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Abstract

The shift of energy production towards renewable, yet at times inconsistent, resources like solar and wind
have increased the need for better energy storage solutions. An emerging energy storage technology that
is highly scalable and cost-effective is the redox-flow battery comprised of redox-active organic materials.
Designing optimum materials for redox flow batteries involves balancing key properties such as the redox
potential, stability, and solubility of the redox-active molecules. Here, we present the Data-enabled
Discovery and Design to Transform Liquid-based Energy Storage (D3TalES) database, a curated data
collection of more than 43,000 redox-active organic molecules that are of potential interest as the redox-
active species for redox flow batteries with the aim to offer readily accessible and uniform data for big
data metanalyses. D3TaLES raw data and derived properties are organized into a molecule-centric schema,
and the database ontology contributes to the establishment of community reporting standards for
electrochemical data. Data are readily accessed and analyzed through an easy-to-use web interface. The
data infrastructure is coupled with data upload and processing tools that extract, transform, and load
relevant data from raw computation or experimental data files, all of which are available to the public via
a D3TaLES API. These processing tools along with an embedded high-throughput computational workflow
enable community contributions and versatile data sharing and analyses, not only in redox-flow battery

research but also in any field that applies redox-active organic molecules.



Introduction

Increasing use of renewable yet inconsistent energy sources like solar and wind demands better energy
storage solutions. An emerging energy storage technology that is highly scalable and cost-effective is the
redox flow battery (RFB).)* The RFB decouples energy capacity and power by separating the
electrochemical reactions from stored electrochemical energy, allowing the battery to store large
quantities of energy cheaply and safely.! The battery consists of two tanks of solvated redox-active
molecules—the catholyte in one tank and the anolyte in the other. During charge, the catholyte and
anolyte are pumped through a reaction cell where a membrane separates them. The catholyte is
comprised of redox-active molecules that are oxidized at a porous electrode, while the anolyte contains
redox-active molecules that are reduced at another porous electrode. At discharge, the oxidized catholyte
and reduced anolyte are pumped back through the reaction cell, where the reverse reaction occurs,

releasing stored electrochemical energy.

While current commercially available RFB use vanadium, organic-based RFB show promise as organic
molecules can be more widely available and cheaper than mined and/or rare metals.*® Additionally,
redox-active organic molecules are highly tunable and can be synthesized from sustainable materials.> 7
While commercial and other promising RFB materials are comprised of aqueous solvents, nonagqueous
solvents afford large potential windows, increasing the battery’s voltage and thus its potential energy
storage.l® Even so, there is limited research targeting redox-active molecules for nonaqueous solvents in

RFB, so-called nonagueous RFB (NARFB).

Both experimental and computational methods exist for deciphering fundamental material properties for
NARFB materials (Figure 1), and the computational/simulation-based approaches have been vital in
identifying candidates for NARFB by simulating redox potential, stability, and reversibility, to name a

few.!*13 However, while there have been efforts to identify redox-active molecules suitable for NARFB



catholyte and anolyte materials, there remains a lack of fundamental chemical understanding for these

systems, especially considerations as to how to appropriately balance critical properties such as redox
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potential, stability, and solubility.
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Figure 1. Fundamental redox-active material properties that must be balanced for use as the catholyte or anolyte in
an RFB. Each fundamental property can be estimated experimentally via techniques like cyclic voltammetry (CV) or
computationally via density functional theory (DFT) and/or molecular dynamics (MD) simulations.

Fortunately, when data are amassed from both computational and experimental sources, big-data
analyses can inform structure-property relationships. Previous data-enabled insights have been achieved
in similar fields. For example, big data analyses elucidated a “stability cliff” in quinones, a prevalent
molecular class in aqueous RFB, encouraging researchers to explore other chemical spaces.'® Efforts are
already underway to develop data-driven pipelines and apply big-data analyses for vanadium RFB!”-*8 and
aqueous organic RFB*?! materials. Some big data approaches have been applied to the search for NARFB
materials; for example, data-enabled high-throughput screening of redox-active molecules for NARFB has

been demonstrated in a small-scale proof-of-concept study where several theoretically viable molecules



for NARFB anolytes were selected from ~1400 quinoxaline-based systems a with funnel-based screening

approach focusing on reduction potential, solvation energy, and structural changes with oxidation.?

