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a b s t r a c t 

In the study of monostatic polyhedra, initiated by John H. Conway in 1966, the main question is to con- 

struct such an object with the minimal number of faces and vertices. By distinguishing between various 

material distributions and stability types, this expands into a small family of related questions. While 

many upper and lower bounds on the necessary numbers of faces and vertices have been established, 

none of these questions has been so far resolved. Adapting an algorithm presented in Bozóki et al. (2022), 

here we offer the first complete answer to a question from this family: by using the toolbox of semidefi- 

nite optimization to efficiently generate the hundreds of thousands of infeasibility certificates, we provide 

the first-ever proof for the existence of a monostatic polyhedron with point masses, having minimal num- 

ber ( V = 11 ) of vertices (Theorem 3) and a minimal number ( F = 8 ) of faces. We also show that V = 11 

is the smallest number of vertices that a mono-unstable polyhedron can have in all dimensions greater 

than 1 (Corollary 6). 

© 2023 The Authors. Published by Elsevier B.V. 
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. Introduction and the main result 

.1. Optimization and rigorous proofs 

Nonlinear optimization methodology has been impactful in 

oth the core, classical application areas of operations research and 

n other interfacing disciplines due to flexibility with which it can 

e adapted to the needs of individual problems and areas: 

• The toolkit of optimization has been successfully applied to 

problems that have not been previously regarded as optimiza- 

tion problems. Examples include establishing parameter identi- 

fiability and state observability in dynamical systems ( August & 

Papachristodoulou, 2009 ). 
• Advanced heuristic optimization methods have been applied to 

improve locally optimal solutions for challenging optimization 

problems (e.g., Lai et al., 2022; López & Beasley, 2011 ); simulta- 
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neously, optimization algorithms have been applied to compute 

tight bounds and confirming (numerically) that the best found 

local optimal solutions are approximately globally optimal (e.g., 

Kurpel et al., 2020 ). Polynomial optimization and semidefinite 

programming has achieved remarkable success in this area. Per- 

tinent examples include the breakthrough in Kuperberg’s (still 

open) problem on the number of infinite cylinders touching a 

ball ( Firsching, 2016 , Section 3.1.3), in which a long-standing 

conjecture was refuted by finding an unexpected feasible so- 

lution and bounds for point configurations of minimum energy 

( de Laat, 2020 ). 
• Optimization methods have been merged with the tools of 

computer assisted proofs to attain rigorous results. The proof 

of rigorous bounds involves solving convex optimization prob- 

lems that do not resemble the natural formulations used to ob- 

tain good feasible solutions and which facilitate the computa- 

tion of rational solutions that can be verified in exact arithmetic 

( Bomze et al., 2015; 2018 ). The convexity of these auxiliary op- 

timization problems means that the optimization methods yield 

easily and independently verifiable, rigorous proofs of the bounds. 

Such rigorous proofs are provided, for example, by Bachoc & 

Vallentin (2008) for new bounds on the “kissing problem” (the 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.ejor.2023.04.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2023.04.028&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dpapp@ncsu.edu
mailto:regoskriszti@gmail.com
mailto:domokos@iit.bme.hu
mailto:bozoki.sandor@sztaki.hu
https://doi.org/10.1016/j.ejor.2023.04.028
http://creativecommons.org/licenses/by-nc-nd/4.0/


D. Papp, K. Reg ̋os, G. Domokos et al. European Journal of Operational Research 310 (2023) 511–517 

o

h

s

v

fi

b

h  

o

1

l

w

r

i

e

p

e

i

w

c

D

i

t  

p

p  

c  

(  

n

d  

t

u

l

s

i

i

m

f

s

v

o

s

u

S  

c

p

m

1

2

b

h

j

(

a

h

p

F

p

c

p

c

b

c

2

p

s

B  

v  

g

l

a

R  

a  

o

a

s

1

 

u

T

m

a  

t

T

e

T  

m

v

K

p

0

T

T  

i

f

w

i

t  

p  

i

t

c

r

m

m

C

a

p

t

maximum number of non-intersecting unit spheres touching a 

fixed unit sphere in n dimensions). 

Our paper is in the same spirit: we apply optimization method- 

logy to a problem (mechanical behavior of convex polyhedra) that 

as not been regarded as an optimization problem before, and we 

eek to improve the lower bound for the minimal number V of 

ertices of a mono-unstable polyhedron. Ultimately, we succeed in 

nding the highest lower bound coinciding with the lowest upper 

ound, thus completely resolving the problem. Our claim about the 

ighest lower bound being V = 11 is a sharp and rigorous result, all

ur claims can be verified by rational arithmetic. 

