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Abstract—Thehumanability to recognizewhenanobject belongs or does
not belong to a particular vision task outperforms all open set recognition
algorithms.Humanperception asmeasured by themethods and procedures
of visual psychophysics frompsychology provides an additional data stream
for algorithms that need tomanage novelty. For instance,measured reaction
time from human subjects can offer insight as to whether a class sample
is prone to be confused with a different class — known or novel. In this
work, we designed and performed a large-scale behavioral experiment
that collected over 200,000 human reaction time measurements associated
with object recognition. The data collected indicated reaction time varies
meaningfully across objects at the sample-level. We therefore designed a
new psychophysical loss function that enforces consistency with human
behavior in deep networkswhich exhibit variable reaction time for different
images. As in biological vision, this approach allows us to achieve good open
set recognition performance in regimes with limited labeled training data.
Through experiments using data from ImageNet, significant improvement
is observedwhen trainingMulti-ScaleDenseNetswith this new formulation:
it significantly improved top-1 validation accuracy by 6.02%, top-1 test
accuracy on known samples by 9.81%, and top-1 test accuracy on unknown
samples by 33.18%. We compared our method to 10 open set recognition
methods from the literature, which were all outperformed on multiple
metrics.

Index Terms—Computer vision, open set recognition, novelty detection,
visual psychophysics, deep learning.

I. INTRODUCTION

Open Set Recognition (OSR) is a task that is extremely challeng-
ing for computer vision algorithms [1], but something that can be
effortlessly performed by humans without the need for very large
labeled datasets [2]. In machine learning-based computer vision, OSR
is defined as novelty detection coupled with closed set classification,
where novelties are visual information not seen at training time that
should not inhibit classification performance [3]. At the class level,
images from classes that are seen in both the training and testing phases
are called known classes, while those that are not seen in training and
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only encountered in testing are considered to be unknown classes (i.e.,
novel classes).

While some existing systems can detect unknown classes based
on previous known knowledge [1], humans can not only recognize
unknown instances but also avoid the under-generalization problem
machine learning models face when fitting to known class data using
just supervised labels [4]. Psychologists study this phenomenon by
using the methods and procedures of visual psychophysics to measure
the human behavior associated with a particular task [5]. Reaction time
(RT) is one of the most diagnostic measurable behaviors because it
reveals patterns of difficulty in the data (e.g., it is fast to recognize
something that is familiar, while more ambiguous cases will take longer
to be recognized).

In this paper, we consider the possibility of incorporating mea-
surements of human reaction time into the OSR process to improve
model performance. The subtleties of human perception measured by
psychophysics methods have already made in-roads in other computer
vision tasks [6], [7], [8], making this strategy an attractive target for
OSR. The fact that humans can separate objects that belong to a task
from objects that do not in a better way than machines indicates that
incorporating psychophysical measurements of human reaction time
into the model training process may provide more information to learn
from, and thus better performance. The challenge is in designing a
biologically-inspired neural network architecture with its own variable
reaction time and conditioning it to match human behavior as closely
as possible.

The first step to solving this problem is collecting data that are useful
in the context of novelty management. Boult et al. [9] have recently
argued that much of the existing OSR work consists of ill-defined
novelty problems, making both data collection and algorithm design
more difficult than is necessary. Thus they introduce a formal taxonomy
of novelty and suggest that the perception of novelty can be decoupled
from the “ground-truth” novelty value of objects in the environment.
This means that something can be novel to an agent (artificial or
human) that may not be truly novel in the environment (i.e., it has not
been learned yet). In-line with this, we designed a human behavioral
experiment which gauged the human perception of class-level infor-
mation via reaction time measurement (Fig. 1, top panel). We collected
over 200,000 psychophysical reaction time measurements using this
experiment design for a partition of ImageNet containing 335 total
classes [10]. Compared to prior work in OSR [11], [12], [13], [14],
[15], this dataset is far more realistic and challenging than the open set
partitions ofMNIST, SVNH, CIFAR10 and other small datasets that are
commonly found in the literature. But it is intentionally more limited
in available training images compared to the common ImageNet-based
OSR training regimes.

