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Abstract 

The shift of energy production towards renewable, yet at times inconsistent, resources like solar and wind 

have increased the need for better energy storage solutions. An emerging energy storage technology that 

is highly scalable and cost-effective is the redox-flow battery comprised of redox-active organic materials. 

Designing optimum materials for redox flow batteries involves balancing key properties such as the redox 

potential, stability, and solubility of the redox-active molecules. Here, we present the Data-enabled 

Discovery and Design to Transform Liquid-based Energy Storage (D3TaLES) database, a curated data 

collection of more than 43,000 redox-active organic molecules that are of potential interest as the redox-

active species for redox flow batteries with the aim to offer readily accessible and uniform data for big 

data metanalyses. D3TaLES raw data and derived properties are organized into a molecule-centric schema, 

and the database ontology contributes to the establishment of community reporting standards for 

electrochemical data. Data are readily accessed and analyzed through an easy-to-use web interface. The 

data infrastructure is coupled with data upload and processing tools that extract, transform, and load 

relevant data from raw computation or experimental data files, all of which are available to the public via 

a D3TaLES API. These processing tools along with an embedded high-throughput computational workflow 

enable community contributions and versatile data sharing and analyses, not only in redox-flow battery 

research but also in any field that applies redox-active organic molecules.   
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Introduction 

Increasing use of renewable yet inconsistent energy sources like solar and wind demands better energy 

storage solutions. An emerging energy storage technology that is highly scalable and cost-effective is the 

redox flow battery (RFB).1-3 The RFB decouples energy capacity and power by separating the 

electrochemical reactions from stored electrochemical energy, allowing the battery to store large 

quantities of energy cheaply and safely.1 The battery consists of two tanks of solvated redox-active 

molecules—the catholyte in one tank and the anolyte in the other. During charge, the catholyte and 

anolyte are pumped through a reaction cell where a membrane separates them. The catholyte is 

comprised of redox-active molecules that are oxidized at a porous electrode, while the anolyte contains 

redox-active molecules that are reduced at another porous electrode. At discharge, the oxidized catholyte 

and reduced anolyte are pumped back through the reaction cell, where the reverse reaction occurs, 

releasing stored electrochemical energy.  

While current commercially available RFB use vanadium, organic-based RFB show promise as organic 

molecules can be more widely available and cheaper than mined and/or rare metals.4-6 Additionally, 

redox-active organic molecules are highly tunable and can be synthesized from sustainable materials.3, 7-9 

While commercial and other promising RFB materials are comprised of aqueous solvents, nonaqueous 

solvents afford large potential windows, increasing the battery’s voltage and thus its potential energy 

storage.10 Even so, there is limited research targeting redox-active molecules for nonaqueous solvents in 

RFB, so-called nonaqueous RFB (NARFB).  

Both experimental and computational methods exist for deciphering fundamental material properties for 

NARFB materials (Figure 1), and the computational/simulation-based approaches have been vital in 

identifying candidates for NARFB by simulating redox potential, stability, and reversibility, to name a 

few.11-13 However, while there have been efforts to identify redox-active molecules suitable for NARFB 
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catholyte and anolyte materials, there remains a lack of fundamental chemical understanding for these 

systems, especially considerations as to how to appropriately balance critical properties such as redox 

potential, stability, and solubility.3, 9, 14, 15  

 
Figure 1. Fundamental redox-active material properties that must be balanced for use as the catholyte or anolyte in 
an RFB. Each fundamental property can be estimated experimentally via techniques like cyclic voltammetry (CV) or 
computationally via density functional theory (DFT) and/or molecular dynamics (MD) simulations.  
 