Unfortunately, the few studies that examine systems for NARFB are smaller scale and (like those in the
field of aqueous RFB) often focus on quinone-based systems alone. Additionally, elucidating structure-
property relationships for properties such as solubility in nonaqueous environments for NARFB can be
much more challenging than in aqueous environments.?® Thus, in the field of NARFB, the metanalyses
necessary to elucidate structure-property relationships are often prohibited by the lack of large-scale,

broad, accessible, and uniform data.

Here we present a curated database of redox-active organic molecules as a part of a multidisciplinary,
collaborative platform entitled data-enabled discovery and design to transform liquid energy storage
(D3TaLES).2* We collect and curate data from various sources, including computational analyses and
original experimentation, and we build the infrastructure to accept data submissions from the community.
The data infrastructure includes data upload and processing tools that extract, transform, and load (ETL)
relevant data from raw computation or experimental data files and organize it into a molecule-centric
schema. Here the data are easily accessed and analyzed, and a layered, redundant database structure
provides critical opportunities for manual and automated data curation. A high-throughput computational
workflow begins populating the database with DFT computational data. Similar data structures involving
high-throughput computation for n-conjugated organic moleucles exist,”>3° and there also exist databases
targeting batteries.'® 3% 32 But unlike these existing databases, D3TaLES provides a data infrastructure and
framework for multiple data types targeting NARFB. The database enables deeper physiochemical
understanding and opportunities for meta-analysis. Though the focus presented here is on identifying
systems that hold potential for NARFB, the platform has a broad scope and can be used or expanded to

search for characteristics of redox-active organic molecules in other fields of application.



D3TaLES database

Design

The schema, or organizational data structure, provides the foundation for the database. A No-SQL schema
was chosen because of its flexibility and scalability.3® D3TaLES data is segmented into two databases to
accommodate the complexity and breadth of the data collected—one for raw data (backend) and the

other for processed data (frontend).

The backend database contains data parsed directly from experiment data files. It uses computation-
and/or experiment-centric schema where each data instance is a calculation or experiment with
associated attributes (Figure 2A). Attributes include calculation/experiment identifier, submission
information, and a collection of raw data values, including computational/experimental conditions. For
example, the backend database might hold raw data values like the computed energies for a molecule’s
ground and oxidized or reduced states. The backend database can also hold cyclic voltammetry (CV) data
extracted from a CV output file. Thus, the backend schema relates directly to the files that supply data
and often incorporates features from existing community schema.?* 3 Because D3*TaLES contains many
types of data, the backend schema has several sub-schemas—one for each data type. The sub-schemas

share common fields such as “mol_id”, “submission_info”, and “data”. The backend schemas are broad
and accommodate different types of data including but not limited to computations at different
levels of theory (e.g., molecular dynamics simulations), experiments with various processing or
data collection conditions, and literature-extracted data from various learning models (see Sl

Section 1); efforts are ongoing to add more schema.
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Figure 2. (Top) Depiction of the backend D3TaLES schema and collection types. Note that the figure shows a sampling
of the types of collections that exist in the backend database; to view the full D3TaLES database schema, visit the
documentation.?® Tables with example “data” attributes are also shown. (Bottom) Schematic showing the first
property level for the molecule-centric, frontend D3TaLES schema along with a table showing example attributes in

the “molecular characteristics” group.

The frontend database holds data that are more useful for analysis. For example, the frontend database
contains ionization potentials calculated from the ground- and oxidized-state energies in the backend

database. Likewise, the frontend database contains an estimated redox potential calculated from CV data.
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The frontend database uses a molecule-centric schema where each data instance is a molecule (Figure
2B). Molecule attributes include a molecule identifier and public/private status, while the remaining
attributes are grouped into the following sub-categories: molecule characteristics, species characteristics,
raw experiment data (which connects to the backend database), and related literature. Molecular
characteristics include properties of the entire molecule (usually involving multiple species), such as
oxidation potential or relaxation energies. Species characteristics include properties relating to a single
charge species for the molecule, such as ground-state species HOMO or oxidized-state solvation energy.