The second step is the formulation of the machine learning strategy.
After obtaining knowledge of the correlation between reaction time
and OSR performance for individual images, we designed a new

0162-8828 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on May 20,2024 at 14:25:03 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1803-7077
https://orcid.org/0000-0002-0529-9190
https://orcid.org/0009-0002-0337-1440
https://orcid.org/0000-0001-9649-8074
mailto:jhuang24@nd.edu
mailto:dprijate@nd.edu
mailto:jdulay@nd.edu
mailto:walter.scheirer@nd.edu
https://doi.org/10.1109/TPAMI.2023.3270772


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 9, SEPTEMBER 2023 11383

Fig. 1. In this work, we conduct behavioral experiments to gauge the human
perception of objects that belong or don’t belong to a task. Through the use of
visual psychophysics, human reaction time is measured across tasks (top panel).
These measurements are then used in a novel psychophysical loss function to
train biologically-inspired deep networks with a variable reaction time property,
leading to better novelty detection and multi-class classification performance in
open set recognition settings (bottom panel).

psychophysical loss function that can enforce more consistent behavior
between humans and machines when training a deep neural network,
thus improving the performance on OSR problems (Fig. 1, bottom
panel). To ensure the best match between the newly introduced loss
function and the task, we chose to use the Multi-Scale DenseNet [16]
(MSD-Net) architecture as a proof-of-concept. MSD-Net has five clas-
sifiers at different depths in its architecture, making it possible to
measure model reaction time by observing the classifier that serves as
the exit point for a particular image.Webelieve that coupling large-scale
psychophysically annotated data with a loss function that makes use of
behavioral measurements like reaction time to induce similar behavior
in models is a viable path forward for the OSR problem.

In summary, the major contributions of this paper are: (1) A new
dataset for the OSR problem containing reaction time measurements
for a challenging partition of ImageNet. This data is analyzed to draw
out patterns of difficulty not evident from the original class-level labels.
This is the first large-scale human behavior study carried out to explore
the use of psychophysical measurements for OSR, and it provides a
wealth of data for other researchers working on this problem and related
ones.1 (2)Ageneral strategy for utilizingmeasured human reaction time
for training deep networks for OSR, implemented as a psychophysical
loss function that can improve the performance of any neural network
architecture that supports variable reaction times for different inputs.
(3) A specific implementation of the loss strategy that takes advantage
of the special structure of the MSD-Net architecture. (4) Extensive
experimentation over the OSR partition of ImageNet that balances
class diversity and limited training data, with comparison made to 10
recent OSR approaches from the literature. MSD-Net models that are
trained with the proposed psychophysical loss function are shown to
significantly outperform prior work.

II. RELATED WORK

Open Set Recognition. The development of capabilities that can
detect that a sample is novel is a classic problem within the broader
field of pattern recognition [17]. But merely detecting novelty is a
limited task — classification is far more useful mode of operation in
machine learning. Most recognition work in computer vision has been
conducted in a closed set classification mode, meaning all classes are
known at both training and testing time. In contrast, OSR is a more

1Data for this paper can be downloaded from: https://tinyurl.com/mrb577su.
Code can be downloaded from: https://github.com/KiyoshiKAWASAKI/
pami_osr.

realistic scenario, where partial knowledge of the world is present
during training, and unknown phenomena are guaranteed to appear
during testing. The difficulty has been in finding effective approaches
for distinguishing between known and unknown samples [1].

Scheirer et al. initially formalized the OSR problem [3] and in-
troduced the concept of openness, which characterizes the potential
difficulty of open set problems. Importantly, they defined a notion of
open space risk, based on the assumption that the farther away a sample
is from the support of known training data in a feature space, the riskier it
is to assign a known class label to it. Following this definition, a series
of standalone classifiers was developed, including the 1-vs-Set Ma-
chine [3], PI -SVM [18], andWeibull-Calibrated SVM (W-SVM) [19].
Moving beyond SVM-like classifers, Rudd et al. proposed the Extreme
Value Machine (EVM) [12], which is an OSR classifier based on
the statistical Extreme Value Theory (EVT) that supports incremental
learning.

OpenMax [11] was the first OSR classifier that could be trained with
a deep neural network, adapting EVT concepts to the activation patterns
in the penultimate layer to perform OSR. Extending OpenMax, Gener-
ative OpenMax [20] trains a deep network with synthesized unknown
data. Similarly, Counterfactual Images for Open Set Recognition (OS-
RCI) [21] uses a Generative Adversarial Network (GAN) to generate
unknown images that are close to the training images but technically
do not belong to any training class. Class Reconstruction Learning for
Open Set Recognition (CROSR) [14] utilizes latent representations for
reconstruction to improve performance on unknown samples. TheClass
Conditioned Auto-Encoder for Open Set Recognition (C2AE) [22] di-
vides the training procedure into two sub-tasks, closed set classification
and open set identification, and uses EVT to find a threshold for filtering
unknown samples. Class Anchor Clustering for Open Set Recognition
(CAC-OSR) [15] uses a distance-based loss function that forces known
classes to form tight clusters around anchored class-dependent centers.
Multi-TaskOSR [23] combines a classifier and adecoder networkwith a
shared feature extractor networkwithin amulti-task learning framework
for OSR.

