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Abstract
A principal cue for sound source localization is the difference in arrival times of sounds at an animal’s two ears (interaural time
difference, ITD). Neurons that process ITDs are specialized to compare the timing of inputs with submillisecond precision.
In the barn owl, ITD processing begins in the nucleus laminaris (NL) region of the auditory brain stem. Remarkably, NL
neurons are sensitive to ITDs in high-frequency sounds (kilohertz-range). This contrasts with ITD-based sound localization
in analogous regions in mammals where ITD sensitivity is typically restricted to lower-frequency sounds. Guided by previous
experiments and modeling studies of tone-evoked responses of NL neurons, we propose NL neurons achieve high-frequency
ITD sensitivity if they respond selectively to the small-amplitude, high-frequency oscillations in their inputs, and remain
relatively non-responsive to mean input level. We use a biophysically based model to study the effects of soma–axon coupling
on dynamics and function in NL neurons. First, we show that electrical separation of the soma from the axon region in
the neuron enhances high-frequency ITD sensitivity. This soma–axon coupling configuration promotes linear subthreshold
dynamics and rapid spike initiation, making the model more responsive to input oscillations, rather than mean input level.
Second, we provide new evidence for the essential role of phasic dynamics for high-frequency neural coincidence detection.
Transforming our model to the phasic firing mode further tunes the model to respond selectively to the oscillating inputs that
carry ITD information. Similar structural and dynamical mechanisms specialize mammalian auditory brain stem neurons for
ITD sensitivity, and thus, our work identifies common principles of ITD processing and neural coincidence detection across
species and for sounds at widely different frequencies.
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1 Introduction

Aprincipal cue for sound source localization is the difference
in arrival times of sounds at an animal’s two ears (interau-
ral time difference, ITD). ITDs depend on animals’ head
sizes and are small compared to typical neural timescales.
The maximum ITD, for sounds arriving from one side, is
approximately 800 µs in humans (Tollin and Yin 2009) and
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approximately 250µs to 300µs in barn owls (accounting for
ruff feathers, von Campenhausen and Wagner 2006). Neu-
rons and neural circuits that process ITDs are specialized
for temporal precision so that they can compare the timing
of inputs at this submillisecond scale (Grothe et al. 2010,
2018). Binaural ITD processing begins in mammals in the
medial superior olive (MSO) and in birds in the nucleus
laminaris (NL). Neurons in these two nuclei are often charac-
terized as coincidence detectors because they respond with
higher firing rates when brief inputs arrive nearly simulta-
neously (Goldberg and Brown 1969; Sullivan and Konishi
1986; Carr and Konishi 1990; Yin and Chan 1990; Reyes
et al 1996; Batra et al. 1997; Svirskis et al. 2004; Franken
et al. 2015) and because they have been considered as possi-
ble neural substrates for Jeffress’s influential theory of sound
source localization by delay lines (Jeffress 1948; Carr and
Konishi 1988).
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Although MSO and NL neurons share a similar role
in auditory processing, they can operate at widely differ-
ent frequency ranges in some species. ITD-sensitive MSO
neurons are thought to primarily aid in the localization of
low-frequency sounds due to the limits of phase locking of
their inputs (Joris et al. 1994) and consistent with the classi-
cal duplex theory of sound localization (Rayleigh 1907). NL
neurons in barn owls, in contrast, operate on much higher-
frequency sounds. Barn owls accurately localize sounds in
the 4 kHz to 8 kHz range (Knudsen and Konishi 1979) and
NL neurons shows ITD sensitivity in this frequency range as
well (Carr and Konishi 1990; Funabiki et al. 2011).

Extracting ITDs from kilohertz-scale signals poses a
difficult computational challenge for coincidence detector
neurons. At these high frequencies, inputs to NL neurons are
not resolved as isolated synaptic events whose relative timing
can be compared. Instead, sound-evoked voltage responses
in the soma of NL neurons appear as small-amplitude oscil-
lations at the frequency of the tone input, termed the sound
analogue potential (SAP) (Funabiki et al. 2011). Essential
features of the SAP described by Funabiki and colleagues
are (1) SAP amplitude varies with ITD, but the mean SAP
level does not; and (2) NL firing rate increases with increases
in SAP amplitude, but does not depend on SAP mean. These
observations suggest that high-frequency ITD processing in
the barn owl requires that NL neurons respond to the ampli-
tude of high-frequency oscillating inputs (SAP amplitude)
while remaining insensitive to slower changes in the base-
line input level (SAP mean).

Figure1 summarizes our approach. Synaptic conduc-
tances exhibitinghigh-frequency sinusoidal oscillations drive
activity of a two-compartment NL neuron model (Fig. 1A).
The NL model is biophysically based (Hodgkin–Huxley
style) and is based on a model that has been applied to in
vivo data (Ashida et al. 2007; Funabiki et al. 2011). Mem-
brane conductance in each compartment control the local leak
currents in each compartment (I1 and I2 in the schematic).
An axial conductance parameter controls the current flow
between the two compartments (Iax ). We adapt the model by
varying the strength of these currents in a principled manner
to explore how soma–axon coupling affects spiking dynam-
ics and ITD sensitivity. The synaptic conductance signal
that NL neurons receive is the sum of two high-frequency
sinusoidal oscillations. Coincident inputs (ITD = 0 µs)
produce larger-amplitude oscillations than non-coincident
inputs (Fig. 1B). NL neurons must respond selectively to
the amplitude of high-frequency oscillations to extract ITD
information from their inputs.

We show that electrical separation of the soma and the
axon improves neural coincidence detection. When the soma
and axon regions are weakly coupled, spike generation in the
NL neuron model depends less on the baseline level of the
input than in the case of strong coupling between soma and

axon. We identify two dynamical features associated with
weak soma–axon coupling that benefit high-frequency neu-
ral coincidence detection: linear subthreshold dynamics (as
opposed to amplified, supralinear responses to subthresh-
old inputs) and rapid spike initiation. The importance of
electrical separation between soma and axon regions for
high-frequency ITD processing accords with related stud-
ies of NL neurons (Kuba et al. 2006; Ashida et al. 2007) (and
similar work in MSO neurons (Lehnert et al. 2014; Goldwyn
et al. 2019)), but we offer novel and clarifying insights into
how structure (soma–axon coupling) affects dynamics and
enhances ITD encoding by coincidence detection.

A feature of phasic neurons (also known as Type III
excitability) is that noise variance (fluctuation amplitude)
can drive spiking activity (Lundstrom et al. 2008, 2009; Gai
et al. 2010; Huguet et al. 2017). In contrast, phasic neu-
rons do not fire repetitively to constant intensity or slowly
varying inputs (such as long duration current pulses) (Meng
et al. 2012). NL neurons exhibit phasic firing in vitro (Reyes
et al 1996), but biophysically based models developed previ-
ously for NL neurons are tonic (produce repetitive spiking in
response to sufficiently strong constant inputs) (Ashida et al.
2007; Funabiki et al. 2011). We hypothesized that if NL neu-
rons operated in the phasic mode, then synaptic inputs in
the form of high-frequency oscillations could drive spiking
activity that is selective for oscillation amplitude in a man-
ner similar to how variance of noisy inputs drives spiking
activity in phasic neurons. Indeed, we show that transform-
ing our model to the phasic firing tunes the model to respond
selectively to the small-amplitude, high-frequency signals
that carry ITD information. This finding is consistent with
the general theory of fluctuation sensitivity in phasic neu-
rons and here we add to the understanding of the functional
significance of phasic dynamics for high-frequency inputs.
In sum, our work points to coherent principles of soma–axon
coupling configurations and spiking dynamics that special-
ize auditory neurons for coincidence detection across species
and for sounds at widely different frequency scales.