The complete D3TaLES schema is available online.3®

Population

A processing workflow populates the database when raw data files and associated metadata are uploaded
to the D3TaLES website (Figure 3). The raw data files are parsed to extract key values. Existing parsing
packages (such as Pymatgen,®® RDKit,®” and SciPy*®) are integrated with original code to parse raw
computational and experimental data files. These processing tools are packaged in the D3TaLES
application programming interface (API; discussed in the D3TaLES Tools section). The raw data files are
then compressed and stored, while extracted key values are inserted into the backend database. At this
stage, an administrator inspects the backend data to ensure some degree of fidelity. Upon administrator
approval, the backend data is transformed into frontend properties. Users may view the frontend
database via interactive molecule viewing webpages on the D3TaLES website.?* More information about

the database software can be found in the Sl Section 2.
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Figure 3. Schematic showing D3TaLES data processing. Data flows from external sources, such as high-throughput
computation or robotics, through the D3TaLES website to the backend database. From here, raw data is stored while
administrator (admin) approval allows data transformation to the frontend database. Frontend data is displayed
through a user interface on the D3TaLES website.

The D3TalES database contains primarily computational data generated through a high-throughput
molecular computational workflow using density functional theory (DFT) carried out at the (IP-tuned) LC-
wHPBE/Def2SVP level of theory via the Gaussian16 (rev A.03) software suite.3¥*? The data produced in
this workflow cover several fundamental properties of redox-active molecules, including oxidation and

reduction potentials, stability, and solubility; see SI Section 4 for more details.

Data Composition

Molecules in the D3TaLES database are collected from those appearing in the NARFB literature,?® 43 44

scraped from the Cambridge Structural Database (CSD)* and ZINC*® datasets (Figures S4-5), and



combinatorically generated from fragments of molecules commonly used in NARFB; see Sl Section 3 for
more details. While these datasets contain inherent biases (e.g., CSD molecules are crystallizable, ZINC
molecules are already commercially available, combinatorically generated molecules conform to current
conceptions in the field about what structures will work in NARFB, etc.), this collection provides an initial
dataset of small organic molecules covering a relatively diverse chemical space. The scraped data number
over 600,000 molecules, along with a few dozen experimental molecules from collaborators and a few
hundred auto-generated molecules from common motifs used in NARFB (Figure 4). The following criteria
were then used to filter this extensive molecular dataset: A molecule must have at least one aromatic
ring, contain no rings with more than six atoms and no rings with less than five atoms, contain no rings
with more than three heteroatoms, and not exist already in the OCELOT?® database (a database of large
organic molecule and their corresponding crystal properties targeting organic semiconductors developed
by our lab). This narrowed the dataset to approximately 115,000 molecules. Finally, the dataset was
narrowed further because of limited computational resources. To ensure diversity of the chemical space,
the 33,000 filtered ZINC molecules most different from the rest of the dataset (CSD, generate, and NARFB
literature molecules) were chosen. The similarity was determined with the RDKit Tanimoto fingerprint
method.3”” ¥ The final chemical space consists of 43,168 molecules, where approximately 3,500 are

proprietary and 39,500 are public. Of these structures, 31,583 have a complete oxidation profile.
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Figure 4. Process for molecule generation for the D3TaLES database.