Outlier Exposure (OE) is another strategy for OSR, where outlier
data is provided to the model during the training process so it can
generalize and ideally detect unknown samples. It is possible to leverage
outlier samples to improve anomaly detection by training anomaly
detectors against an auxiliary dataset of outliers [24]. Dhamija et al. [25]
introduced a new evaluation metric that focuses on comparing the
performance of multiple approaches in scenarios where unknowns are
presented and proposed novel losses that are designed to maximize
entropy for unknown inputs. Kong and Ramanan [26] introduced
OpenGAN, which augments training outliers with fake unknown data
synthesized by a generator trained to fool the discriminator.

Considering all of the above approaches, the human capacity for
managing novelty has been missing. The previous work has focused on
formalizing theOSRproblem and developingmethods that can improve
OSR performance. However, none are informed by the measurement
of human perception. This is surprising, considering that humans have
a much stronger ability to perceive what belongs or doesn’t belong to
a task than computer algorithms. Different from previous OSR work,
we suggest the use of visual psychophysics as a path forward.

Visual Psychophysics for Computer Vision. Some researchers have
attempted to draw a connection between the human visual system
and artificial neural networks, looking into the differences between
various visual systems [27], as well as comparing the consistency
between human vision and deep networks [28]. Furthermore, a growing
amount of work has been studying how human behavior and perception
can be related to solving computer vision problems. For example,
DiCarlo et al. [29] highlighted how the human brain can perform object
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recognition despite a difficult environment and many variances in the
setting. After reviewing the evidence from human behavior to neural
recordings, they proposed that neuronal and psychophysical data is
necessary for better computational models. Medathati et al. [30] pre-
sented an overview of computational approaches to biological vision,
and showed how new computer vision methods can be developed from
biological insights. And studies have found that the human visual
system takes different amounts of time to respond to stimuli of varied
difficulty [31], [32]. All of these works touched on the notion that
psychophysical methods show promise for computer vision algorithm
development, but from the perspective of biology.

From the perspective of computer vision, Scheirer et al. proposed
the idea of Perceptual Annotation [6] to make use of psychophysical
measurements collected via crowdsourcedmeans to trainmore accurate
SVM classifiers. McCurrie et al. [7] collected behavioral data reflecting
human judgments of subjective facial attributes in order to model them.
Zhang et al. [33] suggested the use of human gaze measurements,
another behavioral measurement type, for improving performance in
object-related tasks. RichardWebster et al. [34], [35] proposed an
evaluation framework for visual recognition models that constructs
item-response curves made up of individual stimulus responses to find
perceptual thresholds.

Most closely related to the work in this paper is that of Grieggs
et al. [8], which introduces a psychophysical loss formulation for
training artificial neural networks. In that work, behavioral experiments
were conducted to collect reaction time data associated with the ability
of reading in order to improve handwritten character recognition in his-
torical documents. There are a fewmajor differences between our work
and [8]: (1)Wedevelop a psychophysical loss function that incorporates
several data streams and error measures. (2) Our work focuses on the
general area of image classification instead of the relatively niche area
of historical document processing. Not much expertise is required for
our task, thus it is possible for us to conduct larger-scale human data
collections. (3) Our goal is to utilize the psychophysical loss to improve
a deep network’s performance on OSR, instead of just achieving better
closed set classification performance.

III. PSYCHOPHYSICAL STUDY OF KNOWN DATA

To better understand how humans perceive familiar images in order
to be tolerant to novelty, we designed and conducted a study usingAma-
zon Mechanical Turk to collect human reaction time (RT) data.2 As the
source image data, we used a subset of ImageNet [36] that contains 335
classes (called ImageNet335 in this paper) [10], which was created by
the University of Maryland, Carnegie Melon University, and Columbia
University as part of the DARPA Science of Artificial Intelligence and
Learning forOpen-worldNovelty (SAIL-ON)program.For the purpose
of novelty detection, we partitioned that dataset into two categories for
machine learning. (1)KnownClasses: the classeswith distinctly labeled
positive training examples that appear at both training and testing time;
these are the non-novel classes. (2) Unknown Classes: the classes that
are not labeled and are unseen in training; these are the novel classes
used in testing.

With respect to the specific breakdown, we randomly selected 42
classes as unknown classes from ImageNet335, and the remaining 293
classes were used as known classes. In this study, we collected reaction
time measurements for the detection of specific known samples in the
midst of images from other classes. Knowing from previous work that
a mix of original and psychophysically annotated training data tends

2Approved by University of Notre Dame IRB under protocol 18-01-4341.

