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Abstract

As a field, control systems engineering has developed quantitative methods to characterize the regulation of systems or
processes, whose functioning is ubiquitous within synthetic systems. In this context, a control circuit is objectively “well
regulated” when discrepancy between desired and achieved output trajectories is minimized and “robust” to the degree that
it can regulate well in response to a wide range of stimuli. Most psychiatric disorders are assumed to reflect dysregulation
of brain circuits. Yet, probing circuit regulation requires fundamentally different analytic strategies than the correlations
relied upon for analyses of connectivity and their resultant networks. Here, we demonstrate how well-established methods
for system identification in control systems engineering may be applied to functional magnetic resonance imaging (fMRI)
data to extract generative computational models of human brain circuits. As required for clinical neurodiagnostics, we show
these models to be extractable even at the level of the single subject. Control parameters provide two quantitative measures

of direct relevance for psychiatric disorders: a circuit’s sensitivity to external perturbation and its dysregulation.

Keywords fMRI - Circuit - Control - Controllability - Dysregulation - Perturbation - Stress - Dynamic causal modeling -

Psychiatry - Neuroblox

Control systems engineering, as a field, has developed quan-
titative methods to characterize the regulation of systems or
processes, whose functioning is ubiquitous within synthetic
systems, including thermostats and cruise control systems
(where the system is designed to use excitatory and inhibi-
tory inputs from a controller to regulate up or down to a
desired set point), as well as complex sensorimotor “cogni-
tive” control processes in robotics. What all these systems
have in common is a controller with feedback that modulates
inputs to achieve a desired aim. In this context, a control
circuit is objectively “well regulated” when discrepancy
(error) between desired and achieved output trajectories
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is minimized and “robust” to the degree that it can regu-
late well in response to a wide range of inputs (stimuli,
perturbations).

Previous work on network control theory (Gu et al., 2015;
Liu & Barabési, 2016; Medaglia et al., 2017) has used opti-
mal control to model network controllability in terms of the
energy requirements for shifting one network configuration to
another (e.g., mapping easy-to-reach versus difficult-to-reach
brain states). This work is highly relevant to understanding
the brain’s state transitions in response to exogenous inputs,
as the network’s structure identifies optimal “control” nodes,
whose stimulation exerts disproportionate influence upon
the system dynamics. At the same time, controllability omits
key features biomimetic to actual neural circuits. Network
controllability? thus far has been defined predominantly with
respect to structural constraints from diffusion tensor imag-
ing and how the network topology affects dynamic trajecto-
ries along the energy landscape. Yet, circuits in the brain, at
all scales, include excitatory and inhibitory influence, lags,
amplifiers, gates, and filters, as well as positive and nega-
tive feedback: biomimetic control elements whose variation
in functioning is not captured by whole-network trajectories.
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To successfully employ network control theory, we first
need to establish the directional connectivity of the network.
For this task, there are many techniques to choose from, includ-
ing Dynamic Causal Modeling (Friston et al., 2003, 2014; Fris-
ton et al., 2011; Li et al., 2011), Bayesian network analysis
(Ide et al., 2014; Mumford and Ramsey 2014), and various
causality measures (Smith et al., 2011). For this step, the big-
gest problem is the neural dynamics are most often measured
indirectly (e.g., convolved by the hemodynamic response in
fMRI) and therefore have to be treated as latent variables.

Dynamic causal modeling (DCM) (Daunizeau et al.,
2012; Friston et al., 2003, 2014; Friston et al., 2011; Li et al.,
2011) provides a generative framework for inferring effective
(directed) connectivity and explains how the dynamics in one
neural population cause the dynamics in another, as well as
modulation of this interaction due to endogenous activity or
experimental manipulation. DCM 1in its various forms accom-
plishes this by combining a model of the latent neural activity
and a model of how these activities translate into the measured
time series (e.g., fMRI, M/EEG), with subsequent solving of
the inverse problem using variational methods. DCM excels at
fitting a specific model to time-series data. Our method builds
on DCM’s strengths: analogous to principle component analy-
sis, our method decomposes the dynamics of the control circuit
into dynamical eigenmodes and associated parameters.

