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1. Introduction

It is well known that nonnegative polynomials with rational coefficients in the interior of sum-
of-squares cones are sums of rational squares; that is, they have sum-of-squares decompositions that 
are expressed entirely in terms of rational coefficients and can be verified using rational arithmetic 
Powers (2011). The complexity of these rational certificates of nonnegativity can be measured by the 
bit size of the largest magnitude coefficient in the decomposition; bounding the complexity of the 
“simplest” certificate and establishing its dependence on relevant parameters such as the degree, the 
number of variables, or the polynomial’s distance from the boundary of the cone are major open 
questions. The corresponding algorithmic question is how efficiently these decompositions can be 
computed in rational arithmetic. Surprisingly, polynomial-time algorithms are difficult to design, and 
tight complexity bounds of known sum-of-squares decomposition algorithms are hard to come by 
even in the univariate case Magron et al. (2019).

The recent paper by Magron and Safey El Din (2021a) gives an in-depth review of the state-of-the-
art on the complexity of deciding and certifying the nonnegativity or positivity of polynomials over 
basic semialgebraic sets using SOS certificates; we only recall a few highlights.

The paper Magron et al. (2019) focuses on univariate nonnegative polynomials over the real line. 
The most efficient algorithm they analyze returns SOS certificates of bit size O(d4 + d3τ ), wherein 
d is the degree of the polynomial and τ is the bit size of the largest magnitude coefficient; a slight 
improvement over the results in Boudaoud et al. (2008), which consider (Pólya-type) WSOS certificates 
of positivity for univariate polynomials over [−1, 1]. These algorithms cannot be generalized to the 
multivariate case. The multivariate case is considered first in Magron and Safey El Din (2021b), and 
substantially corrected in the report Magron and Safey El Din (2021a), by analyzing the bit complexity 
of a hybrid numerical-symbolic algorithm that recovers exact rational WSOS decompositions from an 
approximate (numerical) WSOS decomposition of a suitably perturbed polynomial. The main result in 
the corrected manuscript is that for n-variate SOS polynomials of degree d, the coefficients in the SOS 
certificates have bit sizes of order O

(
τdd

O(n)
)
.

In this paper, we study these questions in the context of dual certificates. Dual certificates were 
introduced in Davis and Papp (2022) by the authors, motivated by (and building on) the duality the-
ory of convex conic optimization, which has seen a number of recent applications in real algebraic 
geometry Katthän et al. (2021); Papp (2023). They are rational vectors from the dual cone of WSOS 
polynomials that by definition can be represented as a vector with far fewer components than a con-
ventional WSOS decomposition: their dimension is independent of the number of weights, and they 
avoid the explicit representation of the large positive semidefinite Gram matrices that characterize 
conventional SOS decompositions. In Davis and Papp (2022), it was established that polynomials in 
the interior of a WSOS cone have rational dual certificates, also providing new elementary proofs of 
Powers’s theorems from Powers (2011). Following up on this work, we now study the bit sizes of the 
components of dual certificates, as well as exact-arithmetic algorithms for the computation of rational 
dual certificates.

In the first part of the paper, we show that dual certificates can be rounded (trivially, component-
wise) to “nearby” rational dual certificates with computable, “small” denominators. This follows from 
a quantitative version of a property of dual certificates that (in contrast to conventional WSOS de-
compositions) every WSOS polynomial has a full-dimensional cone of dual certificates. In turn, these 
rational certificates can be converted to integer dual certificates with boundable bit size. In Section 2, 
we establish our general results, which are applicable to any WSOS cone certifying nonnegativity over 
arbitrary basic, closed semialgebraic sets, including unbounded ones. We then provide refinements for 
the most frequently studied and applied special cases, including univariate polynomials over the real 
line and over bounded intervals in Section 3. E.g., for univariate polynomials over the real line, we 
show that every positive polynomial with integer coefficients of bit size at most τ (in the monomial 
basis) has an integer dual certificate whose components are of bit size O (dτ + d log(d))—an improve-
ment from the aforementioned result of Magron et al. (2019) and from the n = 1 special case of the 
bounds obtained in Magron and Safey El Din (2021a).

In the second part of the paper (Section 4), we provide an algorithm that takes a polynomial with 
rational coefficients as its input, and computes a sequence of rational lower bounds converging to the 
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optimal sum-of-squares lower bound, along with a corresponding sequence of rational dual certificates 
certifying these bounds. The algorithm is based on the one proposed in Davis and Papp (2022), which 
is an almost entirely numerical hybrid method. Although the method in Davis and Papp (2022) is 
capable of computing rational lower bounds and dual certificates via floating point computations, it is 
limited by the precision of the floating point arithmetic, and the bit sizes of the computed certificates 
cannot be bounded. The new algorithm proposed in this paper, Algorithm 1, runs entirely in infinite 
precision (rational) arithmetic. We show that all intermediate computations can be carefully rounded 
to nearby rational vectors with small denominators in each step, while still maintaining the property 
that the algorithm converges q-linearly to the optimal weighted sums-of-squares lower bound.

1.1. Preliminaries

Here, we cover notation and background that we will use throughout the rest of this paper.

1.1.1. Weighted SOS polynomials and positive semidefinite matrices
Recall that a convex set K ⊆ Rn is called a convex cone if for every x ∈ K and λ ≥ 0 scalar, 

the vector λx also belongs to K . A convex cone is proper if it is closed, full-dimensional (meaning 
span(K ) = Rn), and pointed (that is, it does not contain a line). We shall denote the interior of a 
proper cone K by K ◦ and the boundary of a proper cone K by bd(K ).

The dual of a convex cone K ⊆ Rn is the convex cone K ∗ defined as

K ∗ = {
y ∈Rn | ∀x ∈ K : xTy ≥ 0

}
.

Sum-of-squares (SOS) polynomials Let Vn,2d denote the cone of n-variate polynomials of degree 2d. 
We say that a polynomial p ∈ Vn,2d is sum-of-squares (SOS) if there exist polynomials q1, . . . , qk ∈
Vn,d such that p = ∑k

i=1 q
2
i . Define �n,2d to be the cone of n-variate SOS polynomials of degree 2d. 

The cone �n,2d ⊂ Vn,2d ≡ R(n+2d
n ) is a proper cone for every n and d. Throughout, we will identify 

polynomials with their coefficients vectors (typeset bold) in a basis that is clear from the context 
(but not necessarily in the monomial basis), e.g., t for the polynomial t(·) and 1 for the constant one 
polynomial.

Weighted sum-of-squares More generally, let w = (w1, . . . , wm) be some given nonzero polynomials 
and let d = (d1, . . . , dm) be a nonnegative integer vector. We denote by Vw

n,2d the space of polynomials 
p for which there exist r1 ∈ Vn,2d1 , . . . , rm ∈ Vn,2dm such that p = ∑m

i=1 wiri . A polynomial p ∈ Vw
n,2d

is said to be weighted sum-of-squares (WSOS) if there exist σ1 ∈ �n,2d1 , . . . , σm ∈ �n,2dm such that p =∑m
i=1 wiσi . It is customary to assume that w1 = 1, that is, the ordinary “unweighted” sum-of-squares 

polynomials are also included in the WSOS cones. Let �w
n,2d denote the set of WSOS polynomials in 

Vw
n,2d . This is nearly identical to the notion of the truncated quadratic module, except that the degree of 

each SOS polynomial is independently selected, rather than by “truncating” to a desired total degree. 
In this manner, �w

n,2d is automatically a full-dimensional convex cone in the ambient space Vw
n,2d by 

definition. Additionally, under mild conditions, the cone �w
n,2d is closed and pointed; for example, it 

is sufficient that the set

Sw
def= {x ∈Rn | wi(x) ≥ 0, i = 1, . . . ,m} (1)

is a unisolvent point set for the space Vw
n,2d (Papp and Yıldız, 2019, Prop. 6.1). (A set of points S ⊆ Rn

is unisolvent for a space of polynomials V if every polynomial in V is uniquely determined by its 
function values at S .) In particular, this implies that both �w

n,2d and its dual cone have non-empty 
interiors, a crucial assumption throughout the paper.

WSOS polynomials and positive semidefinite matrices We will denote the set of n × n real symmetric 
matrices by Sn , and the cone of positive semidefinite n ×n real symmetric matrices by Sn+ . When the 
3
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dimension is clear from the context, we use the common shorthands A � 0 to denote that the matrix 
A is positive semidefinite and A 
 0 to denote that the matrix A is positive definite.

It is well-known and easily seen that a polynomial s belongs to �n,2d if and only if

s(·) = vn,d(·)TSvn,d(·),
wherein vn,d denotes the vector of n-variate monomials up to degree d, and S ∈ SL+ with L = (n+d

d

)
is the Gram matrix of the SOS polynomial s. This functional equality can be expressed coefficient-by-
coefficient, identifying the polynomials on both sides of the equation with their coefficient vectors in 
a fixed basis. For example, if n = 1 and both polynomials are represented in the monomial basis, we 
obtain the classic result that s(t) = ∑2d

i=0 sit
i is SOS if and only if there exists a matrix (S jk) j,k=0,...,d

such that si =∑
( j,k):i= j+k S jk for each i. More generally, every SOS cone �n,2d is a linear image of the 

cone SL+ , and if we fix a basis for Vn,2d and a basis for Vn,d , there is an explicitly computable, surjec-
tive, linear map �∗ from Gram matrices (positive semidefinite matrices) to coefficient vectors of SOS 
polynomials. From the dual perspective, it is also well-known (and is equivalent to the above state-
ments) that the dual cone �∗

n,2d is a linear pre-image of SL+ . More precisely, there exists an injective 
linear map � : �∗

n,2d → SL+ . In the context of algebraic geometry and moment theory, �(y) is called 
the truncated moment matrix of the (pseudo-)moment vector y, and the map �∗ in the representation 
of the SOS cone is simply the adjoint of �. E.g., in the univariate example above, �(y) is the Hankel 
matrix of the vector y.

Although everything in the previous paragraph generalizes from SOS cones to the WSOS case, the 
conventional notation and terminology involving moment and localizing matrices is rather cumber-
some, and is largely unnecessary for this paper. To follow the rest of the paper, it is sufficient to keep 
in mind that regardless of the number of variables n, the degree vector d, the choice of weights w, 
and the polynomial bases used to represent the polynomials of various degrees, the WSOS cone �w

n,2d
is a linear image of the cone of positive semidefinite matrices of appropriate size under some surjective linear 
map �∗ , and similarly, its dual (�w

n,2d)
∗ is a linear pre-image of the same cone, under the adjoint map �. The 

following Proposition makes these statements precise.

Proposition 1.1 (Nesterov, 2000, Thm. 17.6). Fix an ordered basis q = (q1, . . . , qU ) of Vw
n,2d and an ordered 

basis pi = (pi,1, . . . , pi,Li ) of Vn,di for each i = 1, . . . , m. Let �i : Vw
n,2d

(≡ RU
) → SLi be the unique (injec-

tive) linear map satisfying �i(q) = wipipT
i , and let �

∗
i denote its adjoint. Then s ∈ �w

n,2d if and only if there 
exist matrices S1 � 0, . . . ,Sm � 0 satisfying

s =
m∑
i=1

�∗
i (Si). (2)

Additionally, the dual cone of �w
n,2d admits the characterization(

�w
n,2d

)∗ =
{
x ∈ Vw

n,2d

(
≡ RU

)
| �i(x) � 0 ∀i = 1, . . . ,m

}
. (3)

To see why �i exists and is unique, consider that each entry of the matrix of functions wipipT
i is 

a polynomial of the form wi pi, j pi,k , which by definition belongs to the space Vw
n,2d , and so it can be 

written uniquely as a linear combination of our chosen basis polynomials {q1, . . . , qU } of this space. 
Thus, for any vector v ∈RU , the ( j, k)-th entry of the matrix �i(v) is the same linear combination of 
the components of v which would yield wi pi, j pi,k if it were applied to the basis polynomials q.

