly in time, however, more complicated monotonic functions143

can be employed to yield a quantitative match with experimental data in Figure 3. We can also capture144

variability among individuals by assuming connection strengths within an individual are drawn from a145

distribution, rather than all being equal (Figure S11). In the supplement, we also demonstrate that similar146

qualitative trends are obtained when starting with other individuals’ structures, regardless of their age147

(Figure S12).148
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Figure 4. Simulating the random removal of edges results in Pseg increases. Five edges are randomly removed from a starting diffusion MRI structure

(arbitrarily chosen UK Biobank individual, subject ID: 6025360 , 51 years old), under the Harvard-Oxford atlas (64 regions). An Ising system is simulated

with Neff = N = 64 for the corresponding diffusion MRI structure. Spin states, denoted by dark blue and red node colors in the schematic, are recorded

across 2500 time steps to calculate Pseg. Then, the entire procedure is repeated for the updated structure after edge removal, for a total of 83 times (Methods).

Orange data points on the right plot correspond to individual Ising systems, where N reflects the total number. The variable ρ corresponds to the Spearman

correlation coefficient calculated over all orange data points between average degree and Pseg, with the p-value in parenthesis. Magenta data points correspond

to medians, while error bars correspond to upper and lower quartiles for bin sizes of one degree. The schematic on the left is created with Biorender.com.

149

150
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155

We now begin to investigate possible mechanisms of connection degradation. First, we find that our156

simulation is agnostic to the detailed mechanism of connection degeneration because connection strength157

is essentially modulated by the probability that a given edge exists (Figure S13). In other words, the158

simulation cannot inform whether connections are degraded based on some targeted property. Thus, we159

turn to structural MRI and diffusion MRI data from UKB to investigate possible properties being160

degraded with age. In Figure S15, we confirm that white matter volume decreases as a function of adult161

age, as previously reported (Bethlehem et al., 2022; Lawrence et al., 2021; Lebel et al., 2012). However,162

this decrease does not correspond to a loss of anatomical connections because we find that neither163

average degree, average tract length nor average tract density monotonically decrease with age when164

analyzing diffusion MRI scans using the Q-Ball method (Figure S16). This seems to contradict previous165

findings which report decreases (Betzel et al., 2014; Lim, Han, Uhlhaas, & Kaiser, 2015). However,166
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previous results employed the more simple diffusion tension imaging (DTI) method which is known to be167

less accurate at performing tractography (Garyfallidis et al., 2014; Jones, Knösche, & Turner, 2013;168

Rokem et al., 2015). When rerunning our analysis for DTI, we can reproduce previously reported tract169

properties’ anticorrelations with age (Figure S16). We also investigate a graph property that captures170

polysynaptic connectivity called communicability (Andreotti et al., 2014; Estrada & Hatano, 2008;171

Seguin, Sporns, & Zalesky, 2023) and find that it also does not decrease age when using Q-Ball derived172

tract density (Figure S17).173

We propose that observed white matter volume reduction (Figure S15) and brain dynamics change174

corresponds to less myelin covering axons as function of age. Despite rejecting anatomical connections175

as a possible mechanism in the previous paragraph, it remains inconclusive whether myelin underlies176

trends because we are not aware of such data being publicly available. Although axons are still physically177

present, myelin coverage disruption causes regions to no longer be functionally connected because178

signals do not arrive on time. Previously reported results from Myelin Water Imaging confirm reduction179

in myelin at advanced ages (Arshad, Stanley, & Raz, 2016; Buyanova & Arsalidou, 2021). We also180

investigated whether degraded functional connections are likely to be longer than average with age, as181

previously reported for certain brain regions (Tomasi & Volkow, 2012). Although we indeed find that the182

average correlation of the 25% longest connections is slightly more strongly anticorrelated with age183

compared to the average correlation of the 25% shortest connections for CamCAN (Figure S18, left), we184

find the opposite trend for HCP (Figure S18, right). Thus, myelin reduction does not seem to have a185

stronger impact on longer connections and conclude that the loss of functional connections happens186

randomly with respect to length at the brain-wide scale.187

DISCUSSION

We apply the mean field Ising model to physically quantify integration and segregation at the emergent188