Extending the capabilities of functional magnetic resonance
imaging (fMRI) from connectivity to circuits matters because
the assumption is that brain circuit dysregulation plays a key
role in the etiology of most psychiatric disorders (Godsil et al.,
2013; Gunaydin & Kreitzer, 2016; Insel et al., 2010). Indeed,
disorders outside the brain often involve a breakdown in the
control circuit’s ability to maintain homeostatic control (Tor-
day, 2015) to a specific setpoint (e.g., glucose levels in diabe-
tes) or allostatic regulation (McEwen & Wingfield, 2003) in
the control circuit’s ability to not only respond to the environ-
ment but also return efficiently to baseline (e.g., autonomic
regulation in heart disease). Two reasons to suspect that at
least some psychiatric disorders implicate allostatic disrup-
tion (McEwen, 2003) are their vulnerability to perturbation
in the form of emotional stress (commonly seen in first-break
psychosis and relapse) and trajectories with prominent oscil-
lating features (e.g., bipolar disorder and addiction). Candidate
circuits that have been consistently implicated in psychiatri-
cally relevant symptoms include the prefrontal-limbic circuit
(Kalin, 2019; Mujica-Parodi et al., 2017) (threat processing,
as per anxiety and paranoia), the cortico-striatal circuit (Gu
etal., 2010; Koob & Volkow, 2010) (reward processing, as per
anhedonia and addiction), the cortico-thalamic loop (Maia &
Frank, 2011; Peters et al., 2016; Hazlett et al., 2015) (sensory
processing, as per attentional deficits and hallucinations), and
combinations thereof. As evident even from the nomenclature,
all three circuits have significant overlap as well as mutual
feedback. Regardless of which circuit(s) is chosen for study,

however, probing their regulation will require analytic strat-
egies that differ fundamentally from the correlations relied
upon for analyses of connectivity and their resultant networks.
Ultimately, the value added by neuroimaging-derived control
circuits is the promise to predict trajectories, not only to vali-
date the field’s models but also to have them predict individual
variability in clinical outcomes (Sultan et al., 2022).

With these applications in mind, our focus here is mod-
eling fMRI data at the single-subject level, with the aim of
extracting critical control parameters that might account for
individual variability. To optimize neuroimaging data for
this approach, we leveraged a unique dataset (Gordon et al.,
2017) that used longer than typical resting-state scans (30 min
each) and that scanned each participant ten times to assess
individual-specific test-retest reliability. From this dataset
we demonstrate how well-established methods for system
identification (Ljung, 2010) in control systems engineering
may be applied to fMRI data. In doing so, we generate two
quantitative measures of direct relevance for psychiatric dis-
orders: the circuit’s sensitivity to external perturbation (its
responsivity to stimuli or “stress”) and its control error (how
well it achieves its desired state, with respect to both pro-
cessing information and maintaining allostasis). As shown
in Fig. 1, our general strategy has three parts. The first step
is to identify the circuit architecture. For all nodes, we deter-
mine each node’s direct inputs using dynamic causal modeling
(Friston et al., 2014) (DCM). Thus, we define the basic struc-
ture, including feedback loops. The second step is to identify
the circuit functionality (in control systems engineering, this
process is called “system identification). We use a linear
state-space model to obtain parameters for the difference
equation (transfer function) that best specifies how each node
transforms its inputs to outputs. This transfer function, which
takes the form of an autoregressive model with exogeneous
inputs (ARX), describes each node by a finite number of hid-
den dynamic eigenmodes with characteristic frequencies and
damping ratios. These transfer functions link together to form
a putative circuit, which we can validate by predicting the sys-
tem’s response against independent validation datasets. One
important difference between our method and DCM is that we
model the measured time series rather than the latent neural
dynamics. By doing so, we can use state-space models of
higher order than is possible in DCM, which allows us to sep-
arate the dominant dynamic eigenmodes for further analysis.
We anticipate that the hemodynamic response will predomi-
nantly contribute to the slower dynamical eigenmodes. The
third step is to probe the system. By testing the system with a
gradient of inputs of different frequencies (impedance meas-
urements) and colored noise, we explore the full landscape of
the circuit’s possible behaviors. In particular, we want to pay
attention to which parts of the control circuit are exponen-
tially growing, which are decaying, and which are oscillat-
ing. By calculating the impact of the system’s damping ratio
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Fig.1 Overview of the proposed framework for quantifying control
circuit regulation in the human brain. a The first step involves obtain-
ing the circuit architecture for selected nodes by establishing inputs
to each node via causal inference, thus forming a directed network. b
The second step identifies circuit functionality using system identifi-
cation to obtain a linear state-space model for each node. The directed
network representation allows identifying each node’s transfer func-

and frequency ratio on the modulation of inputs, we obtain
a measure of sensitivity to external perturbation. Finally,
we calculate the control error, which provides a quantitative
measure of how well regulated or dysregulated the circuit is.

