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1. Introduction

It is well known that nonnegative polynomials with rational coefficients in the interior of sum-
of-squares cones are sums of rational squares; that is, they have sum-of-squares decompositions that
are expressed entirely in terms of rational coefficients and can be verified using rational arithmetic
Powers (2011). The complexity of these rational certificates of nonnegativity can be measured by the
bit size of the largest magnitude coefficient in the decomposition; bounding the complexity of the
“simplest” certificate and establishing its dependence on relevant parameters such as the degree, the
number of variables, or the polynomial’s distance from the boundary of the cone are major open
questions. The corresponding algorithmic question is how efficiently these decompositions can be
computed in rational arithmetic. Surprisingly, polynomial-time algorithms are difficult to design, and
tight complexity bounds of known sum-of-squares decomposition algorithms are hard to come by
even in the univariate case Magron et al. (2019).

The recent paper by Magron and Safey El Din (2021a) gives an in-depth review of the state-of-the-
art on the complexity of deciding and certifying the nonnegativity or positivity of polynomials over
basic semialgebraic sets using SOS certificates; we only recall a few highlights.

The paper Magron et al. (2019) focuses on univariate nonnegative polynomials over the real line.
The most efficient algorithm they analyze returns SOS certificates of bit size O(d* + d3t), wherein
d is the degree of the polynomial and t is the bit size of the largest magnitude coefficient; a slight
improvement over the results in Boudaoud et al. (2008), which consider (Pélya-type) WSOS certificates
of positivity for univariate polynomials over [—1, 1]. These algorithms cannot be generalized to the
multivariate case. The multivariate case is considered first in Magron and Safey El Din (2021b), and
substantially corrected in the report Magron and Safey El Din (2021a), by analyzing the bit complexity
of a hybrid numerical-symbolic algorithm that recovers exact rational WSOS decompositions from an
approximate (numerical) WSOS decomposition of a suitably perturbed polynomial. The main result in

the corrected manuscript is that for n-variate SOS polynomials of degree d, the coefficients in the SOS

certificates have bit sizes of order O <‘L'ddo(") .

In this paper, we study these questions in the context of dual certificates. Dual certificates were
introduced in Davis and Papp (2022) by the authors, motivated by (and building on) the duality the-
ory of convex conic optimization, which has seen a number of recent applications in real algebraic
geometry Katthdn et al. (2021); Papp (2023). They are rational vectors from the dual cone of WSOS
polynomials that by definition can be represented as a vector with far fewer components than a con-
ventional WSOS decomposition: their dimension is independent of the number of weights, and they
avoid the explicit representation of the large positive semidefinite Gram matrices that characterize
conventional SOS decompositions. In Davis and Papp (2022), it was established that polynomials in
the interior of a WSOS cone have rational dual certificates, also providing new elementary proofs of
Powers’s theorems from Powers (2011). Following up on this work, we now study the bit sizes of the
components of dual certificates, as well as exact-arithmetic algorithms for the computation of rational
dual certificates.

In the first part of the paper, we show that dual certificates can be rounded (trivially, component-
wise) to “nearby” rational dual certificates with computable, “small” denominators. This follows from
a quantitative version of a property of dual certificates that (in contrast to conventional WSOS de-
compositions) every WSOS polynomial has a full-dimensional cone of dual certificates. In turn, these
rational certificates can be converted to integer dual certificates with boundable bit size. In Section 2,
we establish our general results, which are applicable to any WSOS cone certifying nonnegativity over
arbitrary basic, closed semialgebraic sets, including unbounded ones. We then provide refinements for
the most frequently studied and applied special cases, including univariate polynomials over the real
line and over bounded intervals in Section 3. E.g., for univariate polynomials over the real line, we
show that every positive polynomial with integer coefficients of bit size at most 7 (in the monomial
basis) has an integer dual certificate whose components are of bit size O (dt + dlog(d))—an improve-
ment from the aforementioned result of Magron et al. (2019) and from the n =1 special case of the
bounds obtained in Magron and Safey El Din (2021a).

In the second part of the paper (Section 4), we provide an algorithm that takes a polynomial with
rational coefficients as its input, and computes a sequence of rational lower bounds converging to the
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optimal sum-of-squares lower bound, along with a corresponding sequence of rational dual certificates
certifying these bounds. The algorithm is based on the one proposed in Davis and Papp (2022), which
is an almost entirely numerical hybrid method. Although the method in Davis and Papp (2022) is
capable of computing rational lower bounds and dual certificates via floating point computations, it is
limited by the precision of the floating point arithmetic, and the bit sizes of the computed certificates
cannot be bounded. The new algorithm proposed in this paper, Algorithm 1, runs entirely in infinite
precision (rational) arithmetic. We show that all intermediate computations can be carefully rounded
to nearby rational vectors with small denominators in each step, while still maintaining the property
that the algorithm converges g-linearly to the optimal weighted sums-of-squares lower bound.

11. Preliminaries
Here, we cover notation and background that we will use throughout the rest of this paper.

1.1.1. Weighted SOS polynomials and positive semidefinite matrices

Recall that a convex set K C R" is called a convex cone if for every x € K and A > 0 scalar,
the vector AXx also belongs to K. A convex cone is proper if it is closed, full-dimensional (meaning
span(K) = R™), and pointed (that is, it does not contain a line). We shall denote the interior of a
proper cone K by K° and the boundary of a proper cone K by bd(K).

The dual of a convex cone K € R" is the convex cone K* defined as

K*={yeR"|¥xeK:x'y>0].

Sum-of-squares (SOS) polynomials Let V), 54 denote the cone of n-variate polynomials of degree 2d.
We say that a polynomial P € Viad is sum-of-squares (SOS) if there exist polynomials q1,...,qk €

Vy.a such that p = Z; 1q, Define X, 4 to be the cone of n-variate SOS polynomials of degree 2d.

The cone %, 2¢ C Vyod = ]R(W;Zd) is a proper cone for every n and d. Throughout, we will identify
polynomials with their coefficients vectors (typeset bold) in a basis that is clear from the context
(but not necessarily in the monomial basis), e.g., t for the polynomial t(-) and 1 for the constant one
polynomial.

Weighted sum-of-squares More generally, let w= (w1,..., wy;) be some given nonzero polynomials
and let d = (dq, ..., dn) be a nonnegative integer vector. We denote by V" "2 the space of polynomials
p for which there exist 11 € Vu.2dy» - - +»m € Va.2d,, such that p=>"1", w;r;. A polynomial p € Vn’Zd
is said to be weighted sum-of-squares (WSOS) if there exist o1 € Xy 24;, ..., Om € Xy 24, such that p =
> wioi. It is customary to assume that wy = 1, that is, the ordinary “unweighted” sum-of-squares
polynomials are also included in the WSOS cones. Let szd denote the set of WSOS polynomials in
Vn ,q- This is nearly identical to the notion of the truncated quadratic module, except that the degree of
each SOS polynomial is independently selected, rather than by “truncating” to a desired total degree
In this manner, En ,q is automatically a full-dimensional convex cone in the ambient space V",
definition. Addltlonally, under mild conditions, the cone 2"" 54 18 closed and pointed; for example lt
is sufficient that the set
def n .

Sw={xeR"|wijx)>0,i=1,...,m} (1)
is a unisolvent point set for the space Vi, (Papp and Yildiz, 2019, Prop. 6.1). (A set of points S < R"
is unisolvent for a space of polynomials V if every polynomial in V' is uniquely determined by its
function values at S.) In particular, this implies that both En‘”_Zd and its dual cone have non-empty
interiors, a crucial assumption throughout the paper.

WSOS polynomials and positive semidefinite matrices We will denote the set of n x n real symmetric
matrices by S", and the cone of positive semidefinite n x n real symmetric matrices by S,. When the
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dimension is clear from the context, we use the common shorthands A 3= 0 to denote that the matrix
A is positive semidefinite and A > 0 to denote that the matrix A is positive definite.
It is well-known and easily seen that a polynomial s belongs to X, 4 if and only if

$() = Vna() SV a(),

wherein v, 4 denotes the vector of n-variate monomials up to degree d, and S € Si with L = (”;rd)
is the Gram matrix of the SOS polynomial s. This functional equality can be expressed coefficient-by-
coefficient, identifying the polynomials on both sides of the equation with their coefficient vectors in
a fixed basis. For example, if n =1 and both polynomials are represented in the monomial basis, we
obtain the classic result that s(t) = 1‘220 s;it! is SOS if and only if there exists a matrix (Sjk)jk=0,....d

such that s; = Z(j’k):,-:]urk Sk for each i. More generally, every SOS cone X, »q is a linear image of the
cone Sﬁr, and if we fix a basis for V; 24 and a basis for V, 4, there is an explicitly computable, surjec-
tive, linear map A* from Gram matrices (positive semidefinite matrices) to coefficient vectors of SOS
polynomials. From the dual perspective, it is also well-known (and is equivalent to the above state-
ments) that the dual cone %7, is a linear pre-image of Si. More precisely, there exists an injective
linear map A : E:,zd — Sfr. In the context of algebraic geometry and moment theory, A(y) is called
the truncated moment matrix of the (pseudo-)moment vector y, and the map A* in the representation
of the SOS cone is simply the adjoint of A. E.g., in the univariate example above, A(y) is the Hankel
matrix of the vector y.

Although everything in the previous paragraph generalizes from SOS cones to the WSOS case, the
conventional notation and terminology involving moment and localizing matrices is rather cumber-
some, and is largely unnecessary for this paper. To follow the rest of the paper, it is sufficient to keep
in mind that regardless of the number of variables n, the degree vector d, the choice of weights w,
and the polynomial bases used to represent the polynomials of various degrees, the WSOS cone Ex‘fm
is a linear image of the cone of positive semidefinite matrices of appropriate size under some surjective linear
map A*, and similarly, its dual (Ex‘ZZd)* is a linear pre-image of the same cone, under the adjoint map A. The
following Proposition makes these statements precise.