The interested reader will find a number of examples of WSOS cones � and the � operators 
representing them in different bases in (Davis and Papp, 2022, Example 1), using the same notation 
as in this paper. We briefly recall only one of them:

Example 1.2. Consider univariate polynomials of degree 4, nonnegative on [−1, 1]. These polynomials 
can be written as σ1(t) + (1 − t2)σ2(t), where σ1 ∈ �1,4 and σ2 ∈ �1,2; that is, they are WSOS with 
4
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the weights w1(t) = 1 and w2(t) = 1 − t2 and degree vector d = (2, 1). Representing all monomials 
in the monomial basis, it is well-known that x = (x0, . . . , x4) ∈ (�w

n,2d)
∗ if and only if

�1(x) :=
( x0 x1 x2

x1 x2 x3
x2 x3 x4

)
� 0 and �2(x) :=

(
x0−x2 x1−x3
x1−x3 x2−x4

)
� 0.

The matrix �1(x) is the moment matrix, while �2(x) is a localizing matrix for this particular domain 
Laurent (2009). In the notation of Proposition 1.1, we have U = 5, (L1, L2) = (3, 2), and �i matrices 
were obtained by collecting the monomial terms in the matrices(

1
t
t2

)
( 1 t t2 ) =

(
1 t t2

t t2 t3

t2 t3 t4

)
and (1 − t2)

(
1
t

)
( 1 t ) =

(
1−t2 t−t3

t−t3 t2−t4

)
.

To further lighten the notation, throughout the paper, we will assume that the weight polynomials 
w = (w1, . . . , wm) and the degrees d = (d1, . . . , dm) are fixed. We will denote the cone �w

n,2d by 
� and the space of polynomials Vw

n,2d by V . We will usually identify the spaces V and V∗ with RU

(U = dim(V)), equipped with the standard inner product 〈x, y〉 = xTy and the induced Euclidean norm 
‖ · ‖. For (real) square matrices, the inner product 〈·, ·〉 denotes the Frobenius inner product.

Additionally, we use the shorthand � to denote the RU → SL1 ⊕ · · · ⊕ SLm linear map �1(·) ⊕
· · · ⊕ �m(·) from Proposition 1.1. With this notation, the condition (2) can be written as s = �∗(S) for 
some positive semidefinite (block diagonal) matrix S ∈ SL1 ⊕ · · · ⊕SLm . Similarly, Eq. (3) simplifies to

�∗ = {x ∈RU |�(x) � 0}.
The interior of this cone is simply

(�∗)◦ = {x ∈RU |�(x) 
 0}. (4)

1.1.2. Barrier functions and local norms in convex cones
The theory of dual certificates builds heavily on results from the theory of barrier functions in 

convex optimization. Here, we introduce relevant notation, and we give a brief overview of the parts 
of this theory that will be needed throughout the rest of the paper.

Let � : RU → SL be the unique linear mapping specified in Proposition 1.1 above, and let �∗
denote its adjoint. Central to our theory is the barrier function f : (�∗)◦ → R defined by

f (x)
def= − ln(det(�(x)). (5)

Note that by Eq. (4), f is indeed defined on its domain. The function f is twice continuously dif-
ferentiable; we denote by g(x) its gradient at x and by H(x) its Hessian at x. Since f is strictly 
convex on its domain, H(x) 
 0 for all x ∈ (�∗)◦ (Boyd and Vandenberghe, 2004, Sec. 3.1.5 and 3.2.2). 
Consequently, we can also associate with each x ∈ (�∗)◦ the local inner product 〈·, ·〉x : V∗ × V∗ → R

defined as 〈y, z〉x def= yTH(x)z and the local norm ‖ · ‖x induced by this local inner product. Thus, 
‖y‖x = ‖H(x)1/2y‖. We define the local (open) ball centered at x with radius r by Bx(x, r) 

def=
{y ∈ V∗ | ‖y − x‖x < r}. Analogously, we define the dual local inner product 〈·, ·〉∗x : V × V → R by 
〈s, t〉∗x def= sTH(x)−1t. The induced dual local norm ‖ · ‖∗

x satisfies the identity ‖t‖∗
x = ‖H(x)−1/2t‖.

Throughout, we will invoke several useful results concerning these norms and the barrier function 
f in (5); these are enumerated in Lemma A.1, in the Appendix of this paper. Geometrically, the key 
observation is that the Hessian of this barrier function, through the associated local and dual local 
norms, provides computable ellipsoidal neighborhoods around each point in �◦ and (�∗)◦ that are 
contained in these cones, yielding “safe” bounds to round vectors in any direction without leaving the 
cone.
5
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1.1.3. Dual certificates
As mentioned earlier in the introduction, our primary goal is to show the existence of a dual 

certificate with boundable bit size for a given WSOS polynomial. Here, we review necessary definitions 
and properties of dual certificates. For more extensive theory of dual certificates, see Davis and Papp 
(2022).

Definition 1.3. Let s ∈ �, and denote the Hessian of the barrier function f of �∗ defined in (5) by H . 
We say that the vector x ∈ (�∗)◦ is a dual certificate of s, or simply that x certifies s, if H(x)−1s ∈ �∗ . 
We denote by

C(s)
def= {x ∈ (�∗)◦ | H(x)−1s ∈ �∗}

the set of dual certificates of s. Conversely, for every x ∈ (�∗)◦ , we denote by

P(x)
def= {s ∈ � | H(x)−1s ∈ �∗}

the set of polynomials certified by the dual vector x.

This definition is motivated by the following theorem from Davis and Papp (2022), reproduced 
below for completeness. In words, the theorem provides an explicit closed form formula for efficiently 
computing a WSOS certificate for any polynomial from its coefficient vector s and any dual certificate 
x:

Theorem 1.4 (Davis and Papp, 2022, Thm. 2.2). Let s ∈ (�∗)◦ be arbitrary. Then the matrix S = S(x, s) defined 
by

S(x, s)
def= �(x)−1�

(
H(x)−1s

)
�(x)−1 (6)

satisfies �∗(S) = s. Moreover, x is a dual certificate for s ∈ � if and only if S � 0, which in turn is equivalent 
to H(x)−1s ∈ �∗ .

Note that as long as � maps rational vectors to rational matrices (which is the case, for instance, 
when polynomials are represented in commonly used bases such as the standard monomial basis or 
the Chebyshev basis), then S is a rational matrix for every rational coefficient vector s.

It is immediate from Definition 1.3 that if x is a dual certificate of the polynomial s, then every 
positive multiple of x is also a dual certificate for every positive multiple of s. Crucially, the same is 
true for small perturbations of x and s; see Proposition 1.6 below.

From Lemma A.1 (claim 5) in the Appendix, we know that for every s ∈ �◦ there exists a unique 
x ∈ (�∗)◦ satisfying s = −g(x). This vector is a dual certificate of s, since

H(x)−1s = −H(x)−1g(x)
(A.6)= x ∈ (�∗)◦.

Thus, every polynomial in the interior of the WSOS cone � has a dual certificate.

Definition 1.5. When −g(x) = s (∈�◦), we say that x is the gradient certificate of s.

Simple calculus reveals the closed-form formula for the negative gradient: −g(x) = �∗(�(x)−1); 
see also Lemma A.1 in the Appendix. However, since �∗ is in general not injective, the nonlinear sys-
tem s = �∗(�(x)−1) cannot be solved for x in closed form; only the x → s map is easily computable, 
not the converse. The same mapping −g has also been recently studied by Lasserre (2022) and others 
Castro et al. (2021). We shall elaborate more on this connection in Section 5.

The following proposition gives two sufficient, although not necessary, conditions for x ∈ �∗ to 
certify a polynomial t. It also reveals that C(s) and P(x) are full-dimensional cones, that is, they have 
a non-empty interior: every sufficiently small perturbation of the gradient certificate of s certifies 
every sufficiently small perturbation of s.
6
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Proposition 1.6 (Davis and Papp, 2022, Theorem 2.4 and Corollary 2.5). Suppose that x ∈ �∗ and s = −g(x).

1. Then x is a dual certificate for every polynomial t satisfying ‖t − s‖∗
x ≤ 1.

2. If y is a vector that satisfies the inequality ‖x − y‖x < 1
2 , then y ∈ �∗ , and x certifies t = −g(y).

Two very detailed examples illustrating the concept of dual certificates, the gradient certificate, and 
the construction of explicit WSOS representations from dual certificates can be found in our previous 
work (Davis and Papp, 2022, Examples 2 and 3).

1.1.4. Bit sizes of certificate vectors
Recall that the bit size of an integer y ∈ Z is defined as 1 + �log2(|y| + 1)�, and that the bit size 

of a vector y ∈ Zn can be bounded from above by n times the bit size of its the largest (in size) 
component. As we are interested in the orders of magnitude of bit sizes of dual certificates (e.g., 
whether they are linear or polynomial or exponential functions of parameters such as the degree or 
the number of variables of the certified polynomials), it will be convenient but equally informative to 
substitute this quantity with the simpler log(‖y‖∞).

2. Rational certificates with boundable bit bize

The goal of this section is to bound the norm of an integer dual certificate y ∈ �∗ of a polynomial 
t ∈ �◦ . We consider different bounds, some of which depend only on the number of variables n, 
the degree d, and t, and others that are expressed in terms of other computable or interpretable 
parameters introduced later in this section.

The strategy to derive these bounds is as follows. In Section 2.1, we show that dual certificates 
suitably close to the gradient certificate can be rounded to nearby rational dual certificates with small 
denominators. Then, in Section 2.2, we show that these certificates also have small norms. These two 
results add up to Theorem 2.9 bounding the bit size of an integer dual certificate.

2.1. Hessian bounds

Recall from Proposition 1.6, Statement 2, that if x ∈ �∗ and ‖x −y‖x < 1
2 , then x certifies t = −g(y)

to be WSOS. This certificate x need not be a rational vector, let alone a vector with small denominator. 
However, Lemma 2.1 below guarantees the existence of a nearby rational certificate xN for t with 
boundable denominators. In this Lemma, and throughout the rest of the section, we shall continue 
using g and H to denote the gradient and Hessian of the function f defined in (5).

Lemma 2.1. Let t ∈ �◦ be the coefficient vector of a polynomial whose gradient certificate is y ∈ (�∗)◦ . Let 
0 < r1 < r2 be arbitrary, and suppose that x ∈ �∗ satisfies ‖x − y‖x ≤ r1 < 1/2. Let U = dim(�), and choose 
an integer denominator N > 0 to satisfy

‖H(x)1/2‖ ≤ 2N√
U

(
r2 − r1
1+ r2

)
. (7)

Then every xN ∈ 1
NZ

U with ‖xN − x‖2 ≤
√
U

2N satisfies ‖xN − y‖xN ≤ r2 . In particular, if r2 < 1/2, then 
rounding x componentwise to the nearest vector in 1NZ

U results in a rational dual certificate of t.

Proof. By self-concordance (inequality (A.1) in Lemma A.1), we have

‖xN − y‖xN
(A.1)≤ ‖xN − y‖x

1− ‖xN − x‖x
≤ ‖xN − y‖x

1−
√
U ‖H(x)1/2‖
2N

7
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(7)≤ 1+ r2
1+ r1

‖xN − y‖x

≤ 1+ r2
1+ r1

(‖xN − x‖x + ‖x− y‖x)

≤ 1+ r2
1+ r1

(√
U

2N
‖H(x)1/2‖ + r1

)

(7)≤ r2,

which proves the first part of the claim. For the second part, if xN is the result of component-wise 
rounding x to the nearest vector in 1

NZ
U , then ‖xN − x‖∞ ≤ 1

2N , so ‖xN − x‖2 ≤
√
U

2N . Then the first 
part of the claim shows that xN is a certificate for t. �

In the corollary below, we consider the particular case in which the known certificate x for t is 
the gradient certificate (i.e., x = y).