.2. History of monostatic objects and the gap between upper and 

ower bounds 

Static balance points of a given object are points on its surface 

here, if supported on a horizontal plane, the object could be at 

est. The numbers of various types of such balance points are often 

ntuitively clear: for example a (fair) cubic dice has S = 6 stable 

quilibrium positions on its faces and U = 8 unstable equilibrium 

ositions at its vertices. Despite being associated with mechanical 

xperiments, the concept of static equilibrium may also be defined 

n purely geometric terms. Here we focus on equilibria associated 

ith convex polyhedra and, following Domokos et al. (2020) , we 

an write: 

efinition 1. Let P ⊆ R 
d be a d-dimensional convex polytope, let 

nt P and bd P denote its relative interior and boundary, respec- 

ively, and let o ∈ int P . We say that q ∈ bd P is an equilibrium

oint of P with respect to o if the hyperplane h through q and 

erpendicular to the line segment [ o, q ] supports P at q . In this

ase q is nondegenerate if h ∩ P is the (unique) k -dimensional face

 k = 0 , 1 , . . . d − 1) of P that contains q in its relative interior. A

ondegenerate equilibrium point q is called stable or unstable , if 

im (h ∩ P ) = d − 1 , or 0, respectively, otherwise we call it a saddle-

ype equilibrium. We denote the respective numbers of stable and 

nstable equilibria by S and U . 

Throughout this paper we deal only with nondegenerate equi- 

ibrium points with respect to the center of mass g of polyhedra, 

o, we have o ≡ g, in which case equilibrium points gain intuitive 

nterpretation as locations on bd P where P may be balanced if it 

s supported on a horizontal surface (identical to the support plane 

entioned in Definition 1 ) without friction in the presence of uni- 

orm gravity. We will describe cases associated with uniform den- 

ity (which we will refer to as homogeneous ) and cases where each 

ertex carries a unit mass (which we will refer to as 0-skeletons ). 

We call a convex body monostatic if it has either one stable or 

ne unstable static equilibrium position. Convex bodies with S = 1 

table position are also referred to as mono-stable and with U = 1 

nstable position as mono-unstable , whereas convex bodies with 

 = U = 1 (i.e. one stable and one unstable balance position) are

alled mono-monostatic . The geometry of such convex bodies ap- 

ears to be enigmatic: the existence of a convex, homogeneous 

ono-monostatic convex body was conjectured by V.I. Arnold in 

995 ( Domokos, 2006 ) and proved in 2006 ( Várkonyi & Domokos, 

006 ). 

The rich variety of related discrete problems was opened 

y a brief note by Conway & Guy (1966) , who asked whether 

omogeneous, mono-stable polytopes existed at all and con- 

ectured that homogeneous tetrahedra cannot be mono-stable. 

Throughout the paper, we use the shorthand polytope to mean 

 three-dimensional bounded convex polyhedron.) Both problems 

ave been resolved in Conway & Guy (1969) , where the authors 

resented a mono-stable, convex, homogeneous polytope with 

 = 19 faces and V = 34 vertices and proved that homogeneous 

olytopes with V = F = 4 vertices and faces (i.e., tetrahedra) 
512 
annot be mono-stable. That is, for mono-stable, homogeneous 

olytopes we have V, F > 4 . It immediately became intuitively 

lear that the essence of the problem is the rather substantial gap 

etween the respective values of F and V . 

Various related problems have been investigated since. In the 

ase of homogeneous mono-unstable polytopes ( Domokos et al., 

020 ), the lower bound V, F > 4 was established and an exam- 

le of V = F = 18 was provided. For convex mono-unstable 0- 

keletons, the lower bound F ≥ 6 , V ≥ 8 has been established in 

ozóki et al. (2022) and an example with F = 8 , V = 11 was pro-

ided in Domokos & Kovács (2021) . As we can see, in all investi-

ated problems about monostatic polyhedra the gap between the 

ower bounds and the best known example exists, in fact, this gap 

ppears to be a characteristic feature of this class of problems. 

emark 2. The size of the gap may differ for the number F of faces

nd for the number V of vertices. In ( Domokos et al., 2020 ) a the-

ry is presented how these gaps can be merged and quantified by 

 single scalar in a meaningful manner, however, this is beyond the 

cope of our current manuscript. 