Fortunately, when data are amassed from both computational and experimental sources, big-data 

analyses can inform structure-property relationships. Previous data-enabled insights have been achieved 

in similar fields. For example, big data analyses elucidated a “stability cliff” in quinones, a prevalent 

molecular class in aqueous RFB, encouraging researchers to explore other chemical spaces.16 Efforts are 

already underway to develop data-driven pipelines and apply big-data analyses for vanadium RFB17, 18 and 

aqueous organic RFB19-21 materials. Some big data approaches have been applied to the search for NARFB 

materials; for example, data-enabled high-throughput screening of redox-active molecules for NARFB has 

been demonstrated in a small-scale proof-of-concept study where several theoretically viable molecules 
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for NARFB anolytes were selected from ~1400 quinoxaline-based systems a with funnel-based screening 

approach focusing on reduction potential, solvation energy, and structural changes with oxidation.22 

Unfortunately, the few studies that examine systems for NARFB are smaller scale and (like those in the 

field of aqueous RFB) often focus on quinone-based systems alone. Additionally, elucidating structure-

property relationships for properties such as solubility in nonaqueous environments for NARFB can be 

much more challenging than in aqueous environments.23 Thus, in the field of NARFB, the metanalyses 

necessary to elucidate structure-property relationships are often prohibited by the lack of large-scale, 

broad, accessible, and uniform data.  

Here we present a curated database of redox-active organic molecules as a part of a multidisciplinary, 

collaborative platform entitled data-enabled discovery and design to transform liquid energy storage 

(D3TaLES).24 We collect and curate data from various sources, including computational analyses and 

original experimentation, and we build the infrastructure to accept data submissions from the community. 

The data infrastructure includes data upload and processing tools that extract, transform, and load (ETL) 

relevant data from raw computation or experimental data files and organize it into a molecule-centric 

schema. Here the data are easily accessed and analyzed, and a layered, redundant database structure 

provides critical opportunities for manual and automated data curation. A high-throughput computational 

workflow begins populating the database with DFT computational data. Similar data structures involving 

high-throughput computation for π-conjugated organic moleucles exist,25-30 and there also exist databases 

targeting batteries.19, 31, 32 But unlike these existing databases, D3TaLES provides a data infrastructure and 

framework for multiple data types targeting NARFB. The database enables deeper physiochemical 

understanding and opportunities for meta-analysis. Though the focus presented here is on identifying 

systems that hold potential for NARFB, the platform has a broad scope and can be used or expanded to 

search for characteristics of redox-active organic molecules in other fields of application. 
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D3TaLES database  

Design  

The schema, or organizational data structure, provides the foundation for the database. A No-SQL schema 

was chosen because of its flexibility and scalability.33 D3TaLES data is segmented into two databases to 

accommodate the complexity and breadth of the data collected—one for raw data (backend) and the 

other for processed data (frontend).  

The backend database contains data parsed directly from experiment data files. It uses computation- 

and/or experiment-centric schema where each data instance is a calculation or experiment with 

associated attributes (Figure 2A). Attributes include calculation/experiment identifier, submission 

information, and a collection of raw data values, including computational/experimental conditions. For 

example, the backend database might hold raw data values like the computed energies for a molecule’s 

ground and oxidized or reduced states. The backend database can also hold cyclic voltammetry (CV) data 

extracted from a CV output file. Thus, the backend schema relates directly to the files that supply data 

and often incorporates features from existing community schema.34, 35 Because D3TaLES contains many 

types of data, the backend schema has several sub-schemas—one for each data type. The sub-schemas 

share common fields such as “mol_id”, “submission_info”, and “data”. The backend schemas are broad 

and accommodate different types of data including but not limited to computations at different 

levels of theory (e.g., molecular dynamics simulations), experiments with various processing or 

data collection conditions, and literature-extracted data from various learning models (see SI 

Section 1); efforts are ongoing to add more schema. 



 
 

7 
 

 
Figure 2. (Top) Depiction of the backend D3TaLES schema and collection types. Note that the figure shows a sampling 
of the types of collections that exist in the backend database; to view the full D3TaLES database schema, visit the 
documentation.36 Tables with example “data” attributes are also shown. (Bottom) Schematic showing the first 
property level for the molecule-centric, frontend D3TaLES schema along with a table showing example attributes in 
the “molecular characteristics” group.  
 