Proposition 1.1 (Nesterov, 2000, Thm. 17.6). Fix an ordered basis q = (1, ...,qu) of V,‘I’YZd and an ordered
basis pi = (Pi1, .-, Pi,L;) Of Vo, foreachi=1,...,m. Let A; : V4 (= RY) — Si be the unique (injec-
tive) linear map satisfying Aj(q) = wipipl.T, and let A} denote its adjoint. Then s € EX‘de if and only if there
exist matrices S = 0, ..., Sy = 0 satisfying

m
s=Y A(S). (2)
i=1
Additionally, the dual cone of E;"fzd admits the characterization
*
(zx‘de) :{xev,‘;‘de(zRU) | Ai(%) =0 Vi:l,...,m}. 3)

To see why A; exists and is unique, consider that each entry of the matrix of functions Wipip,.T is
a polynomial of the form w;p; jp; k., which by definition belongs to the space V., and so it can be
written uniquely as a linear combination of our chosen basis polynomials {q1,...,qu} of this space.
Thus, for any vector v e RY, the (j, k)-th entry of the matrix A;(v) is the same linear combination of
the components of v which would yield w;p; jp;  if it were applied to the basis polynomials q.

The interested reader will find a number of examples of WSOS cones ¥ and the A operators
representing them in different bases in (Davis and Papp, 2022, Example 1), using the same notation
as in this paper. We briefly recall only one of them:

Example 1.2. Consider univariate polynomials of degree 4, nonnegative on [—1, 1]. These polynomials
can be written as o1 (t) + (1 — t2)o»(t), where 07 € £1 4 and o0 € ¥1,2; that is, they are WSOS with
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the weights w1 (t) =1 and wy(t) =1 — t? and degree vector d = (2, 1). Representing all monomials

in the monomial basis, it is well-known that x = (o, ..., x4) € (X}, )* if and only if
: I . X0—X2 X1—X3
A = (xxx ) =0and Ay(x) = ()2 ) =0.
X2 X3 X4 17X3 X2—X4

The matrix A1(x) is the moment matrix, while A, (x) is a localizing matrix for this particular domain
Laurent (2009). In the notation of Proposition 1.1, we have U =5, (L1, L2) = (3, 2), and A; matrices
were obtained by collecting the monomial terms in the matrices

1 1 ¢ N
— _ 2 (1 _ (1% -t
<tt2>(1”2)_<ttzgi) and (1 t)(f)(“)_<t—t3 t2—t4)'

To further lighten the notation, throughout the paper, we will assume that the weight polynomials
w = (Wq,..., Wy) and the degrees d = (dq,...,dy) are fixed. We will denote the cone E:’l‘fzd by
¥ and the space of polynomials V,;’YZd by V. We will usually identify the spaces V and V* with RY
(U =dim(V)), equipped with the standard inner product (x,y) = X'y and the induced Euclidean norm
I - ||. For (real) square matrices, the inner product (-, -) denotes the Frobenius inner product.

Additionally, we use the shorthand A to denote the RV — St @ ... @ SIm linear map A1() &
--+@® Ap(-) from Proposition 1.1. With this notation, the condition (2) can be written as s = A*(S) for
some positive semidefinite (block diagonal) matrix S € S!1 @ - -- @ Sim. Similarly, Eq. (3) simplifies to

> ={xeRY|AX) =0}

The interior of this cone is simply
(£%° ={xeRY|A(x) > 0}. (4)

1.1.2. Barrier functions and local norms in convex cones

The theory of dual certificates builds heavily on results from the theory of barrier functions in
convex optimization. Here, we introduce relevant notation, and we give a brief overview of the parts
of this theory that will be needed throughout the rest of the paper.

Let A :RY — S! be the unique linear mapping specified in Proposition 1.1 above, and let A*
denote its adjoint. Central to our theory is the barrier function f :(X*)° — R defined by

£ €~ In(det(A x)). (5)
Note that by Eq. (4), f is indeed defined on its domain. The function f is twice continuously dif-
ferentiable; we denote by g(x) its gradient at X and by H(x) its Hessian at X. Since f is strictly
convex on its domain, H(x) > 0 for all x € (¥*)° (Boyd and Vandenberghe, 2004, Sec. 3.1.5 and 3.2.2).
Consequently, we can also associate with each x € (£*)° the local inner product (-, -)x: V* x V* > R

defined as (y, z)x def y'H(x)z and the local norm || - ||x induced by this local inner product. Thus,

Iylx = IH®)!/2y|l. We define the local (open) ball centered at x with radius r by By(x,r) %

{y € V*||ly — X|lx < r}. Analogously, we define the dual local inner product (-,-)5:V xV — R by

(s, )% 4 STH(x)~'t. The induced dual local norm | - |l satisfies the identity ||t]|% = |[H(x)~/t|.

Throughout, we will invoke several useful results concerning these norms and the barrier function
f in (5); these are enumerated in Lemma A.1, in the Appendix of this paper. Geometrically, the key
observation is that the Hessian of this barrier function, through the associated local and dual local
norms, provides computable ellipsoidal neighborhoods around each point in X° and (X*)° that are
contained in these cones, yielding “safe” bounds to round vectors in any direction without leaving the
cone.
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1.1.3. Dual certificates

As mentioned earlier in the introduction, our primary goal is to show the existence of a dual
certificate with boundable bit size for a given WSOS polynomial. Here, we review necessary definitions
and properties of dual certificates. For more extensive theory of dual certificates, see Davis and Papp
(2022).

Definition 1.3. Let s € &, and denote the Hessian of the barrier function f of £* defined in (5) by H.
We say that the vector X € (£*)° is a dual certificate of s, or simply that x certifies s, if H(x)"!s € &*.
We denote by

e ixe (=) |Hx) s e %)

the set of dual certificates of s. Conversely, for every x € (X*)°, we denote by

Px) Eise S| Hx) s e %)

the set of polynomials certified by the dual vector x.

This definition is motivated by the following theorem from Davis and Papp (2022), reproduced
below for completeness. In words, the theorem provides an explicit closed form formula for efficiently
computing a WSOS certificate for any polynomial from its coefficient vector s and any dual certificate
X:

Theorem 1.4 (Davis and Papp, 2022, Thm. 2.2). Let s € (X*)° be arbitrary. Then the matrix S = S(X, s) defined
by

S, 9) LA TA (HX)1s) Ax)™! (6)
satisfies A*(S) =s. Moreover, X is a dual certificate for s € T if and only if S = 0, which in turn is equivalent
to Hx)"'se T*.

Note that as long as A maps rational vectors to rational matrices (which is the case, for instance,
when polynomials are represented in commonly used bases such as the standard monomial basis or
the Chebyshev basis), then S is a rational matrix for every rational coefficient vector s.

It is immediate from Definition 1.3 that if X is a dual certificate of the polynomial s, then every
positive multiple of x is also a dual certificate for every positive multiple of s. Crucially, the same is
true for small perturbations of X and s; see Proposition 1.6 below.

From Lemma A.1 (claim 5) in the Appendix, we know that for every s € X° there exists a unique
X € (X*)° satisfying s = —g(x). This vector is a dual certificate of s, since

Hx) 's=—Hx) g Pxe (x4

Thus, every polynomial in the interior of the WSOS cone X has a dual certificate.
Definition 1.5. When —g(x) =s (€ £°), we say that x is the gradient certificate of s.

Simple calculus reveals the closed-form formula for the negative gradient: —g(x) = A*(A(X)™");
see also Lemma A.1 in the Appendix. However, since A* is in general not injective, the nonlinear sys-
tem s = A*(A(x)~!) cannot be solved for x in closed form; only the x — s map is easily computable,
not the converse. The same mapping —g has also been recently studied by Lasserre (2022) and others
Castro et al. (2021). We shall elaborate more on this connection in Section 5.

The following proposition gives two sufficient, although not necessary, conditions for x € ¥* to
certify a polynomial t. It also reveals that C(s) and P(x) are full-dimensional cones, that is, they have
a non-empty interior: every sufficiently small perturbation of the gradient certificate of s certifies
every sufficiently small perturbation of s.
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Proposition 1.6 (Davis and Papp, 2022, Theorem 2.4 and Corollary 2.5). Suppose that X € ¥* and s = —g(X).

1. Then x is a dual certificate for every polynomial t satisfying ||t — s||x < 1.
2. Ify is a vector that satisfies the inequality | X — y||x < % theny € ¥*, and X certifies t = —g(y).

Two very detailed examples illustrating the concept of dual certificates, the gradient certificate, and
the construction of explicit WSOS representations from dual certificates can be found in our previous
work (Davis and Papp, 2022, Examples 2 and 3).

1.1.4. Bit sizes of certificate vectors

Recall that the bit size of an integer y € Z is defined as 1+ [log,(]y| + 1)], and that the bit size
of a vector y € Z" can be bounded from above by n times the bit size of its the largest (in size)
component. As we are interested in the orders of magnitude of bit sizes of dual certificates (e.g.,
whether they are linear or polynomial or exponential functions of parameters such as the degree or
the number of variables of the certified polynomials), it will be convenient but equally informative to
substitute this quantity with the simpler log(||y|lco)-

2. Rational certificates with boundable bit bize

The goal of this section is to bound the norm of an integer dual certificate y € X* of a polynomial
t € X°. We consider different bounds, some of which depend only on the number of variables n,
the degree d, and t, and others that are expressed in terms of other computable or interpretable
parameters introduced later in this section.