.3. The main result: closing the gap for mono-unstable 0-skeletons 

Our goal in the paper is to close this gap in the case of mono-

nstable 0-skeletons by proving the following result: 

heorem 3. The smallest vertex number for which there exists a 

ono-unstable 0-skeleton in 3 dimensions is V = 11 . 

Since in Domokos & Kovács (2021) the authors presented ex- 

mples with V = 11 vertices, the essence of our paper is to prove

he following: 

heorem 4. No mono-unstable 0-skeletons exist with V < 11 vertices. 

This is an improvement of the lower bound shown in Bozóki 

t al. (2022) : 

heorem 5 (Theorem 1 in Bozóki et al. (2022) ) . For V < 8 , no

ono-unstable 0-skeletons exist. 

Since every 3-dimensional convex polytope with at least 11 

ertices has at least 8 faces, and the construction in Domokos & 

ovács (2021) is a mono-unstable 0-skeleton with 8 faces, this also 

roves that the minimum number of faces that a mono-unstable 

-skeleton may have is 8. 

Theorem 4 is not just a quantitative generalization of 

heorem 5 , and for two reasons: first we note that (unlike 

heorem 5 ), due to the existence of V = 11 examples it can not be

mproved. Second, the tools proving Theorem 4 differ substantially 

rom the tools used in the proof of Theorem 5 : while the latter 

as proved using a randomized computer search for certificates of 

nfeasibility of certain polynomial systems, those tools have proved 

o be inefficient at going beyond the case V = 7 . In the current pa-

er, to resolve the cases V = 8 , 9 , 10 , we combine the techniques

ntroduced in Bozóki et al. (2022) with semidefinite optimization 

o efficiently generate the hundreds of thousands of infeasibility 

ertificates required to prove Theorem 4 , demonstrating the supe- 

ior power of these tools. 

Beyond closing the gap for mono-unstable 0-skeletons in 3 di- 

ensions, our computations also yielded an analogous result in di- 

ensions two and higher: 

orollary 6. Every mono-unstable 0-skeleton in any dimension has 

t least 11 vertices. 

We discuss this generalization in Section 2.2 . 

Our proof of Theorem 4 is an easily verifiable computer-assisted 

roof generated using convex optimization. First, the statement of 

he theorem is translated to the unsolvability of several systems of 
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olynomial inequalities following the work of Bozóki et al. (2022) ; 

ee Theorem 7 below. Then the unsolvability of these systems 

s proved using a sufficient condition derived from linear algebra 

 Lemma 8 ). The unsolvability certificates take the form of positive 

nteger vectors that are generated using semidefinite optimization. 

he verification of these certificates can be carried out indepen- 

ently of the method they were generated with, simply by verify- 

ng that the generated integer vectors are indeed (strictly) feasible 

olutions of certain linear matrix inequalities. 

Proving the infeasibility of systems of polynomial equations and 

nequalities and the equivalent problem of rigorously certifying 

ower bounds of polynomials on semialgebraic sets (that is, solu- 

ion sets of polynomial inequalities) are becoming a fundamen- 

al tool in automated system verification and theorem proving 

 de Klerk, 2016; de Klerk et al., 2006; Magron et al., 2017; Uhlmann

 Wang, 2021 ), with applications in various areas of engineering, 

perations research, and statistics, including power systems engi- 

eering (optimal power flow) ( Ghaddar et al., 2016; Josz et al., 

015 ), signal processing ( Dumitrescu, 2017 ), and design of experi- 

ents ( Papp, 2012 ). It has also been a particularly popular and suc-

essful technique in computer-assisted geometric theorem proving. 

lthough computer-assisted proofs in geometry go back at least to 

he celebrated work of Hales (2005) , more recent work combining 

olynomial optimization and convex optimization techniques have 

esulted in easily verifiable computer-assisted proofs of, for exam- 

le, lower or upper bounds on optimal packings and other point 

onfigurations; see, e.g., Bachoc & Vallentin (2008) ; Ballinger et al. 

2009) ; Dostert et al. (2021) ; Firsching (2016) to name only a few. 

Most of these works rely on semidefinite optimization to com- 

ute certifiable global lower bounds of polynomials (or trigono- 

etric polynomials) over semialgebraic sets in a manner simi- 

ar to our approach, and can also be interpreted as applications 

f Lasserre’s moment relaxation of polynomial optimization prob- 

ems ( Campos et al., 2019; de Klerk, 2010; Lasserre, 2001; Laurent, 

009 ). One major difference in our approach is that instead of for- 

ulating the problem as a single large-scale polynomial optimiza- 

ion problem, we work with a large number of small instances of 

olynomial optimization problems involving only quadratic poly- 

omials whose infeasibility can be proved at the lowest level of 

he Lasserre hierarchy. 

