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of a stimulus and measures
the resulting changes in a
human subject’s experience of
that stimulus; doing so gives
insight into the determining
relationship between a
sensation and the physical
input that evoked it. This
approach is used heavily in
perceptual domains, including
signal  detection, threshold
measurement, and ideal
observer analysis. Scientific
fields, such as vision science,
have always leaned heavily on
the methods and procedures of
psychophysics, but there is now
growing appreciation of them by
machine learning researchers,
sparked by widening overlap
between biological and
artificial perception [1], [2], [3],
[4], [5]. Machine perception
that is guided by behavioral
measurements, as opposed to
guidance restricted to arbitrarily
assigned human labels, has
significant potential to fuel
further progress in artificial
Digital Object Identifier 10.1109/JPROC.2024.3380905 intelligence (AI).

ustav Fechner’s 1860 delineation of psychophysics, the mea-
surement of sensation in relation to its stimulus, is widely
considered to be the advent of modern psychological science. In
psychophysics, a researcher parametrically varies some aspects
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In essence, psychophysical mea-
surements of human behavior rep-
resent a richer source of informa-
tion for supervised machine learning.
What has been missing thus far from
algorithms that learn from labeled
data is a reflection of the patterns of
error (i.e., the difficulty) associated
with each data point used at train-
ing time. With knowledge of which
samples are easy and which are hard,
some measure of consistency can
be achieved between the model and
the human reference point. The true
advantage of doing this stems from
the human ability to solve percep-
tual tasks such as object recognition
in an astonishingly fast and accurate
way [6]. Human visual ability devel-
oped over millennia with changes
in evolutionary genetic predisposi-
tion and thousands of hours of “pre-
training” for object recognition tasks
during development. By leveraging
a more powerful learning system—
the brain—it is possible to improve
machine learning training in new
ways.

In this Point of View article,
we advocate for an alternative to
traditional supervised learning that
operationalizes the science of psy-
chophysics (Fig. 1). To begin, it is
helpful to define a couple of terms
related to this new combination of
psychophysics and machine learn-
ing, which will be used through-
out this article. We define informing
machine learning with psychophysics
as adding behavioral information at
any stage of the machine learning
training pipeline to improve model
performance. Similarly, we consider
guiding as a description of improv-
ing a model’s performance on test
data toward higher supervised learn-
ing metrics of accuracy, thus instanti-
ating the concept of informing within
a chosen task domain that the model
operates in.

There are several ways to combine
psychology principles and machine
learning models. First, neuroscience-
inspired blocks can be used within
artificial neural network architectures
to varying degrees of success [7],
[8], [9]. Second, performing psy-
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chophysics experiments on trained
models can provide insight into
human-model similarity [10], [11],
[12], [13], [14]. Third, the strategy
might be to get the performance and
features of machine learning algo-
rithms to be more human-like [15].
Fourth, psychophysical measurements
can directly inform the machine learn-
ing model without changing the
underlying architecture [2], [5]. In
this article, we emphasize this last
approach because it modularly fits
into the training regime of many
machine learning algorithms with-
out requiring extensive modification
of the algorithm or changing its
underlying training objective. It is
also compatible with the other three
approaches.

We can view the choice of a psy-
chophysical measurement type as a
hyperparameter and the psychophysi-
cal measurements themselves as addi-
tional labels for data points to be
used during training. In traditional
supervised learning, performance is
limited by the arbitrary labels reflect-
ing class membership, which are
the only source of information pro-
viding guidance on how to treat
individual samples during training.
Psychophysically informed supervised
learning is a more complete learn-
ing pipeline because of the mea-
sured behavioral information. This is
akin to the idea of optimal exper-
iment design [16] because train-
ing data are systematically modified
in order to optimize a chosen loss
function.