Fig. 2. A sample of one of the survey questions for collecting human reaction
time for known images. The subjects are asked to look at both rows of images
and select the first image in the bottom row that is of the same object class as
the reference class in the top row. It is possible that no image from the reference
class is shown, hence the sixth option in the bottom row. In this specific example,
the subjects should select the fifth image.

to yield good results [6], [8], we randomly chose 40 classes from the
known classes to use in the human behavior experiments.

StudyDesign.While novelty can be defined in differentways depend-
ing on the task and context, the problem we are trying to address in this
research is class-level novelty. We designed a study that is suitable for
collecting human reaction time measurements associated with known
classes; we do this because unknown classes should not appear at
training time in any capacity for a fair evaluation. Accordingly, we
need a task that can provide information about the patterns of difficulty
associated with known training samples as they interact with other
classes. Here we can use other known class data as stand-in material
for novel samples as RT measurements, which reflect difficulty, are
made.

Each Mechanical Turk survey contained 25 questions, and subjects
received 25 cents for completing a full survey. Fig. 2 shows an ex-
ample of one survey question (the full survey process is detailed in
Supp. Mat. Sec. 1.1), which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2023.3270772. In each question, two rows of images are shown to a
subject. In the top row, five images are shown within a green box and
are treated as reference images—all of them from the same class. In the
bottom row, five additional images are shown. The task is for the subject
to look at the images in the bottom row sequentially from left to right
in order to find the first image that belongs to the reference image class.
If the subject believes that such an instance isn’t present in the bottom
row, then they can indicate that as their response. A timer is started
when a question populates the page and is stopped when the subject
makes a decision. This is the recorded reaction time that is associated
with the image that belongs to the reference class in the question. If the
correct answer is the sixth option (a quality control measure), then the
subject’s recorded answer and RTwill not be used for machine learning
training.

We consider the reference images in the first row of a question as
training data for a human, and the images in the second row as testing
data. Training images for our machine learning task are drawn from
the correct known class images from the second rows across questions
and surveys. The intuition behind this design is that RT on known
samples provides more information on what is non-novel beyond a
class label, and if a model has a better understanding of what is known,
it should at the same time be able to better judge what could be
unknown by increasing the separation between these two categories.
This is consistent with a recent observation that novelty detection in
deep networks works by detecting the absence of familiar features as
opposed to the presence of novelty [37]. Taking this idea a step further,
the data from our study can be utilized effectively given a deep network
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with a notion of variable reaction time for each input [16], which is
trained to enforce behavioral fidelity with humans.

We pick one known class for the first row training data and another
known class as a stand-in novel class that is different from the training
data for the second row testing data. To be specific, in a question whose
answer is not the sixth option, there are 5 images that are from a single
class in the first row; in the second row, there are 4 images that are
from a different class and 1 image that is from the same class as the
first row. Such a design is straightforward for subjects to understand
because there are only 2 classes shown at a time in a question, thus we
expect to minimize noise in the results. Assuming we pick n classes
for the surveys, each class is paired with itself and the rest of the n− 1
classes. Using each pair, 20 questions are created, and based on the
above there are n2 different sets of surveys for the n classes chosen. In
the experiments conducted there are 40 known classes, thus there are
1,600 sets of different surveys in total.

To filter out bad submissions, we also include five control questions
in every survey, which means each survey has 25 questions in total.
These control questions are designed to be trivially easy so that any
diligent worker will most likely get them correct. We allow the subjects
to answer at most two control questions incorrectly. Answers provided
by unreliable subjects are filtered out and are not considered for the
machine learning experiments. Subject were not able to answer the
same question twice. Valid response times had to be under 28 seconds
(the maximum RT after removing the largest RT values reflecting 5%
of the total data) on the assumption that anything longer reflected an
inattentive subject. Although we instructed the subjects to look at the
images from left to right sequentially, there was no control to enforce
this on their side. Thuswe require that 5 subjects complete each question
so that noise can be smoothed out by considering average reaction times
for each image. To ensure the order of the images does not affect the
reaction time entries, all the images are selected randomly when the
survey is generated and the images do not follow any pre-set order.

SummaryofCollectedData.Wecollected 211,074RTmeasurements
in total. After data cleaning and data pre-processing, we sampled
121,073 instance-level RTs for model training. We grouped the RTs
that belong to the same image and calculated the average of them, and
we used this average value to represent the RT for an image. Overall,
there are 33,548 training samples from the 40knownclasses, and 12,428
images among them have corresponding RTs.