Corollary 2.2. Let y ∈ (�∗)◦ be the gradient certificate for t ∈ �◦ . Suppose N satisfies

3
√
U‖H(y)1/2‖

2
≤ N,

and suppose that yN satisfies ‖y − yN‖2 ≤
√
U

2N . Then yN certifies t.

Proof. Substituting r1 = 0 and r2 = 1/2 into Lemma 2.1 yields the claim. �
The denominators in Lemma 2.1 and Corollary 2.2 depend on the norm ‖H(y)1/2‖, which is com-

putable for a known y. If y is not known explicitly, we can use the following upper bound for 
‖H(y)1/2‖, which depends only on the norm of the coefficient vector t of the polynomial t(·), the 
set Sw defined in (1), and the chosen basis q of �.

Lemma 2.3. Let {z1, . . . , zs} ⊆ Sw be a unisolvent set for �, with s ≥ U = dim(�). Let t ∈ �◦ , and let y ∈
(�∗)◦ satisfy −g(y) = t. Choose α1, . . . , αs > 0, and define the matrix M as

M
def=

s∑
i=1

αiq(zi)q(zi)
T. (8)

Then M is a positive definite matrix, and

‖H(y)‖2 ≤ cond(M)‖t‖22,
where cond(M) = λmax(M)

λmin(M)
is the condition number of M.

Proof. We begin by showing that M is positive definite. Let v be a unit-norm eigenvector of the 
smallest eigenvalue of M, and consider the polynomial v(·) := vTq(·). Then

λmin (M) = vT
( s∑

i=1

αiq(zi)q(zi)
T
)
v =

s∑
i=1

αi v(zi)
2.

Since {z1, . . . , zs} is unisolvent and v �= 0, it follows that v is not the constant 0 polynomial, moreover 
v(zi) �= 0 for at least one i. Hence 

∑U
i=1 v(zi)2 > 0. As each αi is positive, it follows that λmin(M) > 0.

Now, we proceed with the proof of the claimed inequality. Recall from Section 1.1 that �i(q(·)) =
wi(·)p(·)p(·)T for each i = 1, ..., m. Thus,
8
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m∑
i=1

wi(·)pi(·)T�i(y)
−1pi(·) =

m∑
i=1

tr(�i(q(·))�i(y)
−1)

(A.3)= q(·)T(−g(y)) = q(·)Tt = t(·).
(9)

Thus, letting �(·) represent �1(·) ⊕ · · · ⊕ �m(·), we have for all z ∈ Sw ,

q(z)TH(y)q(z)
(A.4)= tr(�(q(z))�(y)−1�(q(z))�(y)−1)

=
m∑
i=1

tr
(
wi(z)pi(z)pi(z)

T�i(y)
−1wi(z)pi(z)pi(z)

T�i(y)
−1)

=
m∑
i=1

tr
(
wi(z)pi(z)

T�i(y)
−1pi(z)wi(z)pi(z)

T�i(y)
−1p(z)

)

=
m∑
i=1

(
wi(z)pi(z)

T�i(y)
−1pi(z)

)2
(∗)≤

m∑
i=1

m∑
j=1

(
wi(z)pi(z)

T�i(y)
−1pi(z)

) (
w j(z)p j(z)

T� j(y)
−1p j(z)

)
(9)= t(z)2,

(10)

with the inequality in (∗) due to the facts that wi(z) ≥ 0 whenever z ∈ Sw and that �i(y)−1 is 
positive definite.

Let {z1, . . . , zs} be the unisolvent point set in the definition of M above. Then we have

‖H(y)‖2 ≤ tr(H(y)) = 〈H(y), I〉 ≤
〈
H(y),

M

λmin(M)

〉
(10)≤

∑s
i=1 αit(zi)2

λmin (M)

= tTMt

λmin (M)

≤ ‖t‖22λmax (M)

λmin (M)

= cond(M)‖t‖22. �
We can use the bound in Lemma 2.3 to bound the denominators needed in Lemma 2.1 and Corol-

lary 2.2.

Theorem 2.4. Let y be the gradient certificate for t. Let U = dim (�), and let M be defined as in (8). Let

N =
⌈
3

2

√
U cond(M)‖t‖2

⌉
.

Then every yN ∈ 1
NZ

U with ‖yN − y‖2 ≤
√
U

2N is a certificate for t.

Proof. From Lemma 2.3, we have ‖H(y)1/2‖2 ≤ √
cond(M)‖t‖2. Therefore, N satisfies

3
√
U

2
‖H(y)1/2‖ Lem.2.3≤ 3

√
U

2

√
cond(M)‖t‖2 ≤ N.

Then by Corollary 2.2, every yN ∈ 1
NZ

U with ‖yN − x‖2 ≤
√
U

2N certifies t. �

9
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Two remarks are in order. First, in order to obtain the smallest possible upper bound on the 
denominator N that works, the goal should be to minimize the cond(M) with respect to the points 
zi in the definition of M—a likely impossible task in general. However, any unisolvent set from Sw
provides a bound, and that is generally a relatively straightforward task to find. Second, the value √
U cond(M) is a property of the cone �, independent of t, therefore this optimization (or selection 

of suitable points zi ) needs to be performed only once for a given cone �. In Section 3, we shall use 
natural candidate points for interesting special cases, for which the cond(M) is computable in closed 
form.

2.2. Bounding certificate norms

Now, we turn our attention to bounding the norms of rational certificates for a given polynomial. 
The results make use of two new parameters of the cone � and its representation via the operator 
�. The first one is the barrier parameter of the barrier function f defined (in the notation of Proposi-
tion 1.1) as

ν
def=

m∑
i=1

Li

(see also Lemma A.1, Statement 4). The other is the constant ke1 defined in our next Lemma. This 
statement is analogous to Equation (3.8) in the proof of (Davis and Papp, 2022, Theorem 3.5), but is 
included here for completeness.

Lemma 2.5. Let y ∈ (�∗)◦ be the gradient certificate for t ∈ �◦ , and let e ∈ �◦ . Let ε > 0, and suppose that 
t − εe ∈ bd(�). Define

ke1
def= min

{
eTv | v ∈ �∗,‖v‖∞ = 1

}
. (11)

Then

‖y‖∞ ≤ ν

ke1ε
.

Proof. Observe that the minimum in the definition (11) exists (as �∗ is a closed and non-trivial cone) 
and ke1 > 0 because e ∈ �◦ . We now have

ν
(A.6)=

〈
−g

(
y

‖y‖∞

)
,

y

‖y‖∞

〉
(A.5)= ‖y‖∞

〈
t,

y

‖y‖∞

〉

= ‖y‖∞
(〈

t− εe,
y

‖y‖∞

〉
+ ε

〈
e,

y

‖y‖∞

〉)
≥ 0+ ‖y‖∞εke1,

and the claimed upper bound on ‖y‖∞ follows. �
Remark 2.6. Note that this bound can be computed efficiently using numerical methods for any given 
t and chosen e. First, the ε corresponding to t and e can be approximated (or bounded below) by 
simple line search; the bottleneck is testing membership in � in each step. Second, although the 
minimization problem (11) is not convex, its (global) optimal value can be computed by solving 2U
efficiently solvable convex optimization problems, since
10
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ke1 = min
1≤i≤U

(
inf{eTv | v ∈ �∗,vi = 1,‖v‖∞ ≤ 1},

inf{eTv | v ∈ �∗,vi = −1,‖v‖∞ ≤ 1}). (12)

This reformulation will also allow us to bound ke1 from below using convex programming duality in 
the next section.

Since we would like the tightest possible upper bound on ‖y‖∞ , we seek an e ∈ �◦ which max-
imizes the quantity ke1ε. Lemma 2.7 below illustrates that, for a fixed t ∈ �◦ , choosing e = t (with 
the resulting ε = 1) is the optimal choice. Nevertheless, the above, more general, form of Lemma 2.5
is useful when we are concerned with bounding certificates for families of polynomials (such as all 
univariate polynomials of degree d) in terms of interpretable parameters such as the number of vari-
ables or the degree of the polynomials. In this context, it is often more convenient to use the bound 
selecting any (convenient) e in the quantity ke1ε, instead of kt1.

Lemma 2.7. Let y ∈ (�∗)◦ be the gradient certificate for t ∈ �◦ . Then for all e ∈ �◦ and ε > 0 such that 
t − εe ∈ bd(�), we have kt1 ≥ ke1ε.

Proof. Denote by E the set

E = {e ∈ �◦ | there exists ε > 0 such that t− εe ∈ bd(�)},
and let Ê be the set

Ê = {e ∈ �◦ | t− e ∈ bd(�)} = {t− b | b ∈ bd(�)}.
Let V represent the set

V = {v ∈ �∗ | ‖v‖∞ = 1},
and let ε(t, e) be the largest ε such that t − εe is on the boundary of �, for given t and e. With this 
notation, we may now write

max
e∈RU

ke1ε = max
e∈E

(
min
v∈V

ε(t,e) eTv
)

= max
e∈Ê

(
min
v∈V

eTv
)

= max
b∈bd(�)

(
min
v∈V

(t− b)Tv
)

≤ min
v∈V

(
max

b∈bd(�)
tTv− bTv

)

= min
v∈V

(
tTv+ max

b∈bd(�)
(−bTv)

)
≤ min

v∈V
tTv

= kt1,

where the first inequality comes from the weak duality theorem of convex optimization, and the 
second one follows from v ∈ �∗ and b ∈ �. �

Having bounded the norm of the gradient certificate in Lemma 2.5, we can now bound the norm 
of a rounded gradient certificate.
11
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Lemma 2.8. Let y ∈ (�∗)◦ be the gradient certificate for a polynomial with coefficient vector t ∈ �◦ . Let U =
dim (�), e ∈ �◦ , and ε > 0, and suppose t − εe ∈ bd(�). Denote by ν the barrier parameter for � and M
the matrix defined as in (8). Let N =

⌈
3
2

√
U cond(M)‖t‖2

⌉
, and suppose yN ∈RU satisfies ‖yN − y‖∞ ≤ 1

2N . 
Then yN is a certificate for t with

‖yN‖∞ ≤ 1

3
√
U cond(M)‖t‖2

+ ν

ke1ε
.

Proof. The fact that yN is a certificate for t has already been shown in Lemma 2.4.
Recall from Lemma 2.5 that ‖y‖∞ ≤ ν

ke1ε
. Moreover, by our choice of yN and N , we know

‖yN − y‖∞ ≤ 1

2N
≤ 1

3
√
Ucond(M)‖t‖2

. (13)

Therefore, by the triangle inequality, we have

‖yN‖∞ ≤ ‖yN − y‖∞ + ‖y‖∞
(13), Lem. 2.5≤ 1

3
√
Ucond(M)‖t‖2

+ ν

ke1ε
. �

2.3. Bounds on integer certificate norms

Compiling the results from this section, we are now prepared to state a result bounding the largest 
magnitude component of an integer certificate for a polynomial t ∈ �◦ .

Theorem 2.9. Let U = dim (�), and let M be defined as in (8). Let e ∈ �◦ , and let ke1 be defined as in (11). Let 
ν be the barrier parameter of �, and let t ∈ �◦ with t − εe on the boundary of �. Then there exists an integer 
certificate y for t with

‖y‖∞ ≤ 1

2
+
⌈
3

2

√
U cond(M)‖t‖2

⌉(
ν

ke1ε

)
.

Proof. Recall from Sec. 1.1.3 that any positive multiple of yN is also a certificate for t. Hence, the 
integer vector y def= NyN is a certificate for t. Using Lemma 2.8 and Theorem 2.4, we have

‖y‖∞ = N‖yN‖∞ ≤
⌈
3

2

√
Ucond(M)‖t‖2

⌉(
1

3
√
Ucond(M)‖t‖2

+ ν

ke1ε

)

= 1

2
+
⌈
3

2

√
U cond(M)‖t‖2

⌉(
ν

ke1ε

)
. �

3. Bit size bounds for rational certificates in particular bases

In this section we refine the result of Theorem 2.9 in a few well-studied and computationally 
relevant special cases such as the cones of univariate polynomials nonnegative on the real line or 
on a bounded interval. These results complement existing ones on the bit sizes of conventional 
sum-of-squares certificates of nonnegative univariate polynomials, such as those summarized in the 
Introduction. We emphasize that our approach yields an efficiently computable bound for a variety 
of WSOS cones even in the multivariate case. We consider one of these in Section 3.3. We also con-
sider different choices of bases, which are relevant for practical computation, specifically polynomials 
represented in the Chebyshev basis and polynomials represented as interpolants.