scale of the whole brain. From resting-state fMRI scans across three publicly available data sets, we find189

that brain dynamics steadily becomes more segregated with age. Physically, aging leads to brain190

dynamics moving further away from its optimal balance at the critical point. Physiologically, analyses of191

white matter properties point to random functional connection losses due to myelin degeneration as the192

possible culprit for more segregated dynamics. This expands upon our previous work finding metabolic193
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dysfunction to underly brain aging (Weistuch et al., 2021), hinting that myelin may be especially194

vulnerable to energy imbalances.195

The Ising model and integration-segregation frameworks are considered as the simplest approaches to196

capture dynamics in their respective fields. Thus, it is fitting to map segregated and integrated states in197

neuroscience to disordered and ordered Ising model phases in physics, respectively. One general198

challenge in applying graph theory to MRI-level data is identifying what constitutes a node (DeFelipe,199

2010; Lacy & Robinson, 2020; Seung, 2012; Sporns, 2010; Wig, Schlaggar, & Petersen, 2011; Yeo &200

Eickhoff, 2016). We identify the best number of effective brain regions Neff such that the Ising model201

accurately captures individuals’ synchrony distributions across the corresponding data set, improving202

upon our original application of the Ising model which lacked the Neff hyper-parameter (Weistuch et al.,203

2021). Future work will utilize Neff calculations to guide the creation of a parcellation in which brain204

regions are constrained to be physically independent based on their collective functional activity.205

The field is inundated with integration and segregation metrics that have different aging trends. We go206

beyond heuristic definitions, such as one that we previously proposed based on matrix decomposition207

(Weistuch et al., 2021), by self-consistently defining the two states within the Ising model framework.208

This makes our metric mechanistically based on the connection strength between regions and further209

stands out because Pseg and Pint are naturally at the emergent scale of the brain. We do not calculate a210

local property and then average over nodes to yield a brain-wide value ((Wang et al., 2021)’s metric also211

has this advantage). In addition, Pseg and Pint are directly related because Pseg + Pint = 1. Most212

integration and segregation metrics (Chan et al., 2014; Rubinov & Sporns, 2010; Tononi et al., 1994;213

Wang et al., 2021) are not defined to be anti-correlated. This could be advantageous because greater214

complexity can be captured (Sporns, 2010).215

Taken together, it is not surprising that Pseg and Pint results are not consistent with some previous aging216

reports. For example, a property called system segregation, defined as the difference between inter- and217

intra-correlations among modules, was found to decrease with age (Chan et al., 2014). Although most218

report that segregation decreases with age, regardless of the specific metric (Chan et al., 2014;219

Damoiseaux, 2017; King et al., 2018; Zhang et al., 2021) (see (Chen et al., 2021) for an exception),220

integration trends are less clear. Global efficiency, taken from graph theory, was found to increase with221

age (Chan et al., 2014; Yao et al., 2019); however, others found different integration metrics decreasing222
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with age (Chong et al., 2019; Oschmann, Gawryluk, & Initiative, 2020; Zhang et al., 2021), consistent223

with results reported here.224

The utility of the integration-segregation framework lies in its simplicity. However, its simplicity has225

led to various heuristic definitions that have qualitatively different aging trends. By physically defining226

integration and segregation based on connection strength between regions, we provide an interpretable227

foundation for more detailed studies going beyond the two-state approximation to investigate brain228

dynamics.229

METHODS

fMRI preprocessing230

We access three publicly available resting-state functional MRI data sets: Cambridge Centre for Ageing231

and Neuroscience (CamCAN) (Taylor et al., 2017), UK Biobank (UKB) (Alfaro-Almagro et al., 2018),232

and Human Connectome Project (HCP) (Harms et al., 2018). Acquisition details such as field strength233

and repetition time can be found in Table S5. Demographic details can be found in Table S6.234

UKB and HCP fMRI data are accessed in preprocessed form (for details see (Alfaro-Almagro et al.,235