2 Results

2.1 Time difference sensitivity is greater for weakly
coupled soma and axon regions

To study neural coincidence detection and ITD sensitivity
in the barn owl NL, we constructed a two-compartment
model with parameters adapted from an establishedmodel of
these neurons (Funabiki et al. 2011). The two compartments
represent a soma-dendritic region (compartment 1) and an
axonal region of spike generation (compartment 2). Synap-
tic inputs target the first compartment and spike-generating
sodium currents are restricted to the second compartment
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Fig. 1 Schematic of modeling approach with example synaptic inputs.
A Synaptic conductance are generated, one for each “ear,” with a pos-
sible time delay between the two signals to represent interaural time
difference (ITD). The sum of the two synaptic conductance streams
drives activity in a two-compartment model of NL neuron. B The

summed “two ear” synaptic conductance exhibits a sinusoidal oscil-
lation at the input frequency (4 kHz in these examples). Oscillation
amplitude decreases as ITD increases. ITD sensitivity in NL neurons
requires they respond selectively to the oscillation amplitude of their
high-frequency inputs

with dynamics described by Hodgkin–Huxley-type nonlin-
ear differential equations. All dynamic features of the model
are the same as in the work of Funabiki and colleagues
(synaptic model, membrane time constant in the soma, kinet-
ics of voltage-gated conductances).

We modified the model by varying total conductance in
the two compartments and axial conductance connecting the
two regions and, in parallel, adjusting sodium conductance
to maintain consistent excitability. We did this in a system-
aticmanner, by identifying forward coupling strength (κ1→2)
and backward coupling strength (κ2→1) parameters accord-
ing to the method in Goldwyn et al. (2019) (and see Methods
for further details). These coupling constants can also be
understood as the attenuation ratios of steady-state voltages.
The rationale for this parameter exploration is that spikes
in NL neurons are thought to be primarily generated in the
axon initial segment (Ashida et al. 2007), but physiological
measurements are typically made in the soma. Our method
enables us to constrain soma dynamics by available physi-
ological measurements, while giving us freedom to explore
the effect of soma–axon coupling and axon physiology (spike
shape, for instance) on NL dynamics and function. A more
complete understanding of how soma–axon coupling and
axonal dynamics are specialized for ITD sensitivity is of

particular interest in the NL because physiology can vary
across the NL (Kuba et al. 2006; Kuba 2012) and may be
dynamically adjusted during development (axon initial seg-
ment plasticity, as in Kuba et al. 2014).

By construction, all models (regardless of coupling con-
figuration) have nearly identical passive soma dynamics, but
the addition of sodium current in the second compartment
leads to marked difference in spiking dynamics. In partic-
ular, models with weak soma–axon coupling have large-
amplitude, fast-initiating, “all-or-nothing” spikes (Fig. 2B)
whereas spikes in strongly coupled models are more graded
with more gradual upstrokes (Fig. 2D). To make consistent
comparisons across coupling configurations, we separately
determined maximal sodium conductance for each coupling
configuration to achieve a fixed peak firing rate in simulated
responses. Specifically, we generated two synaptic input
streams (meant to represent 4 kHz tone-evoked responses
from the two ears) with a possible time difference (ITD).
For in-phase inputs (ITD= 0 ms), such as those shown in
Fig. 2A1, we set maximum sodium conductance so that the
average firing rate of the NL neuron model was 500 spikes
per second. Importantly, when synaptic events were evoked
by out-of-phase 4 kHz sine waves (ITD= 125 µs, as in the
example in Fig. 2A2), there are clear differences in simulated
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Fig. 2 Spiking dynamics of a two-compartment NL model. A
Synaptic conductance time courses for 4 kHz in-phase (left col-
umn) and out-of-phase (right column) inputs. B–D Membrane
voltage responses to inputs in A, using three different soma-to-

axon coupling configurations: (κ1→2, κ2→1) = (0.3, 0.2) in B, (0.9,
0.5) in C and (0.9, 0.9) in D. Gray curves in these panels show soma
voltage (V1) and colored curves show axon voltage (V2)

NLfiring rate. In these examples, themodelwithweaker cou-
pling produces just two spikes (Fig. 2B2) (a decrease from
the in-phase response). The model with stronger coupling
produces five spikes in response to the same input (Fig. 2D2)
which is nearly equal to its in-phase firing rate.

The coupling configuration κ1→2 = 0.9 and κ2→1 = 0.5
is similar to the previously developed model that is the start-
ing point for our work (Funabiki et al. 2011). We show
responses of this model in Fig. 2C. They used their model
to make comparisons to in vivo recordings of NL responses
to pure tones, so this parameter setting can be taken as a
physiologically plausible coupling configuration. Other con-
figurations are also possible due to natural variations across

neurons and animals, or during different stages of develop-
ment, among other reasons. Our modeling approach allows
us to assess a range of possible coupling configurations in a
systematic manner.

We next computed ITD tuning curves, by simulating neu-
ral responses to inputs with a range of time differences
(Fig. 3A). For the strongly coupled model, in which V1 and
V2 are nearly isopotential, firing rates do not vary substan-
tially with ITD. This is evident in the relatively flat firing
rate curve for the case of κ1→2 = κ2→1 = 0.9 (Fig. 3A1).
The other coupling configurations produce larger differences
in the firing rates evoked by in-phase inputs versus out-of-
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Fig. 3 Tuning to input time difference requires electrically isolated
soma and axon compartments. Left column: ITD tuning curves (spike
rate as function of input time difference) in response to 4 kHz (A1),
6 kHz (A2) and 8 kHz (A3) inputs. Coupling configurations and color
scheme is same as Fig. 2. Dotted lines are a reflected version of com-
puted values. Error bars represent standard error in the mean firing rate
from 100 repeated simulations. Sodium conductance is determined so

500 spikes/sec is peak firing rate for all configurations. Right column:
Difference between in-phase and out-of-phase firing rates across the
space of coupling configurations (�R, scale bar at right) for 4 kHz
(B1), 6 kHz (B2) and 8 kHz (B3) inputs. �R is smallest for strong
coupling and increases for electrically isolated soma and axon com-
partments (weaker coupling)

phase inputs. This further confirmed that electrical separation
of soma and axon improves ITD sensitivity.

To expand on these initial observations, we measured the
difference between in-phase and out-of-phase firing rates
across a full range of coupling configurations (Fig. 3B1). This
measure of ITD tuning curve depth, whichwe denote by�R,
is a commonly used measure of ITD sensitivity in simulation
studies and recordings of NL neurons (Ashida et al. 2007;
Funabiki et al. 2011; Grau-Serrat et al. 2003). By this mea-
sure, there is a relatively broad range of coupling configura-

tionswith large�R (good ITD sensitivity). The disadvantage
of strong coupling is confined to a relatively small region of
parameter space (small �R in the upper right corner).

ITD tuning depth decreases with higher input frequency
(rows 2 and 3 in Fig. 3), although some ITD sensitivity
remains for models with weak soma–axon coupling for input
frequencies as high as 8 kHz (as evident in the ITD tuning
curve for the (κ1→2, κ2→1) = (0.3, 0.2) in Fig. 3A3). ITD
tuning curves changewith increasing input frequency inways
that differ depend on coupling configuration. The ITD tun-
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ing curve for the strongly coupled model ((κ1→2, κ2→1) =
(0.9, 0.9) in Fig. 3A flattens because firing rates saturate at
a high firing rate for all ITDs. In contrast, the ITD tuning
curves for themodels with weaker coupling in Fig. 3A flatten
at higher input frequencies because themaximum firing rates
in thesemodels decreasewith frequency.Wecandescribe this
distinction by drawing an analogy to signal detection theory.
Supposing NL spikes are meant to signal the occurrence of
coincident synaptic inputs, we can say the false positive rate
increases in the strongly coupled model in response to higher
input frequencies, whereas the true positive rate (sensitivity)
decreases in more weakly coupled models.

In the following, we explain the advantage of weaker
coupling configurations for ITD tuning by clarifying the
signal processing imperative for NL neurons to respond to
oscillation amplitude, not mean level, and by explaining
how structure creates dynamics that support effective high-
frequency ITD coding.

2.2 Coding imperative: ITD represented by
oscillation amplitude

Informed by insightful experimental and theoretical work in
the NL (Ashida et al. 2007, 2013a, b; Funabiki et al. 2011),
we take the view that ITD information is delivered toNLneu-
rons via the amplitude of oscillating synaptic inputs. These
oscillations evoke the small-amplitude, high-frequencyoscil-
lations in the somatic membrane potential of NL neuron
termed the sound analogue potential (SAP) (Funabiki et al.
2011). For NL neurons to effectively encode ITD signals,
the input amplitudes should drive NL spiking activity, not
the mean input level. An idealized view of this computa-
tion is NL neurons must monitor their synaptic inputs and
use spike generation in the axon to signal when amplitudes
of voltage oscillations in the soma exceed some threshold.
Threshold crossings should be determined by amplitude and
not mean input level.