The results presented in this section come in two flavors, motivated by two different mindsets and 
two different families of applications in which nonnegativity certification is important. From the per-
spective of optimization, the fundamental task is to certify a bound as close to the global minimum of 
12
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a polynomial (on Sw) as possible, and therefore one is inherently concerned with certifying polyno-
mials close to the boundary of �. In this setting, ε (specifically with the choice of e = 1) is arguably 
the most important parameter in Theorem 2.9, even for a fixed number of unknowns n and fixed 
degree d, and one of the most pertinent questions is the dependence of the bit size of the certificates 
on ε, as ε tends to 0. The common simplifying assumption that the coefficient vector t is integer is 
not particularly convenient or necessary; t can be any rational vector. On the other hand, from the 
perspective of theoretical computer science and applications such as automated theorem proving, the 
fundamental task is to certify that a given polynomial is nonnegative on a given Sw . Although the 
dependence of the complexity of the certificate on ε (with any e) is still informative, the primary 
concern is the asymptotic complexity of the certificate as the input size increases. It is convenient to 
assume that t is an integer vector, and the relevant question is the bit size of the certificates as a 
function of n, d, and τ = log(‖t‖∞). Therefore, we consider both bounds involving ε (for general t) 
and bounds that are strictly functions of (n, d, τ ), assuming that t is an integer vector.

In each case, we will use the bound given in Theorem 2.9 as a starting point. Since U and ν can 
be expressed in terms of d and n, a result depending only on d, n, and τ , and possibly ε, requires 
a lower bound on ke1 or ke1ε (for some e) and an upper bound on cond(M), for some M in the form 
given in (8), in each case.

3.1. Univariate polynomials over the real line

We first consider the most well-studied special case, univariate polynomials nonnegative over the 
real line, which coincide with univariate SOS polynomials, represented in the monomial basis. In this 
case, �(x) is the standard moment matrix (positive definite Hankel matrix) corresponding to the 
pseudo-moment vector x ∈ �◦ .

Theorem 3.1. Suppose that � = �1,2d (univariate sum-of-squares polynomials of degree 2d) and that we 
represent all polynomials in the monomial basis—that is, in the notation of Proposition 1.1, the ordered bases p
and q are the standard monomial bases of degree d and 2d, respectively. Then the following hold:

1. For e = �∗(I), the coefficient vector of the sum of monomial squares polynomial z �→ 1 + z2 + · · · + z2d, 
we have ke1 ≥ 1.

2. There exists a matrix M of the form given in (8) such that cond(M) ≤ 3.212d+1/2.
3. For every t ∈ �◦ with t − εe ∈ bd(�), there exists an integer dual certificate y ∈ �◦ ∩Z2d+1 for t with

‖y‖∞ ≤ 1

2
+ 4d3/23.21d+1/2 �‖t‖2�

ε
,

whose largest component has bit size bounded as

log(‖y‖∞) ≈ O (d + log(‖t‖2) + log(1/ε)) .

Proof. 1. First, observe that since I is positive definite, e ∈ �◦ . Now, we have

eTv = 〈�∗(I),v〉 = 〈I,�(v)〉 = tr(�(v)),

Combining this equation with (11), we get

ke1 = min{tr(�(v)) | �(v) � 0,‖v‖∞ = 1}. (14)

It is well known that in this setting (nonnegative univariate polynomials represented in the mono-
mial basis), �(·) maps a vector v to its corresponding Hankel matrix, whose diagonal consists of 
components of v. (See, e.g., (Davis and Papp, 2022, Example 1).) Because the matrix �(v) is posi-
tive semidefinite, its largest element (in absolute value) is a nonnegative component of v on the 
diagonal of �(v). Hence, in (14) we have tr(�(v)) ≥ ‖v‖∞ = 1. Therefore ke1 ≥ 1.
13
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2. When q(z) = (1, z, . . . , z2d), the matrix M defined in (8) is a positive semidefinite Hankel matrix 
of order (2d + 1). It is well known that a partial converse also holds, and every positive definite 
Hankel matrix of order (2d + 1) can be written in this form, because positive definite matrices 
can be identified with truncated moment matrices of Borel measures μ supported on the real 
line (see, e.g., (Blekherman et al., 2013, Theorem 3.146)), and via Gaussian quadrature (Krylov, 
2005, Chap. 7, Thm. 3) this measure μ can also be chosen to be a discrete one supported on at 
most 2d + 1 points.
Bounds on the condition numbers of positive definite Hankel matrices have been studied by many 
authors. Our Statement 2 follows from a bound of Beckermann (Beckermann, 2000, Thm. 3.6), 
which states that the positive definite n × n Hankel matrix of the lowest condition number has 
condition number at most 3.21n/2.

3. From Statement 1, we have ke1 ≥ 1. From Statement 2, we know there exists a matrix M in the 
form of Eq. (8) with cond(M) ≤ 3.212d+1/2 Moreover, we have ν = d + 1 and U = 2d + 1. Substi-
tuting these values into the formula from Theorem 2.9 gives the result. �

Corollary 3.2. (To Theorem 3.1) Suppose that � = �1,2d and that, in the notation of Proposition 1.1, the or-
dered bases p and q are the standard monomial bases of degree d and 2d, respectively. Let t ∈ �◦ , and assume 
that t is an integer vector with τ = log(‖t‖∞). Then there exists an integer dual certificate y ∈ (�∗)◦ ∩Z2d+1

for t whose components have bit size

log (‖y‖∞) ≈ O (τd + d logd) .

Proof. The claim is a consequence of Theorem 3.1 with a suitable upper bound on 1/ε as a function 
of τ and d. (Here, as before, ε > 0 with t − εe ∈ bd(�), with e = �∗(I) is the coefficient vector of the 
polynomial z �→ 1 + z2 + · · · + z2d .)

For the bound, notice that the largest ε for which t(x) − εe(x) ≥ 0 for every x has the property 
that the corresponding univariate polynomial x �→ t(x) − εe(x) has a multiple root, since its global 
minimum is zero. Therefore, the discriminant of this polynomial (with respect to x, treating ε as 
a parameter) must vanish at the optimal ε. The discriminant is a univariate polynomial of ε, with 
integer coefficients whose bit sizes can be bounded from above using the (more general) bounds on 
the bit sizes of subresultant polynomials (Basu et al., 2006, Proposition 8.46). Note that since e =
(1, 0, 1, . . . , 0, 1), if τ is an upper bound on the bit size of the coefficients of t in the monomial basis, 
then the coefficients of the bivariate polynomial t(x) −εe(x) are of bit size at most τ +1. Furthermore, 
treating the polynomial t(x) − εe(x) as a polynomial of x whose coefficients are polynomials of ε, our 
polynomial is of degree 2d, with coefficients of degree 1. Thus, (Basu et al., 2006, Proposition 8.46) 
yields that the coefficients of the discriminant have bit sizes no larger than τ̂ := (4d − 1)

(
(τ + 1) +

log(2d) + log(4d)
)+ log(4d − 1) =O(τd + d log(d)).

We can now bound 1/ε from above using Cauchy’s bound, which yields that the bit size of 1/ε
is at most 1 + 2τ̂ = O(τd + d log(d)). Substituting this bound and log(‖t‖2) ≤ log(‖t‖∞

√
2d + 1) =

O(τ + log(d)) into the bound from Theorem 3.1 completes the proof. �
These results may be compared to the bit sizes of the certificates obtained using the two algo-

rithms analyzed in Magron et al. (2019). The first one finds certificates (explicit SOS decompositions) 

of bit size O(τ
(
d
2

) 3d
2
)—linear in τ , but exponential in the degree. The second one outputs a decom-

position with coefficients of bit size O(τd2 + d3)—also polynomial in the degree, a comparable result 
to ours above.

3.2. Univariate polynomials over an interval

We now consider polynomials nonnegative over an interval, which for simplicity we assume to 
be [−1, 1]; all results in this section can be scaled appropriately to apply to any bounded interval. 
In this case, because the domain is bounded, the constant one polynomial 1 belongs to �◦ , thus we 
14
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may use e = 1 instead of e = �∗(I) as we do in the previous section. This leads to simpler and more 
interpretable results: ε(t, e) in this case is simply the minimum value of t over [−1, 1], which in turn 
can be bounded tightly using elementary techniques, without quantifier elimination. In the context 
of polynomial optimization, this reveals the rate at which the bit sizes of the certificates of lower 
bounds grow as the lower bounds approach the minimum value.

In this section, we also consider polynomial bases that are more commonly used in practical com-
putation with high-degree polynomials than the monomial basis, namely Chebyshev polynomials (of 
the first kind) (Trefethen, 2013, Sec. 3) and interpolants (Trefethen, 2013, Sec. 2).

The representations of even and odd degree polynomials over [−1, 1] vary slightly; we briefly 
recall the details for completeness. In the notation of Proposition 1.1, for polynomials of degree 2d, we 
use the weight polynomials w(z) = {1, 1 − z2} to represent Sw = [−1, 1], and regardless of the choice 
of bases p1, p2 and q, we have m = 2, U def= dim(�w

1,2d) = 2d + 1 and ν def= ∑m
i=1 dim(pi) = 2d + 1. 

For polynomials of degree 2d + 1, we use the weight polynomials w(z) = {1 − z, 1 + z}, and we have 
m = 2, U def= dim(�w

1,2d+1) = 2d + 2 and ν =∑m
i=1 dim(pi) = 2d + 2.

3.2.1. Chebyshev polynomial basis
In this setting, we let q be the basis of Chebyshev polynomials up to degree 2d or 2d + 1 (for 

even- or odd-degree polynomials, respectively). The p1 and p2 bases can be any bases of univariate 
polynomials of the appropriate degree.

Theorem 3.3. For univariate polynomials nonnegative over [−1, 1], represented in the Chebyshev basis, the 
following hold:

1. The constant k11 is bounded below by 1.
2. There exists a matrix M of the form given in (8) such that cond(M) ≤ 4.
3. For every t ∈ �◦ of degree 2d or 2d +1, with t −ε1 on the boundary of �, there exists an integer certificate 

y ∈ (�∗)◦ for t with

‖y‖∞ ≤ 1

2
+ 2d + 2

ε

⌈
3
√
2d + 2‖t‖2

⌉
.

and the bit size of the largest component of y is bounded as

log(‖y‖∞) ≈ O (log(d) + log(‖t‖2) + log(1/ε)) .

Proof. For brevity, we include the details for even degree polynomials only. We will index all vectors, 
matrices, and point sets from 0 to 2d.

1. This result comes from Theorem 4.1 in Davis and Papp (2022), wherein k1 denotes our constant 
k11.

2. Consider univariate polynomials of degree 2d, and consider the points z = {z0, . . . , z2d}, with zl =
cos

(
π l
2d

)
, so z is the set of extrema of q2d+1(·) (also known as the Chebyshev nodes of the second 

kind). Recall that M is defined by

M =
s∑

l=0

αiq(zl)q(zl)
T.

for s < ∞ and for some real numbers α0, . . . , αs . Here, we will set s = 2d and α0 = · · · = α2d = 1. 
From Mason and Handscomb (2003), Chapter 4.6.1, equations 4.45-4.46c, we know that for all 
i = 0, . . . , 2d and j = 0, . . . , 2d, we have

−1

2
qi(z0)q j(z0) − 1

2
qi(z2d)q j(z2d) +

2d∑
l=0

qi(zl)q j(zl) =

⎧⎪⎨
⎪⎩
0 when i �= j,

d when i = j, i �= 0 nor 2d

2d when i = j = 0 or 2d
15
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Therefore, noting that qi(z0)q j(z0) = (−1)i+ j and qi(z2d)q j(z2d) = 1 for each pair (i, j), we have

(M)i j
def=

(
2d∑
l=0

q(zl)q(zl)
T

)
i j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 when i �= j and i ≡ j mod 2

0 when i �= j and i �≡ j mod 2

d + 1 when i = j, i �= 0 nor 2d

2d + 1 when i = j, i = 0 or 2d.