In the rest of this article, we will
take a brief tour of psychophysics for
machine learning, including the prob-
lem space of perception where these
ideas apply, as well as the expanding
body of work related to psychophys-
ically informed machine learning. To
highlight the feasibility of gathering
and using behavioral measurements
in a new machine learning domain,
we demonstrate how this training
regime works in practice with a series
of experiments related to handwrit-
ten character classification. As we
will see, we are just scratching the
surface of what can be achieved with
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Point of View

this exciting interdisciplinary area of
psychophysically informed machine
learning.

I. PSYCHOPHYSICS
MACHINE LEARNING
A. Problem Space of Perception

FOR

Hans Moravec’s famous Al para-
dox pointed out that the perceptual
tasks that humans accomplish effort-
lessly have been among the most
challenging to model. As he wrote,
“it is comparatively easy to make
computers exhibit adult-level perfor-
mance on intelligence tests or play-
ing checkers, and difficult or impossi-
ble to give them the skills of a one-
year-old when it comes to perception
and mobility” [17]. Indeed, recent
advances in computational power
have yielded tremendous advances in
cognitive tasks that require exten-
sive mental effort for human par-
ticipants, such as advanced strat-
egy games [18] or machine transla-
tion [19]. However, machine learn-
ing has continued to struggle to per-
form perceptual tasks that appear
intuitive to humans but may have
ambiguous or ill-defined “ground
truth,” such as medical image inter-
pretation [20] or pro-social driving
behavior [21].

Classification models derive com-
plex latent representations from
data without the need for rule-
based assignment and can leverage
psychophysical data alongside a
class label. For instance, given a
photograph of a chair, an addi-
tional psychophysical measurement
associated with the photograph
would relate information about
the latent space of “chairness” to
complement the extracted features
and human-assigned label of “chair.”
This approach is particularly powerful
in a machine learning context in
which the correct label or solution
is conceptually defined by humans,
rather than an absolute ground truth.
An example of this would be a
model of the subjective assignment
of “first impressions” made about
the personality of a face in an
image [1].
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Psychophysically-Informed Supervised Learning: Complete Learning Pipeline
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Fig. 1. When performing similar visual tasks, humans and machine agents both solve for some latent representation of features. However,

at present, the human capacity for this is superior. The central component of psychophysically informed learning is collecting quantifiable

latent information from human experiments on visual recognition tasks and augmenting the training regime of machine learning models with

it. A learning agent with a closer representational space to humans for a visual task, which is in part learned from the psychophysical

measurements, solves that task in a way that is better than an agent without access to those measurements.

B. Informing Machine Learning
With Psychophysical Data

The goal of psychophysically
informed data collection is to reveal

additional information about the
underlying latent representational
space that vyields the traditional

annotations or labels that humans
produce for machine learning
datasets. This can be done by mea-
suring information about each label’s
difficulty, confusability of label pairs,
or integration of information over
time. To cover the latent space effec-
tively, experimental stimuli should
effectively cover the sample space of
the task, and experiments constructed
from the stimuli should span a range
of difficulty. Then, experimenters
should select a response modality
best matched to the machine learning
goal and provide careful instructions
that focus participant performance
on the critical measurement. For
example, a task utilizing reaction time
would yield more accurate data from
keypresses than mouseclicks, and if
participants are explicitly instructed
to “perform the task as quickly and
accurately as possible, without taking
breaks during trials.”

In recent years, psychologists have
effectively ported many in-lab study
protocols to online crowdsourcing
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sites such as Amazon Mechanical
Turk, demonstrating that data quality
can be comparable [22] while allow-
ing for rapid data collection from
large numbers of participants [23].
However, there is an ongoing debate
about the viability of such data
in some circumstances [24]. The
existing work in combining psy-
chophysics with machine learning has
found circumstances where crowd-
sourcing is effective. When con-
ducting crowdsourced psychophysi-
cal experiments, researchers must be
careful to preserve data quality. Cur-
rent risks include using chatbots to
solve tasks [25] and subjects rushing
through tasks without trying (evident
in identical reaction times or unnatu-
rally fast ones).