The 43,168 unique structures in the D3TaLES database have a mean molecular weight of 329 g/mol (Figure
5A). All properties generated for the oxidation profile are listed in the D3TaLES database documentation,*®
but notable properties include oxidation potential, relaxation energies, vertical and adiabatic ionization
potentials, solvation energies, and a radical-cation stability score developed by Sowndarya et. at.*® Figure
5B shows a UMAP* chemical space plot of the calculated oxidation potentials where groupings of higher
and lower potentials are viable. The plot includes 10-ethylphenothiazine (EPT) and (2,2,6,6-
tetramethylpiperidin-1-yl)oxyl (TEMPO), two widely-reported molecules of interest for organic RFB.’
Figure 5C shows the database structures plotted by oxidation potential and the radical-cation stability
score.®® The marginal histogram depicts a normally distributed radical stability score (RSS), with the
highest stability scores observed for larger molecules. In contrast, there exists little correlation between
size and oxidation potential, though most oxidation potentials are concentrated just above zero eV

(relative to the standard hydrogen electrode, SHE). The database is now being populated with reduction
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profiles for many of the structures. These profiles contain the reduction analog for each of the oxidation

profile properties. Currently, the database contains over 25,000 reduction profiles.

A 1400
.

1200

,ﬂ
°
S
3

10 A ° ]

Y
3
=)

Number of Instances
IS ©
8 8
8 8

400 600 800

Molecular Weight (g/mol)

Number of Atoms ]
15 ®e

m
el
_{
o'
o-Z ) O/[ i]
Oxidation Potential (vs. SHE, eV)

) e 30 o
Log ’ -10 1 e 45 y 1
# e 60 .
Oxidation Potential (eV) 20 40 60 80 100 120 140 160
| ! | Monocation Radical Stability Score

0 1 2

Figure 5. The D3TaLES frontend database contains over 43,000 molecules. (A) Histogram showing molecular weight
distribution for the D3TaLES database. (B) The computed values for oxidation potential (a molecular characteristic)
are mapped onto a two-dimensional chemical space with ChemPlot>® and UMAP*® dimension reduction. (C) Scatter
plot with marginal histograms showing D3TaLES molecules plotted by calculated oxidation potential (versus the
standard hydrogen electrode, SHE) and radical stability score, colored by number of atoms.*®

D3TaLES Tools

The D3TalES database is coupled with several data interaction and management tools including the
D3TaLES website?* and the D3TaLES API.>! The D3TaLES website is integral for many of the processes
described above. Website features include file upload systems, backend data viewing and approval,
database search functions, and molecule viewing pages. All user data submissions and administrator
approval of the processed data occur through the website. Users may search the database by molecule
name or structure. All data for a given molecule can be viewed on the molecule property viewing page
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(Figure 6A). Alternatively, for those wishing to access large quantities of data through code, the D3TaLES
REST APl allows data access through HTML according to REST (representational state transfer) standards.>?
Finally, the site contains links to the D3TaLES database documentation,®® D3TaLES APl documentation,*!

and the D3TaLES calculators interactive python notebooks.>?
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Figure 6. (Top) D3TaLES molecule viewing page.>* (Bottom) The organizational structure of the D3TaLES API. Full
documentation for the D3TaLES API is available.>!

Several tools for moving, processing, and transforming data accompany the D3TaLES database. These tools
are compiled in the D3TaLES API.>! The D3TalES API includes three modules: Processors for data
processing, D3database for database access, and Calculators for property calculations (Figure 6B). The
Processors module contains various parsing classes for extracting useful data from instrument-produced

computational and experimental data files. Among the database access functions, the D3database
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module contains a class for accessing the D*TaLES database via Python through the REST API. This module
also contains functions for gathering and plotting D3*TaLES properties as one- and two-dimensional
histograms. Finally, the Calculators module, perhaps the most useful module for the general community,
allows users to calculate useful computational and experimental properties from nested data. All
calculators contain unit conversion features. Useful molecular DFT calculators include redox potential,
radical buried volume,*> and radical spin density,>® while useful CV calculators include diffusion constant
using the Randles-Sevcik equation and charge-transfer rate. The D3TaLES APl documentation®! explains
basic usage for these calculators, and we also provide interactive Python notebooks that use the
calculators to perform calculations without the need for the user to know Python coding.>® For more

information about the D3TaLES API, see S| Section 6.