The question of existence of solutions of systems of quadratic 

nequalities is also directly related to the celebrated S-lemma, 

hich in its original form characterizes consistent systems of two 

ot necessarily convex quadratics. See Pólik & Terlaky (2007) for 

recise statements and an approachable and extensive review on 

his subject. Direct generalizations (without additional assump- 

ions) are known to be impossible (as shown in the article cited 

bove), although there is some literature on similar statements 

or larger systems of quadratics, e.g., Jeyakumar et al. (2021) , usu- 

lly under assumptions that make the original proofs generalize to 

arger systems. To the best of our understanding, these results are 

ot applicable to the systems that arise in our study. 

In what follows, we shall present the details of our proof with- 

ut further references to the theory of moment relaxations, alge- 

raic geometry, or polynomial optimization, and derive it instead 

rom basic linear algebraic principles. 

. Proof of the main result 

In this section, we prove Theorem 4 (and by extension, 

orollary 6 ) by certifying the infeasibility of a number of systems 

f polynomial equations and inequalities–an idea introduced in 

ozóki et al. (2022) . We rely on the same necessary condition of 

he existence of mono-unstable 0-skeletons as in that paper, but 

mprove on the search for infeasibility certificates using semidef- 

nite optimization. Throughout, we shall assume (without loss of 
513 
enerality) that the center of mass g is at the origin of our co- 

rdinate system. The essential results we need from Bozóki et al. 

2022) are summarized below in Theorem 7 . 

heorem 7. Let r i ∈ R 
d , (i = 1 , . . . , V ) be the vertices of a convex

olytope with 

V 
 

i =1 

r i = 0 . (1a) 

hen r 1 is the only unstable vertex of the 0-skeleton of this polytope 

f and only if for every i ∈ { 2 , . . . , V } there exists a j i ∈ { 1 , . . . , i − 1 }
atisfying 

r i − r j i ) 
T r i ≤ 0 i = 2 , . . . , V. (1b) 

The geometric intuition behind this theorem is as follows. With 

he polytope’s center of mass g at the origin 0 by Eq. (1a) , the

nterpretation of the inequality (1b) is that the line segment con- 

ecting vertices r i and r j i forms a right or obtuse angle with the 

ine segment that connects vertex r i and the center of mass. There- 

ore, if we attempt to balance the polytope on vertex r i by placing 

t on a horizontal support plane with the center of mass vertically 

bove vertex i , then the [ r i , r j i ] line segment will be either below

he support plane (if strict inequality holds in (1b) ) or incident to 

t (in the case of equality). In either case, the horizontal support 

lane does not intersect the polytope in r i alone, and therefore the 

olytope is not at a (nondegenerate) unstable equilibrium. That r 1 
s an unstable vertex in this case follows from the aforementioned 

act that every 0-skeleton has at least one unstable vertex. 

Thus, to establish that no mono-unstable 0-skeletons with V 

ertices exist, it is sufficient to prove that for all (V − 1)! choices 

f j i ∈ { 1 , . . . , i − 1 } (i = 2 , . . . , V ) , the system of inequalities and

quations (1) has no non-zero solutions. 

.1. Tractable infeasibility certificates 

Whether a system of polynomial inequalities is solvable over 

he reals is algorithmically decidable in the real number model us- 

ng (for example) quantifier elimination methods ( Renegar, 1992; 

arski, 1951 ). However, with their (at least) exponential running 

ime in the number of variables, these exact procedures are pro- 

ibitively expensive to apply to our problem. Additionally, they do 

ot produce easily checkable infeasibility certificates . This means 

hat if they conclude that the polynomial system in question does 

ot have a solution, it is difficult to independently and efficiently 

erify that this conclusion was correct, leaving doubts about the 

alidity of the computer-assisted proof. In a similar fashion, we 

annot rely on numerical QCQP solvers or other global optimiza- 

ion software to “verify” that the systems (1) have no solutions. 

ven ignoring possible errors arising from the use numerical meth- 

ds instead of exact arithmetic and the exponential running time 

in the number of variables), these solvers also do not produce the 

nfeasibility certificates we need for our rigorous proof. 