We illustrate this coding perspective by computing, on a
cycle-by-cycle basis, the mean and amplitude of the excita-
tory synaptic conductances that are inputs to the NL model.
The period of each cycle is 250 µs, as dictated by our use
of a 4 kHz input tone. A scatter plot of 100 cycles of synap-
tic inputs reveals, as expected, that in-phase synaptic inputs
are more distinguishable from out-of-phase inputs by differ-
ences in amplitude, not themean input level (Fig. 4A, see also
Fig. 2A for example synaptic conductance time courses).

To explore further this idealized view of NL neurons
as cycle-by-cycle observers of their inputs, we computed
a classifier boundary defined using Fisher’s linear discrim-
inant (Bishop 2006). Synaptic inputs that fall above the
boundary would be reported by an ideal observer of these
synaptic conductances as in-phase inputs. The classifier
boundary is upward sloping because oscillation amplitudes

are positively correlated with mean input level for in-phase
inputs. This suggests a stringent coding imperative for NL
neurons: they should generate spikes when the amplitude of
their high-frequency inputs are sufficiently large, and also,
they should avoid generating spikes to inputswith largemean
values.

This description of an NL neuron as a signal classifier
observing its inputs is, of course, an over-simplification of
the biophysical processes at work. We do not expect NL
neurons to act exactly like such ideal observers because
intrinsic dynamics ofNLneurons (such as refractory periods)
do not allow spike generation to occur on a cycle-by-cycle
basis in response to high-frequency inputs. Nevertheless, this
perspective gives a helpful framework for considering how
characteristics ofNL spike generation impact ITDsensitivity.

To relate this signal classification perspective to modeling
results, we used sinusoidal conductance inputs (as opposed
to the random synaptic inputs used in other simulations)
to compute thresholds for repetitive firing as a function
of input mean and amplitude (Fig. 4B). For all coupling
configurations, the slope of these threshold curves was nega-
tive, indicating the model becomes more excitable for larger
mean input levels. This is inconsistent with ideal observer’s
classification boundary (but we will see later, in Sec 2.5,
that phasic dynamics can create positively sloped threshold
curves). Among the coupling configurations tested in Fig. 4,
the strongly coupled model had the steepest threshold curve.
For gmean larger than roughly 15 nS, changes in mean input
level alone, not oscillation amplitude, can drive changes in
firing rate for this coupling configuration. This parallels the
ITD tuning results presented above (Fig. 3A) by showing that
strong electrical coupling between soma and axon is disad-
vantageous for ITD tuning, when compared to configurations
with electrically separated soma and axon compartments.

2.3 Distinctive dynamics of strongly coupledmodels
that hinder high-frequency coincidence
detection

What accounts for enhanced ITD tuning for models with
stronger soma–axon coupling? We identified two dynami-
cal features caused by strong coupling that distinguish those
models from models with electrical isolation between soma
and axon. These features are: (1) supralinear subthreshold
integration in the soma and (2) slow spike initiation in the
axon. By supralinear integration, we mean that the sub-
threshold current–voltage relation is nonlinear with positive
concavity as in the I−V curves shown in Fig. 5A. Amplifica-
tion of subthreshold voltage is greatest formodelswith strong
soma–axon coupling because strong soma-to-axon (forward)
coupling activates sodium conductance, and in turn, strong
axon-to-soma (backward) coupling enables axonal sodium
current to depolarize the soma.
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Fig. 4 High-frequency ITD processing requires sensitivity to cycle
amplitude, not cycle mean, of high-frequency inputs. A Scatter plot
of mean and amplitude of synaptic conductance measured relative to
period of 4 kHz input frequency for in-phase inputs (filled circles)
and out-of-phase inputs (empty circles). Arrow heads indicate mean

values of these measures (black arrow for in-phase, gray for out-of-
phase). A classification boundary based on Fisher’s linear discriminant
is indicated by the solid line. B Thresholds of repetitive firing in
two-compartment NL model in response to sine-wave conductance.
Coupling configurations and color scheme are same as Fig. 2

Fig. 5 Nonlinear mechanisms that distinguish strongly coupled mod-
els frommodelswith electrically isolated compartments.ASteady-state
soma voltage response to constant input current (I -V relation). Color
code and coupling configurations are same as Fig. 2. Black line is
response of the model gNa removed (linear response with 5 M� soma

input resistance). B Subthreshold V1-amplification measured as the dif-
ference between steady-state V1 responses to 1000 pA inputs formodels
with and without sodium current. C Maximum V2 slope during spike
upstrokes, calculated as average of 100 responses to in-phase inputs.
Colors given on a logarithmic scale as indicated

Wequantified the amount of amplification across the range
of coupling configurations by calculating the steady-state V1
(soma) voltage response to a subthreshold input (1000 pA
constant current) and compared it to the V1 value that would
be expected for a purely passive model (recall that passive
soma input resistance is fixed as a constant for all cou-
pling configurations). The largest amplification occurs in
models with strong soma–axon coupling, and models with
weak soma–axon coupling have nearly linear I−V relations
(Fig. 5B).

In addition to affecting subthreshold integration, cou-
pling configuration also changes the shape and dynamics of
spikes (recall Fig. 3A, B). In strongly coupled models, volt-
age dynamics in the two compartments track one another
closely. Spikes occur in both compartments with V1 dynam-
ics slowing the rate of upstroke. In weakly coupled models,

by contrast, voltage dynamics in the axon are insulated from
the soma. In these cases, fast activation of sodium current
during a spike increases V2 rapidly and without hindrance
from the more slowly depolarizing soma.

We measured the maximum slope of spike upstroke in V2
across coupling configurations (Fig. 5C). Spike upstrokes in
weakly coupled models occur at rates that can be as much as
one hundred times faster than the spikes in the most strongly
coupled model. This finding is consistent with the previous
modeling work showing that moving the location of a local-
ized spike initiation zone to a position on the axon more
distant from soma leads to a steeper spike upstrokes (Brette
2013). We are not aware of in vivo physiological measure-
ments of spike shapes in NL axons.
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Fig. 6 Nonlinear integrate-and-fire model illustrates effects of sub-
threshold amplification and spike initiation speed on sensitivity to
oscillation amplitude.A Piecewise defined function that governs model
dynamics. An interpolation parameter (p) controls whether subthresh-
old integration is linear (p = 0 in A1) or supralinear (p = 1 in A2). A
second parameter (q) controls the speed of spike initiation (the slope of
f (x) where x > 1). B Time courses of the dynamical variable x(t) in
response to 4 kHz sine-wave input, with parameter sets in B1 and B2

corresponding to those inA1 andA2. Input current is zeromean (a = 0)
and amplitude parameter is b = 2.75 (see Eq. 10). C Thresholds for
repetitive firing in response to 4 kHz input with varyingmean (ordinate)
and amplitude (abscissa). The subthreshold nonlinearity p affects the
slope of these threshold curves (as shown), but the spike slope q does
not. D Mean spike rate in response to 4 kHz inputs with varying cycle
amplitudes (with zero mean input) and linear subthreshold dynamics
(p = 1). Error bars show standard deviations of 500 repeated trials

2.4 Advantages of linear subthreshold integration
and fast spike initiation illustrated in an
integrate-and-fire model

We hypothesized that the two dynamical features identified
above that distinguish strongly coupled models from other
coupling configuration (supralinear subthreshold integration
and slow spike initiation) could account for degraded ITD
sensitivity in models with strong soma–axon coupling. Our
reasoning was as follows. Inputs to NL neurons are relatively
weak—the SAP (soma voltage oscillation amplitude) is on
the order of a few millivolts (Funabiki et al. 2011). Mod-
els of NL neurons must operate, therefore, near threshold so
these small amplitudes suffice to evoke spiking in NL neu-
rons (Ashida et al. 2007; Funabiki et al. 2011). At the same

time, to maintain high-frequency ITD sensitivity, NL neu-
rons must not respond to changes in input mean. Nonlinear
amplification of subthreshold inputs is detrimental for high-
frequency coincidence detection, therefore, because constant
or slowly varying subthreshold inputs that are nonlinearly
amplified can drive spiking activity even in the absence of
oscillations related to meaningful ITD information. There
is greater amplification of soma voltage in strongly coupled
models than models with weak axon-to-soma coupling, so
the strongly coupled configuration is not optimal for prevent-
ing spike initiation in response to constant or slowly varying
inputs.