The strategy to derive these bounds is as follows. In Section 2.1, we show that dual certificates
suitably close to the gradient certificate can be rounded to nearby rational dual certificates with small
denominators. Then, in Section 2.2, we show that these certificates also have small norms. These two
results add up to Theorem 2.9 bounding the bit size of an integer dual certificate.

2.1. Hessian bounds

Recall from Proposition 1.6, Statement 2, that if x € ¥* and || x—y||x < % then x certifies t = —g(y)
to be WSOS. This certificate x need not be a rational vector, let alone a vector with small denominator.
However, Lemma 2.1 below guarantees the existence of a nearby rational certificate xy for t with
boundable denominators. In this Lemma, and throughout the rest of the section, we shall continue
using g and H to denote the gradient and Hessian of the function f defined in (5).

Lemma 2.1. Let t € X° be the coefficient vector of a polynomial whose gradient certificate is y € (X*)°. Let
0 < r1 < ry be arbitrary, and suppose that x € ¥* satisfies | X — y|lx <r1 < 1/2. Let U = dim(X), and choose
an integer denominator N > 0 to satisfy

2N (1 —r1
1/2 2 1
1Hx) ”57U<l+rz)’ (7)
Ju

‘l . . . .
Then every Xy € NZU with | Xy — X|l2 < 35 satisfies ||Xy — Yllxy < r2. In particular, if r; < 1/2, then
rounding X componentwise to the nearest vector in %ZU results in a rational dual certificate of t.

Proof. By self-concordance (inequality (A.1) in Lemma A.1), we have

(A1) Xy — Ylix
XN — Ylay < — T
™=~ xn — Xlx

IXn —¥llx

T 1- YU H2)
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(2)1+r2||x |
=1+n N —Ylilx
1471
< XN — X X —
=17n (IXn — X[lx + IX — ¥llx)
1+r (VU 12
< X [Hx) r
_1+r1<2N” )+
(7)
=1,

which proves the first part of the claim. For the second part, if Xy is the result of component-wise

rounding X to the nearest vector in —ZU then ||Xy — X||oo < 2N’ S0 ||Xy — X2 < */_ . Then the first
part of the claim shows that xy is a certlﬁcate fort. O

In the corollary below, we consider the particular case in which the known certificate x for t is
the gradient certificate (i.e., X =Yy).

Corollary 2.2. Let y € (X*)° be the gradient certificate for t € £°. Suppose N satisfies
1/2
3~/ﬁ||1;(y) I <N,

and suppose that yy satisfies ||y — ynll2 < “2/—5 Then yy certifies t.

Proof. Substituting r1 =0 and r, = 1/2 into Lemma 2.1 yields the claim. O

The denominators in Lemma 2.1 and Corollary 2.2 depend on the norm ||H(y)!/2||, which is com-
putable for a known y. If y is not known explicitly, we can use the following upper bound for
| H(y)'/2||, which depends only on the norm of the coefficient vector t of the polynomial t(-), the
set Sy defined in (1), and the chosen basis q of X.

Lemma 2.3. Let {z1, ...,Zs} C Sw be a unisolvent set for 3, with s > U = dim(X). Let t € X°, and let y €
(Z*)° satisfy —g(y) =t. Choose a1, ..., s > 0, and define the matrix M as

N
def
ME D aiq@)q@)". (8)
i=1
Then M is a positive definite matrix, and
IH) 2 < cond(M) 3,

where cond(M) = % is the condition number of M.

Proof. We begin by showing that M is positive definite. Let v be a unit-norm eigenvector of the
smallest eigenvalue of M, and consider the polynomial v(-) :=v'q(-). Then

Amin (M) =V (Zalq(zl)q(zl )V = Zalv(zl

Since {z1, ..., zs} is unisolvent and v # 0, it follows that v is not the constant 0 polynomial, moreover
v(z;) # 0 for at least one i. Hence Ziuﬂ v(z;)? > 0. As each «; is positive, it follows that Apin(M) > 0.

Now, we proceed with the proof of the claimed inequality. Recall from Section 1.1 that A;(q(-)) =
wi()p()p()T for each i =1, ..., m. Thus,
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m m
D o wipiO AWM TP =Y o (Ai@) AW
i=1 i=1 9

A3
)T (—gy) =a0)t=t().
Thus, letting A(-) represent A1(-) ®---® An(-), we have for all z € Sy,

1@ "Hya@ = t(A@@)A®) " A@@) AT

—Z (Wi@Pi@Pi@ AW Wi @p@Pi @A) ")

tr (wi@pi@"Ai(y) ' pi@wi@pi@ " Ai(y) ' p@)

I
NGERN

Il
-

(10)
(wi@pi@ Ay 'pi @)’

I
™=

A
Il
-

Mvs

*
S

> (wi@pi@ A ) 'pi@) (W @p; @A) 'pj(@)

j=1

Il
_

D@2,

with the inequality in (%) due to the facts that w;(z) > 0 whenever z € Sy and that A;(y)~! is
positive definite.
Let {z1,...,z} be the unisolvent point set in the definition of M above. Then we have

IHWI2 = tr(H(y)) = (H(y).I) < <H(Y), )»—(M)>

(10) > @it(zi)?

= min (M)

Mt

B Amin (M)

_ It15max (VD)
Amin (M)

=cond(M)[It]3. O

We can use the bound in Lemma 2.3 to bound the denominators needed in Lemma 2.1 and Corol-
lary 2.2.

Theorem 2.4. Let y be the gradient certificate for t. Let U = dim (X), and let M be defined as in (8). Let
3
= (?/U cond(M)||t||2—‘ .
N

Then every yy € %Z” with lyn — Y2 < 3y is a certificate for t.
Proof. From Lemma 2.3, we have ||H(y)!/?||; < v/cond(M)||t|2. Therefore, N satisfies

3J/U Lem.2.3 34/U
—IHW2) <= = —/condM]itll> < N.

Then by Corollary 2.2, every yn € %ZU with ||yy —X|2 < 2—‘/5 certifies t. O

9
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Two remarks are in order. First, in order to obtain the smallest possible upper bound on the
denominator N that works, the goal should be to minimize the cond(M) with respect to the points
z; in the definition of M—a likely impossible task in general. However, any unisolvent set from Sy
provides a bound, and that is generally a relatively straightforward task to find. Second, the value
/U cond(M) is a property of the cone ¥, independent of t, therefore this optimization (or selection
of suitable points z;) needs to be performed only once for a given cone X. In Section 3, we shall use
natural candidate points for interesting special cases, for which the cond(M) is computable in closed
form.

2.2. Bounding certificate norms

Now, we turn our attention to bounding the norms of rational certificates for a given polynomial.
The results make use of two new parameters of the cone X and its representation via the operator
A. The first one is the barrier parameter of the barrier function f defined (in the notation of Proposi-
tion 1.1) as

m
def
VIS
i=1

(see also Lemma A.l, Statement 4). The other is the constant k$ defined in our next Lemma. This
statement is analogous to Equation (3.8) in the proof of (Davis and Papp, 2022, Theorem 3.5), but is
included here for completeness.

Lemma 2.5. Let y € (¥*)° be the gradient certificate for t € £°, and let e € °. Let € > 0, and suppose that
t — ce € bd(X). Define

K £ min {eTv|ve B, [V =1}. (11)

Then

Vv
< — .
IVlleo < Kee

Proof. Observe that the minimum in the definition (11) exists (as X* is a closed and non-trivial cone)
and k§ > 0 because e € X°. We now have

e lr) )
vE (g )
[¥lleo /~ I¥lloo

A5 y
2 il <t, —>
1l

= [[¥lloo (<t— ce, L>+8<e, L>)
lylloo lylloo
>0+ [lylloc&kS,

and the claimed upper bound on |y||« follows. O

Remark 2.6. Note that this bound can be computed efficiently using numerical methods for any given
t and chosen e. First, the ¢ corresponding to t and e can be approximated (or bounded below) by
simple line search; the bottleneck is testing membership in ¥ in each step. Second, although the
minimization problem (11) is not convex, its (global) optimal value can be computed by solving 2U
efficiently solvable convex optimization problems, since

10
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k$ = min (infle'v|ve % vi=1, V] < 1},
1<i<U
infle'v|ve =%, vi=—1, V| < 1}). (12)

This reformulation will also allow us to bound k§ from below using convex programming duality in
the next section.

Since we would like the tightest possible upper bound on |y|/., we seek an e € X¥° which max-
imizes the quantity k§s. Lemma 2.7 below illustrates that, for a fixed t € £°, choosing e =t (with
the resulting ¢ = 1) is the optimal choice. Nevertheless, the above, more general, form of Lemma 2.5
is useful when we are concerned with bounding certificates for families of polynomials (such as all
univariate polynomials of degree d) in terms of interpretable parameters such as the number of vari-
ables or the degree of the polynomials. In this context, it is often more convenient to use the bound
selecting any (convenient) e in the quantity k$e, instead of ktl.

Lemma 2.7. Let y € (X*)° be the gradient certificate for t € X°. Then for all e € ° and ¢ > 0 such that
t — ce € bd(%), we have kY > kSe.

Proof. Denote by E the set

E = {e € X° | there exists € > 0 such thatt — ce € bd(2)},

and let E be the set

E={eecx°|t—ecbd(X)}={t—b|bebd(T)}.

Let V represent the set

V={veZ"||Vlew =1},
and let £(t, e) be the largest & such that t — €e is on the boundary of X, for given t and e. With this

notation, we may now write

max k§& = max (min e(t,e) eTv)
ecRU ecE \veV

= max (min eTv)
eel:f veV

= max (min (t—b)Tv>
bebd(X) \ veV

< min ( max tlv— bTv)
veV \bebd(X)

= min (tTv + max (—bTv)>
veV bebd(X)

<mint'v
veV

=kt

where the first inequality comes from the weak duality theorem of convex optimization, and the
second one follows fromve X* and be . O

Having bounded the norm of the gradient certificate in Lemma 2.5, we can now bound the norm
of a rounded gradient certificate.