2018) and (Glasser et al., 2018, 2013), respectively). We preprocessed CamCAN data as done in our236

previous work (Weistuch et al., 2021). For all three data sets, the cleaned, voxel space time series are237

band-pass filtered to only include neuronal frequencies (0.01 to 0.1 Hz) and smoothed at a full width at238

half maximum of 5 mm. Finally, we parcellate into 300 regions of interest according to the Seitzman239

atlas (Seitzman et al., 2020). For our voxel-wide analysis presented in the Supporting Information, we do240

not perform parcellation and just consider gray mater voxels by masking.241

Applying the Ising model requires the data to only take two possible values: −1 or 1. After performing242

the preprocessing outlined in the previous paragraph, we binarize the continuous signal for a given region243

based on the sign of the slope of subsequent time points (Weistuch et al., 2021). We previously showed244

that such binarization still yields similar functional connectivities as that of the continuous data245

(Weistuch et al., 2021).246

Finally, we only consider brain scans that have the same number of measurements as the predominant247

number of individuals in the respective data set (Table S5). If the fitted connection strength parameter λ248
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is less than 0, reflecting a nonphysical value, we do not include that individual’s brain scan in our249

analysis. In the HCP data set, we excluded individuals aged 90 years or older because their exact age,250

considered protected health information, is not available.251

Identifying the Neff hyper-parameter252

In Figure 2, our maximum entropy fit (orange line) fails to qualitatively capture the synchrony253

distribution for an arbitrary individual. To rescue the fit, we replace N with Neff (Equation S1). In the254

right plot of Figure 5, we demonstrate that a mean field Ising model with Neff = 40 accurately captures255

the fourth moment of synchrony 〈s4〉 across all individuals in CamCAN preprocessed under the Seitzman256

atlas. Note that Neff is not a parameter like Λ; rather it is a hyper-parameter because it takes the same257

value across all individuals within the data set. Neff is necessary because the Ising model systematically258

underestimates 〈s4〉 when Λ > 0 (left plot of Figure 5). Note that Λ corresponds to rescaling λ such that259

Λ = 0 is at the critical point (Equation S13).260

Figure 5. Adjusting the effective number of brain regions (Neff) helps capture synchrony distributions’ variances across individuals in the Cam-

bridge Centre for Ageing data set. Each data point corresponds to an individual.

261

262

To identify Neff = 40 as the best value, we perform a parameter scan over multiples of 5 and identify263

the Neff at which the root mean square error (RMSE) between 〈s4〉exp and 〈s4〉model is minimized (Figure264

6). We choose the fourth moment because it is the next order moment that our maximum entropy fit does265

not constrain. It is not the third moment because the distribution is assumed to be even as indicated by266

our prior (Equation S1).267
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Figure 6. The effective number of regions Neff is identified by minimizing the root mean square error (RMSE) of the fourth moment of synchrony

between theory and experiment across all individuals. Each data point corresponds to the sum over all individuals’ RMSEs in the respective data set. Note

that the y-axis should be scaled by 10−3.

268

269

270

Calculating Pseg271

The probability of the brain network being in the segregated state is the sum over all microstates272

corresponding to the segregated state.273

Pseg =

Neffs∗∑
n=−Neffs∗

P (n) (1)

Pseg =
1

Z

Neffs∗∑
n=−Neffs∗

(
Neff

(Neff + n)/2

)
eλn

2/N2
eff (2)

In the second line, the mean field Ising model’s P (n) is inserted (Equation S2). Z corresponds to the274

partition function and ensures that P (n) is normalized. The constant s∗ is the synchrony threshold for275

which segregated and integrated microstates are delineated. We set s∗ such that Pseg = 1/2 when Λ = 0276

according to theory. More specifically, we numerically calculate Pseg(Λ = 0) for a given Neff and277

extrapolate to find s∗ (Figure S19). Proper calibration ensures that the theory is accurate and enables278

apples to apples Pseg comparisons across data sets with different Neff. The list of s∗ values for the three279

publicly available data sets studied can be found in Table S1.280

Ising model simulation281
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We simulate the Ising model on an initial structure informed by diffusion MRI under the Harvard-Oxford282

atlas (Makris et al., 2006) (64 regions) for an arbitrarily chosen UK Biobank individual (subject ID:283