The second distinctive feature of strongly coupled mod-
els is (relatively) slow spike initiation. Fast spike initiation
should be beneficial for high-frequency ITD detection.
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The larger-amplitude portions of high-frequency oscillating
inputs carry salient ITD information. When a portion of
the high-frequency oscillating input has a large amplitude,
due in part to random cycle-by-cycle variations in synaptic
inputs), a rapidly initiated spike can be triggered before the
input decreases (during the next phase of the input oscilla-
tion). Neurons with slowly initiating spikes, by contrast, may
need to “integrate” over larger portions of their inputs before
spikes fully develop. Neurons with gradual spike upstrokes
would be less responsive to a randomly occurring oscillation
with particularly large amplitude.

We illustrate how these two features affect high-frequency
ITD detection using an integrate-and-fire model with (possi-
bly) nonlinear subthreshold dynamics and exponential spike
upstroke. An interpolation parameter p switches the model
between linear subthreshold dynamics (p = 0) and supra-
linear subthreshold dynamics (p = 1). When the dynamical
variable in the model exceeds a threshold level, the dynamics
change to exponential growth. A gain parameter q controls
the exponential rate of rise of x . When x(t) exceeds the max-
imum value of xmax = 50, the dynamical variable is returned
to x(t) = −5, a reset condition typical for representing spikes
in integrate-and-fire models. Figure6A shows the graph of
the piecewise function that governs the intrinsic dynamics
of the model. A linear subthreshold model with slow spike
initiation is shown in Fig. 6A1 (p = 0, q = 1) and a model
with suprathreshold amplification and fast spike initiation
is shown in Fig. 6A2 (p = 1, q = 4). Further details are
given in Methods. We simulated responses of this model to
high-frequency sinusoidal inputs, varying inputmean (gmean)
and input amplitude (gamp). Examples of spiking responses
are shown in Fig. 6B with steeper spike upstroke visible in
Fig. 6B2 due to the larger value of q in that simulations.

We have parametric control over subthreshold amplifi-
cation and rate of spike initiation in this integrate-and-fire
model. We first computed thresholds for repetitive spik-
ing as a function of input mean and amplitude and found
that increasing the degree of subthreshold amplification
(increasing p) produces threshold curves that slope down-
ward more steeply (Fig. 6C). This is qualitatively consistent
with repetitive spiking threshold curve for the strongly cou-
pled two-compartment model (Fig. 4B). In the simulations
shown, we used q = 3 for the rate of spike growth in
the integrate-and-fire model. In additional simulations (not
shown), we varied q between 1 and 5 and observed no
changes to these threshold curves.

Next, we varied the spike growth parameter q to con-
firm that rapid spike initiation increased sensitivity to
high-frequency oscillation amplitude (Fig. 6D). For these
simulations, we used inputs that were sinusoidal, but with
oscillation amplitude that varied randomly on a cycle-by-
cycle basis. Our rationale for this input structure was that
most cycles would be subthreshold oscillations (by design)

with some larger-amplitude oscillations occurring at ran-
dom. Higher firing rates in response to this random input
would indicate greater sensitivity to oscillation amplitude.
We found, as expected, firing rates increasedwith the speedof
spike initiation. The maximum upstroke speed in this model
was roughly 500 ms−1 for q = 1 and increased to roughly
2000ms−1 for q = 4. This values are comparable to the spike
upstroke speeds in the two-compartment model (roughly 2.7
to 3.3 on the logarithmic scale, for reference to Fig. 5C).
The results shown in Fig. 6D are for p = 0 (linear model),
and we found qualitatively similar outcomes for models with
nonlinear subthreshold dynamics (p > 0, results not shown).

2.5 Phasic dynamics enhance high-frequency ITD
sensitivity

NL neurons display phasic dynamics in vitro (Reyes et al
1996) and phasic neurons are known to respond selectively to
input variance (and not input mean) (Lundstrom et al. 2008,
2009; Meng et al. 2012). Previous models of NL neurons
have not exhibited phasic firing (Ashida et al. 2007; Funabiki
et al. 2011), so we were compelled to explore whether phasic
dynamics would enhance high-frequency ITD sensitivity in
the NL neuron model. We began by inspecting the dynamics
of a reduced version of the model in which soma voltage
V1 is a (constant) input strength, sodium activation is set
instantaneously to its voltage-dependent steady-state value
m∞(V2) and gKHT set to 0. These manipulations yielded a
two-variable model (V2−h) of axonal dynamics. The phase
plane for this reduced axon model contains a fixed point that
loses stability as it transitions from the left branch of the
V2-nullcline to the middle branch for sufficiently large input
strength V1 (Fig. 7A1). This transition is characteristic of
tonic dynamics (Rinzel and Huguet 2013).

We found that a convenient way to convert this reduced,
two-parameter, axon model to the phasic firing mode was to
steepen the sodium inactivation function h∞ by decreasing
the parameter σ in Eq 7. The default value used in Fig. 7A1
and based on previous models (Funabiki et al. 2011) is σ =
7.7. When we steepened sodium inactivation by setting σ =
5, we found the fixed point remains stable and located on the
left branch of the V2-nullcline (Fig. 7A2). This indicates no
possibility of repetitive firing to constant inputs (Meng et al.
2012).

We confirmed that these observations correctly general-
ized to the full two-compartment NL model by altering the
steepness of the sodium inactivation curve in that model.
We performed a two-parameter bifurcation analysis using
input current strength I0 and sodium conductance gNa as
bifurcation parameters (Fig. 7B). For the reference model
using σ = 7.7, a region of tonic firing was present for suffi-
ciently strong input current (gray shaded region in Fig. 7B1).
Maximal sodium conductance for this configuration was
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Fig. 7 Modification of sodium inactivation converts two-compartment
model from tonic to phasic firing. Coupling configuration is κ1→2 =
0.9, κ2→1 = 0.5. A Phase plane diagrams for two-variable (reduced)
axon model. Dotted line shows h-nullcline for the control model (σ =
7.7 in A1) and a model with steeper h∞ function (σ = 5 in A2). Solid
lines show V2-nullclines for varying V1 (treated as a constant, input
parameter). B Two-parameter bifurcation study of two-compartment

(full) NL model showing combinations of constant input current (I0)
and sodium conductance (gNa) that produce tonic firing (shaded region)
or phasic firing (non-shaded region). Horizontal dashed line marks the
gNa value used in ITD simulations (to satisfy criterion of 500 sp/s peak
firing rate). Values of σ (steepness of h∞) in B1 and B2 correspond to
values in A1 and A2, respectively

gNa = 1286 nS (marked by dashed line that passes through
the tonicfiring region).Thismodelfires repetitively for inputs
with sufficiently large mean values. The model with steeper
h∞ and gNa = 1522 nS does not fire repetitively to con-
stant inputs, regardless of the input level (Fig. 7B2). Recall
that gNa is different in these two models because we selected
gNa separately for all model configurations to maintain the
500 sp/s firing rate at 0 µs ITD.

Converting the model from tonic to phasic firing sub-
stantially altered sensitivity to oscillation amplitude and
improved ITD tuning. We first computed thresholds for
repetitive firing to sinusoidal conductance (Fig. 8A). Ear-
lier we observed these curves were downward sloping
(Fig. 4B), even though an idealized signal classification
view of this problem indicated that upward-sloped threshold
curves would be optimal for coincidence detection (Fig. 4A).
Reducing σ had the effect of flattening these threshold curves
so that themodel could bemore sensitive to oscillation ampli-
tude and less sensitive to input mean. In fact, at the smallest

σ value tested (also a phasic model), portions of the thresh-
old were upward-sloped and thus more similar to the ideal
observer’s classification boundary. Although we did not per-
form a detailed analysis of this upward-sloped portion of
the threshold curve, this effect is consistent with our under-
standing of sodium inactivation as a mechanism for phasic
firing. In particular, sustaineddepolarization causedby inputs
with sufficiently large gmean decreases the sodium inactiva-
tion variable h which, in turn, reduces the amount of sodium
current available for spike initiation. For sufficiently a steep
h∞ curve (sufficiently small σ parameter), this decrease
in h causes an overall decrease in excitability (evident as
the upward-sloped portion of the spike threshold curve in
Fig. 4A).