Psychophysical labeling of the data
provides an extra dimension beyond
the usual supervised label. In a clas-
sification mode, a loss function can
use this information to improve the
learning process. For example, psy-
chophysical labels can be incorpo-
rated into the loss to force the learn-
ing process to have more consistency
with human perception. Consider a
loss function where data points with
associated low latency in response
time result in high error for incor-
rect model predictions and data points
with high latency yield lower error for

2, Febru aEryZOZ

mistakes. In other words, the model
should not make mistakes on easy
samples but is allowed to miss some
of the hard ones in the same pat-
tern humans do. Alternatively, there
could be some advantage to leverag-
ing the psychophysical information in
a way that is inconsistent with human
behavior but still improves the model
performance. One way would be to
reverse the error emphasis so that the
training regime puts a higher priority
on getting difficult samples correct.

In a regression mode, Likert scale
(where the user makes a response
on a discrete scale, usually from 1
to 5) data could be used to directly
inform training to match human judg-
ment, with additional psychophysical
labels for the loss function as needed.
For example, a neural network-based
regressor can make direct use of aver-
aged Likert scale response scores. As
with experimental design in psychol-
ogy, the options for modeling here are
numerous.

C. Domains That Have Benefited
From This Approach

Several domains have been
investigated by researchers looking
for ways to use psychophysics in
machine learning (Fig. 2), spanning
the four strategies we introduced in
the beginning of this article. A loss
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Fig. 2. Psychophysical labels have been utilized in multiple domains. Supervised model training for handwritten document transcription

benefits from measurements of human reading behavior collected via crowdsourcing site workers or expert readers [5]. Affective computing
tasks can leverage forms of annotation such as Likert-scale ratings [26]. Machine learning algorithms for object recognition also benefit from

psychophysical evaluation and conditioning [4], [27]. The field of robotics, especially pertainil
derived from behavioral measurements when considering social settings such as pedestrian crossings [28]. In general, when considering a

to autor vehicles, benefits from labels

perceptual task, a supervised learning model can always benefit from a larger label space.

function able to use measurements
from crowdsourced psychophysics
experiments was first introduced by
Scheirer et al. [2] for the domain of
human biometrics. They conducted
a series of behavioral experiments
using the psychology crowdsourcing
platform TestMyBrain.org where
participants were presented with
a  two-alternative  forced-choice
question about whether or not a face
was present in a given stimulus. Two-
alternative forced choice is a common
way to gather psychophysical data
for recognition-based tasks because
the operative step of recognition is
binary—selecting a given positive
sample type in a relative latent
representation space and rejecting
a given negative sample [29]. Stimuli
were designed to test the impact
of different controllable conditions
such as noise and occlusion on face
detection, which provides increased
coverage of the full difficulty and
scope of the problem compared to
unperturbed labeling, maximizing the
size of an informative label space.
Different from the typical treatment
of labeled samples in supervised
machine learning, they found that
difficult samples (e.g., a heavily
occluded face) where the participants
chose correctly after a relatively
long period provided additional
information for training support
vector machine (SVM) classifiers with

a loss function applying penalties
based on perceptual measurements.
Adding psychophysical measurements
increased the robustness of the label
space, which led to a state-of-the-art
model for face detection.

In the domain of handwritten doc-
ument transcription, loss functions
incorporating psychophysical data for
artificial neural network training have
also been explored. Grieggs et al. [5]
measured the reaction time of expert
readers for documents of varying
age and language, and used those
measurements as labels in different
loss functions that could emphasize
easy or difficult samples. Observa-
tions were made about differences in
reader behavior between expert and
novice groups, with implications for
other data labeling tasks. As with
the original SVM work, this strategy
was able to yield state-of-the-art per-
formance for handwritten document
transcription.