Our approach to verify the unsolvability of all (V − 1)! systems 

1) is to look for efficiently computable and efficiently verifiable 

nfeasbility certificates based on sufficient (but not necessary) con- 

itions of infeasibility. The system (1) can be simplified by express- 

ng, say, each coordinate r V,k (k = 1 , . . . , d) of the last vertex r V as

 linear combination of the other variables using (1a) and substi- 

uting them back to (1b) , to obtain an equivalent system of V − 1

omogeneous quadratic inequalities in n := d(V − 1) variables with 

nteger coefficients. For such systems of inequalities, we can use 

he following sufficient condition of infeasibility: 

emma 8. Consider the system of homogeneous quadratic inequali- 

ies 

 
T Q r ≤ 0 i = 1 , . . . , m, (2) 
i 
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
herein each Q i ∈ R 
n ×n is a real symmetric matrix. If there exist non-

egative rational numbers c 1 , . . . , c m such that the matrix 
∑ m 

i =1 c i Q i is

ositive definite, then (2) does not have any non-zero solutions. 

roof. Leaving out the requirement that c be rational, the state- 

ent is an immediate consequence of the definition of positive 

efiniteness. Regarding rationality, if there exists a (not necessarily 

ational) nonnegative real vector c such that 
∑ m 

i =1 c i Q i is positive 

efinite, then its positive components can be perturbed to (arbi- 

rarily close) positive rational numbers, resulting in a nonnegative 

ational vector satisfying the same. �

To expound on the application of Lemma 8 to Theorem 7 , we 

rst explicitly write the system (1b) in the form (2) , ignoring the 

q. (1a) . Stacking the coordinate vectors r 1 , . . . , r V of the vertices

nto a single column vector r ∈ R 
V d , each matrix Q i can be de-

cribed as a V ×V block matrix made up of blocks of size d × d.

ollecting the coefficients of the homogeneous quadratic 

r i − r j i ) 
T r i = 

d ∑ 

k =1 

r 2 i,k − r i,k r j i ,k , 

nd keeping in mind that (by definition) each Q i is a symmet- 

ic matrix, we see that that for each i = 2 , . . . V , the (i, i ) th block

s the identity matrix I d×d , while the (i, j i ) th and ( j i , i ) th blocks

re − 1 
2 I d×d . All other blocks are zero. In summary, the inequalities 

1b) can be written as r T Q i r ≤ 0 (i = 2 , . . . , V ) with 

 i = (E V ii − E V i j i / 2 − E V j i i / 2) � I d , (3) 

here E V 
i j 

is the V ×V unit matrix whose (i, j) th entry is 1 and all

ther entries 0, and � denotes the Kronecker product. 

To complete the formulation, we backsubstitute r V = −∑ V −1 
i =1 r i 

rom (1a) into our system. Since j i < i ≤ V for each i , this only af-

ects Q 2 , . . . , Q V −1 by eliminating the V th block row and column

which are all zeros). We can also determine the new Q V in closed 

orm: since 

 
T 
V r V − r T V r j V = 

( V −1 ∑ 

i, j=1 

r T i r j 

)
+ 

( V −1 ∑ 

i =1 

r T i r j V 

)
, 

e have 

 V = 

(
J V −1 + 

1 

2 

V −1 ∑ 

i =1 

(
E V −1 
i, j V 

+ E V −1 
j V ,i 

))
� I d , 

here J V −1 is the (V − 1) × (V − 1) all-ones matrix and E denotes 

nit matrices as defined above. 

We can find coefficients c i satisfying the condition in 

emma 8 using semidefinite optimization. In the following, we use 

he common shorthand A � B for the relation that the matrix A − B

s positive semidefinite. 

orollary 9. Let Q 1 , . . . , Q m ∈ R 
n ×n real symmetric matrices, and 

onsider the following semidefinite optimization problem: 

maximize 
z∈ R ,c∈ R m 

z 

subject to 

m ∑ 

i =1 

c i Q i � zI 

‖ c‖ 2 ≤ 1 

c i ≥ z i = 1 , . . . , m. (4) 

he optimal value of (4) is positive if and only if there exist positive 

ational numbers c 1 , . . . , c m such that the matrix 
∑ m 

i =1 c i Q i is positive 

efinite. Any rational feasible solution (z, c) of (4) with z > 0 is a cer-

ificate for the non-existence of non-zero solutions of the system (2) . 