Consistent with these changes in responsiveness to sinu-
soidal conductance, we found that converting the model
to phasic firing enhanced ITD tuning in the case of high-
frequency simulated synaptic inputs (Fig. 8B). Visible
changes to ITD tuning curves for smaller σ include both nar-
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Fig. 8 Phasic dynamics enhance oscillation amplitude sensitivity and
ITD tuning in the two-compartment NL model.A Thresholds for repet-
itive firing in response to 4 kHz sinusoidal conductance with varying
mean (ordinate) and amplitude (abscissa). Compare to Fig. 4B and
observe the slope of the threshold curves is less step, and can even turn

positive, for phasic firing models (smaller σ ). B–D ITD tuning curves
(spike rate as function of input time difference) in response to 4 kHz
(B), 6 kHz (C), and 8 kHz (D) synaptic inputs. Color code is same as
Fig 3A. Tuning curves narrow for smaller σ demonstrating advantage
of phasic firing for high-frequency ITD processing

rower tuning curves and greater peak-to-trough differences
(�R). For the default parameter value of σ = 7.7 (tonic
mode) the model fired vigorously to out-of-phase inputs
(200 spikes/second, approximately). Out-of-phase firing is
nearly extinguished for steepest sodium inactivation tested
(σ = 3) while maintaining the criterion level of excitability
to in-phase inputs (500 spikes/second). The benefits of phasic
firing for ITD tuning persist in responses to higher-frequency
inputs. ITD tuning curve depth is �R = 219 spikes at 6 kHz
and �R = 51 spikes at 8 kHz for the original model setting
σ = 7.7, tonic firing). These values increase to �R = 348
spikes at 6 kHz and �R = 91 spikes at 8 kHz for σ = 5
(phasic firing).

3 Discussion

Temporal precision is a hallmark of neural processing in the
auditory pathway (Joris et al. 1994; Golding andOertel 2012;
Rose and Metherate 2005; Kayser et al. 2010; Moser et al.
2006). Sound localization on the basis of interaural time
differences (ITDs) is one of the most temporally demand-
ing aspects of auditory perception. Sound source location is
encoded (in part) by submillisecond-scale time differences

in sounds arriving at the two ears. Unraveling the physiolog-
ical specializations of temporally precise binaural neurons
has been the subject of sustained investigation. Features that
specialize these neurons to act as temporally precise coin-
cidence detectors include dendritic integration (Agmon-Snir
et al. 1998; Golding and Oertel 2012; Winters et al. 2017;
Mathews et al. 2010; Grau-Serrat et al. 2003), ionic currents
active at subthreshold voltages (Svirskis et al. 2004; Huguet
et al. 2017; Khurana et al. 2011), synaptic inputs (Jercog
et al. 2010; Myoga et al. 2014; Grothe 2003; Fischl et al.
2012; Roberts et al. 2013) and spike generator regions in the
axon at locations remote from the soma (Lehnert et al. 2014;
Goldwyn et al. 2019; Kuba et al. 2006; Kuba 2012; Ashida
et al. 2007).

3.1 Electrical separation of the soma and axon is
essential high-frequency coincidence detection

We focused our attention on the dynamics of spike generation
and the nature of soma–axon coupling since fine-tuning of
soma–axon coupling may be particularly relevant for high-
frequency ITD processing. In the nucleus laminaris (NL),
where neurons can face the extreme challenge of extract-
ing ITD information from kilohertz-scale inputs, previous
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work has shown that spike initiation zones in the axon are
more distant and smaller in size for neurons that have higher
characteristic frequencies (Kuba et al. 2006). Computational
modeling also showed that ITD sensitivity is improved if
spike initiation occurs only in the axon, with the soma struc-
tured as large and passive (without sodium current) (Ashida
et al. 2007). Similar structural advantages may help MSO
neurons operate at the upper frequency limit of their ITD
sensitivity (Scott et al. 2007; Lehnert et al. 2014; Goldwyn
et al. 2019).

The advantage of remote spike initiation zone in NL
neuron is typically explained by noting that this structural
configuration impedes temporally summated inputs in the
soma from invading the axon. Insulating the spike-generating
region from sustained depolarization prevents inactivation of
sodium channels that would suppress excitability (Kuba et al.
2006; Kuba 2012). In addition, impedance analysis indicates
that the transfer of high-frequency voltage oscillations from
soma to axon is greater if sodium current is absent from the
soma region (Ashida et al. 2007). Synthesizing these argu-
ments, one could conclude that soma–axon connections in
NL neurons should act as high-pass filters. There should be
minimal attenuation (or even amplification) in the transfer
of high-frequency voltage oscillations to the axon, but mean
soma voltage or slow variations in soma voltage should not
pass to the axon.

Using a signal detection analogy, we considered these
same requirements but from the point of view of axonal spik-
ing as a means to monitor ITD information present in the
oscillating inputs to NL neurons. Informed by current under-
standing of NL responses to high-frequency pure tone inputs
(the sound analogue potential, SAP, asmeasured in (Funabiki
et al. 2011) and studied further in (Ashida et al. 2013a, b)),
our view is that spike generation in NL neurons should be
insensitive to slowly varying changes in inputs (the kinds of
changes that would be associated with temporal summation
of non-coincident inputs). Instead, NL neurons should fire in
response to the high-frequency oscillations that are evoked
by coincident synaptic events. Said differently, we concur
that NL neurons should have high-pass-like behavior to be
effective ITDprocessors, butwe locatemechanisms for high-
pass-like behavior in several nonlinear aspects of NL spiking
dynamics.

We showed that high-frequency ITD sensitivity is severely
degraded by strong electrical coupling between the soma
and spike-generating regions (Fig. 3). Strong soma–axon
coupling allows for sodium in the axon to act as a source
of nonlinear amplification of subthreshold inputs in the
soma (Fig. 5A, B). This causes neural excitability to depend
on mean input level (Fig. 4B). Structural configurations with
weaker soma–axon coupling linearly integrate subthresh-
old inputs and thus respond more selectively to oscillation
amplitude. This is consistent with a previous finding that a

passive soma enhances coincidence detection in anNLmodel
because sodium in the soma nonlinearly amplifies subthresh-
old inputs (Ashida et al. 2007). In addition, strong coupling
slows the speed of spike initiation (which we measured
as the slope spike upstroke, Fig. 5C). Similar observations
about the relationship between spike upstroke and soma–
axon coupling have been made previously (Brette 2013).
Fast spike initiation aids in responding to high-frequency
input (Fourcaud-Trocmé et al. 2003; Scott et al. 2007; Huang
et al. 2012), so this is a second reason why electrical sepa-
ration of the soma from the axon enhances high-frequency
ITD sensitivity.

If insulation from temporally summating inputs (to pre-
vent sodium inactivation in the axon) was a primary benefit
of weak soma-to-axon coupling, one might expect that ITD
sensitivity should decrease in our model with increases in the
forward coupling constant. Some minor trends to this effect
are evident in Fig. 3B for configurations with strong back-
ward coupling. For weaker backward coupling, though, ITD
sensitivity does not depend on forward coupling strength.
Recall that we selected sodium conductance separately for
each coupling configuration. For instance, maximum sodium
conductance is gNa = 4304 nS for the (κ1→2, κ2→1) =
(0.3, 0.2) configuration and is gNa = 428 nS for the
(κ1→2, κ2→1) = (0.9, 0.2) configuration. Reducing sodium
conductancewith increases in forward coupling strengthmay
explain why we did not find that strong forward coupling, on
its own, degrades ITD sensitivity by inactivating sodium cur-
rents.

3.2 Phasicness, a generic mechanism for neural
coincidence detection, also improves
high-frequency ITD processing

NL neurons exhibit phasic firing in vitro (Reyes et al 1996),
but theHodgkin–Huxley-typemodels developed for NL neu-
rons do not (Ashida et al. 2007; Funabiki et al. 2011). We
determined that our model became more sensitive to oscilla-
tion amplitude and less sensitive to input mean when it was
converted to the phasic firing mode (Fig. 8A). In addition,
phasic firing resulted in improved ITD tuning (Fig. 8B).

We steepened the sodium inactivation steady-state curve
h∞(V ) as a straightforward way to convert the model to pha-
sic firing (see also Meng et al. (2012)). A previous study
of coincidence detection and temporal precision in MSO
neurons left-shifted the h∞(V ) curve as a means to tog-
gle between phasic and tonic firing (Huguet et al. 2017).
Either manipulation of h∞(V ) creates phasic firing dynam-
ics because they strengthen the negative feedback effect
produced by sodium inactivation at subthreshold voltage lev-
els (Huguet et al. 2017).