To bound the condition number of M from above, it suffices to give a lower bound for λmin (M)

and an upper bound for λmax (M) (since M is positive definite). First, we will exhibit a lower 
bound for λmin (M). For any x ∈R2d+1, with ‖x‖2 = 1, we have

xTMx =
(

d−1∑
i=0

x2i+1

)2

+
(

d∑
i=0

x2i

)2

+ d
(
2x20 + x21 + x22 + · · · + x22d−1 + 2x22d

)
≥ d.

Therefore, λmin (M) ≥ d.
Recall that λmax (M) can be bounded by the largest absolute row sum of M. The largest absolute 
row sum of (M) is (2d + 1) + d = 3d + 1. Hence λmax (M) ≤ 3d + 1. It follows that cond (M) ≤
3d+1
d ≤ 4.

3. From Statement 1, we have k11 ≥ 1, and from Statement 2, we know there exists a matrix M in 
the form of (8) with cond(M) ≤ 4. Moreover, we have ν ≤ 2d + 2 and U ≤ 2d + 2. Substituting 
these values into the formula given in Theorem 2.9 gives the result. �
Now we bound the minimum ε of a positive univariate polynomial on the interval [−1, 1] with 

integer coefficients, so that we can give an ε-free result of the Theorem above.

Lemma 3.4 (Adapted from (Basu et al., 2009, Thm. 1.2)). Let t be a univariate polynomial of degree d taking 
only positive values on the interval [−1, 1], and suppose that the coefficients of t in the monomial basis are 
integers of bit size no more than τ . Then we have

min
z∈[−1,1] t(z) >

3d/2

2(2d−1)τ (d + 1)2d−1/2
.

Lemma 3.4 assumes that t is represented in the monomal basis. For our next result, the change 
of basis (from the Chebyshev basis to monomial) can be incorporated using the observation that a 
polynomial of degree d with integer coefficients of bit size at most τ in the Chebyshev basis also has 
integer coefficients in the monomial basis, and the bit size of the largest magnitude coefficient in the 
monomial basis is no more than 2d +τ . We are now ready to state our ε-free version of Theorem 3.3.

Corollary 3.5. (To Theorem 3.3) Using the same notation as in Theorem 3.3, assume that t ∈ �◦ is the coeffi-
cient vector in the Chebyshev basis of a polynomial of degree at most 2d + 1, and assume that the components 
of t are integers with bit sizes at most τ . Then there exists an integer certificate y∈ (�∗)◦ ∩ZU for t with

log(‖y‖∞) ≈ O
(
dτ + d2

)
.

Proof. The result comes from substituting the bound on ε from Lemma 3.4 and the previous para-
graph into the bound from Theorem 3.3. �
3.2.2. Univariate monomial basis

Here, we let q represent the univariate monomial basis up to degree 2d or 2d + 1, for even- or 
odd-degree polynomials, respectively. The bases p1 and p2 can be any univariate polynomial bases.
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Theorem 3.6. For univariate polynomials nonnegative over [−1, 1], represented in the monomial basis, the 
following hold:

1. The constant k11 is bounded below by 1.
2. There exists a matrix M of the form given in (8) such that cond(M) ≈ O

(
(1 + √

2)4U /
√
U
)
, wherein 

U = dim(�).
3. For every t ∈ �◦ of degree 2d or 2d +1, with t −ε1 on the boundary of �, there exists an integer certificate 

y ∈ (�∗)◦ for t with

‖y‖∞ ≈ O
(
d5/4(1+ √

2)4d+4 ‖t‖2
ε

)
,

and the bit size of the largest component of y is bounded as

log(‖y‖∞) ≈ O (d + log(‖t‖2) + log(1/ε)) .

Proof. 1. Using the observation that monomial basis polynomials also take values from [−1, 1] on 
the interval [−1, 1], this result comes from a slight adaptation of Theorem 4.1 in Davis and Papp 
(2022), using the monomial basis instead of the Chebyshev.

2. We may choose M to be the U × U Hilbert matrix, which is the (truncated) moment matrix of 
the uniform measure on [0, 1]. Hence (similarly to the argument in Theorem 3.1) it is also the 
moment matrix of a finitely supported measure on [0, 1], and therefore it can be written in the 
form given in (8). The Hilbert matrix is well-known to have a condition number which grows as 
O
(
(1+ √

2)4U /
√
U
)
; see, for example, (Hardy et al., 1934, Thm. 294) and (Wilf, 1970, Eq. 3.35) 

for upper and lower bounds on the maximum and minimum eigenvalues of the Hilbert matrix, 
respectively.

3. Substituting the results from Statements 1 and 2 as well as the bounds ν ≤ 2d +2 and U ≤ 2d +2
into the formula from Theorem 2.9 yields the result. �
As a corollary, we have the following:

Corollary 3.7. Using the same notation as in Theorem 3.6, assume that t ∈ �◦ is the coefficient vector in the 
monomial basis of a polynomial of degree at most 2d + 2, and assume that the components of t are integers of 
bit size at most τ . Then there exists an integer certificate y∈ (�∗)◦ ∩ZU for t with

log (‖y‖∞) ≈ O (dτ + d log(d)) .

Proof. This comes from substituting the bound on ε from Lemma 3.4 into the bound from Theo-
rem 3.6. �
3.2.3. Univariate Lagrange interpolant basis

We now turn our attention to another common basis choice for polynomials over an interval: 
Lagrange interpolation polynomials. We use the same notation introduced at the beginning of Sec-
tion 3.2.1 to describe �, the weight polynomials w, and their respective variations for even- and 
odd-degree polynomials, except here we let q (using the notation of Proposition 1.1) be a Lagrange 
interpolation polynomial basis. Precisely, let {z1, . . . , zU } be a unisolvent point set in Sw . (As before, 
U = dim(�).) Define the Lagrange interpolation polynomial qi (i = 1, . . . , U ) to be the unique polyno-
mial such that qi(zi) = 1 for each i and qi(z j) = 0 when i �= j. Then, we define the ordered Lagrange 
interpolation polynomial basis q using these polynomials as q = (q1, . . . , qU ).

The primary change from the Chebyshev and monomial bases is that the bit sizes of the certificates 
now depend on the choice of interpolation points zi in a quantifiable manner.
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Theorem 3.8. Suppose that, as detailed in the previous paragraph, we represent polynomials in the Lagrange 
interpolant basis corresponding to the interpolation points {z1, . . . , zU }. Then the following hold:

1. Letting μ = maxi=1,...,U (max−1≤z≤1 |qi(z)|), we have k11 ≥ 1
μ .

2. The matrix M given in (8) can be chosen to be the identity matrix, with cond(M) = 1.
3. For every t ∈ �◦ of degree 2d or 2d + 1 with t − εe ∈ bd(�), there exists an integer dual certificate 

y ∈ (�∗)◦ for t with

‖y‖∞ ≤ 1

2
+
⌈
3

2

√
2d + 2‖t‖2

⌉(
(2d + 2)μ

ε

)
,

whose largest component has bit size bounded as

log(‖y‖∞) ≈ O (log(d) + log(‖t‖2) + log(μ) + log(1/ε)) . (15)

Proof. 1. Recall that the optimization problem to compute k11 can be solved by finding the minimum 
of the 2U convex optimization problems in (12) (with two such problems for each i = 1, . . . , U ). 
Fix i with 1 ≤ i ≤ U . The two optimization problems for this i have as their respective duals

sup{±xi + |xi | − ‖x‖1 | 1− x ∈ �,x ∈RU }.
In the univariate setting, a polynomial belongs to � if and only if it is nonnegative. Hence, each 
x = (0, . . . , ± 1

μ, . . . , 0), with ± 1
μ in the ith coordinate, is a feasible solution to the dual problem 

with objective value 1
μ . Thus, 1

μ is a lower bound for the infima of each of the 2U problems in 
(12), therefore k11 ≥ 1

μ .
2. By the definition of the Lagrange basis polynomials,

M =
U∑
i=1

q(zi)q(zi)
T = I,

the identity matrix, whose condition number is 1.
3. From Statement 1, we have k11 ≥ 1

μ , and from Statement 2, we know there exists a matrix M in 
the form of Eq. (8) with cond(M) ≤ 1. Moreover, we have ν ≤ 2d + 2 and U ≤ 2d + 2. Substituting 
these values into the formula given in Theorem 2.9 gives the result. �

Remark 3.9. The parameter μ from Statement 1 of Theorem 3.8 is closely related to the Lebesgue con-
stant L def= maxx∈[−1,1]

∑U
i=1 |qi(x)|, the operator norm of the interpolation operator (with respect to 

the uniform norm). It is well-understood that the choice of interpolation points with a small Lebesgue 
constant is crucial in numerical computation with interpolants (see, e.g., (Trefethen, 2013, Chap. 15)); 
this has also been demonstrated in the context of sum-of-squares optimization Papp (2017). One 
interpretation of Theorem 3.8 is that the choice of interpolation points is important even in exact-
arithmetic computation, as the bit sizes of the certificates are affected by the Lebesgue constant.

In the univariate case, the Lebesgue constant with U suitably chosen interpolation points from 
[−1, 1] can be as low as O(logU ) (Trefethen, 2013, Chap. 15). Thus, even for fairly suboptimal points, 
the impact of μ ≤ UL ≈ O(d logd) in the bit size bound (15) is dominated by the logd term, simpli-
fying the bound to

log(‖y‖∞) ≈ O(log(d) + log(‖t‖2) + log(1/ε)).

3.3. Multivariate polynomials over a bounded set

In this section, we assume that � = �w
n,d , with w a set of weight polynomials describing a bounded 

set Sw ⊆ Rn . We assume that, using the notation of Proposition 1.1, q is represented by a multivari-
ate Lagrange interpolation basis. Although in the multivariate case we can no longer rely on the fact 
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that nonnegative polynomials are the same as WSOS polynomials with suitably chosen weights, the 
analysis in the multivariate case can be made largely identical to the univariate analysis of the pre-
vious section under an additional assumption that is only slightly stronger than assuming Sw to be 
bounded (see also Remark 3.11 below).

Theorem 3.10. Suppose the q basis polynomials (in the notation of Proposition 1.1) are the Lagrange basis 
polynomials corresponding to the (unisolvent) interpolation points {z1, . . . , zU } ⊆ Sw . In addition, suppose 
that there is a μ > 0 such that μ + qi ∈ � and μ − qi ∈ � (for each i = 1, . . . , U). Then the following hold:

1. For k11 defined as in (11), we have k11 ≥ 1
μ .

2. The matrix M given in (8) can be chosen to be the identity matrix, with cond(M) = 1.
3. For all t ∈ �◦ and ε > 0with t − ε1 ∈ bd(�), there exists an integer certificate y ∈ (�∗)◦ ∩ZU for twith

‖y‖∞ ≤ 1

2
+
⌈
3

2

√
U‖t‖2

⌉(μν

ε

)
whose largest component has bit size bounded as

log(‖y‖∞) ≈ O (log(U ) + log(‖t‖2) + log(μ) + log (ν) + log(1/ε)) .

Proof. The proofs of the first two statements are essentially identical to those in Theorem 3.8. Sub-
stituting those two bounds into the formula given in Theorem 2.9 gives the third claim. �
Remark 3.11. The new assumption μ ± qi ∈ � is relatively mild, given that Sw is bounded. Recall that 
if Sw is bounded, then every strictly positive polynomial over Sw belongs to the interior of the cone 
of polynomials nonnegative over Sw; in particular, the constant 1 polynomial belongs to the interior. 
It is reasonable to assume that 1 ∈ �◦ holds as well (as it automatically does for many WSOS cones 
commonly encountered in applications), in which case 1 ± 1

μqi ∈ � automatically holds for every large 
enough μ.