The frontend database holds data that are more useful for analysis. For example, the frontend database 

contains ionization potentials calculated from the ground- and oxidized-state energies in the backend 

database. Likewise, the frontend database contains an estimated redox potential calculated from CV data. 
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The frontend database uses a molecule-centric schema where each data instance is a molecule (Figure 

2B). Molecule attributes include a molecule identifier and public/private status, while the remaining 

attributes are grouped into the following sub-categories: molecule characteristics, species characteristics, 

raw experiment data (which connects to the backend database), and related literature. Molecular 

characteristics include properties of the entire molecule (usually involving multiple species), such as 

oxidation potential or relaxation energies. Species characteristics include properties relating to a single 

charge species for the molecule, such as ground-state species HOMO or oxidized-state solvation energy. 

The complete D3TaLES schema is available online.36  

 

Population  

A processing workflow populates the database when raw data files and associated metadata are uploaded 

to the D3TaLES website (Figure 3). The raw data files are parsed to extract key values. Existing parsing 

packages (such as Pymatgen,35 RDKit,37 and SciPy38) are integrated with original code to parse raw 

computational and experimental data files. These processing tools are packaged in the D3TaLES 

application programming interface (API; discussed in the D3TaLES Tools section). The raw data files are 

then compressed and stored, while extracted key values are inserted into the backend database. At this 

stage, an administrator inspects the backend data to ensure some degree of fidelity. Upon administrator 

approval, the backend data is transformed into frontend properties. Users may view the frontend 

database via interactive molecule viewing webpages on the D3TaLES website.24 More information about 

the database software can be found in the SI Section 2. 
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Figure 3. Schematic showing D3TaLES data processing. Data flows from external sources, such as high-throughput 
computation or robotics, through the D3TaLES website to the backend database. From here, raw data is stored while 
administrator (admin) approval allows data transformation to the frontend database. Frontend data is displayed 
through a user interface on the D3TaLES website. 

 
 

The D3TaLES database contains primarily computational data generated through a high-throughput 

molecular computational workflow using density functional theory (DFT) carried out at the (IP-tuned) LC-

ωHPBE/Def2SVP level of theory via the Gaussian16 (rev A.03) software suite.39-42 The data produced in 

this workflow cover several fundamental properties of redox-active molecules, including oxidation and 

reduction potentials, stability, and solubility; see SI Section 4 for more details.  

 

Data Composition 

Molecules in the D3TaLES database are collected from those appearing in the NARFB literature,23, 43, 44 
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combinatorically generated from fragments of molecules commonly used in NARFB; see SI Section 3 for 

more details. While these datasets contain inherent biases (e.g., CSD molecules are crystallizable, ZINC 

molecules are already commercially available, combinatorically generated molecules conform to current 

conceptions in the field about what structures will work in NARFB, etc.), this collection provides an initial 

dataset of small organic molecules covering a relatively diverse chemical space. The scraped data number 

over 600,000 molecules, along with a few dozen experimental molecules from collaborators and a few 

hundred auto-generated molecules from common motifs used in NARFB (Figure 4). The following criteria 

were then used to filter this extensive molecular dataset: A molecule must have at least one aromatic 

ring, contain no rings with more than six atoms and no rings with less than five atoms, contain no rings 

with more than three heteroatoms, and not exist already in the OCELOT26 database (a database of large 

organic molecule and their corresponding crystal properties targeting organic semiconductors developed 

by our lab). This narrowed the dataset to approximately 115,000 molecules. Finally, the dataset was 

narrowed further because of limited computational resources. To ensure diversity of the chemical space, 

the 33,000 filtered ZINC molecules most different from the rest of the dataset (CSD, generate, and NARFB 

literature molecules) were chosen. The similarity was determined with the RDKit Tanimoto fingerprint 

method.37, 47 The final chemical space consists of 43,168 molecules, where approximately 3,500 are 

proprietary and 39,500 are public. Of these structures, 31,583 have a complete oxidation profile. 



 
 

11 
 

 
Figure 4. Process for molecule generation for the D3TaLES database. 

