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Abstract: Metabolic pathways are a human-defined grouping of life sustaining biochemical reactions,
metabolites being both the reactants and products of these reactions. But many public datasets include
identified metabolites whose pathway involvement is unknown, hindering metabolic interpretation.
To address these shortcomings, various machine learning models, including those trained on data
from the Kyoto Encyclopedia of Genes and Genomes (KEGG), have been developed to predict the
pathway involvement of metabolites based on their chemical descriptions; however, these prior mod-
els are based on old metabolite KEGG-based datasets, including one benchmark dataset that is invalid
due to the presence of over 1500 duplicate entries. Therefore, we have developed a new benchmark
dataset derived from the KEGG following optimal standards of scientific computational reproducibil-
ity and including all source code needed to update the benchmark dataset as KEGG changes. We
have used this new benchmark dataset with our atom coloring methodology to develop and compare
the performance of Random Forest, XGBoost, and multilayer perceptron with autoencoder models
generated from our new benchmark dataset. Best overall weighted average performance across
1000 unique folds was an F1 score of 0.8180 and a Matthews correlation coefficient of 0.7933, which
was provided by XGBoost binary classification models for 11 KEGG-defined pathway categories.

Keywords: metabolite; pathway; machine learning; KEGG; kegg_pull; md_harmonize; atom color

1. Introduction

Metabolomics is the systematic study of the biomolecules present in a given living
system that can be composed of one or more organisms. Metabolomics is often used to
study metabolism, the set of life sustaining biochemical reactions occurring in these living
systems. These reactions occur in coordinated and regulated pathways, where the product
of the previous reaction is the substrate for the next reaction. One or more groups of
interconnected or related metabolic pathways form a metabolic pathway category. These
pathway categories can be organized in a hierarchy with broader categories being at the
top of the hierarchy and more specific categories being lower in the hierarchy [1]. The
biochemical reactions and metabolites associated with these pathway categories can be
linked in data sources such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [2–4]
and MetaCyc [5,6], and PubChem [7] with cross-references to each other or additional
resources such as Reactome [8,9].

While such data sources link some metabolites to their pathway involvement, many
of these links are missing. The advances in Mass Spectroscopy (MS) and Nuclear Magnetic
Resonance (NMR) technologies over the past few decades, especially in terms of sensitivity,
have led to a dramatic increase in the amount of metabolomics data being collected and
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uploaded to databases such as Metabolomics Workbench [10] and MetaboLights [11]. How-
ever, at best, roughly 50% of detected compounds can be assigned to a pathway category.
Often it is the case that the metabolic roles of these experimentally identified compounds
are unknown, since the metabolic network databases, e.g., KEGG and MetaCyc, are grossly
incomplete in terms of the known biochemical reactions [1]. This has led to the need to
accurately predict the metabolic pathway involvement of unassigned compounds [12].

Several machine learning methods have been developed to predict the pathway
involvement of metabolites in the form of mapping metabolites to broad hierarchical
pathway categories given the molecular structure of said metabolite. Most notably were the
machine learning models trained on the dataset created by Baranwal et al. [13] composed
of SMILES representations of metabolic compounds with associated pathway labels. They
claim they obtained the SMILES data from KEGG, so we will refer to it as the KEGG-
SMILES dataset; however, KEGG does not provide a SMILES representation of their KEGG
COMPOUND entries. One of the most recent models trained on the KEGG-SMILES
dataset was developed by Du et al. and reports the highest performance compared to past
models trained on this dataset [14]. However, Huckvale et al. discovered thousands of
duplicate entries in the KEGG-SMILES dataset, rendering the dataset and the results in the
publications utilizing this dataset as invalid [15]. Huckvale et al. also pointed out that the
description of its creation lacks sufficient detail to recreate it, let alone code that one could
simply re-run to re-generate it. Therefore, there is a need for a new benchmark dataset that
meets the requirements outlined by Huckvale et al., including transparent details of its
creation, data validation including ensuring that all entries represent unique metabolites,
code and raw data to reproduce the dataset, and finally scripts and instructions for building
off of it as KEGG updates their data. In this work, we present a benchmark dataset,
generated from KEGG compound and pathway data, that fulfills all these requirements.
We additionally include an analysis correlating the amount of chemical information within
metabolites to the reliability in predicting their pathway categories, followed by filtering
metabolites with insufficient chemical information for reliable pathway classification.

Beyond the ability to predict the pathway involvement of metabolites, there is also the
need to determine which molecular substructures within the metabolites are most impor-
tant for this prediction. Rather than training black box models, Jin et al. [16] presents an
atom coloring method, which generates molecular structure representations of compounds,
which, when used as features for a machine learning tabular dataset, we can determine
which molecular substructures are most associated with pathway involvement by mea-
suring feature importance. In this work, we use the atom coloring method to generate
the benchmark dataset and train three different types of machine learning models i.e.,
Random Forest (RF), Multi-layer Perceptron (MLP), and eXtreme Gradient Boosting (XG-
Boost) with feature importance measured for the XGBoost. Thus, we present a benchmark
dataset as well as benchmark model performance results from which future publications
can build upon, including the capacity to investigate molecular substructure importance
in metabolites.