The condition 1 ∈ �◦ plays an important role in the context of dual certificates. For example, it 
ensures that every polynomial in span(�) has a WSOS lower bound (Davis and Papp, 2022, Lemma 
3.1); as such, we will rely on it when we discuss exact-arithmetic algorithms to compute rational dual 
certificates in Section 4. As discussed in (Davis and Papp, 2022, Theorem 3.7), even in the case when 
this assumption does not hold, it is possible to extend �, with the inclusion of a single additional 
weight that is nonnegative on Sw , to satisfy this condition without changing span(�) (in particular, 
without increasing the degrees or invoking a Postivstellensatz).

4. Computing certified WSOS lower bounds in rational arithmetic

Having established the existence of rational dual certificates with a priori bounded bit sizes, we 
now turn to the question of computing such certificates. More precisely, given a polynomial t and a 
tolerance ε > 0, we want to compute a rational lower bound c that lies between the optimal WSOS 
lower bound c∗ and c∗ −ε, along with a rational dual certificate (of a small bit size) proving t −c1 ∈ �.

The new algorithm (Algorithm 1 below) is an adaptation of Algorithm 1 from Davis and Papp 
(2022), which is a hybrid method for the solution of the same problem. Since that algorithm was 
designed to run in finite-precision floating point arithmetic, the quality of the lower bound is lim-
ited by the precision of the arithmetic (limiting how small ε can be). That algorithm, as is, cannot 
be efficiently implemented in infinite precision (rational) arithmetic, because the bit sizes of the in-
termediate quantities (and the returned certificate) blow up as the algorithm progresses even if ε is 
large. The new Algorithm 1 follows the same blueprint, but rounds all intermediate quantities (lower 
bounds and certificates) to “nearby” rational ones with small denominators, while maintaining the 
desirable properties of the original algorithm that guarantee that the new algorithm also converges 
linearly to the optimal WSOS lower bound.

The algorithm works for almost any WSOS cone �; our only assumption is that 1 ∈ �◦ . This is a 
mild assumption that ensures that every polynomial has a WSOS lower bound; recall Remark 3.11.
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4.1. The algorithm

The pseudocode of the algorithm is shown in Algorithm 1; see a detailed example of one iteration 
of the algorithm after the outline of its analysis, in Example 4.2. Throughout, x represents a dual 
certificate for the polynomial t − c1, where c is the current certified WSOS lower bound and t is 
the input polynomial we wish to bound. In its main loop, the algorithm first updates the current 
certificate x to be closer to the gradient certificate for the current t − c1 (Line 3), by taking a single 
Newton step towards the solution of the nonlinear system −g(x) = t − c1. This updated certificate 
is then rounded to a rational one with smaller denominators in Line 4. (The matrix norm required 
for this calculation could be expensive to compute, but since any upper bound can be substituted for 
‖H(x+)‖, one can get an acceptable rigorous bound by using the Frobenius norm instead, which is 
easy to compute exactly even in rational arithmetic.) Then the lower bound c is improved in Line 5
and rounded to a nearby rational bound that is still certified by the same rounded dual certificate 
(Line 6). This last step can be implemented efficiently using continued fractions or Farey sequences. 
Alternatively, it could be replaced by a naive rounding to the largest number in the interval with 
denominator �2/�c�, the analysis below remains valid even in that case.

In addition to the notation introduced in the algorithm, we will use the following notation 
throughout the rest of the section. We let y be the vector satisfying −g(y) = t − c1 and y+ be the 
vector satisfying −g(y+) = t − c+1. The constants ρ and C used in the termination criterion will be 
precisely defined and justified below, in Theorem 4.1—for now, we may treat the main loop of the 
algorithm as an infinite loop.

The initialization of the algorithm requires a certificate x satisfying ‖ − g(x) − 1‖∗
x ≤ r

r+1 . This may 
be readily available, for example, when the gradient certificate of 1 is known in closed form. (See 
(Davis and Papp, 2022, Example 4) for an example.) If such a certificate x is not known, we may 
run Algorithm 2 discussed in Section 4.2 to compute such a certificate. Note that this initial vector is 
independent of the coefficient vector t, and only needs to be computed once for every WSOS cone �.

The analysis of Algorithm 1 here is similar to the analysis of Algorithm 1 in (Davis and Papp, 2022, 
Section 3.3). Therefore, we only give a concise outline of the proofs of its correctness and rate of 
convergence. We shall refer to the analysis of its predecessor whenever possible, focusing on where 
the analyses differ as a result of the rounding steps.

Algorithm 1: Compute the best WSOS lower bound and a dual certificate.
input : A polynomial t; a tolerance ε > 0.
outputs : A lower bound c on the optimal WSOS lower bound c∗ satisfying c∗ − c ≤ ε; a dual vector x ∈ (�∗)◦

certifying t − c1 ∈ �.
parameters : An oracle for computing the barrier Hessian H for �; a radius r ∈ (0, 1/4], a radius rN satisfying 

r2

1−2r < rN < r
1+2r , a certificate x satisfying ‖ − g(x) − 1‖∗

x ≤ r
r+1 .

1 Compute c0 := − 
(

r
r+1 − ‖ − g(x) − 1‖∗

x

)−1 ‖t‖∗
x . Set c := c0 and x := − 1

c0
x.

2 repeat
3 Set x+ := 2x − H(x)−1(t − c1).

4 Round x+ component-wise to a point xN with denominators N def=
⌈√

U
2

( 1+rN
rN− r2

1−2r

)‖H(x+)1/2‖
⌉
.

5 Solve for c+ the scalar quadratic equation

‖xN − H(xN )−1(t− c+1)‖xN = r

r + 1
,

and set c+ equal to the larger of the two solutions.
6 Set �c := c+ − c. Chose c′+ to be the rational point in the interval [c + �c

2 , c+] with the smallest possible 
denominator.

7 Set �c := c′+ − c. Set c := c′+ . Set x := xN .

8 until �c ≤ 1
2ρCε

9 return c and x.
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Theorem 4.1. Suppose that, at the beginning of the main loop of Algorithm 1, ‖x − y‖x ≤ r for some r < 1
4 . 

Then:

1. After Step 3, ‖x+ − y‖x+ ≤ r2

1−2r .
2. After Step 4, ‖xN − y‖xN ≤ rN .
3. After Steps 5 and 6, we have c′+ > c and ‖xN − y+‖xN ≤ r, so ‖x − y‖x ≤ r also holds at the end of the 

loop, and the algorithm improves the lower bound c in each iteration.

Moreover, Algorithm 1 is globally q-linearly convergent to c∗ = max{c | t − c1 ∈ �}, the optimal WSOS lower 
bound for the polynomial t. More precisely, in each iteration of Algorithm 1, the improvement of the lower 
bound �c = c′+ − c satisfies

�c

c∗ − c
≥ 1

2
ρC, (16)

with the absolute constant ρ def= r
r+1 − rN

1−rN
and the �-dependent constant C > 0 defined as in Theorem 3.5 

of Davis and Papp (2022).

Proof. Statement 1 is identical to Davis and Papp (2022, Lemma 3.2), and statement 2 comes from 
Lemma 2.1 with r1 = r2

1−2r and r2 = rN .
Statement 3 is analogous to Davis and Papp (2022, Lemma 3.3), replacing x+ therein with xN and 

making use of the fact that ‖xN − y‖xN ≤ rN whenever (Davis and Papp, 2022, Lemma 3.3) uses the 
inequality ‖x+ − y‖x+ ≤ r2

1−2r . The fact that c
′+ > c comes from the fact that c+ > c (Davis and Papp, 

2022, Lemma 3.3) and the construction of c′+ .
The linear convergence result is analogous to Davis and Papp (2022, Theorem 3.6), with c′+ playing 

the role of c+ . The rounding down of the lower bound c+ to c′+ in Step 5 ensures that in spite of 
the rounding, the progress our Algorithm 1 is at least half of what the progress would be without 
rounding (as in Davis and Papp, 2022, Algorithm 1) The final inequality (16) justifies the termination 
criterion in Line 7: if �c ≤ 1

2ρCε, then the gap between the certified and the optimal lower bound is 
c∗ − c ≤ ε as wanted. �
Example 4.2. Consider the polynomial t(z1, z2) = 3z21 − 6z1z2 + z22 + 2z1 − z2. Its global minimum on 
the unit disk is c∗ ≈ −1.70768680307. We can certify a sequence of lower bounds c < c∗ by writing 
t − c in the form

t(z1, z2) − c = σ1(z1, z2) + (1− z21 − z22)σ2,

where σ1 is a quadratic SOS polynomial and σ2 is a nonnegative constant (a degree-0 SOS polyno-
mial); i.e. by showing that t−c ∈ �

(1,w)
2,(2,0) , wherein w is the weight polynomial (z1, z2) �→ (1 − z21− z22).

Using the monomial basis to represent all polynomials, we have the coefficient vector t =
(0, 2, 3, −1, −6, 1), and it is straightforward to construct the � operator: we have U = dim(�) = 6, 
(L1, L2) = (3, 1), and � = �1 ⊕ �2, where

�1(x) =
⎛
⎝ x1 x2 x4

x2 x3 x5
x4 x5 x6

⎞
⎠ , �2(x) = (

x1 − x3 − x6
)

(17)

Now the Hessian of the barrier function can be computed efficiently using the formula (A.4).
To initialize Algorithm 1, we need a vector x1 sufficiently close to the gradient certificate of the 

constant one polynomial. In this simple example, we will use the gradient certificate itself, which can 
be computed in closed form and happens to be a rational vector, x1 = (4, 0, 43 , 0, 0, 43 ). This can be 
verified by direct computation: −g(x1) = (1, 0, 0, 0, 0, 0) = 1.
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In the main loop of the algorithm, we shall use the parameters r = 1/4 and rN = 1/7 in this 
example. The corresponding (very crude) initial lower bound c0 = − 10

3

√
410
3 ≈ −38.97 is not ratio-

nal, but we can round it down to c0 = −39. We can also verify that this lower bound is indeed 
certified by x1: using the definition of dual certificates, it suffices to compute H(x1)−1(t − c01) =(
484
3 , 16

3 , 1532
27 ,− 8

3 ,− 16
3 , 1436

27

)
and confirm that both �i from (17) are indeed positive definite. For 

completeness, we can also generate an explicit WSOS representation using (6):

t(z1, z2) + 39 =
⎛
⎝ 1

z1
z2

⎞
⎠

T⎛
⎝ 121

12 1 − 1
2

1 383
12 −3

− 1
2 −3 359

12

⎞
⎠
⎛
⎝ 1

z1
z2

⎞
⎠+ (1− z21 − z22)

347

12
.

The first iteration of the algorithm proceeds as follows:

1. After computing H(x1), the updated certificate in Line 3 is

x+ =
(

452

4563
,

8

4563
,
1372

41067
,− 16

4563
,

16

4563
,
1276

41067

)
.

2. The denominator for the “compressed” certificate is N = 5029; the computation of this involves 
calculating the updated Hessian, H(x+), the rest is trivial arithmetic. Rounding x+ component-
wise, the rounded certificate becomes

xN = 1

5029
(498,9,168,−18,18,156).

3. To update the lower bound, we construct the scalar quadratic equation in Line 5; reusing the 
already computed Hessian, this is simple arithmetic. The equation can be written as

29387195615576+ 1508777838050c+ + 19170557325c2+ = 0,

whose larger root is approximately −35.4, meaning that (in the spirit of keeping the denomina-
tors as small as possible), we can update our lower bound to c′+ = −36. Indeed, we have

t(z1, z2) + 36 =
⎛
⎝ 1

z1
z2

⎞
⎠

T⎛
⎝ s1 1 − 1

2
1 s2 −3

− 1
2 −3 s3

⎞
⎠
⎛
⎝ 1

z1
z2

⎞
⎠+ (1 − z21 − z22)s4

with (s1, s2, s3, s4) = 1
344769 (3 203 164, 10 242 827, 9 553 289, 9 208 520).