6025360). If no edge exists between two regions, then the regions are uncoupled. If an edge does exist,284

then regions i and j are coupled and contribute λ ∗ σi ∗ σj to the system’s energy; where λ corresponds to285

the connection strength and σ corresponds to the spin state of the corresponding region (−1 or 1). Under286

the standard notation of the Ising model, λ = J/T , where J corresponds to the coupling constant and T287

is the temperature of the bath. The starting λ is set to 34.4, which is above λ’s critical point (starting288

Pseg ≈ 0.2). By definition, Neff = N = 64 in the simulations. Based on atlas resolution, simulating the289

Harvard-Oxford atlas provides an Neff similar to those found for the experimental data (Neff = 40 for290

CamCAN and HCP; Neff = 30 for UKB).291

The simulation for a given structure starts by randomly assigning the 64 nodes up or down spins. Then,292

for each time step, we attempt 10 spin flips 64 times, for a total of 2500 time steps. Spin flips are293

accepted according to the Metropolis-Hastings algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, &294

Teller, 1953). The exact number of spin flip attempts or total time points does not matter, as long as295

equilibrium is reached. For example, we find that for λ values larger than those presented in the text,296

synchrony distributions become asymmetric and exhibit only one of the two peaks corresponding to the297

integrated state because of the high kinetic barrier of going from all down spins to all up spins.298

Although the starting structure is informed by diffusion MRI, resulting structures after computational299

edge removals are based on the posited removal strategy. Edges informed by dMRI are undirected and300

removal maintains undirectedness. Effectively two times as many edges are removed because both301

forward and backward edges are concurrently eliminated. In Figure S14, we demonstrate how synchrony302

distributions change as edges are computationally removed for a UK Biobank individual (subject ID:303

6025360), with a starting λ = 34.4.304

We also investigate other individuals’ structures in the UK Biobank to test the robustness of our305

qualitative results. We arbitrarily chose the following six individuals to widely sample different ages;306

subject IDs: 6025360 (51y), 4712851 (57y), 3081886 (61y), 1471888 (65y), 4380337 (72y), and307

1003054 (74y) (Figure S12). To ensure that the starting λ are comparable despite differing in the308

probability that two regions are connected (pedge), we set λ0 = 86.0 for all simulations such that309

λ = λ0 ∗ pedge. For example, for subject ID: 6025360, pedge = 0.40, thus the starting λ = 34.4.310
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Diffusion MRI analysis311

Diffusion MRI processing to obtain structural information such as tract length and streamline count,312

which we call tract density, is outlined in our previous work (Razban, Pachter, Dill, & Mujica-Parodi,313

2023). Briefly, we take preprocessed dMRI scans from the UK Biobank (Sudlow et al., 2015) and314

calculate connectivity matrices using the Diffusion Imaging in Python software (Garyfallidis et al.,315

2014). We input the Talairach atlas (Lancaster et al., 2000) to distinguish between white and gray matter.316

We perform deterministic tractography and reconstruct the orientation distribution function using317

Constant Solid Angle (Q-Ball) with a spherical harmonic order of 6 (Aganj et al., 2010). For Figure S16,318

we also do reconstruction using diffusion tensor imaging (Garyfallidis et al., 2014). To generate the319

starting structure for Ising model simulations, we input the Harvard-Oxford atlas for tractography320

because it parcellates the brain into fewer regions, making it more computationally tractable to carry out321

simulations and closer to Neff values found for experimental data.322

Code and data availability323

Scripts necessary to reproduce figures and conclusions reached in the text can be found at324

github.com/rrazban/2state brain. Please refer to the respective publicly available data set to access325

previously published data (CamCAN, UKB and HCP) (Alfaro-Almagro et al., 2018; Harms et al., 2018;326

Taylor et al., 2017).327
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SUPPORTING INFORMATION

Deriving the Ising model with Neff480

Many have derived the probability distribution of the mean field Ising model, otherwise known as the481

fully connected or Curie-Weiss Ising model (Friedli & Velenik, 2017; Kochmański, Paszkiewicz, &482