If a model is in a tonic firing mode, then it can be tipped
into a repetitive firing pattern by temporal summation of
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high-frequency inputs. This can be problematic for mod-
eling NL neural activity because voltage responses in the
soma that trigger spikes are small-amplitude events (SAP
oscillations on the order of a few millivolts) (Funabiki et al.
2011). Sodium current in these models must be carefully
calibrated, therefore, so that small-amplitude oscillations can
evoke spikes but temporal summation of inputs do not (Grau-
Serrat et al. 2003). In pastmodeling studies,mean input levels
have been selected to position the dynamics near the bound-
ary of critical points for repetitive firing (Ashida et al. 2007)
or have used ad hoc synaptic normalization rules to suppress
themean input (temporally summated synaptic inputs). Some
amount of fine-tuning is necessary for these neurons because
of the nature of their synaptic inputs and the temporally
demanding computation they perform. Indeed, developmen-
tal and homeostatic processes do regulate axon physiology in
NL neurons and their inputs (Kuba et al. 2006; Kuba 2012).
Nonetheless, phasic firing is clearly a more robust mode of
excitability. Phasic excitability creates selectivity for input
variance while preventing excitation by background level or
slowly varying inputs (Meng et al. 2012; Lundstrom et al.
2008, 2009).

3.3 Toward a unified view of binaural coincidence
detector neurons

We have found ITD sensitivity to be enhanced if soma
and axon regions are electrically separated in an NL neu-
ron model, and that phasic dynamics further enhance the
function of these as temporally precise coincidence detec-
tors. Similar specializations may enhance ITD processing by
MSO neurons in mammals (Scott et al. 2007; Lehnert et al.
2014; Goldwyn et al. 2019), suggesting common dynamic
principles at work in these different neural systems. While
these neurons may operate at different frequency regions and
in the context of cross-species differences in their auditory
pathways, they appear to share many physiological features.
We have remarked that both MSO and NL neurons exhibit
phasic firing. In addition, they are both characterized by sev-
eral related physiological features (low input resistance, fast
membrane time constant, prominent voltage-gated currents
active at subthreshold voltage levels). That being said, there
are also notable differences in these two circuits, including
in the numbers and types of synaptic inputs (Ashida and Carr
2011, for review). Continued explorations of the similarities
and differences between these centers for binaural coinci-
dence detection can clarify the function of MSO neurons
with high characteristic frequency (Gai et al. 2009; Remme
et al. 2014) andmay also provide insights into how ITD infor-
mation can be delivered with the high-frequency stimuli used
in cochlear implant technology (Laback et al. 2015; Buechel
et al. 2018).

Aprominent low-threshold potassiumcurrent that is active
at subthreshold voltages is common to both MSO and NL
neurons. In MSO neurons, this voltage-gated current acts as
a dynamic negative feedback mechanism that enhances tem-
porally precise coincidence detection (Svirskis et al. 2003,
2004; Jercog et al. 2010;Mathews et al. 2010). In the previous
work, we have observed that KLT current improves ITD sen-
sitivity in two-compartment neuron models, especially when
the current is colocatedwith spike-generating sodium current
in the axon compartment (Goldwyn et al. 2019). The role of
KLT in NL neurons is less understood. The high-frequency
signals we considered in this study, as representative of the
frequencies encountered by the ITD processing circuit in the
barn owl, oscillate on timescales faster than the timescales
of KLT activation and inactivation dynamics. In their NL
simulations, Ashida and colleagues found that low-threshold
potassium current rendered their model “more tolerant to
changes in DC amplitude” (Ashida et al. 2007). In light of
our findings, we interpret their observation to mean that the
negative feedback effect of KLT is advantageous for high-
frequency ITD sensitivity because it can prevent supralinear
amplification of subthreshold inputs, which we found to be
detrimental to high-frequency ITD sensitivity.

Another feature of binaural neurons and circuits that we
did not include in our model, but that can be understood
in relation to our findings is inhibition. Inhibitory feedback
from the superior olivary nucleus improved ITD sensitiv-
ity in a model of NL circuit in chicken (Dasika et al. 2005).
Inhibitory feedback that stabilizes mean input level (counter-
acting sustained depolarization due to temporal summation)
would help the NL circuit transmit ITD information via high-
frequency oscillating inputs. The function of inhibition in
MSO neurons continues to be studied (Grothe 2003; Couch-
man et al. 2010; Goldwyn et al. 2017; Winters and Golding
2018)with evidence that precisely time inhibitory inputs shift
the peaks of ITD tuning curves (Brand et al. 2002; Pecka
et al. 2008; Jercog et al. 2010; Myoga et al. 2014) (but see
also Roberts et al. (2013); Franken et al. (2015)).

In sum, the remarkable temporal precision of binaural
coincidence detector neurons requires numerous cellular and
circuit-based specializations. Tracing these intriguing cross-
species similarities between MSO and NL neurons provides
useful perspectives on both systems. We have emphasized
that the nature of high-frequency synaptic inputs requires NL
neurons to respond selectively to oscillation amplitude, not
mean input level. Low-frequency ITD encoding in the MSO,
in contrast, requires slope-sensitive neurons to respond selec-
tively to a few well-timed inputs (Meng et al. 2012; Remme
et al. 2014; Jercog et al. 2010; Svirskis et al. 2004). Taken
together, our findings add to the evidence that there are shared
structural and dynamical principles underlying the encoding
of sound source location by neural coincidence across differ-
ent species and widely different frequency ranges.
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4 Methods

4.1 Two-compartment NL neuronmodel

We studied spiking dynamics of a barn owl NL neuron using
a two-compartment model that was previously and applied to
in vivo physiology (Ashida et al. 2007; Funabiki et al. 2011).
The model consists of a compartment with passive dynam-
ics (compartment 1 with voltage variable V1, representing
the soma region) and a compartment with excitable dynam-
ics (compartment 2 with voltage variable V2, representing a
spike-initiating node in the axon). Separating the NL soma
and axon regions is common practice in the models that we
build upon and is justified by anatomical observation that the
soma is separated from spike initiation zones in NL axons by
amyelinated axon initial segment Carr and Boudreau (1993).
Voltages in the two compartments are governed by coupled
differential equations

c1
dV1
dt

= −glk,1(V1 − Elk,1) − gax (V1 − V2) − Iin(t)

c2
dV2
dt

= −glk,2(V2 − Elk,2) − gax (V2 − V1)

− INa(V2) − IKHT(V2)

(1)

where capacitance (c), leak conductance (glk) and leak
reversal potential (Elk) can take different values in each
compartment. The axial conductance gax is the Ohmic cou-
pling between the two compartments. The input current to
the soma Iin typically represents either sinusoidal input cur-
rent or conductance-based synaptic inputs. Voltage-gated
ionic currents in the axon are spike-generating sodium cur-
rent (INa) and high-threshold potassium current IKHT. More
details regarding these currents are given below.

We adapt the model by varying the leak and axial conduc-
tances in a principled manner (detailed below). Our method
allows us to explore a large parameter space while constrain-
ing response properties in the input compartment (V1) to
match the reported physiology in theNL soma (input conduc-
tance, membrane time constant, resting potential). Dynamics
in the spiking compartment (V2) are affected by our parame-
ter variations.NL axon physiology (spike shape, for instance)
has not been reported, to our knowledge. We view, therefore,
this parameter exploration as a natural use of a computational
model with parameters that could further refined by future
physiological data.

4.2 Passive parameters determined by soma–axon
coupling

Following themethod described in (Goldwyn et al. 2019), we
set passive parameter values so that V1 dynamics reproduced
basic, physiologically measurable properties of NL neurons

(resting potential, input resistance and membrane time con-
stant). We then created a two-parameter space described by
the strength of forward and backward couplings between the
two compartments. With this approach, we could study ITD
sensitivitywhile systematically varying soma–axon coupling
configurations (Goldwyn et al. 2019; Franken et al. 2021).