Although some of the coefficients appear frighteningly large for a toy example, it shall be empha-
sized that the explicit WSOS decompositions of t − c need not be computed in the algorithm.

Continuing with the algorithm, the bit sizes of the dual certificates appear to grow linearly 
with the number of iterations, and (as predicted by the theory), the difference c∗ − c decreases 
exponentially with the number of iterations. For instance, after 200 iterations, the lower bound is 
−1 579 834/925 131, only about 2 · 10−10 away from the true minimum value.

4.2. Initialization

Algorithm 1 requires a suitable certificate of 1, the constant one polynomial, to initialize. Such a 
certificate may be available either in closed form (e.g., for cones of univariate polynomials nonnegative 
on an interval, the gradient certificate can be determined analytically (Davis and Papp, 2022, Example 
4)), or from “preprocessing”, e.g., when other polynomials from the same space span(�) have already 
been bounded.

If we do not know a suitable x to start with, then we could attempt to find the gradient certificate 
(or a rational approximation of it) by solving the system −g(x) = 1 by a general-purpose method for 
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polynomial systems. Alternatively (and more efficiently), we can find an approximate solution to this 
system by numerically solving the convex optimization problem

min{ f (x) + 1Tx |x ∈ �∗}.
Instead of these numerical approaches, we can also leverage Algorithm 1 itself to find a suitable 

initial point. Suppose we have an interior point x ∈ (�∗)◦ , which is by definition the gradient certifi-
cate of the polynomial s = −g(x). Then we can apply Algorithm 1 starting with this initial pair “in 
reverse,” computing a sequence of certificates for polynomials of the form s + c1 for increasing values 
of c. The same certificates in turn certify c−1s + 1 as well, which is approximately the same as the 
polynomial 1 when c is large enough. The details of this approach are presented in Algorithm 2. Its 
analysis largely follows the steps laid out in Theorem 4.1, with two minor adjustments regarding the 
progress and the termination criterion. The change in Line 6 guarantees that the stopping criterion 
can be met, as we show later in Lemma 4.4.

Algorithm 2: Initialization for Algorithm 1.
input : A vector x ∈ (�∗)◦ .
parameters : An oracle for computing the barrier Hessian H for �; a radius r ∈ (0, 1/4], a radius r2

1−2r < rN < r
1+2r .

outputs : A certificate x ∈ (�∗)◦ satisfying ‖ − g(x) − 1‖∗
x ≤ r

r+1 .

1 Compute s := −g(x). Set c := 0.
2 repeat
3 Set x+ := 2x − H(x)−1(s + c1).

4 Round x+ component-wise to a point xN with denominators N def=
⌈√

U
2

( 1+rN
rN− r2

1−2r

)‖H(x+)1/2‖
⌉
.

5 Solve for c+ the scalar quadratic equation

‖xN − H(xN )−1(s+ c+1)‖xN = r

r + 1
,

and set c+ equal to the larger of the two solutions.
6 Set �c := c+ − c. Chose c′+ to be the rational point in the interval [c + 1

2�c, c + 2
3�c] with the smallest possible 

denominator.
7 Set �c := c′+ − c. Set c := c′+ . Set x := xN .
8 until ‖ − g(cx) − 1‖∗

cx ≤ r
r+1 .

9 return cx.

Analogously to Section 4.1, we will let y be the vector satisfying −g(y) = s + c1 and y+ be the 
vector satisfying −g(y+) = s + c+1 throughout this section, in addition to the notation introduced in 
Algorithm 2. The algorithm can be initialized by any point in the interior of �∗ , and by definition, at 
the beginning of the main loop of the algorithm, we have x = y, and therefore ‖x − y‖x ≤ r. The proof 
of Theorem 4.1 can be repeated almost verbatim to show the following.

Theorem 4.3. Suppose that, at the beginning of the main loop of Algorithm 2, ‖x − y‖x ≤ r for some r < 1
4 . 

Then:

1. After Step 3, ‖x+ − y‖x+ ≤ r2

1−2r .
2. After Step 4, ‖xN − y‖xN ≤ rN .
3. After Steps 5 and 6, we have c′+ > c and ‖xN − y+‖xN ≤ r, so ‖x − y‖x ≤ r also holds at the end of the 

loop. The increase �c = c′+ − c satisfies

�c

c − c∗ ≥ 1

2
ρC,

with the same constants ρ and C as in Theorem 4.1. Thus, the constant c increases exponentially as the 
algorithm progresses.
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By definition, if Algorithm 2 terminates, it returns a vector that can be used as an initial vector x
in Algorithm 1. It only remains to show that the algorithm indeed terminates. We shall show this in 
two steps. First, we show that as the algorithm progresses and c increases, ‖s‖∗

x tends to zero. Then 
we argue that this ensures that the polynomial c−1s + 1 is eventually “close enough” to 1 that cx is 
sufficiently close to the gradient certificate of 1.

Lemma 4.4. Let x ∈ (�∗)◦ be the certificate of the polynomial s + c1 ∈ �◦ as defined in Algorithm 2. Then

1. ‖s‖∗
x tends to 0, and

2. Algorithm 2 terminates.

Proof. We begin with the first statement. Let x1 be the gradient certificate of 1 and fix an arbitrary 
a ∈ (0, 1). Let y be the gradient certificate of s + c1. By Davis and Papp (2022, Lemma 3.1), we know 
that for every sufficiently large c,

‖c−1x1 − y‖c−1x1 ≤ a.

Then, using inequality (A.2) from the Appendix and the fact that ‖s‖∗
c−1x1

= c−1‖s‖∗
x1 , we have

‖s‖∗
y

(A.2)≤
‖s‖∗

c−1x1

1− ‖c−1x1 − y‖c−1x1

≤ c−1‖s‖∗
x1

1− a
. (18)

Using inequality (A.2) again, we have

‖s‖∗
x

(A.1)≤ ‖s‖∗
y

1− ‖x − y‖y ≤ ‖s‖∗
y

1− r
. (19)

Therefore, we have

‖s‖∗
x

(18),(19)≤ c−1‖s‖∗
x1

(1− r)(1 − a)
.

Since a can be chosen to be arbitrarily close to 0, and since r and ‖s‖∗
x1 are constants, it follows that 

as c → ∞, ‖s‖∗
x → 0.

Now, we show that Algorithm 2 terminates. At the end of each iteration, we have∥∥−g(cx) − (c−1s+ 1)
∥∥∗
cx

(A.5)= ‖ − g(x) − (s + c1)‖∗
x

(A.6)= ‖x− H(x)−1(s+ c1)‖x Line 6
<

r

r + 1
.

Thus, we have

‖ − g(cx) − 1‖∗
cx ≤ ∥∥−g(cx) − (c−1s+ 1)

∥∥∗
cx + ∥∥(c−1s + 1) − 1

∥∥∗
cx

<
r

r + 1
+ ‖s‖∗

x .

By Statement 1, ‖s‖∗
x tends to 0, so eventually the stopping criterion is satisfied. �

5. Discussion

Bit size bounds on certificates from Algorithm 1 We opted to separate the discussion on the bit sizes of 
the certificates and Algorithm 1. In principle, one could study the former question “constructively” 
by analyzing the bit sizes of the certificates computed by the algorithm, but we think it is useful to 
underline that both the concept of dual certificates and the bit size bounds are independent of any 
particular algorithm. Theorem 2.4 and Lemma 2.8 are both derived assuming that the dual certificate 
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y at hand is the gradient certificate for simplicity of presentation; both of these results can be easily 
adapted to the setting where y is any dual certificate that is sufficiently close to the gradient cer-
tificate. Similarly, any algorithm that computes a dual certificate by computing a vector x sufficiently 
close (in the local x-norm) to the gradient certificate y will produce certificates with boundable bit 
sizes.

The Christoffel-Darboux polynomial The WSOS polynomial −g(x) corresponding to a (pseudo-moment) 
vector x ∈ (�∗)◦ is also known as the Christoffel-Darboux polynomial, or inverse Christoffel function. 
Recent studies have focused on the properties of this polynomial, and especially on connections be-
tween the representing measures of x and the sublevel sets of −g(x), with applications to design of 
experiments Castro et al. (2021); Lasserre (2022). For our work, the critical property of the Christoffel-
Darboux polynomial is the surprising fact that this polynomial is not only WSOS, but that the gradient 
map x �→ −g(x) = �∗(�(x)−1) yields an explicit WSOS representation of this polynomial: the inverse 
moment matrix �(x)−1 is a Gram matrix that proves that −g(x) belongs to �. The concept of dual 
certificates can be seen as a generalization of this idea: rather than mapping x to the Christoffel-
Darboux polynomial with an explicit WSOS representation via −g , we can map x to explicit WSOS 
representations of a full-dimensional cone of WSOS polynomials s via the (x, s) → S map in (6).

Representation-dependent bit sizes Although the main theorem (Theorem 2.9) provides a bit size 
bound using an array of unconventional parameters, it is worth noting that each of those parame-
ters is easily computable or, in the case of cond(M), can be bounded easily. Although computing the 
matrix M with the lowest condition number is in general a likely impossible task, any unisolvent 
point set and weight vector in (8) can be used to compute a bound. In each of the special cases con-
sidered, it was easy to find a point set that either yields a small enough cond(M) that is dominated 
by other terms, or one that is provably of the optimal order of magnitude.

The other nontrivial ingredient is the constant ke1 defined in (11). Unlike the other parameters in 
Theorem 2.9, it depends not only on the cone �, but its chosen representation via the � operator. 
(Equivalently, in the notation of Proposition 1.1, in depends both on the choice of the pi bases and 
the q basis.) The example of interpolants suggests that it is a measure of conditioning, underscoring 
the fact that conditioning is consequential even in the case of exact-arithmetic algorithms, not only 
for numerical methods. Indeed, choosing poor interpolation points (say, equispaced points) to repre-
sent WSOS polynomials instead of well-conditioned ones leads to an increase in the bit sizes of the 
certificates, even in the univariate case, due to the astronomical Lebesgue constant that grows expo-
nentially with the degree, dominating all the other terms in (15). It is also this parameter, along with 
ν , that may be reduced when the polynomials of interest have special structures such as symmetry 
or term- or correlative sparsity Wang et al. (2020), showing that these structures are useful even for 
dual certificates.

Also note that none of these parameters need to be known in order to implement the algorithms 
discussed in Section 4, except for the stopping criterion of Algorithm 1. If we drop the requirement 
that the algorithm must stop when the returned bound is provably within ε from the optimal lower 
bound, and instead run the algorithm until the progress is below a tolerance, or when the lower 
bound is suitably high (e.g., in applications where the goal is to prove that the input polynomial has 
a positive WSOS lower bound), then none of the parameters introduced in Theorem 2.9 need to be 
computed or bounded.

Dependence on ν The possibly most counterintuitive aspect of the bound in Theorem 2.9 is that the 
bit size of the integer dual certificate y (approximated by U log(‖y‖∞)) depends on the �-dependent 
parameter ν logarithmically, rather than linearly, since (all else being equal) ν is a linear function 
of the number of weights m (recall the notation from (1) and its surrounding paragraph). For ex-
ample, consider a family of polyhedral cones of nonnegative polynomials that consist of nonnegative 
linear combinations of polynomials that are nonnegative on Sw . This is an elementary special case 
of WSOS polynomials, where all “sum-of-squares” polynomials are simply nonnegative constants, and 
where it is meaningful to keep adding additional weights to the representation for an increasingly 
good inner approximation of the cone of nonnegative polynomials without increasing the “ambient 
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dimension” U = dim(�). It is clear that the sizes of conventional WSOS certificates will grow linearly 
as a function of m: an explicit WSOS decomposition will have m terms; the semidefinite matrix in 
the representation (2) will have m (one-by-one) semidefinite blocks Si , etc. Yet, the dual certificate 
will remain a U -dimensional vector whose components are of size O(log(m)). Of course, this does 
not mean that such a certificate could be verified in polynomial time for an exponentially large m
(like in a Schmüdgen-type WSOS certificate); verifying that x certifies s, that is, �(H(x)−1s) � 0 still 
requires linear time in the number of weights.
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Appendix A

Here, we summarize relevant results used throughout the paper concerning the local norms ‖ · ‖x
and ‖ · ‖∗

x and barrier functions of the form f = − ln(det(�(·))) defined on (�∗)◦ , introduced in 
Section 1.1.