It has been demonstrated that
humans adeptly make complex
judgments about personality traits
in miniscule amounts of time [30].
In the domain of affective computing,
using two-alternative forced-choice or
Likert scale ratings and regression
models, it is possible to model
this phenomenon using machine
learning. The Chalearn Looking at
People First Impressions Challenge
Competition [31] focused on models
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for the Big 5 personality traits (open-
ness, conscientiousness, extraversion,
agreeableness, and neuroticism).
McCurrie et al. [26] looked at a
set of different traits, including
trustworthiness, dominance, IQ, and
estimated age. Work by Rojas et al. [1]
has looked at modeling some of these
traits in a classification mode. This
research is a natural extension of
laboratory testing in social psychology
and is facilitated by psychophysical
measurements.

In the domain of object recog-
nition, an agent attempts to disen-
tangle a learned manifold on some
latent representation space of learned
data [6]. Psychophysical evaluation
has played an important role in
evaluating biological and artificial
vision, including their similarities and
differences. Perturbed stimuli (e.g.,
rotated objects) activate neurons at
different levels than canonical object
views of the same stimuli. This same
effect was observed in artificial neu-
ral networks [11]. Likewise, tem-
poral processing in the brain has
been modeled [32], [33], [34], [35]
and validated with strategies that
compare models with human per-
formance [12], [13]. However, dif-
ferences also exist between models
and biological reference points. For
instance, while some artificial neu-
ral networks generalize better than
humans on some types of noise,
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humans outperform them on many
noisy recognition tasks [10], [36],
[37]. This work demonstrates that the
incorporation of human behavioral
measurements within the label space
of specific recognition tasks where the
artificial agent typically fairs poorly
can be beneficial. RichardWebster
et al. [11], [27] introduced a frame-
work to evaluate different types of
image perturbations (blurring, rota-
tion, and resolution) and their effects
on both artificial and human perfor-
mance for object and face recognition
tasks, respectively. Zhang et al. [4]
have suggested the use of human gaze
measurements for improving perfor-
mance in various object-related tasks,
especially in a reinforcement learning
context. Also, Dulay and Scheirer [38]
observed that models can learn psy-
chophysical representations of task
difficulty that can transfer between
tasks.

Kumar et al. [39] observed an
inverse relationship between the met-
ric of “perceptual scores” and accu-
racy, where such scores are computed
in a deep feature space. While per-
ceptual scores are a documented form
of feature similarity strictly in models,
we are more concerned here with the
process of enhancing model accuracy
with rigorous and easy-to-incorporate
methods and procedures from the
field of psychology. Importantly, bet-
ter model accuracy can be achieved
in ways that are not necessarily con-
sistent with human responses, thus
affirming the observation of Kumar
et al. [39] across models and human
reference points.

Finally, in the domain of robotics,
psychophysics has been positioned as
a means to create more generaliz-
able embodied intelligence in robotic
systems [40]. By simulating an arti-
ficial environment with many poten-
tial scenarios using perturbed inputs,
a robotic system can generalize by
learning to perform on stimuli that
could potentially appear in the wild.
This borrows from human-in-the-loop
learning for autonomous systems but
remains distinct in that the measure-
ments for the scenarios are taken
from people before the model is

trained. Furthermore, it has also been
suggested that the models used for
autonomous driving can benefit from
the human perception of pedestri-
ans in uncertain situations (e.g., a
pedestrian at a crosswalk who is not
in motion but may intend to cross),
which reveals more information about
the situation at hand [28].

II. CASE STUDY:
OPTICAL CHARACTER
RECOGNITION
INFORMED WITH
PSYCHOPHYSICS

Optical  character  recognition
(OCR) is a popular supervised
learning task where the objective
is to classify the characters within
images of text. Sometimes those
images are of poor quality, rendering
the task more challenging to the
learning agent while providing a
representative example of text in
the wild. Humans, equipped with
a rich latent understanding of text
recognition, typically outperform
artificial agents on nontrivial OCR
tasks. In this illustrative case study, we
conducted a series of human behav-
ioral measurements in crowdsourced
experiments to operationalize the
training stage of a supervised deep
learning agent with psychophysical
data.