Details of the Proposed Framework
Functional MRI Data

We applied the methods described below to 5 h of resting-state
data for ten subjects (mean age 29.1 3.3 years, five women),
collected over ten subsequent days (30-min resting-state scan
each day) acquired on a Siemens TRIO 3T MRI scanner (Mid-
night Scanning Club, MSC (Gordon et al., 2017)). Informed
consent was obtained from all participants (Gordon et al.,
2017). The study was approved by the Washington University
School of Medicine Human Studies Committee and Institu-
tional Review Board (Gordon et al., 2017). These included
a total of four T1-weighted images (sagittal, 224 slices, 0.8-
mm isotropic resolution, echo time (TE)=3.74 ms, repeti-
tion time (TR)=2400 ms, inversion time (TT)=1000 ms, flip
angle=_8°), four T2-weighted images (sagittal, 224 slices, 0.8-
mm isotropic resolution, TE=479 ms, TR =3200 ms), four
magnetic resonance angiographies (transverse, 0.6 x0.6x 1.0
mm, 44 slices, TR =25 ms, TE=3.34 ms), and eight magnetic
resonance venographies, including four in coronal and four
in sagittal orientations (sagittal 0.8 X 0.8 X 2.0 mm thickness,
120 slices, TR =27 ms, TE=7.05 ms; coronal 0.7 X 0.7 X 2.5
mm thickness, 128 slices, TR =28 ms, TE=7.18 ms). All
functional imaging was performed using a gradient-echo
echo-planar imaging (Ciuciu et al., 2012) sequence (TR =2.2
s, TE=27 ms, flip angle=90°, voxel size=4 mm X4 mm x4
mm, 36 slices).
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tion as a multi-input single-output 3! system. For example, the MISO
model for node y uses inputs from nodes u, and u,. ¢ The final step
involves probing the system using simulated inputs to quantify sensi-
tivity to perturbations and measuring how well regulated or dysregu-
lated the circuit is (control error). Systems with a low damping ratio
are prone to stronger oscillatory behavior and thus more sensitive to
perturbations than systems with high damping

The data were spatially preprocessed in CONN toolbox
(Whitfield-Gabrieli & Nieto-Castanon, 2012) by func-
tional realignment and unwarping, slice-timing correction,
segmentation, and Montreal Neurological Institute (MNI)
normalization. The data were temporally preprocessed by
physiological noise correction using CompCor (Behzadi
et al., 2007) (regressing five components of white matter and
cerebrospinal fluid), regressing six motion parameters and
bandpass filtering (0.008-0.1 Hz (Hallquist et al., 2013)),
followed by spatial smoothing with a 4-mm full width at half
maximum Gaussian kernel.

Identifying the Circuit Architecture

Selecting Nodes A node is the smallest entity of a circuit,
representing a group of voxels that share similar temporal
dynamics, with a neurobiological meaning and interpret-
ability. “Node” is a term common within network science
and graph theory, and it is commonly used in the functional
connectivity literature interchangeably with “region of
interest.” In our framework, a node acts as a brain region
being controlled, a region exerting control, or both. In task-
based designs, nodes are inferred via general linear mod-
eling (GLM), whereas resting-state analyses typically select
nodes using independent component analysis (ICA), with
constraints on spatial properties (e.g., nodes may or may not
overlap) and extent (whole-brain sampling vs. targeted sam-
pling). Hypothesis-neutral (i.e., data-driven) methods include
spatial ICA (sICA) for identifying spatially independent
components, probabilistic functional modes (Harrison et al.,
2015) (PROFUMO) for identifying modes of coherent activ-
ity, bottom-up parcellation schemes such as k-means cluster-
ing or spatially constrained hierarchical clustering (Blumen-
sath et al., 2013) for organizing smaller units into a region,
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Fig.2 Large-scale resting-state dynamic causal modeling provides » a COI‘tlca| NOdeS