Wolski, 2013; Weistuch et al., 2021). Here, we demonstrate how to introduce Neff in a Maximum Entropy483

framework. The tricky part is that Neff defines the state space over which the probability distribution is484

summed.485

Adding a global pairwise correlation constraint, we obtain the following Lagrangian function L over486

the net displacement of spin states n =
∑Neff

i σi, where σi can take a value of 1 or −1.487

L =

Neff∑
n

P (n) ln
P (n)

q(n)
+ α

(
Neff∑
n

P (n)− 1

)
+ λ

(
1

(Neff)2

Neff∑
n

n2P (n)− 〈s2〉exp

)
(S1)

P is the probability distribution. q corresponds to the prior and is set to the binomial distribution488 (
N

(N+n)/2

)
2−N , where the binomial coefficient captures the number of ways individual spins can organize489

for a given n. α and λ correspond to the Lagrange multipliers that enforce the constraints that the490

probability distribution is normalized and the mean pairwise correlation equals 〈s2〉, respectively. The491

variable s corresponds to the synchrony, or commonly referred to as the magnetization in ferromagnetic492

applications, and is limited to vary from −1 to 1 because n = Neffs. This is the reason N does not have to493

be the same for 〈s2〉exp and 〈s2〉model; 〈s2〉 is always bounded between −1 and 1.494

Maximizing the Lagrangian function (Equation S1) with respect to P , we obtain the following495

distribution:496

P (n) = Z−1

(
Neff

(Neff + n)/2

)
eλn

2/N2
eff (S2)

P (s) = Z−1

(
Neff

Neff(1 + s)/2

)
eλs

2

(S3)

Z corresponds to the partition function and ensures that P is normalized. The α Lagrange multiplier is497

not present in the final expression because it is subsumed by Z.498
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Ising model phase transitions499

The Landau model is a general formulation to study phase transitions (Dill & Bromberg, 2012; Landau,500

1937). It takes the following form,501

F (T ) = A(T − Tc)η2 +Bη4 (S4)

η corresponds to the order parameter. F is the free energy and can be expressed as the probability for502

being in microstate i by the following relationship Fi = kbT lnPi. T is the temperature and Tc503

corresponds to the critical temperature at which a second-order phase transition occurs. A and B are504

constants.505

Here, we will express the Ising model’s probability distribution (Equation S3) in terms of the Landau506

formalism (Equation S4) by approximating the binomial coefficient as an exponential to order (s4). For507

brevity, we will write N to represent Neff. First, we use Stirling’s approximation to expand the binomial508

coefficient.509

(
N

N(1 + s)/2

)
= N ! [(N(1 + s)/2)! (N(1− s)/2)!]−1 (S5)

≈ NN

(N(1 + s)

2

)N(1 + s)

2
(
N(1− s)

2

)N(1− s)
2


−1

(S6)

= NN

(N2
)N(1 + s)

2 (1 + s)

N(1 + s)

2

(
N

2

)N(1− s)
2 (1− s)

N(1− s)
2


−1

(S7)

= NN

[(
N

2

)N
([1 + s][1− s])N/2

(
1 + s

1− s

)Ns/2]−1

(S8)

= 2N
[

1

1− s2

(
1− s
1 + s

)s]N/2
(S9)

To make further headway, we assume that s approaches 0 and expand Equation S9 to order s4.510
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(
N

N(1 + s)/2

)
≈ 2N

[
1− s2 − 1

3
s4

]N/2
(S10)

Next, we assume N is large and express the term under the brackets as an exponential.511

(
N

N(1 + s)/2

)
≈ 2N exp

[
−N

2
s2 − N

12
s4

]
(S11)

We can insert our approximate expression for the binomial coefficient back into P (s) (Equation S3)

and obtain,

P (s) ≈ Z−12N exp

[(
λ− N

2

)
s2 − N

12
s4

]
(S12)

Note that Equation S12 (after transforming into free energy space) maps onto Landau theory (Equation512

S4). s corresponds to the order parameter and λc = N/2. At λ = λc, P (s) switches from unimodal to513

bimodal, corresponding to a second order phase transition. We report a rescaled version of λ called Λ in514

Figure 5 and in other places in the Supporting Information to easily gauge how far an individual’s515

connection strength is from the critical point.516

Λ =
λ− λcritical

λcritical
(S13)