 
The 43,168 unique structures in the D3TaLES database have a mean molecular weight of 329 g/mol (Figure 

5A). All properties generated for the oxidation profile are listed in the D3TaLES database documentation,36 

but notable properties include oxidation potential, relaxation energies, vertical and adiabatic ionization 

potentials, solvation energies, and a radical-cation stability score developed by Sowndarya et. at.48 Figure 

5B shows a UMAP49 chemical space plot of the calculated oxidation potentials where groupings of higher 

and lower potentials are viable. The plot includes 10-ethylphenothiazine (EPT) and (2,2,6,6-

tetramethylpiperidin-1-yl)oxyl (TEMPO), two widely-reported molecules of interest for organic RFB.7 

Figure 5C shows the database structures plotted by oxidation potential and the radical-cation stability 

score.48 The marginal histogram depicts a normally distributed radical stability score (RSS), with the 

highest stability scores observed for larger molecules. In contrast, there exists little correlation between 

size and oxidation potential, though most oxidation potentials are concentrated just above zero eV 

(relative to the standard hydrogen electrode, SHE). The database is now being populated with reduction 
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profiles for many of the structures. These profiles contain the reduction analog for each of the oxidation 

profile properties. Currently, the database contains over 25,000 reduction profiles.  

 

 
Figure 5. The D3TaLES frontend database contains over 43,000 molecules. (A) Histogram showing molecular weight 
distribution for the D3TaLES database. (B) The computed values for oxidation potential (a molecular characteristic) 
are mapped onto a two-dimensional chemical space with ChemPlot50 and UMAP49 dimension reduction. (C) Scatter 
plot with marginal histograms showing D3TaLES molecules plotted by calculated oxidation potential (versus the 
standard hydrogen electrode, SHE) and radical stability score, colored by number of atoms.48  
 

D3TaLES Tools 

The D3TaLES database is coupled with several data interaction and management tools including the 

D3TaLES website24 and the D3TaLES API.51 The D3TaLES website is integral for many of the processes 

described above. Website features include file upload systems, backend data viewing and approval, 

database search functions, and molecule viewing pages. All user data submissions and administrator 

approval of the processed data occur through the website. Users may search the database by molecule 
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(Figure 6A). Alternatively, for those wishing to access large quantities of data through code, the D3TaLES 

REST API allows data access through HTML according to REST (representational state transfer) standards.52 

Finally, the site contains links to the D3TaLES database documentation,36 D3TaLES API documentation,51 

and the D3TaLES calculators interactive python notebooks.53  

 
Figure 6. (Top) D3TaLES molecule viewing page.54 (Bottom) The organizational structure of the D3TaLES API. Full 
documentation for the D3TaLES API is available.51  
 

Several tools for moving, processing, and transforming data accompany the D3TaLES database. These tools 

are compiled in the D3TaLES API.51 The D3TaLES API includes three modules: Processors for data 

processing, D3database for database access, and Calculators for property calculations (Figure 6B). The 

Processors module contains various parsing classes for extracting useful data from instrument-produced 

computational and experimental data files. Among the database access functions, the D3database 
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module contains a class for accessing the D3TaLES database via Python through the REST API. This module 

also contains functions for gathering and plotting D3TaLES properties as one- and two-dimensional 

histograms. Finally, the Calculators module, perhaps the most useful module for the general community, 

allows users to calculate useful computational and experimental properties from nested data. All 

calculators contain unit conversion features. Useful molecular DFT calculators include redox potential, 

radical buried volume,55 and radical spin density,56 while useful CV calculators include diffusion constant 

using the Randles-Sevcik equation and charge-transfer rate. The D3TaLES API documentation51 explains 

basic usage for these calculators, and we also provide interactive Python notebooks that use the 

calculators to perform calculations without the need for the user to know Python coding.53 For more 

information about the D3TaLES API, see SI Section 6. 