After collecting theRTdata, an important question for the subsequent
machine learning work was whether to use class-level or sample-level
behavioral information in the loss formulation.We started by looking at
class-level RT by generating box plots summarizing the measurements
by class pairings for each class (see Supp. Mat. Sec. 1.2), available
online. To be useful for a loss function, large relative differences
between a class and its different pairings would need to be present.
We observed that the variance in RT within a class across its various
other-class pairingswas small, and that the various pairings have similar
minimum and median RT statistics. This indicates that there isn’t
enoughRT information at the class-level to be useful for a loss function,
as patterns of difficulty across different classes cannot be ascertained.

Next, we turned to the sample-level behavioral information. We
plotted the distribution of RT measurements for these known samples,
shown in Fig. 3. Looking at the distribution, there is a large amount of
variance across samples from all of the classes. This means that some
samples have longer RT measurements while others have shorter ones,
regardless of the classes they come from. Therefore the understanding
and usage of RT has to be taken down to the sample-level for the design
of the loss function. Our RT data indicate that the human visual system
is perceiving each sample differently. Using this finding as an intuition
for machine learning, we make the following assumption: human RT

Fig. 3. This histogram and kernel density estimate shows the distribution of
human reaction time for the data collected for known samples. The X-axis
shows the range of reaction times after thresholding the long tail, which removed
outliers. The Y -axis shows the probability of occurrence.

Fig. 4. Pipeline depicting the three components of the proposed machine
learning process. The yellow box represents the human study for collecting
RT. The blue box shows machine learning training. The green box illustrates the
testing process. See Supp. Mat. Sec. 3.1 for additional detail on these, available
online.

is a significant indicator of the latent difficulty of perceiving an object
relative to objects from other classes, meaning thesemeasurements will
be useful or supervised training because the training set captures those
relative comparisons.

IV. TRAINING A MODEL WITH VARIABLE REACTION TIME

With a large number of reaction time measurements associated with
individual training points, we need some efficient way to make use
of that data for training a deep network. The most straightforward
approach has been to incorporate such data into a loss function [6], [8].
Unexplored before in the OSR literature, however, is a tighter coupling
between human and model behavior when it comes to the reaction time
associated with inputs. Thus we propose to enforce human behavioral
fidelity in a model that supports dynamic reaction time during runtime
(Fig. 4). This is accomplished via a new psychophysical loss function
that encourages the model to mimic per instance human RT.

Multi-Scale DenseNet. Most network architectures use approxi-
mately the same amount of time to process all input images. Typically,
networks only have one classifier at the end of the architecture, and
it is extremely difficult, if not impossible, to discern any meaningful
difference in model reaction time between samples. To be able to
support different model reaction times and to train the model with
human RT data, we chose to use the Multi-Scale DenseNet (MSD-
Net) [16] architecture with a custom loss function. We also describe an
experiment for a variant of ResNet-18 in Supp. Mat. Sec. 3.2, available
online.

Different from many other networks that only have one classifier
at the end, MSD-Net has five classifiers in its architecture. Utilizing
these classifiers as model exits, we modify the network to output the
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predictions after each classifier, and use a thresholding strategy to
determine whether the network is confident enough to decide which
class a sample should be classified into, orwhether a sample is unknown.
We start training by setting all 5 thresholds corresponding to each exit
to zero. To update these thresholds, we extract the prediction scores
on validation data every 5 epochs at each exit, taking the median
of all the prediction scores for a specific exit as its threshold. These
updates are necessary because the model behavior changes over time,
and probabilities become higher as the model better describes the data.

We call these thresholds training thresholds. If the network produces
a prediction score that is above the threshold and outputs a correct
prediction, a sample is considered to be exiting the network. We
consider it important that a sample has to satisfy both conditions during
training because we need to enforce the constraint that the network
confidently makes correct predictions. Training thresholds are updated
based on the probability vectors from the exit loss described below.

Psychophysical Loss Formulation. The base loss used for training
MSD-Net is the common multi-class classification cross-entropy loss.
The cross-entropy loss is the function

LC(p, q) = −
∑

y∈Y

p(y) log q(y), (1)

where p is the labeled probability (one-hot vector) of the class y from
the closed set of classes Y and q is the MSD-Net predicted probability
of the class y. Here we add to the cross-entropy loss by incorporating
RT measurements via two additional psychophysical loss functions.
This is accomplished via a weighted summation of the cross-entropy
loss and a psychophysical loss.