A. Dataset Preparation and
Behavioral Experiments

We implemented both the psy-
chophysical tasks and the OCR
machine learning task using a subset
of the Omniglot dataset [41]. The
dataset contains images of hand-
written characters from hundreds of
typesets, many of which a typical
crowdsourced study  participant
would be unfamiliar with. In order
to prepare a stimulus dataset for
the human behavioral experiments,
we selected 100 random classes
of distinct characters represented
in the images from the original
Omniglot dataset. To augment these
data, we generated a counterpart
sample for each image with a deep
convolutional generative adversarial
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network (DCGAN) [42] using the
pretrained weights for inference
to increase intraclass variance and
the sample size per class. This
resulted in a dataset of 100 classes
with 40 instances per class for the
psychophysical stimulus dataset to be
viewed by the participants.

We conducted a series of four
different psychophysical behavioral
experiments on variations of a two-
alternative forced-choice task with
human participants. For each experi-
ment of this particular task, the par-
ticipant viewed two different images
from the stimulus dataset with a
prompt asking whether the images
represent the same symbol or not. The
first image of the pair was chosen at
random, while the second was chosen
from the same class or a different one
with a probability of 0.5.

The following items correspond
to the partitions within Table 1,
which contains the experimental
results.

1) The first experiment was a
control experiment where the
images from the original stimu-
lus dataset were not perturbed.
As a baseline, this task presented
instructional prompts that were
not tailored to psychophysics
tasks, but rather asked partici-
pants for input on non-perturbed
inputs—tasks machine learning
models typically perform well
on. Users made their responses
using a cursor, which is typi-
cal in labeling tasks but does
not yield reliable reaction-time
estimates.

2) The second experiment used the
exact same images as the control
experiment, but we modified the
instructional prompts slightly.
Participants were instructed to
complete the task “as quickly and
accurately as possible” and they
were allowed to complete the
task by pressing an F or J key.
We consider these keys to be
easy ones to press based on most
keyboard layouts. We considered
this prompt set to be easier to
understand than the first.
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Table 1 Test Time Top-1 Accuracy Reflects Substantial Benefit When Using Reaction Time as an
Additional Label. We Conducted a Two-Way ANOVA Considering the Experimental Protocols and
Loss Functions as Variables to Assess If the Changes in Accuracy Are Significant. The Results
Have a p-Value From Two-Way ANOVA of 2.02 x 10~® When Considering the Main Effect of Using
Reaction Time as a Component of the Loss Function. The F-Statistic for the Same Main Effect
Was 17.51 for This Statistically Significant Result of the Two-Way ANOVA. The Error Bars Reflect
the Standard Error From the Mean for the Model Accuracies Across Fivefold. Using the Averaged
Accuracy Score as a Label Rarely Yielded Substantial Benefit. However, We See Improved
Performance When Using Reaction Time as a Psychophysical Parameter in All Cases

Control experiment Train Accuracy | Test Accuracy | 95% C.I.
Cross Entropy 0.741 £0.005 0.705 £0.004 | 0.078
Avg. Accuracy 0.743 +0.005 0.692 +£0.008 | 0.055
Avg. Reaction Time | 0.754 $0.005 0.719 £0.004 | 0.055
Different Prompts Train Accuracy | Test Accuracy | 95% C.I
Cross Entropy 0.732 £0.005 0.705 £0.004 | 0.078
Avg. Accuracy 0.723 +0.003 0.697 £0.008 | 0.062
Avg. Reaction Time | 0.731 £0.005 0.729 +0.005 | 0.062
Blurred Images Train Accuracy | Test Accuracy | 95% C.I
Cross Entropy 0.691 £0.005 0.642 £0.005 | 0.062
Avg. Accuracy 0.643 +0.008 0.542 +£1.005 | 0.107
Avg. Reaction Time | 0.710 +0.003 0.668 +0.006 | 0.068
Noisy Images Train Accuracy | Test Accuracy | 95% C.I
Cross Entropy 0.672 +0.006 0.602 £0.005 | 0.062
Avg. Accuracy 0.641 +0.007 0.592 +£0.016 | 0.110
Avg. Reaction Time | 0.732 £0.004 0.680 £0.005 | 0.062

(b)

(d)

Fig. 3. Are these the same character? An example two-alternative forced-choice OCR task
as seen from the participant’s view. (d) and (f) Character pairs where the class labels differ;

(a)-(c) and (e) represent the same class pairing. The blurred and noisy images lead to more

informative psychophysical labels for operationalization within the machine learning task

during training.