directed networks for obtaining the “input—output/cause-and-effect”
relationship among nodes. a Masks for cortical and subcortical nodes.
b Effective connectivity matrix for a representative subject, generated
using spectral dynamic causal modeling, providing directed graphs. A
circuit in the directed graph is simply a closed path formed by travers-
ing the graph such that the first and the last nodes are the same, with
no other node repeating during the traversal. ¢ Effective connectivity
varies significantly across subjects; hence, for a given node, there is
wide variation in inputs driving the node across subjects. The cou-
pling similarity is calculated using the Dice coefficient on any two
effective connectivity matrices

and top-down parcellation using instantaneous connectivity
(Oort et al., 2018). However, for testing hypothesis-driven
brain circuits (Mujica-Parodi et al., 2017) or studying clinical
populations with well-characterized regions of interest (Koob
& Volkow, 2010; Maia & Frank, 2011) across the literature
on brain disorders, predefined anatomical or functional nodes
can generate comparable quantitative inferences. We used the
Yeo parcellation (Yeo et al., 2011) to define cortical nodes b
and combined them with subcortical nodes obtained using
the Harvard—Oxford Atlas. Using predefined nodes can lead
to the mixing of blood oxygen level-dependent (Gordon
et al., 2017) time series because of variability in brain struc-
ture across individuals or averaging of voxels contributing
to cognitive process—induced activity with unrelated activity
within a node. Therefore, we used the first eigenvariate (the
highest variance-contributing component in the orthogonal
decomposition of all time series within a node) instead of an
averaged time series for a node.
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requires capturing both temporal precedence and control.
Lag-based methods (Granger causality, transfer entropy)
using temporal precedence as the governing principle
have been shown to perform poorly with fMRI data
(Smith et al., 2011), whereas methods based on statisti-
cal properties of the observed time series (Patel’s Tau,
Bayes Net methods) perform comparatively better (Smith
et al., 2011). Establishing causality using BOLD signal is
notoriously difficult because of the slow hemodynamic
response function, which low-pass filters neuron-driven
dynamics. Further, the hemodynamic response varies
across subjects and brain regions within a subject, inter-
fering with the causal inference. Finally, the fMRI data
exhibit a low signal-to-noise ratio (Kumar et al., 2021),
which is typically addressed with preprocessing and
denoising. However, these very steps used to amplify the
signal can significantly distort its dynamics and therefore
causal inferences drawn from the dynamics.

Given the limitations of fMRI data, the most widely
used and validated method to establish causality using
fMRI has been DCM (Friston et al., 2003). DCM uses
a generative framework to model the hemodynamic
response with hidden physiological states and a non-
linear observer function. DCM is causal in the control-
theoretic sense because it explains how the dynamics in
one neural population causes the dynamics in another, as
well as modulation of this interaction due to endogenous
activity or experimental manipulation. Bayesian inversion
provides posteriors for model parameters along with log
model evidence to compare different DCMs with varying
directed links among nodes. Recently, spectral DCM 5,
37] (spDCM) was introduced for modeling resting-state
fMRI, which can invert large-scale graphs of the order
of 36 to 64 nodes compared with fewer than ten nodes
with stochastic DCM (Li et al., 2011). Stochastic DCM
inverts data in the time domain and requires estimating
both time-variant hidden states and time-invariant model
parameters, posing a computationally demanding inverse
problem. Comparatively, spDCM inverts a deterministic
model, requiring estimation of only time-invariant model
parameters that explain the cross-spectra of observed data.
The inversion efficiency is increased further by using func-
tional connectivity modes to place prior constraints on
undirected graph structure, followed by obtaining sparse
representation using Bayesian model reduction of a fully
connected graph (Razi et al., 2017).

For the sample dataset, we identified inputs using spDCM
for our 31 nodes for each subject’s ten resting-state sessions
(SPM 12, rev 7771). We then estimated the group parametric
empirical Bayes (PEB) model using each subject’s data (ten
sessions) and applied Bayesian model reduction to prune
away parameters that did not contribute to model evidence
and obtained a subject-specific effective connectivity matrix

@ Springer

(Fig. 2b). In general, we found that feedback connections
appeared to have stronger coupling than feedforward con-
nections. We demonstrated that effective connectivity differs
across each subject (Fig. 2c), which suggests that the feed-
back/feedforward control exerted on each node is individ-
ual-specific and must be inferred as such. This is consistent
with previous work that has established that while structural
connectivity shows strong commonality across individuals,

functional connectivity shows significant individual vari-

ability, particularly in the cortex (Bergmann et al., 2020;
Mueller et al., 2013). Since the cortex provides critical feed-
back within cortical-subcortical control circuits, extraction
of individual-specific circuit architecture can increase accu-
racy for estimation of individual-specific control parameters.