The psychophysical loss is an exit loss

LE (x, ŷ) =
∣∣Etarget(x) − Eŷ

∣∣ , (2)

where Eŷ is the exit integer index of the MSD-Net prediction ŷ, and
Etarget(x) is a lookup function that returns the target exit index for the
sample x. The exit loss is designed to push the MSD-Net’s reaction
time for the sample to be proportional to the sample’s target exit based
on a binning strategy informed by the human RT measurements. To
obtain the exit loss, the following two factors must be measured. (1)
Expected exit: Etarget(x). This value is assigned by measuring a discrete
distribution of human reaction time. After removing the outliers from
thehumanRTmeasurements andobtaining theminimumandmaximum
values, the entire range is discretized into five bins in accordance with
the number of classifiers in the MSD-Net architecture. The cut-off
thresholds defining the ranges covered by each bin are the quintiles
of human RT in Fig. 3 and are shown in Supp. Table 2, available online.
When a sample enters the network for training, the humanRTassociated
with that sample is checked, and the corresponding exit index from the
upper bound of the range is used as its Etarget(x). For instance, if a
known sample has an average human RT of 5.5 seconds, its Etarget(x)

will be 2. (2) Predicted exit for a sample determined by when it leaves
the network: Eŷ . As a sample is processed through each classifier, the
model checks the prediction scores as well as predicted label for that
classifier. If the maximum prediction score produced is larger than the
set threshold for an exit and the prediction is correct, the sample is
considered to be leaving the network and the index of the exit is Eŷ .

The complete proposed psychophysical loss combines the cross
entropy loss and the exit loss as a weighted summation

LΩ (p, q, x, ŷ, ω⃗) = ωCLC(p, q)

+ ωELE (x, ŷ) , (3)

where ω⃗ = [ωC ,ωE ] : ωi ∈ R is a vector of weights that correspond
to the hyperparameter weighting of each component.

Training andValidationPipeline.We take an original training dataset
of images that do not have associated RTs and split it into training
and validation sets with a ratio of 70% for training and 30% for
validation. Available samples that do have associated measured RT
are proportionally split via the same ratio into training and validation
sets and merged with the samples that do not have any associated RT.
Weutilize an existing implementation ofMSD-Net (https://github.com/
kalviny/MSDNet-PyTorch), and send training and validation data into
the network to train it with the psychophysical loss. Optionally, the
weights in ω⃗ can be set via domain knowledge or hyperparameter
optimization. In our experiments, all the weights were set to 1.0 to
assess base performance.

Testing Pipeline. After obtaining a model from training, we perform
post-processing for novelty detection. First, we need to determine the
threshold for each exit. This leads to a different set of thresholds than
the training thresholds; we call these inference thresholds. To obtain
this set of thresholds, the best model needs to be identified first. During
the training phase, we save amodel aswell as the training and validation
accuracy associated with it at every epoch. After training is done, the
model that produced the highest top-1 validation accuracy is selected
as the best model. We then run validation data through this best model
and calculate the median of all the predicted scores for each exit
respectively; these median scores are considered to be the inference
thresholds. They remain static from this point forward because the
best model is finalized. We then run all test samples from both known
and unknown classes through the selected model, saving the prediction
scores from each exit. Lastly, the inference thresholds are applied to
these scores to find out when the samples leave, with corresponding
exit indices recorded.

The exit strategies are slightly different for known samples and
unknown samples. For all the known samples, a sample correctly exits
the network when the maximum score is larger than a given inference
threshold, andwhen the networkmakes a correct prediction. If a sample
does not exit from one of the first 4 exits due to being under threshold
each time, it comes to the final exit, where there are three possibilities
for it. (K1) The maximum score of a sample is larger than the given
threshold, and the prediction is correct: the sample exits and is correctly
classified as a known class. (K2) The maximum score of a sample
is larger than the given threshold, but the prediction is wrong: the
sample exits and is classified as known, but associated with an incorrect
class. (K3) The maximum score of a sample is smaller than the given
threshold: the sample exits and is classified as unknown, making it a
false negative.

As for testing unknown samples, there are only 2 possible cases
for each sample. (U1) The maximum score is smaller than the given
threshold at every exit: the sample is classified correctly as unknown.
(U2) Themaximum score at a particular exit is larger than the threshold
given by that exit: the sample is wrongly classified as known, which
makes it a false positive.

For testing known and unknown samples, we use the probability
scores produced by the SoftMax function, and the exits solely decide
whether a sample is known or unknown. During the testing phase, all
samples are processed through the 5 exits and the probability scores
from each exit are saved. The scores are then post-processed to obtain
the final classification results.