Lemma A.1. Using the notation introduced in Section 1.1, the following hold for every x ∈ (�∗)◦:

1. We have Bx(x, 1) ⊂ (�∗)◦ , and for all u ∈ Bx(x, 1) and v �= 0, one has

1− ‖u− x‖x ≤ ‖v‖u
‖v‖x ≤ (1− ‖u− x‖x)−1. (A.1)

2. For all v �= 0, if ‖u − x‖x < 1, we have

‖v‖∗
u

‖v‖∗
x

≤ 1

1− ‖u− x‖x . (A.2)

3. The gradient g of f can be computed as

g(x) = −�∗(�(x)−1), (A.3)

and the Hessian H(x) is the linear operator satisfying

H(x)v = �∗(�(x)−1�(v)�(x)−1) for every v ∈RU . (A.4)

4. The function f is logarithmically homogeneous; that is,

f (αx) = f (x) − ν ln(α) for every α > 0

where ν = ∑m
i=1 Li is the barrier parameter of f . Subsequently, the derivatives of f have the following 

homogeneity properties:
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g(αx) = α−1g(x) and H(αx) = α−2H(x) for every α > 0. (A.5)

Furthermore,

H(x)x = −g(x) and ‖g(x)‖∗
x = ‖x‖x =√〈−g(x),x〉 = √

ν, (A.6)

where ν is the aforementioned barrier parameter.
5. The gradient map g defines a bijection between (�∗)◦ and �◦ , In particular, for every s ∈ �◦ there exists 

a unique x ∈ (�∗)◦ satisfying s = −g(x).

Proof. Statement 1 is Renegar’s definition of self-concordance Renegar (2001, Sec. 2.2.1) to the func-
tion f defined in (5). Statement 2 is (Papp and Yıldız, 2017, Lemma 4). Statements 3 and 4 follow 
from calculus. Statement 5 is from Renegar (2001, Sec. 3.3). �
References

Basu, S., Pollack, R., Roy, M., 2006. Algorithms in Real Algebraic Geometry. Springer-Verlag, Berlin Heidelberg.
Basu, S., Leroy, R., Roy, M., 2009. A bound on the minimum of a real positive polynomial over the standard simplex. arXiv:

0902 .3304.
Beckermann, B., 2000. The condition number of real Vandermonde, Krylov and positive definite Hankel matrices. Numer. 

Math. 85 (4), 553–577. https://doi .org /10 .1007 /PL00005392.
Blekherman, G., Parrilo, P.A., Thomas, R.R. (Eds.), 2013. Semidefinite Optimization and Convex Algebraic Geometry. SIAM, 

Philadelphia, PA.
Boudaoud, F., Caruso, F., Roy, M.-F., 2008. Certificates of positivity in the Bernstein basis. Discrete Comput. Geom. 39 (4), 

639–655. https://doi .org /10 .1007 /s00454 -007 -9042 -x.
Boyd, S.P., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press.
Castro, Y.D., Gamboa, F., Henrion, D., Lasserre, J.B., 2021. Dual optimal design and the Christoffel–Darboux polynomial. Optim. 

Lett. 15, 3–8. https://doi .org /10 .1007 /s11590 -020 -01680 -2.
Davis, M.M., Papp, D., 2022. Dual certificates and efficient rational sum-of-squares decompositions for polynomial optimization 

over compact sets. SIAM J. Optim. 32 (4), 2461–2492. https://doi .org /10 .1137 /21M1422574.
Hardy, G.H., Littlewood, J.E., Pólya, G., 1934. Inequalities. Cambridge University Press, London.
Katthän, L., Naumann, H., Theobald, T., 2021. A unified framework of SAGE and SONC polynomials and its duality theory. Math. 

Comput. 90 (329), 1297–1322. https://doi .org /10 .1090 /mcom /3607.
Krylov, V.I., 2005. Approximate Calculation of Integrals. Dover, Mineola, NY.
Lasserre, J.B., 2022. A disintegration of the Christoffel function. C. R. Math. 360, 1071–1079. https://doi .org /10 .5802 /crmath .380.
Laurent, M., 2009. Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (Eds.), 

Emerging Applications of Algebraic Geometry. In: IMA Volumes in Mathematics and Its Applications, vol. 149. Springer, 
New York, NY, pp. 157–270.

Magron, V., Safey El Din, M., 2021a. On exact Reznick, Hilbert-Artin and Putinar’s representations. arXiv preprint. arXiv:1912 .
04718. https://arxiv.org /abs /1811.10062v4.

Magron, V., Safey El Din, M., 2021b. On exact Reznick, Hilbert-Artin and Putinar’s representations. J. Symb. Comput. 107, 
221–250.

Magron, V., Safey El Din, M., Schweighofer, M., 2019. Algorithms for weighted sum of squares decomposition of non-negative 
univariate polynomials. J. Symb. Comput. 93, 200–220. https://doi .org /10 .1016 /j .jsc .2018 .06 .005.

Mason, J.C., Handscomb, D.C., 2003. Chebyshev Polynomials. CRC Press, Boca Raton, FL.
Nesterov, Y., 2000. Squared functional systems and optimization problems. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S. (Eds.), 

High Performance Optimization. In: Applied Optimization, vol. 33. Kluwer Academic Publishers, Dordrecht, pp. 405–440.
Papp, D., 2017. Semi-infinite programming using high-degree polynomial interpolants and semidefinite programming. SIAM J. 

Optim. 27 (3), 1858–1879. https://doi .org /10 .1137 /15M1053578.
Papp, D., 2023. Duality of sum of nonnegative circuit polynomials and optimal SONC bounds. J. Symb. Comput. 114, 246–266. 

https://doi .org /10 .1016 /j .jsc .2022 .04 .015.
Papp, D., Yıldız, S., 2017. On “A homogeneous interior-point algorithm for non-symmetric convex conic optimization”. arXiv:

1712 .00492. https://arxiv.org /abs /1712 .00492.
Papp, D., Yıldız, S., 2019. Sum-of-squares optimization without semidefinite programming. SIAM J. Optim. 29 (1), 822–851. 

https://doi .org /10 .1137 /17M1160124.
Powers, V., 2011. Rational certificates of positivity on compact semialgebraic sets. Pac. J. Math. 251 (2), 385–391. https://doi .org /

10 .2140 /pjm .2011.251.385.
Renegar, J., 2001. A Mathematical View of Interior-Point Methods in Convex Optimization. MOS-SIAM Series on Optimization. 

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
Trefethen, L.N., 2013. Approximation Theory and Approximation Practice. SIAM, Philadelphia, PA.
Wang, J., Magron, V., Lasserre, J.B., Mai CS-TSSOS, N.H.A., 2020. Correlative and term sparsity for large-scale polynomial opti-

mization. technical report. https://arxiv.org /abs /2005 .02828.
Wilf, H.S., 1970. Finite Sections of Some Classical Inequalities. Springer-Verlag, Berlin.
27

http://refhub.elsevier.com/S0747-7171(23)00068-8/bibD1E2D2C6E84A46973E4F39E324A29E96s1
http://refhub.elsevier.com/S0747-7171(23)00068-8/bibBC94CA533575CC39923710348CAF6582s1
http://refhub.elsevier.com/S0747-7171(23)00068-8/bibBC94CA533575CC39923710348CAF6582s1
https://doi.org/10.1007/PL00005392
http://refhub.elsevier.com/S0747-7171(23)00068-8/bib99DEA1A11ABE90D1520224B5AB974863s1
http://refhub.elsevier.com/S0747-7171(23)00068-8/bib99DEA1A11ABE90D1520224B5AB974863s1
https://doi.org/10.1007/s00454-007-9042-x
http://refhub.elsevier.com/S0747-7171(23)00068-8/bib1401AF1E5297C7F6BCB473F7DD7CBDB9s1
https://doi.org/10.1007/s11590-020-01680-2
https://doi.org/10.1137/21M1422574
http://refhub.elsevier.com/S0747-7171(23)00068-8/bibC92ED2857636064046A3CD7590DBF7CDs1
https://doi.org/10.1090/mcom/3607
http://refhub.elsevier.com/S0747-7171(23)00068-8/bib47DB02E49DF642A4A288C9F80AABEF49s1
https://doi.org/10.5802/crmath.380
http://refhub.elsevier.com/S0747-7171(23)00068-8/bib3E693C91F7FC99FDAA3400897F3A9930s1
http://refhub.elsevier.com/S0747-7171(23)00068-8/bib3E693C91F7FC99FDAA3400897F3A9930s1
http://refhub.elsevier.com/S0747-7171(23)00068-8/bib3E693C91F7FC99FDAA3400897F3A9930s1
https://arxiv.org/abs/1811.10062v4
http://refhub.elsevier.com/S0747-7171(23)00068-8/bibFD4313852DE36BB76D8EB62DC3C7DCB6s1
http://refhub.elsevier.com/S0747-7171(23)00068-8/bibFD4313852DE36BB76D8EB62DC3C7DCB6s1
https://doi.org/10.1016/j.jsc.2018.06.005
http://refhub.elsevier.com/S0747-7171(23)00068-8/bib3D083D92AEA5014D1FF4859404394E8As1
http://refhub.elsevier.com/S0747-7171(23)00068-8/bib6AC07553F8EC42BA0DEE5E69D01D59FBs1
http://refhub.elsevier.com/S0747-7171(23)00068-8/bib6AC07553F8EC42BA0DEE5E69D01D59FBs1
https://doi.org/10.1137/15M1053578
https://doi.org/10.1016/j.jsc.2022.04.015
https://arxiv.org/abs/1712.00492
https://doi.org/10.1137/17M1160124
https://doi.org/10.2140/pjm.2011.251.385
https://doi.org/10.2140/pjm.2011.251.385
http://refhub.elsevier.com/S0747-7171(23)00068-8/bib1674E4BA861ED57BEFEAE9521EA24C17s1
http://refhub.elsevier.com/S0747-7171(23)00068-8/bib1674E4BA861ED57BEFEAE9521EA24C17s1
http://refhub.elsevier.com/S0747-7171(23)00068-8/bibC2C538D1B4A95D9305EB9C2BF82AF517s1
https://arxiv.org/abs/2005.02828
http://refhub.elsevier.com/S0747-7171(23)00068-8/bibD9941D4164358987DA3F16690421BC98s1

	Rational dual certificates for weighted sums-of-squares polynomials with boundable bit size
	1 Introduction
	1.1 Preliminaries
	1.1.1 Weighted SOS polynomials and positive semidefinite matrices
	Sum-of-squares (SOS) polynomials
	Weighted sum-of-squares
	WSOS polynomials and positive semidefinite matrices

	1.1.2 Barrier functions and local norms in convex cones
	1.1.3 Dual certificates
	1.1.4 Bit sizes of certificate vectors


	2 Rational certificates with boundable bit bize
	2.1 Hessian bounds
	2.2 Bounding certificate norms
	2.3 Bounds on integer certificate norms

	3 Bit size bounds for rational certificates in particular bases
	3.1 Univariate polynomials over the real line
	3.2 Univariate polynomials over an interval
	3.2.1 Chebyshev polynomial basis
	3.2.2 Univariate monomial basis
	3.2.3 Univariate Lagrange interpolant basis

	3.3 Multivariate polynomials over a bounded set

	4 Computing certified WSOS lower bounds in rational arithmetic
	4.1 The algorithm
	4.2 Initialization

	5 Discussion
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