Alternative Neff fitting approach517

Rather than choose one Neff for all individuals in the data set as done in the main text, we could fit Neff518

for each individual. Figure S1 demonstrates that such a procedure results in Neff values that are highly519

linearly related with λ. In other words, more precise Neff fits do not provide any more insight than520

maximum entropy fits of λ for all individuals in a data set under one optimal Neff.521
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Figure S1. Treating Neff as a parameter and fitting it per individual yields a strong correlation with λ. Each point reflects an individual brain scan and N

reflects the total number analyzed. The value of the slope corresponds to that of the best-fit line for the data and is close to the predicted value of 0.5 (Equation

S15). N is smaller than that of Figure 3 because some scans failed to have a minimum 〈s4〉 RMSE within the explored bounds ofNeff (4-500) or λ values were

nonphysical by being less than 0.

522

523

524

525

The Neff-λ relationship can be reasoned from the analytical expression for P (s) (Equation S12). When526

Λ < 0, which many individuals satisfy (Figure S10), P (s) is well-approximated as a Gaussian.527

P (s) ∝ exp

[(
λ− Neff

2

)
s2

]
(S14)

Thus, the analytical form for 〈s2〉 is:

〈s2〉 = − 1

2λ−Neff
(S15)

Since λ is fit in the Maximum Entropy framework to exactly match 〈s2〉, Equation S15 indicates that a528

larger Neff requires a larger λ for a fixed 〈s2〉. Indeed, we find in Figure S1 that the best fit line of the529

Neff-λ relationship has an approximate slope of 0.5, in agreement with Equation S15.530

More supporting information531

–4–



== D R A F T ==

Journal: NETWORK NEUROSCIENCE / Title: Brain signaling becomes less integrated and more segregated with age

Authors: R.M. Razban, B.B. Antal, K.A. Dill, L.R. Mujica-Parodi

Table S1. Data set values for Pseg calculations under our particular fMRI preprocessing procedure (Methods).532

Data set effective number of regions Neff synchrony threshold s∗

Cambridge Centre for Ageing 40 0.334

UK Biobank 30 0.357

Human Connectome Project 40 0.334

Figure S2. Identifying the effective number of regions Neff for brain scans processed at the voxel-level. Each data point corresponds to the sum over all

individuals’ RMSEs in the respective data set.

533
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Figure S3. Individually fitted Neff values from Figure S1 are not related to the average number of white matter tracts per brain region (average degree) as

determined by diffusion MRI. The Q-Ball tractography method is used to analyze diffusion MRI scans (Methods). Data points correspond to individuals.

The variable ρ corresponds to the Spearman correlation coefficient between average degree and Neff calculated over all N individuals, with the p-value in

parenthesis.

535

536

537

538

Figure S4. Pseg rises on average in aging brains but varies greatly among individuals with the same age. Blue data points correspond to individuals. The

variable ρ corresponds to the Spearman correlation coefficient between age and Pseg calculated over all N individuals, with the p-value in parenthesis. Magenta

points are the exact same data points presented in Figure 3 for the corresponding data set. Note that the corresponding error bars are not visible in these plots.
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Figure S5. Pseg rises in aging brains across three Cambridge Centre for Ageing and Neuroscience age groups. Violin plots are presented, where middle

horizontal lines correspond to medians while lower and upper lines correspond to minimum and maximum values, respectively. Younger individuals are those

less than 35 years old (N=117); middle age, 40-60y (N=187); older, above 65y (N=209).

542

543

544

Figure S6. Standard deviations of Pseg per individual decreases as a function of age for CamCAN and HCP data sets. Data points correspond to medians,

while error bars correspond to standard errors for bins of 5 years. The variable ρ corresponds to the Spearman correlation coefficient between age and Pseg

calculated over all N individuals, with the p-value in parenthesis. Here, fMRI time-series data for an individual are equally split into 5 chunks and Pseg is

calculated for each chunk before taking its standard deviation. In the main text, fMRI data are not split up and the entire time-series is considered in calculating

Pseg.
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Table S2. Linear regression results for Pseg as a function of age550