2. Materials and Methods
2.1. KEGG Data Pull

We used the kegg_pull [17] Python package to download all available entries and asso-
ciated molfiles from the KEGG COMPOUND database [2–4]. As of 3 July 2023, 19,119 com-
pound entries were retrieved from the KEGG database (Figure 1). However, not all of
the available compound entries are metabolites and some entries have no molfile associ-
ated with them. We used the ‘Metabolism’ section of the KEGG BRITE br08901 hierarchy
(https://www.genome.jp/brite/br08901, accessed on 3 July 2023) to determine which
of the KEGG compounds were associated with broad metabolic pathways as defined by
KEGG. The ‘Metabolism’ section of the br08901 hierarchy contains 12 distinct metabolic
pathway category branches, excluding ‘Global and overview maps’ since this is a catchall
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category. Each of these 12 metabolic pathways then branch out into leaf nodes representing
more specific pathway categories.
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Figure 1. Diagram summarizing both the computational and manual trimming of the metabolite
entries in the dataset, the entries being based on compounds from the KEGG database. Each step
in the data cleaning process resulted in less entries in the dataset until arriving at the final dataset.
The computational steps were entirely automated with Python scripts while the manual portion
was semi-automated. The manual portion included filling out a file with a text editor containing a
list of KEGG compound entries from the dataset after filtering by non-hydrogen atom count. We
filled in the file with instructions on how to handle the compounds based on manual inspection of
their properties. The file was initially generated as a template using a script and an additional script
used the instructions in the file after we manually added them to it. Whether merging or completely
removing manually inspected metabolites, the dataset size continued to decrease with the manual
dataset cleaning.

2.2. Dataset Creation
2.2.1. Initial Data Cleaning and Filtering

For the first filtering step in Figure 1, we used functionality developed in kegg_pull [17]
to link 6736 compound entries to the pathways they are associated with. However, not all
of them are linked to specific metabolic pathways, so we filtered further by taking only
those compound entries linking to these specific metabolic pathway leaf nodes. Using this
method (second filtering step in Figure 1), we identified 6234 compounds associated with
these specific metabolic pathways. We consider these metabolite entries and linked each
entry to the pathway categories in the hierarchy level above the leaf nodes, i.e., 1 or more of
the 12 broad metabolic pathway categories. We call these links metabolic ‘pathway labels’
of the entry. Next, we downloaded the molfiles corresponding to each metabolite entry
from the KEGG compound database, if available. This represented a third filtering step
illustrated in Figure 1, since only 6144 metabolite entries had a molfile available.

Next, there were a few pairs of metabolite entries with identical or equivalent molfiles.
We handled these duplicate molfiles by merging the pair of compound entries into a single
representative entry, keeping only one molfile and creating the union set of their metabolite
pathway labels. After de-duplicating the duplicate molfiles (fourth filtering step in Figure 1),
6142 compound entries remained, representing the initial KEGG metabolite dataset.
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2.2.2. Filtering by Information Content

However, some compound entries, like KEGG C00001 (i.e., water or H2O), contained
very few non-hydrogen atoms and thus very little chemical information. With a histogram,
Figure 2a illustrates the non-hydrogen atom count across the initial KEGG metabolite
dataset. Therefore, we hypothesized that metabolites containing too few non-hydrogen
atoms (less chemical information) could not be reliably classified. If this hypothesis were
true, we would want to determine an optimal minimum number of non-hydrogen atoms in
compounds to use for pathway classification. To both test this hypothesis and determine the
optimal minimum non-hydrogen atom count, we investigated how many non-hydrogen
atoms result in a Random Forest (RF) model consistently classifying the compound correctly
(i.e., determine whether it belongs to one of the 12 pathway labels or not). The RF training
algorithm is stochastic, producing a slightly different model over repeat trainings even
when trained on the same data. This enabled us to measure the percentage of misclassifica-
tions for each compound in the unfiltered (initial) dataset (size of 6142) across 1000 model
training/evaluation iterations. For each of the 12 pathway categories, we trained a binary
classifier RF model on the unfiltered dataset, the features of which were constructed from
the molfiles using the method described below. We determined the misclassification rate of
a given compound for each of the 12 pathway categories, averaging the 12 misclassification
rates to obtain the overall misclassification rate per compound. We additionally measured
the number of non-hydrogen atoms in the corresponding molfile.Metabolites 2023, 13, x FOR PEER REVIEW  5  of  27 
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Comparing non-hydrogen atom count to the misclassification rate as illustrated in
Figure 2b, we see a trend of a higher number of non-hydrogen atoms resulting in less
misclassification, with misclassification consistently being 0 towards a non-hydrogen count
of 100. However, if we were to filter entries from our dataset with non-hydrogen atom
counts near 100, we would filter out the majority of our data (see histogram in Figure 2a).