11
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Lemma 2.8. Let y € (X*)° be the gradient certificate for a polynomial with coefficient vector t € ¥°. Let U =
dim (X), e € X°, and ¢ > 0, and suppose t — ce € bd(X). Denote by v the barrier parameter for A and M

the matrix defined as in (8). Let N = (%«/U cond(M)||t||2—‘, and suppose yy € RY satisfies |[yn — Yoo < ﬁ
Then yy is a certificate for t with

1 v
< + —.
Wllee = 3 ona DIt Kee

Proof. The fact that yy is a certificate for t has already been shown in Lemma 2.4.
Recall from Lemma 2.5 that ||y|lco < % Moreover, by our choice of yy and N, we know
1
1 - 1
2N ~ 3/Ucond(M)||t],

Therefore, by the triangle inequality, we have

lyn —¥lloo < (13)

Y8 lloo < 198 — Voo + Iyloo - 27 1 :
< _ + < TVt e
Ynlloo <IN =Ylloo +1l¥llee = 3 Ucond(M)[t]2 ~ ki€

2.3. Bounds on integer certificate norms

Compiling the results from this section, we are now prepared to state a result bounding the largest
magnitude component of an integer certificate for a polynomial t € X°.

Theorem 2.9. Let U = dim (%), and let M be defined as in (8). Let e € X°, and let k§ be defined as in (11). Let
v be the barrier parameter of A, and let t € X° with t — ce on the boundary of X. Then there exists an integer
certificate y for t with

_ 1 3 v
Fleo < 5 + h\/u cond(M)IItIIzW (E) ‘
1

Proof. Recall from Sec. 1.1.3 that any positive multiple of yy is also a certificate for t. Hence, the
integer vector y"éf Nyy is a certificate for t. Using Lemma 2.8 and Theorem 2.4, we have

3 1 v
Ve =N < | =+y/Ucond(M)||t ——— + ——
1¥lloo = Nliynlloo < [2\/ M) H (wm“t“z +k$8)
1 3 v
= 3 + ’é,/Ucond(M)HtHz—‘ (@) . O
1

3. Bit size bounds for rational certificates in particular bases

In this section we refine the result of Theorem 2.9 in a few well-studied and computationally
relevant special cases such as the cones of univariate polynomials nonnegative on the real line or
on a bounded interval. These results complement existing ones on the bit sizes of conventional
sum-of-squares certificates of nonnegative univariate polynomials, such as those summarized in the
Introduction. We emphasize that our approach yields an efficiently computable bound for a variety
of WSOS cones even in the multivariate case. We consider one of these in Section 3.3. We also con-
sider different choices of bases, which are relevant for practical computation, specifically polynomials
represented in the Chebyshev basis and polynomials represented as interpolants.

The results presented in this section come in two flavors, motivated by two different mindsets and
two different families of applications in which nonnegativity certification is important. From the per-
spective of optimization, the fundamental task is to certify a bound as close to the global minimum of

12
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a polynomial (on Sy) as possible, and therefore one is inherently concerned with certifying polyno-
mials close to the boundary of X. In this setting, ¢ (specifically with the choice of e =1) is arguably
the most important parameter in Theorem 2.9, even for a fixed number of unknowns n and fixed
degree d, and one of the most pertinent questions is the dependence of the bit size of the certificates
on ¢, as ¢ tends to 0. The common simplifying assumption that the coefficient vector t is integer is
not particularly convenient or necessary; t can be any rational vector. On the other hand, from the
perspective of theoretical computer science and applications such as automated theorem proving, the
fundamental task is to certify that a given polynomial is nonnegative on a given Syy. Although the
dependence of the complexity of the certificate on ¢ (with any e) is still informative, the primary
concern is the asymptotic complexity of the certificate as the input size increases. It is convenient to
assume that t is an integer vector, and the relevant question is the bit size of the certificates as a
function of n, d, and 7 = log(||t|«). Therefore, we consider both bounds involving ¢ (for general t)
and bounds that are strictly functions of (n, d, T), assuming that t is an integer vector.

In each case, we will use the bound given in Theorem 2.9 as a starting point. Since U and v can
be expressed in terms of d and n, a result depending only on d, n, and t, and possibly &, requires
a lower bound on k§ or k$e (for some e) and an upper bound on cond(M), for some M in the form
given in (8), in each case.

3.1. Univariate polynomials over the real line

We first consider the most well-studied special case, univariate polynomials nonnegative over the
real line, which coincide with univariate SOS polynomials, represented in the monomial basis. In this
case, A(x) is the standard moment matrix (positive definite Hankel matrix) corresponding to the
pseudo-moment vector X € °.

Theorem 3.1. Suppose that ¥ = ¥ 54 (univariate sum-of-squares polynomials of degree 2d) and that we
represent all polynomials in the monomial basis—that is, in the notation of Proposition 1.1, the ordered bases p
and q are the standard monomial bases of degree d and 2d, respectively. Then the following hold:

1. For e = A*(I), the coefficient vector of the sum of monomial squares polynomial z+ 1+ z% + - - - + 224,
we have k§ > 1.

2. There exists a matrix M of the form given in (8) such that cond(M) < 3.2124+1/2,
3. Forevery t € X° with t — ge € bd(X), there exists an integer dual certificate y € £° N Z29+1 for t with

_ 1 Mtll21
I¥lloo < 5 + 4d3/23-21d+1/2T,

whose largest component has bit size bounded as

log(llyllec) ~ O (d + log(lIt]l2) + log(1/¢)).

Proof. 1. First, observe that since I is positive definite, e € ¥°. Now, we have

e'v=(A*I),v) = (I, A(V)) = tr(A(V)),
Combining this equation with (11), we get

k§ = min{tr(A(v)) | A(v) = 0, [[V]leo = 1}. (14)
It is well known that in this setting (nonnegative univariate polynomials represented in the mono-
mial basis), A(-) maps a vector v to its corresponding Hankel matrix, whose diagonal consists of
components of v. (See, e.g., (Davis and Papp, 2022, Example 1).) Because the matrix A(v) is posi-
tive semidefinite, its largest element (in absolute value) is a nonnegative component of v on the

diagonal of A(v). Hence, in (14) we have tr(A(v)) > ||v||oo = 1. Therefore k§ > 1.

13



M.M. Davis and D. Papp Journal of Symbolic Computation 121 (2024) 102254

2. When q(2) = (1, z, ..., z%), the matrix M defined in (8) is a positive semidefinite Hankel matrix

of order (2d + 1). It is well known that a partial converse also holds, and every positive definite
Hankel matrix of order (2d + 1) can be written in this form, because positive definite matrices
can be identified with truncated moment matrices of Borel measures i supported on the real
line (see, e.g., (Blekherman et al., 2013, Theorem 3.146)), and via Gaussian quadrature (Krylov,
2005, Chap. 7, Thm. 3) this measure u can also be chosen to be a discrete one supported on at
most 2d + 1 points.
Bounds on the condition numbers of positive definite Hankel matrices have been studied by many
authors. Our Statement 2 follows from a bound of Beckermann (Beckermann, 2000, Thm. 3.6),
which states that the positive definite n x n Hankel matrix of the lowest condition number has
condition number at most 3.21"/2.

3. From Statement 1, we have k‘]* > 1. From Statement 2, we know there exists a matrix M in the
form of Eq. (8) with cond(M) < 3.2124+1/2 Moreover, we have v =d + 1 and U = 2d + 1. Substi-
tuting these values into the formula from Theorem 2.9 gives the result. O

Corollary 3.2. (To Theorem 3.1) Suppose that ¥ = ¥ 54 and that, in the notation of Proposition 1.1, the or-
dered bases p and q are the standard monomial bases of degree d and 2d, respectively. Let t € X°, and assume
that t is an integer vector with T = log(||t||so). Then there exists an integer dual certificate § € (£*)° N Z24+1
for t whose components have bit size

log ([¥llec) & O (td 4-dlogd) .

Proof. The claim is a consequence of Theorem 3.1 with a suitable upper bound on 1/¢ as a function
of T and d. (Here, as before, ¢ > 0 with t — ge € bd(X), with e = A*(I) is the coefficient vector of the
polynomial z+> 1+ 2% 4 --- +z2d)

For the bound, notice that the largest ¢ for which t(x) — ce(x) > 0 for every x has the property
that the corresponding univariate polynomial x — t(x) — €e(x) has a multiple root, since its global
minimum is zero. Therefore, the discriminant of this polynomial (with respect to x, treating & as
a parameter) must vanish at the optimal ¢. The discriminant is a univariate polynomial of &, with
integer coefficients whose bit sizes can be bounded from above using the (more general) bounds on
the bit sizes of subresultant polynomials (Basu et al., 2006, Proposition 8.46). Note that since e =
(1,0,1,...,0,1), if T is an upper bound on the bit size of the coefficients of t in the monomial basis,
then the coefficients of the bivariate polynomial t(x) —ee(x) are of bit size at most 7 + 1. Furthermore,
treating the polynomial t(x) — €e(x) as a polynomial of x whose coefficients are polynomials of &, our
polynomial is of degree 2d, with coefficients of degree 1. Thus, (Basu et al., 2006, Proposition 8.46)
yields that the coefficients of the discriminant have bit sizes no larger than 7 := (4d — 1)(('[ + 1)+
log(2d) + log(4d)) + log(4d — 1) = O(td + dlog(d)).