CamCAN coefficient t statistic Prob> |t|

intercept 0.575 40.0 8.66E-176

age 0.0028 11.1 3.03E-26

UK Biobank coefficient t statistic Prob> |t|

intercept 0.556 69.1 <1E-300

age 0.0013 9.92 4.06E-23

HCP coefficient t statistic Prob> |t|

intercept 0.650 38.1 1.08E-171

age 0.0021 7.58 1.14E-13

Table S3. Multiple linear regression results for Pseg as a function of age and sex across the data sets.551

CamCAN coefficient t statistic Prob> |t|

intercept 0.583 39.0 1.22E-170

sex(T.male) -0.0163 -1.75 8.03E-02

age 0.0028 11.1 1.58E-26

UK Biobank coefficient t statistic Prob> |t|

intercept 0.561 70.8 <1E-300

sex(T.male) -0.0445 -23.7 6.17E-122

age 0.0015 12.1 8.79E-34

HCP coefficient t statistic Prob> |t|

intercept 0.668 39.6 1.92E-179

sex(T.male) -0.0500 -6.17 1.20E-09

age 0.0022 8.03 4.21E-15

Table S4. Multiple linear regression results for Pseg as a function of age, sex and handedness for the Human Connectome Project.552

HCP coefficient t statistic Prob> |t|

intercept 0.677 32.8 5.75E-143

sex(T.male) -0.0504 -6.20 9.72E-10

handedness(T.right) -0.0095 -0.76 4.48E-01

age 0.0022 8.00 5.59E-15
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Figure S7. Pseg rises in aging brains across three data sets regardless of sex. Data points correspond to medians, while error bars correspond to standard

errors for bins of 5 years. For UKB and HCP, we find that females’ brains have higher shifted Pseg values across age.
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Figure S8. Sex is fairly well-represented across age across the three data sets. Thus, observed Pseg aging trends cannot be attributed to the increasing

over-representation of one sex.
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Figure S9. Pseg roughly rises in aging brains regardless of handedness. Data points correspond to medians, while error bars correspond to standard errors for

bins of 5 years. Large error bars are seen for left-handed individuals because of small sample sizes (left plot).
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Figure S10. The rescaled connection strength parameter Λ moves further away from the critical point (Λ = 0) as age increases. Trends are similar in form

to Figure 3 because Pseg is a function of Λ (Equation 2). Data points correspond to medians, while error bars correspond to standard errors for bins of 5 years.

The variable ρ corresponds to the Spearman correlation coefficient between age and Λ calculated over all N individuals, with the p-value in parenthesis.

559

560
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Figure S11. Greater variance in simulations is seen when edges’ connection strengths λ are drawn from a normal distribution with mean 〈λ〉 and standard

deviation 3 ∗ 〈λ〉. At each consecutive step, 〈λ〉 is attenuated such that 5 edges are effectively removed per step (〈λ′〉 = 〈λ〉pedge) from the same starting

dMRI structure as in Figure 4 (UK Biobank subject ID: 6025360). Data points correspond to medians, while error bars correspond to standard errors for bins

of 5 years. Orange data points on the right plot correspond to individual Ising systems, where N reflects the total number. The variable ρ corresponds to the

Spearman correlation coefficient calculated over all orange data points between average degree and Pseg, with the p-value in parenthesis. Magenta data points

correspond to medians, while error bars correspond to upper and lower quartiles for bin sizes of one degree.
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Figure S12. Similar results for Ising simulations are seen as in Figure 4 for different UK Biobank individuals with different ages. Edges are randomly

removed as in Figure 4. Starting diffusion MRI structures are used from following subject IDs: 6025360 (51y), 4712851 (57y), 3081886 (61y), 1471888 (65y),

4380337 (72y), and 1003054 (74y).
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Figure S13. Edge removal mechanisms only matter in so much as they attenuate average degree for Ising simulations. In addition to randomly removing

edges as shown in Figure 4, we computationally remove edges based on targeted attack of tract density, tract length, and a node’s GLUT4 receptor density.