 

D3TaLES Database Utility 

To demonstrate the D3TaLES database utility in identifying candidates for redox flow batteries, we used 

the compiled computational data to perform a proof-of-concept funnel pipeline (Figure 7).57-60 The funnel 

pipeline iteratively narrows the D3TaLES chemical space through a series of tests to identify candidates 

for a NARFB catholyte material. The tests are ordered from least to most computationally intensive. The 

first test (~1 ms) selects molecules with less than 30 atoms. Redox-active systems with fewer atoms per 

charge event increase the atom economy,61 and thus the capacity for a RFB. Subsequently, the second 

test (~1 s) filters out molecules that would be difficult to synthesize by selecting systems with a synthetic 

accessibility score below 4.1.56, 62 The next two tests filter by stability and solvation energy, respectively, 

relative to the properties of a known candidate for NARFB: N-(2-(2-methoxyethoxy)ethyl)phenothiazine 

(MEEPT).7, 63 MEEPT is known to be soluble, especially in its ground state, and it shows stable cycling of 

one oxidation event. The third test (~21 core-hrs) filters out molecules with an RSS greater than MEEPT’s 
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81, while the fourth test (~21 core-hrs) identifies molecules with solvation energy lower than MEEPT’s –

0.19 eV. The final test (~43 core-hrs) finds molecules with an oxidation potential of approximately 3 V, as 

higher oxidation potentials are most desirable for catholyte materials. (To view structures from the funnel 

pipeline and for more information about the core-hour estimations, see SI Section 5.) The funnel pipeline 

down-selects the 43,168 D3TaLES structures to 364 potential systems for NARFB. While all calculations 

were performed for all molecules used here, this approach could be employed to explore a large chemical 

space without performing all resource-intensive calculations for all systems. Additionally, the existing 

D3TaLES data can be used to train machine learning (ML) models that quickly estimate resource-intensive 

properties such as oxidation potential; these models could be added as an upper level of the funnel 

pipeline.64 

 
Figure 7. (Left) Schematic demonstrating the proof-of-concept funnel pipeline using D3TaLES computational data. 
The five tests narrow the chemical space by number of atoms, synthetic accessibility score, radical stability score 
(RSS), solvation energy, and oxidation potential, respectively. (Right) Twelve randomly selected structures from the 
final 364 structures that emerged from the funnel pipeline.  
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Conclusion 

We demonstrate a comprehensive data infrastructure for redox-active small molecules for use in NARFBs. 

For the over 43,000 molecules currently in the D3TaLES database, a high-throughput computational 

workflow has determined over 31,000 oxidation profiles and other properties of interest to date. While 

the database currently consists almost exclusively of DFT computational data, the schema and processing 

infrastructure exist for incorporating experimental and literature-reported data. Future work will focus on 

exploiting the data processing tools and data storage infrastructure to continue populating the D3TaLES 

database, especially in areas outside of molecular DFT, such as periodic DFT, molecular dynamics 

simulations, and cyclic voltammetry and UV-Vis spectroscopy experiments.  

We demonstrate the utility of the D3TaLES infrastructure by screening the over 43,000 molecules in the 

database for NARFB application. This preliminary screening predicts 364 candidates with characteristics 

superior to the current standard MEEPT. We note that a thorough analysis is warranted to confirm these 

predictions. The D3TaLES database and data infrastructure will enable integrated meta-analytical and 

machine-learning-based evaluation in the NARFB field, with the aim to expedite materials discovery and 

pave the way for predictive models for properties such as redox potentials and radical cation stability. The 

uniform and accessible D3TaLES data will enable machine learning and robotic experimentation towards 

better exploring relevant chemical space for application-suitable redox molecules.  

 

Data Availability Statement 

The data presented here are accessible via the D3TaLES website (https://d3tales.as.uky.edu/), and the 

public portion of the dataset (~39,500 molecules) can be downloaded at 

https://d3tales.as.uky.edu/datasets. The D3TaLES website also includes documentation for the database 

https://d3tales.as.uky.edu/
https://d3tales.as.uky.edu/
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structure and more information about the data composition (https://d3tales.as.uky.edu/docs/). The 

processing tools associated with the D3TaLES API exist in an open-access Python package documented at 

https://d3tales.github.io/d3tales_api/. The Fireworks-based65 code used for the high-throughput 

quantum chemical calculations is available publicly at https://github.com/D3TaLES/d3tales_fw.  

Additional details and information can be found in the accompanying Supplementary Information. 
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