We can now bound 1/¢ from above using Cauchy’s bound, which yields that the bit size of 1/¢
is at most 1+ 27 = O(td + dlog(d)). Substituting this bound and log(||t||2) < log(||tllcon/2d +1) =
O(t + log(d)) into the bound from Theorem 3.1 completes the proof. O

These results may be compared to the bit sizes of the certificates obtained using the two algo-
rithms analyzed in Magron et al. (2019). The first one finds certificates (explicit SOS decompositions)
3d

of bit size O(t (%)7)—linear in 7, but exponential in the degree. The second one outputs a decom-

position with coefficients of bit size O(zd? + d*)—also polynomial in the degree, a comparable result
to ours above.

3.2. Univariate polynomials over an interval
We now consider polynomials nonnegative over an interval, which for simplicity we assume to
be [—1,1]; all results in this section can be scaled appropriately to apply to any bounded interval.

In this case, because the domain is bounded, the constant one polynomial 1 belongs to X°, thus we

14
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may use e =1 instead of e = A*(I) as we do in the previous section. This leads to simpler and more
interpretable results: (t, e) in this case is simply the minimum value of t over [—1, 1], which in turn
can be bounded tightly using elementary techniques, without quantifier elimination. In the context
of polynomial optimization, this reveals the rate at which the bit sizes of the certificates of lower
bounds grow as the lower bounds approach the minimum value.

In this section, we also consider polynomial bases that are more commonly used in practical com-
putation with high-degree polynomials than the monomial basis, namely Chebyshev polynomials (of
the first kind) (Trefethen, 2013, Sec. 3) and interpolants (Trefethen, 2013, Sec. 2).

The representations of even and odd degree polynomials over [—1, 1] vary slightly; we briefly
recall the details for completeness. In the notation of Proposition 1.1, for polynomials of degree 2d, we

use the weight polynomials w(z) = {1, 1 — z2} to represent Sw = [—1, 1], and regardless of the choice
def w

of bases p;,p2 and q, we have m =2, U = dim(={,;)) =2d + 1 and v def Z;":] dim(p;) = 2d + 1.
For polynomials of degree 2d + 1, we use the weight polynomials w(z) = {1 — z, 1 + z}, and we have
def w

m=2,U =dim(x},;,;)=2d+2and v= > dim(py) =2d + 2.

3.2.1. Chebyshev polynomial basis

In this setting, we let q be the basis of Chebyshev polynomials up to degree 2d or 2d + 1 (for
even- or odd-degree polynomials, respectively). The p; and p, bases can be any bases of univariate
polynomials of the appropriate degree.

Theorem 3.3. For univariate polynomials nonnegative over [—1, 1], represented in the Chebyshev basis, the
following hold:

1. The constant k! is bounded below by 1.

2. There exists a matrix M of the form given in (8) such that cond(M) < 4.

3. Forevery t € X° of degree 2d or 2d + 1, with t — &1 on the boundary of X, there exists an integer certificate
y € (Z%)° for t with

— 1 2d+2
Fleo < 5+ === [3v2d+ 2112 .

and the bit size of the largest component of y is bounded as
log([I¥llso) = O (log(d) + log(|t]|2) + log(1/¢)) .

Proof. For brevity, we include the details for even degree polynomials only. We will index all vectors,
matrices, and point sets from 0 to 2d.

1. This result comes from Theorem 4.1 in Davis and Papp (2022), wherein k; denotes our constant
ki.
2. Consider univariate polynomials of degree 2d, and consider the points z = {zo, ..., zyq4}, with z; =

cos (727—’ , so z is the set of extrema of qy4+1(-) (also known as the Chebyshev nodes of the second

kind). Recall that M is defined by

N
M=) aiq@z)q@)".
=0
for s < oo and for some real numbers «y, ..., os. Here, we will set s=2d and o9 =--- = apg = 1.
From Mason and Handscomb (2003), Chapter 4.6.1, equations 4.45-4.46c, we know that for all
i=0,...,2d and j=0,...,2d, we have

. . 2d Owheni# j,
—54i(20)9;(20) — 54i(224)q(Z20) + > "ai(z)qj(z) = { d wheni = j,i # 0 nor 2d
1=0 2d wheni= j=0or2d
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Therefore, noting that q;(zo)q;(zo0) = (=1t and 4i(224)qj(z2q) = 1 for each pair (i, j), we have

1wheni# jandi=j mod?2
2d L L,
def T Owheni# jandiz#j mod 2
M);; = z21)q(z =
D (lX(;q( na) ) d+1wheni=j,i=0nor2d
= 1
7 |2d+1wheni=j,i=0or2d.
To bound the condition number of M from above, it suffices to give a lower bound for Apj, (M)

and an upper bound for Apax (M) (since M is positive definite). First, we will exhibit a lower
bound for Amin (M). For any x € R24+1 with ||x||; = 1, we have

d—1
x'Mx = <Z sz)
i=0
>d.

Therefore, Amjn (M) >d.
Recall that Amax (M) can be bounded by the largest absolute row sum of M. The largest absolute

row sum of (M) is (2d +1) +d =3d + 1. Hence Amax (M) < 3d + 1. It follows that cond (M) <
3d+1 g
T <4

2 2
d
+ (szl) +d (28 +3+ 2+ 2y +2,)
i=0

3. From Statement 1, we have k} > 1, and from Statement 2, we know there exists a matrix M in
the form of (8) with cond(M) < 4. Moreover, we have v <2d + 2 and U < 2d + 2. Substituting
these values into the formula given in Theorem 2.9 gives the result. O

Now we bound the minimum & of a positive univariate polynomial on the interval [—1, 1] with
integer coefficients, so that we can give an &-free result of the Theorem above.

Lemma 3.4 (Adapted from (Basu et al., 2009, Thm. 1.2)). Let t be a univariate polynomial of degree d taking
only positive values on the interval [—1, 1], and suppose that the coefficients of t in the monomial basis are
integers of bit size no more than t. Then we have

3d/2
Zer[lllﬂl]t(z) 7 204t 4 1)2-172

Lemma 3.4 assumes that t is represented in the monomal basis. For our next result, the change
of basis (from the Chebyshev basis to monomial) can be incorporated using the observation that a
polynomial of degree d with integer coefficients of bit size at most 7 in the Chebyshev basis also has
integer coefficients in the monomial basis, and the bit size of the largest magnitude coefficient in the
monomial basis is no more than 2d + 7. We are now ready to state our ¢-free version of Theorem 3.3.

Corollary 3.5. (To Theorem 3.3) Using the same notation as in Theorem 3.3, assume that t € X° is the coeffi-
cient vector in the Chebyshev basis of a polynomial of degree at most 2d + 1, and assume that the components
of t are integers with bit sizes at most T. Then there exists an integer certificate y € (£*)° N ZY for t with

log(I¥loc) ~ O (d7 + ).

Proof. The result comes from substituting the bound on & from Lemma 3.4 and the previous para-
graph into the bound from Theorem 3.3. O

3.2.2. Univariate monomial basis
Here, we let q represent the univariate monomial basis up to degree 2d or 2d + 1, for even- or
odd-degree polynomials, respectively. The bases p; and p, can be any univariate polynomial bases.
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Theorem 3.6. For univariate polynomials nonnegative over [—1, 1], represented in the monomial basis, the
following hold:

1. The constant k! is bounded below by 1.

2. There exists a matrix M of the form given in (8) such that cond(M) ~ © ((1 + «/5)4”/\/ﬁ), wherein
U =dim(2).

3. Foreveryt e X° of degree 2d or 2d + 1, with t — &1 on the boundary of T, there exists an integer certificate
y € (£%)° for t with

t
91~ 0 (@t + V2 L),
and the bit size of the largest component of y is bounded as
log([I¥lleo) = O (d + log(It]l2) + log(1/¢€)) .

Proof. 1. Using the observation that monomial basis polynomials also take values from [—1, 1] on
the interval [—1, 1], this result comes from a slight adaptation of Theorem 4.1 in Davis and Papp
(2022), using the monomial basis instead of the Chebyshev.

2. We may choose M to be the U x U Hilbert matrix, which is the (truncated) moment matrix of
the uniform measure on [0, 1]. Hence (similarly to the argument in Theorem 3.1) it is also the
moment matrix of a finitely supported measure on [0, 1], and therefore it can be written in the
form given in (8). The Hilbert matrix is well-known to have a condition number which grows as

o ((1 +V/2)W /JU); see, for example, (Hardy et al, 1934, Thm. 294) and (Wilf, 1970, Eq. 3.35)

for upper and lower bounds on the maximum and minimum eigenvalues of the Hilbert matrix,
respectively.

3. Substituting the results from Statements 1 and 2 as well as the bounds v <2d+2 and U <2d+2
into the formula from Theorem 2.9 yields the result. O

As a corollary, we have the following:

Corollary 3.7. Using the same notation as in Theorem 3.6, assume that t € X° is the coefficient vector in the
monomial basis of a polynomial of degree at most 2d + 2, and assume that the components of t are integers of
bit size at most T. Then there exists an integer certificate y € (£*)° N ZY for t with

log (I¥lleo) & O (d7 + dlog(d)) .

Proof. This comes from substituting the bound on & from Lemma 3.4 into the bound from Theo-
rem 3.6. O

3.2.3. Univariate Lagrange interpolant basis

We now turn our attention to another common basis choice for polynomials over an interval:
Lagrange interpolation polynomials. We use the same notation introduced at the beginning of Sec-
tion 3.2.1 to describe X, the weight polynomials w, and their respective variations for even- and
odd-degree polynomials, except here we let q (using the notation of Proposition 1.1) be a Lagrange
interpolation polynomial basis. Precisely, let {z1,...,zy} be a unisolvent point set in Sy. (As before,
U =dim(X).) Define the Lagrange interpolation polynomial g; (i=1,...,U) to be the unique polyno-
mial such that g;(z;) =1 for each i and g;(z;) =0 when i # j. Then, we define the ordered Lagrange
interpolation polynomial basis q using these polynomials as q = (q1, ..., qu).