D3TaLES Database Utility

To demonstrate the D3TaLES database utility in identifying candidates for redox flow batteries, we used
the compiled computational data to perform a proof-of-concept funnel pipeline (Figure 7).57-%° The funnel
pipeline iteratively narrows the D3TaLES chemical space through a series of tests to identify candidates
for a NARFB catholyte material. The tests are ordered from least to most computationally intensive. The
first test (~1 ms) selects molecules with less than 30 atoms. Redox-active systems with fewer atoms per
charge event increase the atom economy,®! and thus the capacity for a RFB. Subsequently, the second
test (~1 s) filters out molecules that would be difficult to synthesize by selecting systems with a synthetic
accessibility score below 4.1.°% %2 The next two tests filter by stability and solvation energy, respectively,
relative to the properties of a known candidate for NARFB: N-(2-(2-methoxyethoxy)ethyl)phenothiazine
(MEEPT).” %3 MEEPT is known to be soluble, especially in its ground state, and it shows stable cycling of

one oxidation event. The third test (~21 core-hrs) filters out molecules with an RSS greater than MEEPT’s
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81, while the fourth test (~21 core-hrs) identifies molecules with solvation energy lower than MEEPT’s —
0.19 eV. The final test (~43 core-hrs) finds molecules with an oxidation potential of approximately 3V, as
higher oxidation potentials are most desirable for catholyte materials. (To view structures from the funnel
pipeline and for more information about the core-hour estimations, see Sl Section 5.) The funnel pipeline
down-selects the 43,168 D3TaLES structures to 364 potential systems for NARFB. While all calculations
were performed for all molecules used here, this approach could be employed to explore a large chemical
space without performing all resource-intensive calculations for all systems. Additionally, the existing
D3TaLES data can be used to train machine learning (ML) models that quickly estimate resource-intensive
properties such as oxidation potential; these models could be added as an upper level of the funnel

pipeline.®*
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Figure 7. (Left) Schematic demonstrating the proof-of-concept funnel pipeline using D3TaLES computational data.
The five tests narrow the chemical space by number of atoms, synthetic accessibility score, radical stability score
(RSS), solvation energy, and oxidation potential, respectively. (Right) Twelve randomly selected structures from the
final 364 structures that emerged from the funnel pipeline.

15



Conclusion

We demonstrate a comprehensive data infrastructure for redox-active small molecules for use in NARFBs.
For the over 43,000 molecules currently in the D?*TaLES database, a high-throughput computational
workflow has determined over 31,000 oxidation profiles and other properties of interest to date. While
the database currently consists almost exclusively of DFT computational data, the schema and processing
infrastructure exist for incorporating experimental and literature-reported data. Future work will focus on
exploiting the data processing tools and data storage infrastructure to continue populating the D3TaLES
database, especially in areas outside of molecular DFT, such as periodic DFT, molecular dynamics

simulations, and cyclic voltammetry and UV-Vis spectroscopy experiments.

We demonstrate the utility of the D3TaLES infrastructure by screening the over 43,000 molecules in the
database for NARFB application. This preliminary screening predicts 364 candidates with characteristics
superior to the current standard MEEPT. We note that a thorough analysis is warranted to confirm these
predictions. The D3TaLES database and data infrastructure will enable integrated meta-analytical and
machine-learning-based evaluation in the NARFB field, with the aim to expedite materials discovery and
pave the way for predictive models for properties such as redox potentials and radical cation stability. The
uniform and accessible D*TaLES data will enable machine learning and robotic experimentation towards

better exploring relevant chemical space for application-suitable redox molecules.

Data Availability Statement

The data presented here are accessible via the D3TaLES website (https://d3tales.as.uky.edu/), and the

public  portion of the dataset (~39,500 molecules) can be downloaded at

https://d3tales.as.uky.edu/datasets. The D3TaLES website also includes documentation for the database

16


https://d3tales.as.uky.edu/
https://d3tales.as.uky.edu/

structure and more information about the data composition (https://d3tales.as.uky.edu/docs/). The

processing tools associated with the D3TaLES API exist in an open-access Python package documented at

https://d3tales.github.io/d3tales api/. The Fireworks-based® code used for the high-throughput

qguantum chemical calculations is available publicly at https://github.com/D3TaLES/d3tales fw.

Additional details and information can be found in the accompanying Supplementary Information.
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