V. EXPERIMENTS AND RESULTS

Data and Evaluation Metrics. The training data breakdown can be
found in Section III. For validation, 9,058 images are available from
the 293 known classes. The test set consists of known and unknown
images. The known test partition consists of the 293 classes seen in
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TABLE I
RESULTS FOR THREE VARIATIONS OF THE LOSS USED TO TRAIN MSD-NET;
SCORES ARE ACCURACY (%). FOR EACH LOSS, WE RUN EXPERIMENTS 5

TIMES USING 5 DIFFERENT SEEDS FOR TRAINING; THE SCORES SHOWN FOR
EACH EXPERIMENT ARE THE AVERAGE OF 5 RUNS WITH STANDARD ERROR.
LP IS A PERFORMANCE LOSS [8] DESCRIBED IN SEC. 2 OF THE SUPP. MAT.,
AVAILABLE ONLINE ADDITIONAL RESULTS, INCLUDING RESULTS FOR A

MODEL TRAINED WITH ALL 3 LOSSES AND COMPLETE RESULTS FOR ALL 5
RUNS, ARE IN SEC. 3 OF THE SUPP. MAT., AVAILABLE ONLINE

training providing a total of 336,453 new images. The unknown test
partition consists of 42 classes unseen at training — all are considered
to be part of one unknown class with 48,067 images.

Although variousOSRworks [14], [15], [21] useAUROCas ametric
to evaluate performance, we believe that it is somewhat flawed for this
problem. Importantly, it obscures the performance achieved through
the use of a single threshold by combining a large range of thresholds
to produce one score. Moreover, it does not provide a recommendation
for selecting the best threshold. AUROC can be used fairly as a metric
to assess a model’s performance during training or validation, but there
should only be one threshold per classifier used in the testing phase,
as would be done in operation. Knowing this, we chose to use fixed
thresholds obtained via experiments with the validation data as our
inference thresholds.

As OSR is a task built on top of novelty detection by adding
multi-class classification for known samples, both the detection and
classification components can and should be evaluated separately. Thus
we include metrics for both when reporting our results. For novelty
detection, we consider accuracy when testing unknown samples. For
multi-class classification, we use accuracy score and consider top-n
accuracy for testing known samples.We report counts for True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives
(FN), as well as F1 Score and the Matthews Correlation Coefficient
(MCC) in the Supp. Mat. Sec. 3 for comparison, available online.

Results: Contribution of Each Loss Function. Since the proposed
psychophysical loss is composed of an exit loss added on top of a
cross-entropy loss, we trained two models separately: one model is
trained just with cross-entropy loss and the other is trained according
to Eq. (3) (the proposed loss). To compare the performance of our loss
formulation with the previous published psychophysics loss [8], we
also trained a model with this performance loss. It is noted asLP , and
is added on top of cross-entropy loss as another baseline.

We train each of the models using a single GPU with a batch size
of 16 images shaped 224x224 and an initial learning rate of 0.1 for
200 epochs. As for the optimizer, we use stochastic gradient descent
(SGD)with amomentum of 0.9 and a weight decay of 0.0001. All other
parameters are set the same as the original implementation, and we did
not heavily tune these training parameters. Evaluation takes place in a
5-fold manner, training models with 5 different fixed seeds in all cases.
The average accuracy over all folds is considered as the final result.

Table I shows the training, validation and testing results for this
experiment. All three configurations of the loss demonstrate roughly the
same accuracy on known samples during training. When performance

TABLE II
TESTING RESULTS FOR THE PROPOSED LOSS AND OTHER BASELINES. BOLD
NUMBERS INDICATE BEST PERFORMANCE FOR A METRIC. RESULTS IN RED

HIGHLIGHT SPURIOUS BEST RESULTS DUE TO A CLASSIFIER BIASED TOWARDS
DETERMINING SAMPLES ARE NOVEL

loss is added to cross-entropy loss, there is a noticeable uptick in test
accuracy for both known and unknown samples. This indicates that
measured RT is helping the trained model to generalize in the OSR
setting. The increased performance in this case on known samples
is consistent with prior work [8], but the increase in performance
on unknown samples is a new finding. Better conditioning of the
MSD-Net exit behavior yields even more performance improvement.
For top-1 validation accuracy, the proposed loss of Eq. (3) outperforms
the cross-entropy loss by 6.02%, and the combined cross-entropy and
performance loss by 7.1%. Even more significant improvement is
demonstrated in the testing phase. When testing on known classes, the
proposed loss results in a top-1 accuracy of 36.48%, outperforming the
two other loss configurations (26.67% and 28.68%). When detecting
unknown samples, the proposed loss largely outperforms the others
with 54.23% accuracy, compared to 21.05% and 23.95%. These results
show that our proposed loss leads to models that are able to maintain
good performance when testing with multiple known classes while
simultaneously rejecting unknown samples.