The primary change from the Chebyshev and monomial bases is that the bit sizes of the certificates
now depend on the choice of interpolation points z; in a quantifiable manner.
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Theorem 3.8. Suppose that, as detailed in the previous paragraph, we represent polynomials in the Lagrange
interpolant basis corresponding to the interpolation points {z1, ..., zy}. Then the following hold:

1. Letting t = max;=1,. y(mMax—_i1<z<1qi(2)]), we have k} > %

2. The matrix M given in (8) can be chosen to be the identity matrix, with cond(M) = 1.

3. For every t € X° of degree 2d or 2d + 1 with t — e € bd(X), there exists an integer dual certificate
y € (X%)° for t with

_ 1 3 2d +2
Floo < ~ + {5@1 +2||t||2—‘ (ﬂ> ,

-2 e

whose largest component has bit size bounded as
log([I¥lleo) = O (log(d) + log(||tl|2) + log(w) +log(1/¢)) . (15)

Proof. 1. Recall that the optimization problem to compute k} can be solved by finding the minimum
of the 2U convex optimization problems in (12) (with two such problems for each i =1,...,U).
Fix i with 1 <i < U. The two optimization problems for this i have as their respective duals

sup{£x; + x| — |IX]1 |1 —xe€ =, x e RY}.

In the univariate setting, a polynomial belongs to X if and only if it is nonnegative. Hence, each
x=(0,..., i&, ..., 0), with :I:% in the ith coordinate, is a feasible solution to the dual problem

with objective value % Thus, 1 is a lower bound for the infima of each of the 2U problems in

"
(12), therefore k1 > 1.
2. By the definition of the Lagrange basis polynomials,

U
M=) q@)q@) =1,
i=1
the identity matrix, whose condition number is 1.
3. From Statement 1, we have k} > ﬁ and from Statement 2, we know there exists a matrix M in
the form of Eq. (8) with cond(M) < 1. Moreover, we have v <2d+2 and U < 2d + 2. Substituting
these values into the formula given in Theorem 2.9 gives the result. O

Remark 3.9. The parameter i from Statement 1 of Theorem 3.8 is closely related to the Lebesgue con-

stant L def MaXxe[—1,1] Zluzl |gi(x)|, the operator norm of the interpolation operator (with respect to
the uniform norm). It is well-understood that the choice of interpolation points with a small Lebesgue
constant is crucial in numerical computation with interpolants (see, e.g., (Trefethen, 2013, Chap. 15));
this has also been demonstrated in the context of sum-of-squares optimization Papp (2017). One
interpretation of Theorem 3.8 is that the choice of interpolation points is important even in exact-
arithmetic computation, as the bit sizes of the certificates are affected by the Lebesgue constant.

In the univariate case, the Lebesgue constant with U suitably chosen interpolation points from
[—1, 1] can be as low as O(log U) (Trefethen, 2013, Chap. 15). Thus, even for fairly suboptimal points,
the impact of u < UL =~ O(dlogd) in the bit size bound (15) is dominated by the logd term, simpli-
fying the bound to

log([lyllec) & O(log(d) + log(lIt]l2) + log(1/¢€)).
3.3. Multivariate polynomials over a bounded set

In this section, we assume that ¥ = XV, with w a set of weight polynomials describing a bounded

set Sw € R". We assume that, using the notation of Proposition 1.1, q is represented by a multivari-
ate Lagrange interpolation basis. Although in the multivariate case we can no longer rely on the fact
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that nonnegative polynomials are the same as WSOS polynomials with suitably chosen weights, the
analysis in the multivariate case can be made largely identical to the univariate analysis of the pre-
vious section under an additional assumption that is only slightly stronger than assuming Sy, to be
bounded (see also Remark 3.11 below).

Theorem 3.10. Suppose the q basis polynomials (in the notation of Proposition 1.1) are the Lagrange basis
polynomials corresponding to the (unisolvent) interpolation points {z1, ...,2zy} € Sw. In addition, suppose
that thereis a > 0 such that u 4+ q; € X and . — q; € X (foreachi =1, ..., U). Then the following hold:

1. For k! defined as in (11), we have k! > %
2. The matrix M given in (8) can be chosen to be the identity matrix, with cond(M) = 1.
3. Forallt € £° and ¢ > 0 witht — &1 € bd(X), there exists an integer certificate y € (£*)° N ZY for t with

91 < 5+ | 3VT00: | (17)

whose largest component has bit size bounded as

log([lylleo) ~ O (log(U) + log(|it|l2) + log(it) + log (v) + log(1/¢)) .

Proof. The proofs of the first two statements are essentially identical to those in Theorem 3.8. Sub-
stituting those two bounds into the formula given in Theorem 2.9 gives the third claim. O

Remark 3.11. The new assumption i £ q; € X is relatively mild, given that Sy is bounded. Recall that
if Sw is bounded, then every strictly positive polynomial over Sy belongs to the interior of the cone
of polynomials nonnegative over Sy; in particular, the constant 1 polynomial belongs to the interior.
It is reasonable to assume that 1 € X° holds as well (as it automatically does for many WSOS cones
commonly encountered in applications), in which case 1+ &q,- € X automatically holds for every large
enough W.

The condition 1 € £° plays an important role in the context of dual certificates. For example, it
ensures that every polynomial in span(X) has a WSOS lower bound (Davis and Papp, 2022, Lemma
3.1); as such, we will rely on it when we discuss exact-arithmetic algorithms to compute rational dual
certificates in Section 4. As discussed in (Davis and Papp, 2022, Theorem 3.7), even in the case when
this assumption does not hold, it is possible to extend X, with the inclusion of a single additional
weight that is nonnegative on Sy, to satisfy this condition without changing span(X) (in particular,
without increasing the degrees or invoking a Postivstellensatz).

4. Computing certified WSOS lower bounds in rational arithmetic

Having established the existence of rational dual certificates with a priori bounded bit sizes, we
now turn to the question of computing such certificates. More precisely, given a polynomial t and a
tolerance ¢ > 0, we want to compute a rational lower bound c that lies between the optimal WSOS
lower bound c¢* and c* —¢, along with a rational dual certificate (of a small bit size) proving t—c1 € X.

The new algorithm (Algorithm 1 below) is an adaptation of Algorithm 1 from Davis and Papp
(2022), which is a hybrid method for the solution of the same problem. Since that algorithm was
designed to run in finite-precision floating point arithmetic, the quality of the lower bound is lim-
ited by the precision of the arithmetic (limiting how small ¢ can be). That algorithm, as is, cannot
be efficiently implemented in infinite precision (rational) arithmetic, because the bit sizes of the in-
termediate quantities (and the returned certificate) blow up as the algorithm progresses even if ¢ is
large. The new Algorithm 1 follows the same blueprint, but rounds all intermediate quantities (lower
bounds and certificates) to “nearby” rational ones with small denominators, while maintaining the
desirable properties of the original algorithm that guarantee that the new algorithm also converges
linearly to the optimal WSOS lower bound.

The algorithm works for almost any WSOS cone X; our only assumption is that 1 € £°. This is a
mild assumption that ensures that every polynomial has a WSOS lower bound; recall Remark 3.11.
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4.1. The algorithm

The pseudocode of the algorithm is shown in Algorithm 1; see a detailed example of one iteration
of the algorithm after the outline of its analysis, in Example 4.2. Throughout, x represents a dual
certificate for the polynomial t — c1, where c is the current certified WSOS lower bound and t is
the input polynomial we wish to bound. In its main loop, the algorithm first updates the current
certificate x to be closer to the gradient certificate for the current t — c1 (Line 3), by taking a single
Newton step towards the solution of the nonlinear system —g(x) =t — c1. This updated certificate
is then rounded to a rational one with smaller denominators in Line 4. (The matrix norm required
for this calculation could be expensive to compute, but since any upper bound can be substituted for
|[H(x+)||, one can get an acceptable rigorous bound by using the Frobenius norm instead, which is
easy to compute exactly even in rational arithmetic.) Then the lower bound c is improved in Line 5
and rounded to a nearby rational bound that is still certified by the same rounded dual certificate
(Line 6). This last step can be implemented efficiently using continued fractions or Farey sequences.
Alternatively, it could be replaced by a naive rounding to the largest number in the interval with
denominator [2/Ac], the analysis below remains valid even in that case.

In addition to the notation introduced in the algorithm, we will use the following notation
throughout the rest of the section. We let y be the vector satisfying —g(y) =t —c1 and y; be the
vector satisfying —g(y,) =t — c1. The constants p and C used in the termination criterion will be
precisely defined and justified below, in Theorem 4.1—for now, we may treat the main loop of the
algorithm as an infinite loop.

The initialization of the algorithm requires a certificate x satisfying || — g(x) — 1|5 < HL] This may
be readily available, for example, when the gradient certificate of 1 is known in closed form. (See
(Davis and Papp, 2022, Example 4) for an example.) If such a certificate x is not known, we may
run Algorithm 2 discussed in Section 4.2 to compute such a certificate. Note that this initial vector is
independent of the coefficient vector t, and only needs to be computed once for every WSOS cone X.

The analysis of Algorithm 1 here is similar to the analysis of Algorithm 1 in (Davis and Papp, 2022,
Section 3.3). Therefore, we only give a concise outline of the proofs of its correctness and rate of
convergence. We shall refer to the analysis of its predecessor whenever possible, focusing on where
the analyses differ as a result of the rounding steps.