Semidefinite optimization models such as (4) are typically 

olved using numerical methods, which compute solutions that 
514 
ay be only approximately feasible or approximately optimal. This 

s of no concern for our proof, as we only need to find a com-

onentwise positive feasible solution to (4) . (The purpose of the 

orm constraint on c is to ensure that the problem is bounded, and 

an safely be violated.) As long as the maximum value of z is suf- 

ciently positive (compared to the precision of the floating point 

omputation), the approximately feasible and approximately op- 

imal solution returned by a numerical semidefinite optimization 

ethod already serves as a rigorous proof of the non-existence of 

olutions of (2) by Lemma 8 . 

Thus, to prove that every 3-dimensional mono-unstable 0- 

keleton has at least 11 vertices, we run the following algorithm: 

or every choice of ( j 2 , . . . , j 10 ) ∈ { 1 } × { 1 , 2 } × . . . × { 1 , . . . , 9 } , we

ransform the corresponding system (1) to an equivalent system of 

omogeneous quadratic inequalities of the form (2) by expressing 

ach r 10 ,k (k = 1 , 2 , 3) as a linear combination of the other vari-

bles using (1a) and substituting them back to (1b) , and then we 

olve the corresponding semidefinite optimization problem (4) us- 

ng a numerical method to prove that the system (2) has no non- 

ero solutions. 

The independently verifiable computer-generated proof is the 

ist of positive rational vectors c (one for each permutation) re- 

urned by the semidefinite optimization algorithm. (The z com- 

onent of the optimal solution is irrelevant as long as it is posi- 

ive, and is not part of the infeasibility certificate.) The correctness 

f these vectors can be verified efficiently in rational arithmetic: 

t suffices to verify that the matrix 
∑ m 

i =1 c i Q i is positive definite, 

hich can be carried out in polynomial time in rational arithmetic, 

ay, using the LDL T form of Cholesky decomposition or by verifying 

he positivity of the determinant of each leading principal subma- 

rix. 

xample 10. Let V = 10 and j i = i − 1 for i = 2 , 3 , . . . , 10 . Then
 10 
i =2 c i Q i = 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c 10 − 1 
2 
c 2 + c 10 c 10 c 10 c 10 

− 1 
2 
c 2 + c 10 c 2 + c 10 − 1 

2 
c 3 + c 10 c 10 c 10 

c 10 − 1 
2 
c 3 + c 10 c 3 + c 10 − 1 

2 
c 4 + c 10 c 10 

c 10 c 10 − 1 
2 
c 4 + c 10 c 4 + c 10 − 1 

2 
c 5 + c 10 

c 10 c 10 c 10 − 1 
2 
c 5 + c 10 c 5 + c 10 

c 10 c 10 c 10 c 10 − 1 
2 
c 6 + c 10 

c 10 c 10 c 10 c 10 c 10 

c 10 c 10 c 10 c 10 c 10 

3 
2 
c 10 

3 
2 
c 10 

3 
2 
c 10 

3 
2 
c 10 

3 
2 
c 10 

c 10 c 10 c 10 
3 
2 
c 10 

c 10 c 10 c 10 
3 
2 
c 10 

c 10 c 10 c 10 
3 
2 
c 10 

c 10 c 10 c 10 
3 
2 
c 10 

− 1 
2 
c 6 + c 10 c 10 c 10 

3 
2 
c 10 

c 6 + c 10 − 1 
2 
c 7 + c 10 c 10 

3 
2 
c 10 

− 1 
2 
c 7 + c 10 c 7 + c 10 − 1 

2 
c 8 + c 10 

3 
2 
c 10 

c 10 − 1 
2 
c 8 + c 10 c 8 + c 10 − 1 

2 
c 9 + 

3 
2 
c 10 

3 
2 
c 10 

3 
2 
c 10 − 1 

2 
c 9 + 

3 
2 
c 10 c 9 + 2 c 10 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

� I 3 



D. Papp, K. Reg ̋os, G. Domokos et al. European Journal of Operational Research 310 (2023) 511–517 

(  

m

2

v

e  

m

∑

i  

i

p

(

c

a

v

t

r  

o

C

v

m

o

fi  

t  

o  

e

p

d  

r

t  

a

c

e

m

a

t

i

i

a

0

T

R

a  

m

T

s

 

c

fi

s

s

2

g

m

l

h

f

w

o

s

a

w

t

P

t

t

f

s

t

f

s

i

w

a

3

3

a

o

t

b  

n

b

v  

s  

e

S  

v

f

f  

w

o

r

t

i

p

m

V  

V  
The vector of coefficients (c 2 , c 3 , . . . , c 10 ) = 

1 , 4 , 7 , 8 , 8 , 7 , 5 , 4 , 2) , see also in the last row of the supple-

ented csv file, makes the 9 × 9 matrix above positive definite. 