Results: Other Baselines. We also compared our method with eight
other OSR methods from the literature. With respect to standalone
classifiers, we evaluated SVM [38] with thresholding, PI -SVM [18],
W-SVM [19], and the EVM [12] with MSD-Net features. With re-
spect to deep learning-based methods, we evaluated OpenMax [11],
OSRCI [21], CROSR [14], and CAC-OSR [15]. See Supp. Mat. Sec. 2
for descriptions of these approaches, available online. For these exper-
iments, we used the same dataset used to evaluate MSD-Net training
with different loss configurations. As we did not heavily tune hyper-
parameters in our proposed approach to avoid overfitting, for a fair
comparison we also refrained from doing so for all baseline methods.
Table II shows results on known samples and unknown samples from
the test set for all methods, including the different configurations of
MSD-Net training.

While most of the methods only achieve performance that is only a
little better thanmaking a random choice among the 293 known classes,
the different configurations of MSD-Net training achieve excellent
top-1 accuracy when testing on known samples, with the proposed loss
yielding the best result. The EVM has the highest accuracy when tested
with unknown samples, but when we look at the accuracy for known
samples, we notice that it tends to classify everything as unknown.
Similar to the EVM, CROSR and CAC-OSR also classify most of
the samples as unknown, leading to a high accuracy when consider-
ing just the unknowns, but very poor accuracy for known samples.
Reversing this trend, OSRCI classifies most of the classes as known,
which indicates it produces high prediction scores for both known and
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unknown samples, but is not able to distinguish between known and
unknown samples, and at the same time classifying known samples into
wrong classes. SVM and OpenMax are more balanced when it comes
to OSR and are reasonably accurate in detecting unknown samples,
but like other algorithms, they failed to perform well when assigning
known samples to the correct class. Only the MSD-Net configurations
are able to maintain good performance for both novelty detection and
classification.

The poor performance of the baseline approaches on the Ima-
geNet335 OSR task was surprising. The most significant cause is likely
dataset size. As emphasized earlier, OSR research tends to use a handful
of small datasets with far fewer than 335 classes. Testing performance
is known to drop when the number of classes increases [1]. Further, we
have intentionally curated the dataset used in this paper to provide
relatively few examples per class in order to assess the impact of
adding behavioral data. Larger-scale OSR work has made use of Tiny
ImageNet [14], [15], [21] or full ImageNet pre-training [11], [12] with
access to hundreds of thousands of labeled images for training — an
order of magnitude more data than what is available in our experiments
for training. Our proposed approach gains information from the behav-
ioral data that partially compensates for having fewer training samples
per class, which otherwise heavily degrades performance.

Secondary reasons for poor performance include input image size
sensitivity for deep learning-based models and feature size constraints
for standalone classifiers. In the former case, to be able to use this data
with the baselines, we had to downscale the images to match the input
size required by each baseline method, which potentially led to a loss
of information when they were trained. In the latter case, we had to use
PCA to reduce the dimensionality of the MSD-Net features for a few
of the baseline methods (details can be found in Supp. Mat. Sec. 2),
available online, including: SVM, W-SVM, PI -SVM and EVM. Such
brittleness needs further attention in OSR work.

VI. DISCUSSION AND FUTURE WORK

While our method is applied to a limited number of training samples
in this study, it is also possible to utilize the psychophysical loss function
on larger datasets (including those with outlier samples [24]). We argue
that humanRTcan still improvemodel performance, because it provides
extra information for deciding whether a sample should be known or
unknown. It is worth mentioning that with a larger training dataset,
a larger number of RT measurements may be necessary. Limitations
for the proposed method are focused around the data collection. For
instance, if a large amount of human data is required then the data
collection process can be very time consuming. Further, the collected
human data is task specific, and is difficult to transfer to other applica-
tions. However, these are opportunities for future work.

Turning to humans as a reference point for OSR problems is a
promising new direction of work, and our results hint at the potential
other experimental practices from the field of psychology might have
in providing information beyond simple labels to supervised learning.
Gaze measurement has already been suggested as one data stream [33].
More intriguing though is themeasurement of pupil dynamics. A recent
study has shown that movement of the pupil can be used as an index of
mental effort exertion [39], and thus could be another indicator of the
patterns of error in training data.

There is also work that looks at the relationship between human
behavior and machine learning models beyond RT, suggesting that
human perception does not always align with model decisions. Geirhos
et al. [40] suggest that humans and computer vision models process
information in different ways, and Kotseruba et al. [41] argue that train-
ing CNNs with psychophysical data does not improve the performance

of saliency models. This research provides a foundation for exploring
what types of tasks can benefit frompsychophysics and alternativeways
to incorporate human behavior into algorithms. With RT, we are just
scratching the surface.
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