3) The third experiment incorpo-
rated the condition of Gaussian
blur. A randomly chosen image
from one of the 100 classes
was blurred using one of five
different kernels (also chosen
randomly with respect to the
level of perturbation), and the
other image that was paired
with it was left unaltered. We
expanded the range of experi-
ment difficultly to avoid a ceiling
effect, a form of scale attenuation
in which the maximum perfor-
mance measured does not reflect
the true maximum of the inde-
pendent variable. In this case,

we expect a measurement ceiling
if the task is too easy for par-
ticipants and maximally accurate
responses lose their relationship
to task difficulty.

4) The fourth experiment was con-
ducted like the third experiment,
but with Gaussian noise instead
of blurring. Likewise, there were
five different levels of Gaus-
sian noise that could be applied,
selected at random. Refer to
Fig. 3 for sample depictions of
this task.

Participants for
experiments were
Amazon Mechanical

the behavioral
recruited on
Turk. Each
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participant completed 100 two-
alternative forced-choice trials,
and each of the four experiments
had 1000 unique participants. A
two-alternative forced-choice task
efficiently determines the implicit
difficulty of a sample pairing within
a dataset. Each pair was shown at
least three times and up to five
times. The reaction time for each
task was recorded by measuring the
interval between the first presentation
of the stimuli and the participant’s
recorded response. Since the model
will only be doing single-image
classification, we only considered
the human reaction time for an
image from its most difficult pairing.
This is how the information from
the forced-choice task transfers
to the classification task. Spam
from dishonest subjects and incom-
plete response sets were manually
pruned.

Each experiment formed a psy-
chophysically annotated dataset that
was used later in the machine learn-
ing task. The resulting four datasets
included all of the image pairs shown
in each two-alternative forced-choice
instance, the responses of the partici-
pants, the average accuracy of partic-
ipants on each image pairing, and the
average reaction time of participants
on each image pairing. Each image
pairing was distributed approximately
evenly across all participants in each
experiment. The averaged accuracies
and reaction times per pairing were
calculated across all responses for
that instance, where the number of
responses per pairing varied slightly
but not significantly. Each instance
within the dataset is thus the aver-
age across the responses for that
particular image pairing within the
dataset.

B. Loss Function Formulation

The psychophysical loss utilized
data collected from human behavioral
experiments in addition to traditional
supervised learning data. It expanded
upon a traditional supervised learning
pipeline. In this case study, we made
use of a standard ResNet50 deep
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neural network model [43] and cross-
entropy loss. For all experiments, we
used the same hyperparameters for
the model.

The cross-entropy loss is defined as

- (Z yjlog(ﬁj)>

where §; is a model prediction and
y; is the traditional class label asso-
ciated with it at the jth index in
the dataset. In order to incorpo-
rate the psychophysical labels into
cross-entropy loss, we normalized and
scaled the measurements to fit within
the expected range of the loss function
values. Furthermore, we only consid-
ered modifying the behavior of the
loss function on model outputs where
the prediction was incorrect. Here,
reaction time or accuracy is used as a
proxy for sample difficulty. Easy sam-
ples that the model classifies incor-
rectly result in stronger penalties for
the model during training. We made
use of the averaged reaction times and
averaged accuracies separately from
one another; we did not combine the
two in a given loss function. To use
these labels, we defined a psychophys-
ical penalty in the manner of Grieggs
et al. [5]

Zi=m —1T;

where z; is the penalty, m is the
maximum value for either reaction
time or accuracy, and r; is the
psychophysical label (either reac-
tion time or accuracy) at the ith
index of the set of psychophysi-
cal label data pairings. Next, we
incorporate z; into the cross-entropy
loss

- (Z Yj (10g(?3j)2i0)))

at the jth index in the dataset,
where ¢ is a scaling factor for
the psychophysical penalty to mod-
ulate its impact (set at 0.5 in our
experiments).