Algorithm 1: Compute the best WSOS lower bound and a dual certificate.

input : A polynomial t; a tolerance ¢ > 0.
outputs  : A lower bound c on the optimal WSOS lower bound c* satisfying ¢* —c < &; a dual vector x € (X*)°
certifying t —cl € .
parameters: An oracle for computing the barrier Hessian H for X; a radius r € (0, 1/4], a radius ry satisfying
VZ r

T <IN< Tz 2 certificate x satisfying || — g(x) — 1| <

T
r+1°

-1
1 Compute co = (i — | =80 1l [IEli. Set ¢ i=co and x:=—Lx
2 repeat
3 Set X, :=2x— HX)~'(t—c1).
4 Round X component-wise to a point Xy with denominators N % {—U () | H (x )12 H—|.

2
IN= 1=

5 Solve for c; the scalar quadratic equation

%y — Ha) ™t = e Dlxy =

B

r+1
and set ¢4 equal to the larger of the two solutions.
6 Set Ac :=c, — c. Chose c/+ to be the rational point in the interval [c + %,q] with the smallest possible
denominator.
7 Set Ac:=c/, —c. Set c:=c/,. Set X:=X.

8 until Ac< IpCe
9 return c and X.
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Theorem 4.1. Suppose that, at the beginning of the main loop of Algorithm 1, | X — y||x < for some r < }l.

Then:

2
1. After Step 3, x4 — Vllx, < 155
2. After Step 4, XN — ¥llxy <TN.
3. After Steps 5 and 6, we have ¢/, > c and ||Xy — Y+ |lxy <T, S0 ||X — yllx < also holds at the end of the
loop, and the algorithm improves the lower bound c in each iteration.

Moreover, Algorithm 1 is globally q-linearly convergent to c* = max{c | t — c1 € X}, the optimal WSOS lower
bound for the polynomial t. More precisely, in each iteration of Algorithm 1, the improvement of the lower
bound Ac = c/, — c satisfies

Ac - 1 c (16)
o —c- 2"
with the absolute constant p def HL] - 1£NrN and the A-dependent constant C > 0 defined as in Theorem 3.5
of Davis and Papp (2022).

Proof. Statement 1 is identical to Davis and Papp (2022, Lemma 3.2), and statement 2 comes from
Lemma 2.1 with r1 = 11722r and r =ry.

Statement 3 is analogous to Davis and Papp (2022, Lemma 3.3), replacing x+ therein with Xy and
making use of the fact that |[Xy — y|lxy <7~ whenever (Davis and Papp, 2022, Lemma 3.3) uses the
inequality x4 —yllx, < 1[—2% The fact that ¢/, > ¢ comes from the fact that ¢, > ¢ (Davis and Papp,
2022, Lemma 3.3) and the construction of c/,..

The linear convergence result is analogous to Davis and Papp (2022, Theorem 3.6), with ¢, playing
the role of c,. The rounding down of the lower bound c; to ¢/, in Step 5 ensures that in spite of
the rounding, the progress our Algorithm 1 is at least half of what the progress would be without
rounding (as in Davis and Papp, 2022, Algorithm 1) The final inequality (16) justifies the termination
criterion in Line 7: if Ac < %pCe, then the gap between the certified and the optimal lower bound is
c*—c<e¢aswanted. O

Example 4.2. Consider the polynomial t(z1, z2) = 32% — 62122 + z% + 221 — z3. Its global minimum on
the unit disk is c¢* ~ —1.70768680307. We can certify a sequence of lower bounds ¢ < c¢* by writing
t — c in the form

t(z1,22) —c=01(z1,22) + (1 — 22 — Z2) 02,

where o7 is a quadratic SOS polynomial and o, is a nonnegative constant (a degree-0 SOS polyno-
mial); i.e. by showing that t —c € Egi%), wherein w is the weight polynomial (z1, z) > (1—2% —23).

Using the monomial basis to represent all polynomials, we have the coefficient vector t =
0,2,3,—-1,-6,1), and it is straightforward to construct the A operator: we have U = dim(X) =6,
(L1,Ly) =(3,1),and A = A1 ® Ay, where

X1 X2 X4
AX)=|x x3 x5 |, AxX)=(X1—%3—X5) (17)
X4 X5 Xg

Now the Hessian of the barrier function can be computed efficiently using the formula (A.4).

To initialize Algorithm 1, we need a vector x; sufficiently close to the gradient certificate of the
constant one polynomial. In this simple example, we will use the gradient certificate itself, which can
be computed in closed form and happens to be a rational vector, Xx; = (4,0, %, 0,0, %). This can be
verified by direct computation: —g(x;) =(1,0,0,0,0,0) =1.
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In the main loop of the algorithm, we shall use the parameters r =1/4 and ry = 1/7 in this

3
nal, but we can round it down to cyp = —39. We can also verify that this lower bound is indeed
certified by X;: using the definition of dual certificates, it suffices to compute H(x;)~'(t — co1) =

(%, B2 8 18 %) and confirm that both A; from (17) are indeed positive definite. For

completeness, we can also generate an explicit WSOS representation using (6):

example. The corresponding (very crude) initial lower bound co = — 12,/ % ~ —38.97 is not ratio-

1\" /2 1 I\ /1
! 383 2 2,347
t(Z1,Zz)+39= 21 1 12 -3 Z1 +(1 _Zl —22)6.
1 359
4) -5 =3 3 4)

The first iteration of the algorithm proceeds as follows:

1. After computing H(X1), the updated certificate in Line 3 is

(452 8 1372 16 16 1276
7\ 4563° 4563 41067’ 4563 4563 41067 )

2. The denominator for the “compressed” certificate is N = 5029; the computation of this involves
calculating the updated Hessian, H(xy), the rest is trivial arithmetic. Rounding x; component-

wise, the rounded certificate becomes
1
Xy = ——(498,9, 168, —18, 18, 156).
5029

3. To update the lower bound, we construct the scalar quadratic equation in Line 5; reusing the
already computed Hessian, this is simple arithmetic. The equation can be written as

29387195615576 41508777838 050c4 + 19170557 32563_ =0,

whose larger root is approximately —35.4, meaning that (in the spirit of keeping the denomina-

tors as small as possible), we can update our lower bound to ¢/, = —36. Indeed, we have
1\ (s1 1 =1\ [1
t(z1,22) +36= | z1 1 s 3|z |+(0-22—-2)s4
V4) — % —3  s3 V)

with (s1, 52, 53,54) = 3441—769(3 203164, 10242827,9553289, 9208 520).

Although some of the coefficients appear frighteningly large for a toy example, it shall be empha-
sized that the explicit WSOS decompositions of t — ¢ need not be computed in the algorithm.

Continuing with the algorithm, the bit sizes of the dual certificates appear to grow linearly
with the number of iterations, and (as predicted by the theory), the difference c¢* — c decreases
exponentially with the number of iterations. For instance, after 200 iterations, the lower bound is
—1579834/925131, only about 2 - 10~'° away from the true minimum value.

4.2. Initialization

Algorithm 1 requires a suitable certificate of 1, the constant one polynomial, to initialize. Such a
certificate may be available either in closed form (e.g., for cones of univariate polynomials nonnegative
on an interval, the gradient certificate can be determined analytically (Davis and Papp, 2022, Example
4)), or from “preprocessing”, e.g., when other polynomials from the same space span(X) have already
been bounded.

If we do not know a suitable x to start with, then we could attempt to find the gradient certificate
(or a rational approximation of it) by solving the system —g(x) =1 by a general-purpose method for
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polynomial systems. Alternatively (and more efficiently), we can find an approximate solution to this
system by numerically solving the convex optimization problem

min{ f (x) + 1'x|x € =*}.

Instead of these numerical approaches, we can also leverage Algorithm 1 itself to find a suitable
initial point. Suppose we have an interior point X € (£*)°, which is by definition the gradient certifi-
cate of the polynomial s = —g(x). Then we can apply Algorithm 1 starting with this initial pair “in
reverse,” computing a sequence of certificates for polynomials of the form s + c1 for increasing values
of c. The same certificates in turn certify c~'s + 1 as well, which is approximately the same as the
polynomial 1 when c is large enough. The details of this approach are presented in Algorithm 2. Its
analysis largely follows the steps laid out in Theorem 4.1, with two minor adjustments regarding the
progress and the termination criterion. The change in Line 6 guarantees that the stopping criterion
can be met, as we show later in Lemma 4.4.

Algorithm 2: Initialization for Algorithm 1.
input : A vector X € (£*)°.

parameters: An oracle for computing the barrier Hessian H for X; a radius r € (0, 1/4], a radius ]ir <IN < 193~
outputs  : A certificate x € (£*)° satisfying || — g(x) — 1[I <

.

1

1 Compute s:= —g(x). Set c:=0.

2 repeat

3 Set X4 :=2x— H(X) "' (s +c1).

4 Round X, component-wise to a point Xy with denominators N def (‘/TU(H—%)HH(M)VZH].
INT T

5 Solve for ¢y the scalar quadratic equation

Xy — Han) (s + e D llxy =

B

r
r+1

and set ¢4 equal to the larger of the two solutions.

6 Set Ac:=cy — c. Chose ¢/, to be the rational point in the interval [c + %E c+ %E] with the smallest possible
denominator.

7 Set Ac:=c/, —c. Set c:=c/,. Set X:=X.

8 until || — g(cx) — 1l < =5-

9 return cx.

Analogously to Section 4.1, we will let y be the vector satisfying —g(y) =s + c1 and y; be the
vector satisfying —g(y+) =s+ c4+1 throughout this section, in addition to the notation introduced in
Algorithm 2. The algorithm can be initialized by any point in the interior of ¥*, and by definition, at
the beginning of the main loop of the algorithm, we have x =y, and therefore ||x —y||x <r. The proof
of Theorem 4.1 can be repeated almost verbatim to show the following.