.2. A dimension-free view 

Another look at the explicit form of the Q i matrices from (3) re- 

eals a surprising fact. Since for every real symmetric matrix, the 

igenvalues of A � I d are the same as the eigenvalues of A , only the

ultiplicities of the eigenvalues differ, the matrix 

m 
 

i =1 

c i Q i = 

m ∑ 

i =1 

c i ((E 
V 
ii − E V i j i / 2 − E V j i i / 2) � I d ) 

= 

( 

m ∑ 

i =1 

c i (E 
V 
ii − E V i j i / 2 − E V j i i / 2) 

) 

� I d 

s positive definite if and only if 
∑ m 

i =1 c i (E 
V 
ii 

− E V 
i j i 

/ 2 − E V 
j i i 

/ 2) is pos-

tive definite. That is to say, our approach of using Lemma 8 to 

rove the infeasibility of the sytem (1) can only work if the system 

1) has no solution for any dimension d. Although we are mainly 

oncerned with 3-dimensional polytopes, this means that we have 

lso shown that no mono-unstable polytopes with fewer than 11 

ertices exist in any embedding dimension (stated in the Introduc- 

ion as Corollary 6 ). 

It is important to note (also from the S-lemma’s point of view, 

eferred in the end of Section 1 ) that the converse is not true:

ur proof technique will fail (a simple infeasibility certificate c in 

orollary 9 will not be found) if a mono-unstable polytope with V 

ertices exists in any dimension d, but this failure does not im- 

ediately reveal the dimensions d for which a polytope or any 

ther solution to the system (1) exists. In particular, it is not dif- 

cult to show that for d = 1 the system (1) does not have a solu-

ion for any V and any choice of j 2 , . . . , j V . Yet, our technique can

nly prove this for V < 11 , since for dimensions d ≥ 2 a solution

xists. 

On the same note, following the idea of Dawson (1985) , a sim- 

le perturbation argument makes it clear that if for some choice of 

, V , and j i there exists a strictly feasible solution to (1) that cor-

esponds to the vertices of a convex polyhedron, then the same is 

rue for the same choice of V and j i in all higher dimensions. Since

 mono-monostatic convex polygon with 11 vertices was recently 

onstructed by Domokos & Kovács (2021 , Figure 1), this proves the 

xistence of a mono-unstable 0-skeleton with 11 vertices in all di- 

ensions d ∈ { 2 , . . . , 11 } . 
Applying our proof technique in the one-dimensional case is 

lso equivalent to what is sometimes referred to as the Gram ma- 

rix method in convex algebraic geometry. Notice that the inequal- 

ties (1b) only depend on the vertex coordinates r i through their 

nner products r T 
i 
r j ; furthermore, the center-of-mass Eq. (1a) can 

lso be equivalently written in terms of these inner products as 

 = 

∥∥∥ V ∑ 

i =1 

r i 

∥∥∥2 

2 
= 

V ∑ 

i =1 

V ∑ 

j=1 

r T i r j . 

herefore, if we consider the Gram matrix 

 = (r T i r j ) i, j=1 , ... ,V 

ssociated with the vectors r 1 , . . . , r V , then the non-existence of a

ono-unstable polytope in d dimensions is implied, by virtue of 

heorem 7 , by the non-existence of a V ×V symmetric, positive 

emidefinite, rank- d matrix R with the following two properties: 

1. 
∑ V 

i, j=1 R i j = 0 . 

2. For each i ∈ { 2 , . . . , V } there exists a j ∈ { 1 , . . . , i − 1 } for which
R ii ≤ R i j . u  

515 
The rank condition in the above statement is computationally 

hallenging, but to prove the non-existence of solutions, it is suf- 

cient to prove that no positive semidefinite matrix (of any rank) 

atisfying the above two conditions exists. This leads to another 

emidefinite programming formulation, which is equivalent to (4) . 

.3. Implementation 

The algorithm was implemented using the semidefinite pro- 

ramming solver CSDP ( Borchers, 1999 ), interfaced using Mathe- 

atica, on a standard desktop computer. The enumeration and so- 

ution of the 9! optimization problems took approximately half an 

our. 