Identifying the Circuit Functionality

Generating Transfer Functions for Each Node Establishing
causality renders a multi-input single-output system, where a
node receives input from other brain regions, with the meas-
ured time series of the node as its response. We approximate
the model for a given node using a discrete-time, linear time-
invariant stochastic system of model order m using:

Xpp1 = Ax + Buy +wy ]
Vi = Cx; + Duy + v, M

where y, € R is the measured BOLD signal of the node,
u;, € R” corresponds to the input from other brain regions/
nodes that were determined previously, and x, € R™,
w, € R™, and v; € R represent the hidden node’s state,
state noise (process noise), and measurement noise, respec-
tively. A € R™"™ is referred to as system matrix, B € R"™*"
as input matrix, C € R as output matrix, and D € R as
feedthrough matrix. For an observable system, state estima-
tion follows from

/')Ek+1 =A36\k+Buk+K(Yk—C¢x\k—Duk) (2)
where K is the Kalman gain and
ey =y — CX + Duy, 3)

represents the white noise innovation process. Using Eqs.
(2) and (3), we can write the predictor form of Eq. (1) as

Xpy1 = Zxk + Euk + Ky,

4
Vi = Cx; + Duy + e, @)

where A = (A —KC)and B= (B — KD). We seek to estimate
free parameters such that given the input matrix, u,, and the
initial state estimate, xAO, the model produces output y’}( that
approximates y, with good accuracy. By iterating (4), we
can write
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Fig.3 Node-level system identification provides a generative model
for each node (brain region). a Fisher Z-transformed correlation coef-
ficient between the observed fMRI output, y,, and the predicted out-
put,y, (prediction skill), for the 10th scan for each node across all
subjects at various model orders (m). System identification for esti-
mating each node’s state-space model was performed using data from
nine subsequent fMRI scans, and data from the 10th scan were used
for testing (out-of-sample testing). Error bars indicate standard devia-
tion across all 31 nodes. b Hankel singular value decomposition for
a node, for a representative subject, showing each state’s contribu-

p—1
X = ZAZ [Kyk—l—lB”k—l—l] + A%, &)
1=0

where p indicates the past horizon. We now define a finite
future stacked vector of outputs with the future horizon, f,
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tion in shaping the input—output behavior. Low-order models govern
the input—output behavior and low-energy states can be discarded for
obtaining simpler models, as evident also from a (m=10 vs. m=25).
¢ Prediction skill, on 10th-day test data, as a function of the number
of data points. Each point represents mean across all nodes and sub-
jects. d Predicted output, y, 52 for 100 Monte Carlo simulations using
perturbations to uncertain model parameters. As the number of data
points/time-series samples increases (from Q=808 to Q=7272) for
system identification, model uncertainty decreases

yk,f = ka + ¢uk,f + lIka,f + @k’f (6)
where
@)
0 0 0
CK 0 0
¥=| cik CK
Nf:_1 ' ’
cA k- CK 0

T
asy,; = [yl Yooy - y,f+f_1] . Finite future stacked vectors

of inputs, 1, 1 and innovations, e, 1o follow the same defini-
tion. We can rewrite Eq. (4), using Eq. (5) and finite stacked
vectors, as

Importantly, note that @ and ¥ contain the predictor
Markov parameters, T is the extended observability matrix,
and choosing a large p causes AP ~ 0 with x; represented by
a linear combination of past inputs and outputs. Due to pres-
ence of feedback, e, r is correlated with u; f and hence,we
use the procedure specified by Jansson (Jansson, 2003) to

@ Springer
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Fig.4 Implementing a synthetic circuit to mimic a node. a Basic
building blocks for realization, using hardware, of a transfer function
or computation carried out by a node. The computational algorithm
of a discrete linear time-invariant system can be represented using the
summing junction, gain, and unit delay/memory/storage element. b
Block diagram shows that any given mth-order transfer function can
be realized using the basic building blocks. If the number of delay
elements in a realization using hardware is equal to the order of the
difference equation, the realization structure is called a canonical
structure

pre-estimate a high-order ARX model and obtain unstruc-
tured estimates of the Markov parameters to form estimates
@ andy. Using the estimates ¢ andiy, we can obtain