We set passive parameter values using values of three
physiological constants similar towhat has been reported in a
previous studies of NL neurons (Funabiki et al. 2011). These
are input resistance in the soma (R1 = 5M�), resting poten-
tial in the soma (Erest = −62 mV, also used for V2 resting
voltage) and soma membrane time constant describing the
timescale of exponential decay of V1 (τexp = 0.1 ms). We
assumed the surface area of the first compartment is orders
of magnitude larger than the surface area of the second com-
partment (2400 µm2 compared to 20 µm2), consistent with
previous NLmodeling studies following (Ashida et al. 2007;
Funabiki et al. 2011).

We followed the approach in Goldwyn et al. (2019)
to determine passive parameters in the two-compartment
model. This enables systematic variation of coupling config-
uration will maintaining nearly identical passive V1 dynam-
ics. DefiningU1 andU2 to be the deviations of voltages from
rest and removing the voltage-gated currents INa and IKHT,
the passive dynamics relative to rest are:

τ1
dU1

dt
= −U1 + κ2→1U2 − Jin(t)

τ2
dU2

dt
= −U2 + κ1→2U1

(2)

where the time constant parameters τi = ci/(gi + gax ) for
i = 1, 2 and Jin = Iin/(g1 + gax ) is a rescaled input term.
The soma-to-axon (forward) coupling parameter κ1→2 and
axon-to-soma (backward) coupling parameter κ2→1 describe
the impact of voltage deviations in one compartment on the
other. Alternatively, these parameters can be thought of as
steady-state attenuation factors between the two compart-
ments. They are

κi→ j = gc/(g j + gc) for i, j = 1, 2 with i �= j . (3)

Due to the large discrepancy in membrane surface areas,
there is a timescale separation between the passive dynamics
in the two compartments (V2 is fast relative to V1). In par-
ticular, the ratio of time constants is τ2/τ1 = ακ1→2/κ2→1.
For α = 20/2400 (as specified above) and the range of cou-
pling constants used in our study, we have that τ2 takes values
approximately 10 to 100 times smaller than τ1. Due to this
separation of timescales, we could use fast–slow analysis to
uniquely define combinations of passive parameters that vary
soma–axon coupling while maintaining nearly identical pas-
sive dynamics in the soma compartment (see Goldwyn et al.
2019 for details):
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Fig. 9 Parameter space for two-compartment NL model. A Total con-
ductance in the soma compartment (g1).BTotal conductance in the axon
compartment (g2).CAxial conductance between the two compartments
(gax ). Parameters inA–C depend uniquely on soma–axon coupling con-
stants and commonly reported physiological properties (input resistance
and membrane time constant in the soma) and are determined for a pas-
sive model. Colored dots mark the specific coupling configurations
used in many figures (refer to Fig. 2). We used, as a reference value

κ1→2 = 0.9 and κ2→1 = 0.5 since this configuration is similar to the
parameter set used in (Funabiki et al. 2011). D Sodium conductance in
the axon compartment (gNa). This parameter is determined so that, at
each coupling configuration, the model fired at 500 spikes/sec at ITD
= 0 µs. E Maximum voltage range in soma compartment in response
to 4 kHz in-phase synaptic input. F Maximum voltage range in axon
compartment from same responses as in E
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gax = κ2→1

R1(1 − κ1→2κ2→1)

g1 = gax

(
1

κ2→1
− 1

)

g2 = gax

(
1

κ1→2
− 1

)

c1 = τexp(1 − κ1→2κ2→1)(g1 + gax )

c2 = αc1

(4)

Values of these parameters throughout the coupling parame-
ter space are shown in Fig. 9A–C.

4.2.1 Voltage-gated spike-generating currents

The voltage-gated currents in the axon region are the
spike-generating sodium current INa and the high-threshold
potassium current IKHT. We modeled the dynamics of these
currents as in (Funabiki et al. 2011):

INa(V2) = gNamh(V2 − ENa)

− m∞(Vrest)h∞(Vrest)(Vrest − ENa)

IKHT(V2) = gKHTn(V2 − ENa)

− n∞(Vrest)(Vrest − ENa).

(5)

We include the second term so that these currents are zero
at rest. This facilitates our exploration of coupling parameter
space. This can be implemented equivalently as a shift in the
leak reversal potential. Reversal potentials are ENa = 35mV
and EK = −75 mV.

We set maximal sodium conductance gNa separately for
each coupling configuration to achieve a consistent firing
rate response of 500 spikes per second to in-phase synaptic
inputs. We selected this criterion to be similar to the peak fir-
ing rate reported in previous modeling work (Funabiki et al.
2011; Ashida et al. 2013b). We found gNa values to range
from 200 to 7000 nS, roughly (Fig. 9D). Coupling configu-
ration and sodium conductance determine the shape of action
potentials in the axon and the extent to which spikes back-
propagate into the soma. Spikes in the soma of NL neurons
are small (around10mV inFunabiki et al. (2011)).As a rough
measure of spike size, we measured the maximum voltage
ranges in the two compartments. This is �V in Fig. 9E, F.
It is calculated as the maximum voltage minus the minimum
voltage, where the extreme values of voltage were measured
over the duration of a response to 4 kHz synaptic inputs with
ITD = 0 µs. The ranges of �V1 show small spikes in the
soma and showspike sizes decrease as the backward coupling
strength (κ2→1) decreases. The range of �V2 show large,
“fully formed” spikes that are larger for configurations with
weaker forward coupling (smaller κ1→2). If the spike gener-
ator is not electrically isolated from the soma, then the soma
acts as a strong sink that decreases spike amplitude. Recall-

Table 1 Voltage-gated ion channel subunit kinetics

Na activation (m)

αm(V ) = 3.6e(V+34)/7.5

βm(V ) = 3.6e−(V+34)/10

Na inactivation (h)

αh(V ) = 0.6e−(V+34)/18

βh(V ) = 0.6e(V+34)/13.5

KHT activation (n)

αn(V ) = 0.110e(V+19.)/9.1

βn(V ) = 0.103e−(V+19.)/20

ing that Funabiki and colleagues parameterized this model,
for their study of in vivo NL activity, so that κ1→2 ≈ 0.9
and κ2→1 ≈ 0.5, we observe that a large portion of the cou-
pling parameter space produces spikes in the soma similar
to their model setting. In fact, since spike size in the soma
is predominantly determined by the backward coupling con-
stant, we can view the backward coupling constant κ2→1 as
(roughly) a free parameter that requires future physiological
data to specify more precisely (e.g., axonal recordings).

We set the maximal high-threshold potassium conduc-
tance to gKHT = 0.3gNa as in (Funabiki et al. 2011). The
passive leak conductance in the axon (glk,2 in Eq 1) was
reduced by amounts equal to gNa and gKHT to maintain
the total axon conductance at rest determined by the ini-
tial parameter-fitting calculation (g2 in Eq. 4). We did not
include any voltage-gated currents in the soma (as in Ashida
et al. 2007), so leak conductance in the soma compartment
is identical to g1.

The kinetics of the gating variables are governed by equa-
tions of the form

du

dt
= φ

(
u∞(V2) − u

τu(V2)

)
(for u = m, h, n). (6)

The constant φ = 4.75 adjusts for temperature at 40◦ C
with Q10 factor 2.5. The functions u∞ and τu are identical
to the model in Funabiki et al. (2011) using the conven-
tional definitions that u∞(V ) = αu(V )/ (αu(V ) + βu(V ))

and τu(V ) = 1/ (αu(V ) + βu(V )) where αu and βu repre-
sent opening and closing rates, respectively, for voltage-gated
ion channel subunits (Table 1).

4.2.2 Modification of sodium inactivation for phasic model

We created a phasic version of the model by altering the
steady-state function for sodium inactivation (h∞). The
default definition of h∞ using the values of the αh and βh
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given in Table 1 is

h∞(V ) = 1

1 + e(V+57)/σ
(7)

where σ = 7.7 reproduces the model in Funabiki et al.
(2011). We found that reducing σ (resulting in steeper h∞
curve) was a practical way to toggle the model between a
tonic firing mode (at the default σ value) and a phasic fir-
ing mode (for smaller σ values). We recalculated maximal
sodium conductance separately for each σ value to maintain
the consistent peak firing rate of 500 spikes/sec. It was neces-
sary to increase gNa for smaller values of σ . For the coupling
configuration κ1→2 = 0.9 and κ2→1 = 0.5, for example, gNa
increased from 1240 nS for σ = 9 to 1838 nS for σ = 3.