The numerical solutions (specifically, the near-optimal, near- 

easible vectors c obtained from CSDP) are rational numbers that 

ere confirmed using rational arithmetic to be feasible solutions 

f (4) . Since the numerical solutions are rational numbers repre- 

ented in double precision floating-point arithmetic, this is an easy 

nd efficient step, which does not involve any rational numbers 

ith large bit sizes. Thus, in principle, these floating-point vectors 

hemselves could be used as the rational certificates in Corollary 9 . 

urely for the ease of dissemination and verification, these vec- 

ors were then further scaled up to positive integer vectors (recall 

hat a positive multiple of an infeasibility certificate is also an in- 

easibility certificate), and then “rounded” to integer vectors with 

maller components, once again confirming in rational arithmetic 

hat the resulting vectors are still correct infeasibility certificates 

or their respective systems. 

The list of the computed integer c vectors certifying the un- 

olvability of the systems (1) can be found in the public repos- 

tory https://github.com/dpapp- github/mono- unstable . This, along 

ith the proof of Theorem 7 , serves as the independently verifi- 

ble computer-assisted proof of Theorem 4 . 

. Discussion 

.1. Improving the results about the mechanics of polyhedra 

Our result fixes the minimally necessary number of vertices 

s V = 11 for a mono-unstable 0-skeleton and, via the theorem 

f Steinitz ( Steinitz, 1922 ), also the minimal number of faces. By 

he construction in Domokos & Kovács (2021) we know that these 

ounds are sharp, i.e. that the V = 11 , F = 8 values are not only

ecessary but also sufficient to create a mono-unstable 0-skeleton. 

In the original problem we did not specify the number S of sta- 

le equilibria, i.e. the question was to find the minimal number of 

ertices (and faces) for U = 1 , for any value of S. Since the con-

tructions in Domokos & Kovács (2021) have S = 2 or S = 3 stable

quilibria, consequently, for any S > 3 , the question remains open. 

While we expect that for very modest increase of S (e.g. for 

 = 4 ) the same combinatorial values (F , V ) = (8 , 11) may remain

alid as necessary and sufficient, this will definitely change as S is 

urther increased. In fact, the theorem of Steinitz also states that 

or V = 11 vertices the maximal number of faces is F = 18 . So, if

e prescribe S = 19 stable equilibria (beyond the single unstable 

ne), we will certainly have to have V > 11 vertices. 

While this problem is slightly different in nature from the one 

esolved in the current manuscript, our method could still be used 

o explore it: although our approach was primarily designed for 

mproving lower bounds, it also aids the search for monostatic 

olyhedra. For example, in the problem studied in this paper, the 

ethod certified not only the infeasibility of all 9! systems for 

 = 10 , but also the infeasibility of the majority of the systems for

 = 11 . This makes it easier to conduct a targeted search for mono-

nstable 0-skeletons with V ≥ 11 vertices. In case of V = 11 , for

https://github.com/dpapp-github/mono-unstable
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any of the systems not certified by the method, it was straight- 

orward to find a solution that also corresponded to the vertices 

f a convex polytope (for d = 3 ) or polygon (for d = 2 ). We ex-

ect that, to some extent, this could also be done for higher values 

f V . 

.2. Improving the algorithm 

From the point of view of semidefinite optimization, our al- 

orithm could be certainly made more efficient. For example, the 

umber of cases to individually certify could be substantially low- 

red by eliminating those which are equivalent under a change of 

ariables. The exploitation of such symmetries may dramatically 

ower the number of certificates to compute and may be an in- 

ispensable ingredient in resolving other problems in this area, 

here the number of cases is too large to allow their complete 

numeration. Since inequality (1b) implies | r i | ≤
∣∣r j i ∣∣ ( Bozóki et al., 

022 , Lemma 2), moreover, | r i | < 

∣∣r j i ∣∣ for different nonzero vectors, 
t also induces a transitive binary relation on the vertices. This de- 

reases the number of relevant cases from (V − 1)! to the num- 

er of rooted trees on V vertices. However, this advantage is cou- 

led with the drawback that the correctness and completeness of 

he computer-generated certificates becomes much harder to ver- 

fy. Since our aim is that our results remain verifiable as simply 

s possible, we keep all the cases in the supplementary files. Al- 

hough we hope that in this manner, the interested reader will 

nd the verification of the certificates to be a very simple mat- 

er using any computer algebra system, we have also supplied an 

ndependently written computer code (purposely written in a dif- 

erent programming language than the code that generates the cer- 

ificates). 
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