Vip =Yg = Puy = Wy =Ty + €y ®)

where the term ¢, ; is uncorrelated with u, ;. The coefficient
I and unknown coefficients of past inputs and outputs of x;
(Eq. (5) with AP ~ 0) in Eq. (8) can then be estimated using
least squares followed by singular value decomposition.
The model order, m, defines the model complexity and
is a parameter of choice in the identification procedure.
The choice of m can be based on either tuning m to obtain
Markov parameter estimates that provide good prediction
skill, as quantified by the correlation between the predicted
(¥,) and the observed (y,) output, or by computing the num-
ber of dominant states, using Hankel singular values, that
closely approximates the observed model response (y;).
Hankel singular values provide a measure for energy of each
state and are calculated as the square root of the eigenvalues

@ Springer

for the product of the controllability and the observability
Gramians.

Validating a Putative Circuit by Comparing Predicted Tra-
jectories Against Independent Data Estimated state-space
models, using training data for each node across all subjects,
showed high accuracy in approximating the fMRI output
for the test data (Fig. 3a). Further, the dynamics were well
approximated by low-complexity models (Fig. 3b). Increas-
ing the number of data points in the system identification
procedure improves the prediction skill and reduces uncer-
tainty in the obtained parameter estimates (Fig. 3c, d). The
state-space model (Eq. 4) of a node essentially represents
coupled difference equation (or differential equation for con-
tinuous time), as an input—output transfer function expressed
as C(zI — A)™'B + D. Therefore, the input—output transfer
function represents a node as a computational unit built
using three building blocks (Fig. 4).

Probing the System

Calculating a Circuit’s Sensitivity to External Perturba-
tion Neural information processing is shaped by oscilla-
tory dynamics that support cognitive control by modulating
excitability in neuronal populations (Buzsaki & Draguhn,
2004; Fries, 2005). The oscillatory dynamics could amplify,
sustain, or dampen a given input for efficient cognitive pro-
cessing, with abnormal dynamics inducing psychopathology.
For example, dysfunctional neural synchrony due to deficits
in y-aminobutyric acid (GABA) neurotransmission has been
associated with cognitive dysfunction in schizophrenia (Uhl-
haas and Singer 2010). The dynamic states associated with
each node in a circuit are regulated by its neural activity,
local neurotransmitters, and the balance between inhibitory-
excitatory control inputs (Liljenstrom, 2003), along with
coupling strength and timing delay. Probing the learned
dynamics of a node through state-space identification using
fMRI measurements combines the effect of regional neural
activity, local neuromodulation, and the excitatory or inhibi-
tory control inputs to the node. With available state-space
models for each node (Egs. (1)—(8)), we can estimate the
regulated behavior (both self-regulation and control exerted
by feedback/feedforward control inputs) of each node using
information about the eigenvalues of the system matrix, A.
Location of the eigenvalues (poles of a transfer function
are the eigenvalues of the system matrix), in the s-plane
(Laplace domain) for continuous time or z-plane for discrete
time, provides the damping ratio and the natural frequency
of a given system (Fig. 5).

Tracking damping ratio and natural frequency of nodes
longitudinally for a subject provides a way to understand
trajectories of clinical onset and relapse (Buzsdki and
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Fig.5 Location of the poles provides an estimate of the damping
ratio and the natural frequency of a system. A series resistor-induc-
tor-capacitor (RLC) circuit is a damped harmonic oscillator and
described by a second-order differential equation or a second-order
transfer function (admittance) in Laplace domain (continuous time,
s-domain) or Z-domain (discrete time, as for fMRI measurements).
Z-transform maps a continuous-time system to a discrete-time system
under the transformation z = ¢*7 for a sampling time period T. The
imaginary axis of the s-plane maps on the unit circle Izl=1, the left

Watson 2004), including changes to circuit dynamics due
to pharmacological intervention (Wandschneider & Koepp,
2016). For a given node, the damping ratio and frequency
ratio (ratio of the input frequency versus natural frequency)
induce phase shift in an incoming input from another brain
region, as shown in Fig. 6a. This phase shift, in turn, affects
functional connectivity, measured by pairwise Pearson cor-
relation between nodes.