C. OCR C(lassifier Experiments

The study concluded that psy-
chophysical loss improves the top-
1 accuracy of the dataset by 1.1%
points for the control experiment
protocol and as much as 8% on
others—a substantial improvement
for a machine learning endeavor.
The ResNet50 architecture used in
these experiments was pretrained on
ImageNet. We trained three models
based on this architecture for each of
the four psychophysical datasets from
the behavioral experiments: a set of
equally unperturbed images (control
experiment), re-worded prompts for
the control experiment set, blurred
images combined with originals, and
noisy images combined with originals.
The ResNet models used the aver-
age human reaction time or average
accuracy data as discrete values gath-
ered from the data to be used dur-
ing the training process as weight-
ing terms in the loss function, rather
than a differentiable continuous vari-
able, with respect to the following
models.

1) The first model was a standard
ResNet50 with normal cross-
entropy loss.

2) The second model substituted
regular cross-entropy loss for the
psychophysical loss using aver-
age accuracy.

3) The third model substituted reg-
ular cross-entropy loss for the
psychophysical loss using aver-
age reaction time.

We trained each model for 20
epochs. In order to report accuracy
fairly, we repeated model training
five times with a different ran-
dom seed. The results reported in
Table 1 reflect the mean accuracy
of each run along with standard
error.

In addition, we conducted a two-
way ANOVA test over the experimen-
tal results of the case study. The case
study combined experimental pro-
tocols with different loss functions;
therefore, we conducted the two-way
ANOVA with two variables: 1) the
four experimental protocols and 2)
the three loss functions. The goal of
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the two-way ANOVA was to deter-
mine the statistical significance of
changes in machine learning model
accuracy when applying different pro-
tocols to the data (such as perturbing
the inputs in systematically random
ways) and changing the loss functions
(such as including human reaction
times in the loss calculation). The four
experimental protocols were a control
with no human data included, the
modification of annotator prompts,
the blurring of images, and the addi-
tion of random noise to the images.
The three loss functions were the
control loss cross entropy, the inclu-
sion of average human accuracy to
the loss, and the inclusion of aver-
age human reaction time to the loss
function.

We report the ANOVA details in
Table 1. In this case study, the
statistical analysis reveals that incor-
porating human reaction times into
the loss space for ResNet-50 deep
learning models, which yielded the
best results, shows a significant differ-
ence in accuracy on supervised image
classification tasks. These results have
a p-value from two-way ANOVA of
2.02 x 107% when considering the
main effect of using reaction time
as a component of the loss function.
In contrast, accuracy labels did not
always outperform the control. There-
fore, when integrating these new
labels into machine learning training,
it remains important to assess the
effectiveness for the task. In this case,
reaction time was the more informa-
tive measurement type. This has been
shown in the literature for training
artificial neural networks using psy-
chophysical data [5]. However, there
is no guarantee that this will general-
ize to all tasks.

IIl. CONCLUSION
Psychophysical labels from human
behavioral experiments have been
shown to improve the performance of
supervised learning models in many
different domains in the literature. We
conducted a case study to demon-
strate how quickly this strategy can
be adapted to a new domain. More
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work needs to be done to develop sim-
ilar strategies for different modes of
learning, including unsupervised and
reinforcement learning. By improv-
ing training regimes or policy esti-
mators in these fields, generaliza-
tion may be achieved more effectively
than with traditional strategies. In
all, we hope that this work inspires
future conversation and research at
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