Theorem 4.3. Suppose that, at the beginning of the main loop of Algorithm 2, | X — y||x <1 for some r < }l.
Then:

2
1. After Step 3, [IX4 — Ylix, < 155
2. After Step 4, | XN — Yllxy <TN.
3. After Steps 5 and 6, we have ¢/, > c and ||Xy — Y |lxy <T, S0 ||X — yllx < also holds at the end of the
loop. The increase Ac = ¢/, — c satisfies

Ac >1 c
c—c*_Zp’

with the same constants p and C as in Theorem 4.1. Thus, the constant c increases exponentially as the
algorithm progresses.
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By definition, if Algorithm 2 terminates, it returns a vector that can be used as an initial vector x
in Algorithm 1. It only remains to show that the algorithm indeed terminates. We shall show this in
two steps. First, we show that as the algorithm progresses and c increases, ||s||x tends to zero. Then
we argue that this ensures that the polynomial c~'s + 1 is eventually “close enough” to 1 that cx is
sufficiently close to the gradient certificate of 1.

Lemma 4.4. Let x € (X*)° be the certificate of the polynomial s + c1 € X° as defined in Algorithm 2. Then

1. |Is|l} tends to 0, and
2. Algorithm 2 terminates.

Proof. We begin with the first statement. Let x; be the gradient certificate of 1 and fix an arbitrary
a€ (0,1). Let y be the gradient certificate of s + c1. By Davis and Papp (2022, Lemma 3.1), we know
that for every sufficiently large c,

1

le™ X1 = Yllc-1x, <a.
Then, using inequality (A.2) from the Appendix and the fact that Hsllz‘_lx1 =c7! [sl%,, we have
(A2) [ c1s|x
lIslly < = — < = (18)
1= llc=1x1 — ylle1y, 1—a
Using inequality (A.2) again, we have
(A1) lIslly lIslly
lsll =< < (19)

T—|x—yly ~1-1
Therefore, we have
(18).19) ¢ sE
sl < @ ————.
1-nd-a

Since a can be chosen to be arbitrarily close to 0, and since r and ||s||, are constants, it follows that
as ¢ — oo, [Is|lx — 0.
Now, we show that Algorithm 2 terminates. At the end of each iteration, we have

_ A.5
|—g@ - 's+ 1|5, | - g0 — (s + e
i r
O x— HE s+ Dy = ——.
r+1

Thus, we have
I —gex) — 1% < [-gx) — s+ || + [ s+ -1,

’ ”s”>k
< + .
r+1 X

By Statement 1, |s||; tends to 0, so eventually the stopping criterion is satisfied. O
5. Discussion

Bit size bounds on certificates from Algorithm 1 We opted to separate the discussion on the bit sizes of
the certificates and Algorithm 1. In principle, one could study the former question “constructively”
by analyzing the bit sizes of the certificates computed by the algorithm, but we think it is useful to
underline that both the concept of dual certificates and the bit size bounds are independent of any
particular algorithm. Theorem 2.4 and Lemma 2.8 are both derived assuming that the dual certificate
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y at hand is the gradient certificate for simplicity of presentation; both of these results can be easily
adapted to the setting where y is any dual certificate that is sufficiently close to the gradient cer-
tificate. Similarly, any algorithm that computes a dual certificate by computing a vector x sufficiently
close (in the local x-norm) to the gradient certificate y will produce certificates with boundable bit
sizes.

The Christoffel-Darboux polynomial The WSOS polynomial —g(x) corresponding to a (pseudo-moment)
vector X € (X*)° is also known as the Christoffel-Darboux polynomial, or inverse Christoffel function.
Recent studies have focused on the properties of this polynomial, and especially on connections be-
tween the representing measures of x and the sublevel sets of —g(x), with applications to design of
experiments Castro et al. (2021); Lasserre (2022). For our work, the critical property of the Christoffel-
Darboux polynomial is the surprising fact that this polynomial is not only WSOS, but that the gradient
map X~ —g(x) = A*(A(x)™1) yields an explicit WSOS representation of this polynomial: the inverse
moment matrix A(x)~! is a Gram matrix that proves that —g(x) belongs to ¥. The concept of dual
certificates can be seen as a generalization of this idea: rather than mapping x to the Christoffel-
Darboux polynomial with an explicit WSOS representation via —g, we can map X to explicit WSOS
representations of a full-dimensional cone of WSOS polynomials s via the (x,s) — S map in (6).

Representation-dependent bit sizes Although the main theorem (Theorem 2.9) provides a bit size
bound using an array of unconventional parameters, it is worth noting that each of those parame-
ters is easily computable or, in the case of cond(M), can be bounded easily. Although computing the
matrix M with the lowest condition number is in general a likely impossible task, any unisolvent
point set and weight vector in (8) can be used to compute a bound. In each of the special cases con-
sidered, it was easy to find a point set that either yields a small enough cond(M) that is dominated
by other terms, or one that is provably of the optimal order of magnitude.

The other nontrivial ingredient is the constant k$ defined in (11). Unlike the other parameters in
Theorem 2.9, it depends not only on the cone ¥, but its chosen representation via the A operator.
(Equivalently, in the notation of Proposition 1.1, in depends both on the choice of the p; bases and
the q basis.) The example of interpolants suggests that it is a measure of conditioning, underscoring
the fact that conditioning is consequential even in the case of exact-arithmetic algorithms, not only
for numerical methods. Indeed, choosing poor interpolation points (say, equispaced points) to repre-
sent WSOS polynomials instead of well-conditioned ones leads to an increase in the bit sizes of the
certificates, even in the univariate case, due to the astronomical Lebesgue constant that grows expo-
nentially with the degree, dominating all the other terms in (15). It is also this parameter, along with
v, that may be reduced when the polynomials of interest have special structures such as symmetry
or term- or correlative sparsity Wang et al. (2020), showing that these structures are useful even for
dual certificates.

Also note that none of these parameters need to be known in order to implement the algorithms
discussed in Section 4, except for the stopping criterion of Algorithm 1. If we drop the requirement
that the algorithm must stop when the returned bound is provably within ¢ from the optimal lower
bound, and instead run the algorithm until the progress is below a tolerance, or when the lower
bound is suitably high (e.g., in applications where the goal is to prove that the input polynomial has
a positive WSOS lower bound), then none of the parameters introduced in Theorem 2.9 need to be
computed or bounded.

Dependence on v The possibly most counterintuitive aspect of the bound in Theorem 2.9 is that the
bit size of the integer dual certificate y (approximated by U log(]|¥|l«)) depends on the X-dependent
parameter v logarithmically, rather than linearly, since (all else being equal) v is a linear function
of the number of weights m (recall the notation from (1) and its surrounding paragraph). For ex-
ample, consider a family of polyhedral cones of nonnegative polynomials that consist of nonnegative
linear combinations of polynomials that are nonnegative on Syy. This is an elementary special case
of WSOS polynomials, where all “sum-of-squares” polynomials are simply nonnegative constants, and
where it is meaningful to keep adding additional weights to the representation for an increasingly
good inner approximation of the cone of nonnegative polynomials without increasing the “ambient
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dimension” U = dim(X). It is clear that the sizes of conventional WSOS certificates will grow linearly
as a function of m: an explicit WSOS decomposition will have m terms; the semidefinite matrix in
the representation (2) will have m (one-by-one) semidefinite blocks S;, etc. Yet, the dual certificate
will remain a U-dimensional vector whose components are of size O(log(m)). Of course, this does
not mean that such a certificate could be verified in polynomial time for an exponentially large m
(like in a Schmiidgen-type WSOS certificate); verifying that x certifies s, that is, A(H(X)~'s) = 0 still
requires linear time in the number of weights.
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Appendix A

Here, we summarize relevant results used throughout the paper concerning the local norms || - ||x
and || - |lx and barrier functions of the form f = —In(det(A(-))) defined on (X*)°, introduced in
Section 1.1.

Lemma A.1. Using the notation introduced in Section 1.1, the following hold for every x € (¥*)°:

1. We have Bx(x, 1) C (£*)°, and for all u € Bx(X, 1) and v # 0, one has

vl _
T—fu—x|x <" <(1—u—x|x"". (A1)

~ vilx

2. Forallv+#0, if |lu—x|x < 1, we have

v 1
IVl . a2)
Iviix = 1—[lu—xX]lx
3. The gradient g of f can be computed as
g0 =—-A" (A, (A3)
and the Hessian H (X) is the linear operator satisfying
Hxv=A*"(A®) TAWAX ") foreveryveRY. (A.4)

4. The function f is logarithmically homogeneous; that is,

f(ax) = f(x) — viIn(x) for every o > 0

where v = 2'111 L; is the barrier parameter of f. Subsequently, the derivatives of f have the following
homogeneity properties:
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g@x)=a 'g(x) and H(ax)=a 2H(X) foreverya > 0. (A.5)
Furthermore,
Hx)x=—-gx) and [gX)|x=[Xlx=v(—gX).X) =/, (A.6)

where v is the aforementioned barrier parameter.
5. The gradient map g defines a bijection between (£*)° and T°, In particular, for every s € X° there exists
a unique X € (X*)° satisfying s = —g(X).

Proof. Statement 1 is Renegar’s definition of self-concordance Renegar (2001, Sec. 2.2.1) to the func-
tion f defined in (5). Statement 2 is (Papp and Yildiz, 2017, Lemma 4). Statements 3 and 4 follow
from calculus. Statement 5 is from Renegar (2001, Sec. 3.3). O
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