The dynamics of a transfer function are dependent on both
zeros and poles (the frequencies for which the value of the
numerator and denominator of a transfer function becomes
zero, respectively), as required to create oscillations. The
simplest system that has both zeros and poles in its transfer
function is a second-order resistor-inductor-capacitor (RLC)
circuit; by using RLC as a general framework, therefore, we
can allow experiments to identify the neural circuit’s topol-
ogy while still being able to quantify the impact of zeros and
poles on system response. Functional connectivity in neuro-
imaging is typically characterized by Pearson correlations
between time series. In contrast, we demonstrate the effect
of phase shift by quantifying Pearson correlation (connectiv-
ity) between a pink-noise input signal and its corresponding
output for the series RLC circuit, at varying damping ratio
and natural frequencies (Fig. 6b). In Fig. 6¢, we show the
damping ratio and natural frequency of left amygdala for a
representative subject at two different model orders, m=2
(blue) and m =10 (red), on a pole map. Even though the m=2
model identifies poles at similar locations than the m =10
model, Fig. 3a shows that m =2 is not sufficiently deep to fit
the data well. We further show the distribution of functional

half of the s-plane maps inside the unit circle Izl=1, and the right half
of the s-plane maps outside the unit circle in the Z-domain. The poles
of the transfer function, computed by finding roots of the character-
istic equation, determine the oscillatory behavior of the system. For
example, for a second-order system, conjugate poles on imaginary
axis (s-plane) or on the unit circle (Z-domain) lead to an undamped
oscillator. In general, for a discrete-time system with pole location z
and sampling time 7, the damping ratio is given by { = —cos(«In(z))
and natural frequency is given by wy = |$|

connectivity between inputs (having pink-noise spectra) to
a node and its corresponding output for a sample subject
(Fig. 6d), illustrating how node dynamics explain synchrony
or asynchrony with its input nodes. Changes in synchrony
arising because of self-regulation, or rerouting of connec-
tions as quantified by causality analysis, or neuromodulatory
effects of a pharmacological intervention are easily quantified
by applying simulated inputs to a node’s generative model
built across time and in response to treatment.

Brain circuits must ideally maintain stability while also
being responsive to relevant stimuli (Liljenstrom, 2003). For
an intuitive understanding, we demonstrate how the damping
ratio and frequency ratio affect magnitude gain and hence sen-
sitivity to inputs in a second-order resistor-inductor-capacitor
(RLC) circuit (Fig. 7b). We extend the analysis to observing
the sensitivity of brain regions to input perturbations of vary-
ing frequency content (healthy resting-state fMRI signals fol-
low pink-noise 1/f frequency spectra) (Fig. 7a). Inputs with
frequency spectra other than pink noise simulate the effect of
a perturbation by environmental noise, with Fig. 7c showing
more sensitive regions that have an abnormally high magnitude
gain at non-pink-noise inputs (e.g., regions 10 and 27 for sub-
ject 1 and regions 6, 18, 25, and 29 for subject 10 in Fig. 7c).

Calculating Control Error as a Quantifiable Measure of Reg-
ulation/Dysregulation of the Circuit Feedforward input to
a system pushes the system in a predetermined direction,
without knowing the error signal (the difference between
the desired and the actual state). In contrast, the feedback
control actuates the system based on the error signal in a
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Fig.6 Damping ratio and the natural frequency modulate connectiv-
ity among brain regions. a When subjected to a sinusoid input, a lin-
ear time-invariant system can induce a change in the amplitude or the
phase at the output while maintaining the same output frequency as
the input. The phase shift is dependent on the damping ratio and the
frequency ratio (ratio of driving input frequency, oy, and the natural
frequency, wy), as shown for the second-order series resistor-induc-
tor-capacitor (RLC) circuit. b Effect of phase shift by quantifying
Pearson correlation (connectivity) between a pink-noise input sig-
nal and its corresponding output for the series RLC circuit, at vary-
ing damping ratio and natural frequencies. ¢ The damping ratio and

direction that reduces the error at each consecutive time
step. A commonly used performance metric for the design
and optimization of controllers (e.g., a proportional—inte-
gral-derivative controller) in engineering control systems
is the steady-state error (the error of a system as the time
approaches infinity). The control enacted on each node/brain
region combines both the feedback and feedforward control
inputs, and we can calculate the steady-state error or efficacy
of the enacted control using the final value theorem with a
step input. For a final steady-state value F, the control error
(CE) is calculated as CE = |1 — F| (Fig. 8a). We demonstrate
that CE varies across regions for each subject (Fig. 8b). For
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natural frequency of left amygdala for a representative subject at two
different model orders, m=2 (blue) and m=10 (red). Lower com-
plexity models enable comparison with standard engineering control
systems; however, they suffer from low prediction accuracy (Fig. 3a).
d Simulating each node’s response to pink-noise inputs (all inputs to a
node are distinct and randomly generated) followed by calculation of
Pearson correlation (connectivity) between each input and the output
of the node, for a representative subject. The input—output pairs repre-
sent nodes that can show synchrony, anti-synchrony, or no synchrony
characterized by the input—output transfer function

a single subject, tracking CE longitudinally will provide an
assessment of coupling efficiency between brain regions
in a circuit for enacting control. A systematic increase in
steady-state error longitudinally would indicate circuit-level
dysregulation.