Edges are removed in sequential order, such that those with the largest value are removed first. For all properties except for random, we remove edges until

none are present for the same starting dMRI structure as in Figure 4 (UK Biobank subject ID: 6025360).
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Figure S14. Synchrony distributions transform from bimodal to unimodal as edges are randomly removed from UK Biobank subject ID: 6025360. The

parameter λ relates to edge removal because λ = λ0 ∗ pedge, where λ0 is a constant throughout the edge removal process and pedge is the probability that

two nodes share an edge (Methods).
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Figure S15. White matter volume decreases with age. White matter volume is measured by structural MRI provided by the UK Biobank. Data points

correspond to medians, while error bars correspond to standard errors for bins of 5 years. The variable ρ corresponds to the Spearman correlation coefficient

between age and white matter volume calculated over all N individuals, with the p-value in parenthesis. Error bars are plotted but are not visible because of

their minuscule size. N is larger than that of Figure 3 because all individuals with structural MRI scans are considered.
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Figure S16. White matter tract properties do not degrade as a function of age when using the Q-Ball method for tractography. However, they do degrade

with age when using the less accurate diffusion tensor imaging method. Data points correspond to medians, while error bars correspond to standard errors for

bins of 5 years. The variable ρ corresponds to the Spearman correlation coefficient between age and the corresponding property calculated over all available

individuals (N=16,649), with the p-value in parenthesis. Error bars are plotted but are not visible because of their minuscule size.
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Figure S17. Mean communicability across all brain region pairs does not decrease with age. Communicability is calculated based on tract density as measured

by the Q-Ball method for tractography (Methods). Data points correspond to medians, while error bars correspond to standard errors for bins of 5 years. The

variable ρ corresponds to the Spearman correlation coefficient between age and white matter volume calculated over all N individuals, with the p-value in

parenthesis. Note that the y-axis should be scaled by 10−6 and shifted by 1.0008.
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Figure S18. For the Cambridge Centre for Ageing and Neuroscience data set, the shortest edges (lower quartile) have average Pearson correlations or average

functional connectivities which correlate less than those of the longest edges (upper quartile). For the Human Connectome Project, the opposite is the case.

Edge distances are measured by center of mass coordinates of the brain regions based on the Seitzman atlas. Shortest and longest edges correspond to the

lower and upper quartile (25%), respectively. Only positive correlations are considered and diagonal elements are ignored. Data points correspond to medians,

while error bars correspond to standard errors for bins of 5 years. The variable ρ corresponds to the Spearman correlation coefficient between age and average

correlation calculated over all available individuals (NCamCAN = 640 and NHCP = 700), with the p-value in parenthesis.
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Table S5. Functional MRI acquisition parameters of the data sets.596

Data set field strength repetition time echo time flip angle voxel size total time points

CamCAN 3T 1970 ms 30 ms 78° 3x3x4.44 mm3 241

UK Biobank 3T 735 ms 39 ms 52° 2.4x2.4x2.4 mm3 490

HCP 3T 800 ms 37 ms 52° 2x2x2 mm3 1912

Table S6. Demographic information of the data sets for those individuals in Figure 3.597

Data set age range 〈age〉±std(age) sex

CamCAN 18-87 54.2±18.6 323F/313M

UK Biobank 45-79 54.8±7.4 8769F/7892M

HCP 36-90 59.6±14.9 380F/311M

Figure S19. The synchrony threshold s∗ is chosen such that it delineates between integrated and segregated states when Pseg = Pint = 1/2 (red line) at the

critical point (Λ = 0). This particular figure is created for 64 nodes; it must be set to the corresponding data set’s Neff to determine the appropriate synchrony

threshold.
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TECHNICAL TERMS

Integration a network state composed of global signaling.601

Segregation a network state limited to local signaling.602

State a particular combination of physical properties. Here, we assume that brain networks can only603

occupy either the integrated or segregated state.604

Ising model a classic model in physics that was first applied to ferromagnetism. It includes pairwise605

interactions between binary spin states.606

Phase interchangeable with the word ‘state’ for the purposes of this text.607

Critical Point the point where two phases coexist. In this text, it is where the synchrony distribution608

dramatically changes from bimodal (primarily integrated) to unimodal (primarily segregated).609

Maximum Entropy fit a fitting strategy that satisfies user-defined constraints in the most agnostic way.610

White Matter bundles of axons connecting brain regions.611
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