4.2.3 Synaptic current and the SAP

Wemodeled input currents Iin as either a sinusoidally varying
conductance (an idealized description of the high-frequency
oscillatory input toNLneurons) (Ashida et al. 2007; Funabiki
et al. 2011; Ashida et al. 2013a) or as the summed input of
simulated excitatory synaptic events. In the first case (ideal-
ized sinusoidal input), the parameter g0 is the baseline (mean)
level of the input conductance and g1 is the amplitude of input
oscillations. The reversal potential is Esyn = 0 mV for both
input types. We used f between 4000 Hz and 8000 Hz in all
simulations in this study. This value is in the range of high-
frequency tones that barn owls can localize and has been used
in previous modeling studies (Funabiki et al. 2011; Ashida
et al. 2007, 2013b). Our rationale for this idealized input is
that tone-evoked voltage responses in the soma of NL neu-
rons are characterized by oscillations at the tone frequency
(the so-called sound analogue potential, SAP) and that SAP
amplitude (not baseline level) varieswith ITD (Funabiki et al.
2011). The parameter g1 controls the amplitude of this ide-
alized input with large g1 interpreted to represent preferred
ITDs with coincident inputs that drive maximal firing.

For simulations in which we preferred a more biophysi-
cally realistic description of the ITD computation performed
by NL neurons, we let Iin(t) = g(t)(Esyn − V1) where
g(t) represents synaptic conductance generated by simulated
trains of synaptic events filtered by short-duration excitatory
postsynaptic potentials (EPSGs):

g(t) =
N∑

n=1

∑
ti,n

gss(t − ti,n). (8)

Weused the synapticmodel ofAshida and colleagues (Ashida
et al. 2013a, b) and parameters drawn from their work.
Synaptic reversal potential is Esyn = 0 mV (as above) and
the time course of synaptic conductance g(t) is a random
process constructed as the sum of unitary EPSG events pro-

duced by N independent input neurons whose event times
ti,n are sampled from an inhomogeneous Poisson process.
The Poisson intensity λ(t) is the periodic function λ(t) =
2πλ0 pk(2π f t), where f is the input frequency, λ0 is the
baseline rate (500 Hz) and pκ is the von Mises distribution
function with concentration parameter κ (see Ashida et al.
2013a, b for details). The unitaryEPSGevents are alpha func-
tions

s(t − ti ) =
{
0 for t < ti,n
(gst/τsyn)e1−t/τsyn for t ≥ ti,n

(9)

with maximal conductance g0 = 1.3 nS and time constant
τsyn = 40.9 µs. This exceptionally brief time constant is
required for the model to replicate properties of the SAP
observed in vivo (Funabiki et al. 2011;Ashida et al. 2013a, b).
We used N = 300 for the total number of inputs (NM
neurons), evenly divided into two input streams to simulate
binaural (two-eared) inputs. Synaptic inputs carry ITDswhen
there is a time lag between the time courses of λ(t) used in
each of the two NM population representing the two “ears.”

4.3 Measure of coincidence detection sensitivity and
ITD coding

We simulated the sound localization computation performed
by NL neurons by measuring mean firing rate of the two-
compartmentmodel in response to repeated samples from the
synaptic input model. Spikes (defined as an upward crossing
of V2 past −30 mV) were counted over a duration of 20 ms
and mean spike rates were averages from 100 repetitions.

As a summary measure of ITD sensitivity we calculated
the difference between in-phase and out-of-phase mean fir-
ing rates (visualized as the peak-to-trough difference in ITD
tuning curve height). We denoted this statistic as �R and
note that it has been used commonly used in previous studies
of ITD processing including for NL neurons (Ashida et al.
2007; Funabiki et al. 2011; Grau-Serrat et al. 2003).

We calculated thresholds for repetitive spiking in response
to sinusoidal input conductance. Repetitive firing to these
inputs was defined as more than one spike in both halves of
the 20-ms-long stimulus. Threshold for repetitive firing was
defined as the smallest possible input strength at which repet-
itive firing could be observed over a range of initial values.
A modified bisection search method was used so that, with
g0 fixed, g1 thresholds were calculated to within ±0.5 nS.
As part of the bisection search, we found it necessary to sys-
temically test a range of initial values in order to identify
the minimum threshold in cases when the model exhibited
hysteresis dynamics.
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4.4 Numerical methods

Original simulation code was developed in C, Python and
MATLAB and is available at https://github.com/jhgoldwyn/
TwoCompartmentNL. Computations to determine gNa con-
ductance values and measure ITD tuning curves were per-
formed on a multi-CPU cluster maintained by Swarthmore
College. All other computations were performed on personal
laptops. Two-compartment model simulations were carried
out using the forward Euler method with a 0.1 µs time step.
Synaptic conductance time courses (g(t) in Eq 8) were also
computed at this temporal resolution. For some coupling
configurations (those with large gNa values), we found it nec-
essary to use smaller time step sizes in the Euler calculations,
in which case we linearly interpolated synaptic conductance
time courses to the smaller time steps.

4.5 Synaptic classification by Fisher’s linear
discriminant

As conceptual support for how to understand the coinci-
dence detection computation performed by NL neurons, we
considered how in-phase and out-of-phase inputs could be
linearly separated (Fig. 4A). Specifically, for every period of
the 4 kHz stimulus, we measured the mean and amplitude
(half the maximum-to-minimum range of g(t)) of synaptic
input currents for one-second-long samples of the biophysi-
cally based synaptic input model (see above). We then used
Fisher’s linear discriminant to find the direction w along
which to project these data in order to maximally separate
them in-phase from out-of-phase synaptic inputs. Let xn be
the vector containing themean and amplitude of g(t) on each
period of an in-phase input, yn the corresponding vector for
out-of-phase inputs, and denote the means of these values
(over all periods of the input) as 〈x〉 and 〈y〉, respectively.
ThenFisher’s linear discriminant for optimally separating the
in-phase and out-of-phase inputs on a cycle-by-cycle basis
is to project these data onto any vector w in the direction of
�−1

W (m1−m2) (Bishop 2006), where�W is the within-class
covariance matrix

�W =
∑
n

(xn − 〈x〉)T (xn − 〈x〉)

+
∑
n

(yn − 〈y〉)T (yn − 〈y〉).

4.6 Nonlinear integrate-and-fire model

Two features of nonlinear dynamics in the axon thatwe found
could impact coincidence detection sensitivity are the quick-
ness of spike initiation and the extent towhich sodiumcurrent
in the axon amplifies subthreshold voltages in the soma (caus-
ing the input region to deviate from linear, passive dynamics).

We developed a nonlinear integrate-and-fire mode to investi-
gate these two features. The dynamical variable of the model
is x(t), a voltage-like variable, that is governed by separate
rules for subthreshold and suprathreshold (spike initiation)
behavior.We formulated these subthreshold and suprathresh-
old rules simply in order to have direct parameter control over
the dynamics in these separate regimes:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ
dx(t)
dt = f (x(t)) + a + b sin(2π f t)

if x(t) < xthresh
τ
dx(t)
dt = q(x(t) − xthresh) + a + b sin(2π f t)

if xthresh ≤ x(t) < xmax

x(t) = xreset if x(t) ≥ xmax

(10)

where the function f (x) has the form

f (x) =
{−x if x ≤ 0

(p − 1)x − p
(

x
1+x

)
if 0 ≤ x < xthresh

. (11)

We view the piecewise nonlinearity in f (x) as a carica-
ture of the amplifying effect that sodium current in the axon
can have if there is sufficient backpropagation from axon to
soma (strong backward coupling), as shown in Fig. 5A, B. In
particular, the parameter p interpolates between linear sub-
threshold dynamics (p = 0) and supralinear subthreshold
dynamics (p = 1).

Spike generation in the model in two phases. First, if
x(t) exceeds the spike initiation threshold xthresh, then x(t)
increases with the exponential growth rate q.We set xthresh =
1 for the linear model (p = 0) and xthresh = 1.25 for the non-
linear model (p = 1) to maintain the same AC threshold at
when DC=0 (same y-axis intercept in Fig. 6. Second, spike
generation occurs at the instant at which x(t) exceeds xmax =
50, at which point the value of x(t) resets to xreset = −5.
We use the exponential growth parameter q to characterize
the slope of spike upstroke, which we observed could change
with coupling configuration (Fig. 5C). The integrate-and-fire
model was simulated in MATLAB with code available at
https://github.com/jhgoldwyn/TwoCompartmentNL.
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