Conclusion

Currently, standard neuroimaging analytic tools are con-
ceptually and mathematically optimized for quantifying
activation and connectivity, rather than circuits and their
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Fig.7 Measuring sensitivity to external perturbations using mag-
nitude gain. a Spectra for various colored (power law,f®) noise. b
Effect of damping ratio and the frequency ratio on magnitude gain/
amplitude modulation of the input sinusoid for the series resistor-
inductor-capacitor (RLC) circuit. ¢ Magnitude gain for colored-noise
inputs (healthy brain exhibits pink-noise spectra) for testing sensitiv-
ity to external perturbations. The representative subjects show abnor-
mally high magnitude gain at non-pink-noise inputs for certain nodes,

with node 18 for subject 10 showing higher than average behavior
even for a pink-noise input, indicating a potential failure/susceptible
point. Sensitivity thus may be a parameter that can be tuned differ-
ently according to characteristics of external sensory stimuli, popu-
lation, and/or symptom severity. For example, noisy stimuli are
typically damped in a healthy brain but might not be as damped in
disorders, like schizophrenia, which are characterized by impaired
sensory gating >
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Fig.8 Quantifying regulation/effectiveness of endogenous control
using control error. a Steady-state response of two nodes, for a rep-
resentative subject, showing varying amounts of deviation from the
desired set point. The closer the final steady-state value is to 1, the
lower the control error, and the better the circuit regulation. b Con-

trol error (CE) calculated for each node for a unit-step input using the
final value theorem, showing wide variance among nodes and across
subjects. The blue and black boxes for subject 2 correspond to the
control error demonstrated in a
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regulation. Here, we provide a proof of concept for how
control systems engineering techniques may be adapted to
fMRI, to extend our neuroimaging capabilities in quanti-
fying individual-specific circuit dynamics. In our simple
model, we demonstrate how we can quantify two key fea-
tures of direct relevance to understanding onset and relapse
in psychiatric disorders: a circuit’s sensitivity to perturba-
tion and its degree of dysregulation. This framework may
be expanded to include more complex architectures (e.g.,
linked positive and negative feedback loops) and additional
functions (e.g., gating, gain, and lag), as required to model
specific circuits and/or disorders (Mujica-Parodi et al., 2017;
Sultan et al., 2022). One important consequence of genera-
tive models is that they permit simulations, and therefore
prediction, of future trajectories under various conditions.
Thus, control circuit models go beyond descriptive or con-
ceptual utility, permitting us to more rigorously validate
(and falsify) models than current statistical practice (Mujica-
Parodi & Strey, 2020).

While we present these techniques here in the context
of fMRI, the system identification process is streamlined
and improved with the superior temporal resolution and
dynamic fidelity of time series made possible by magne-
toencephalography (MEG), electroencephalography (EEG),
or local field potentials (LFP). We started with fMRI for
two reasons. First, psychiatry-specific control circuits
typically rely critically upon both cortical and subcortical
components. The reliance on high-fidelity subcortical time
series introduces technical challenges for cortical modali-
ties such as M/EEG, and the non-homologous structure
of the neocortex across species is a different challenge for
invasive modalities such as LFP. Second, fMRI is currently
the dominant experimental tool in human neuroscience,
and psychiatric disorders are still generally understood as
human disorders. Thus, although fMRI is the hardest use
case for quantifying control circuit regulation, it is also the
modality in which achieving this goal can have the great-
est clinical impact. As fMRI technology advances toward
higher magnetic field strengths, data continue to improve
both in terms of temporal resolution and signal-to-noise
ratio (Lewis et al., 2018). This in turn reduces the need for
the long time series that were used in our analysis and thus
suggests feasibility of our approach for individualized diag-
nostics with respect to regulation of neural control circuits.
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