To balance training a model that is maximally reliable at classifying compounds
with being permitted to classify as many compounds as possible, we performed a sliding
window analysis with each window being a range of non-hydrogen atom counts (beginning
at a count of 0) and the dependent variable being the average misclassification rate of the
compounds within the window (compounds with a non-hydrogen atom count within
the range). Using a window size of 5, as illustrated in Figure 3a, we see that the average
misclassification rate of compounds with non-hydrogen atom counts within a range of
0 and 4 (inclusive) is above 0.04. The next window (between 1 and 5) has an average of
almost 0.03 and so on.
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Figure 3. Average misclassification rate of metabolites within a sliding window, where the metabolites
within each window are those with a non-hydrogen atom within the range of the window. The x-axis
portion of each datapoint represents the start of each window where the window size is 5, e.g., the
first datapoint ranges from a non-hydrogen atom count of 0 to 4. (a) Sliding window scatterplot of
the metabolites in the unfiltered (initial) dataset. (b) Same as Figure 3a but zoomed into the first
20 points (0 to 19) to more clearly see the first local minimum.

Zooming into the first 20 points (Figure 3b), we see more clearly a major drop in
the first several windows, reaching a local minimum at the window beginning with a
non-hydrogen atom count of 7. This result justified using a non-hydrogen atom count
threshold of 7, i.e., our model will neither train nor predict on compounds with a number
of non-hydrogen atoms less than a minimum of 7. While there are later windows with rates
that go up, selecting the threshold at the first local minimum balances between training
a reliable classifier and being permitted to predict on a wider range of compounds (a
wider range of non-hydrogen atom count). After filtering compounds with less than 7 non-
hydrogen atoms from the unfiltered initial dataset (fifth filtering step in Figure 1), there were
5884 compounds remaining.



Metabolites 2023, 13, 1120 6 of 24

2.2.3. Atom Color Feature Generation

The molfiles (in both the filtered and unfiltered dataset) provided the raw data
for constructing the chemical features, with each molfile being transformed to a chem-
ical feature vector with associated metabolic pathway labels. To construct chemically-
informative features from the molfiles, we used the atom coloring technique introduced by
Jin et al. [16,18,19], specifically with the md_harmonize Python package [20] that imple-
ments this method. The atom colors corresponding to a particular compound have greater
detail with increasing bond inclusivity. With a bond inclusivity of 0 (0-bond-inclusive),
atom colors are just the elemental identities of the individual atoms in the compound. The
resulting count of these 0-bond-inclusive atom colors is equivalent to their non-hydrogen
chemical formula. For example, ethanol has 2 C (carbon) and 1 O (oxygen) atom colors.
When increasing the bond inclusivity to 1 (1-bond-inclusive), we obtain atom colors rep-
resenting all atoms within one bond, e.g., ethanol has C-C, C-[C,O], and O-C atom colors.
A 2-bond-inclusive produces atom colors that have an additional bond in a chain, e.g., a
C-C-O, C-[C,O], O-C-C for ethanol. More complex compounds can have atom colors with 3
or more bond inclusivity. We generated all possible atom colors up to bond inclusivity of 3
for each molfile, where bond inclusivity beyond 0 excluded hydrogen atoms.

Across all molfiles, there were 23 0-bond-inclusive features with an increasing number
of features as feature sets that were concatenated to those with higher bond inclusivity
(Table 1). In the resulting dataset, the columns represented a given atom color feature and
the rows represented each metabolite, being derived from the corresponding molfile. These
atom-coloring features of the dataset were the number of times each atom color appeared
in a given molfile. Most features appeared 0 times in a given molfile, but every feature
appeared in at least one molfile. In this dataset, we observed duplicate feature vectors,
even though the molfiles were not equivalent. This is not surprising for 0-bond-inclusive
features, since various compounds share the same molecular formula. Also unsurprisingly,
there were duplicate feature vectors with a bond inclusivity of 1 and 2 as well, though
the number of duplicates decreased as the bond inclusivity increased. We stopped at a
bond inclusivity of 3 since the number of duplicate feature vectors stopped decreasing
for a bond inclusivity of 4 and the number of features was becoming unmanageably large
(Table 1), meaning it required far too many computational resources to create and process
downstream. The remaining duplicates for the 3-bond-inclusive features resulted from
factors other than bond inclusivity and needed to be handled manually as detailed below.

Table 1. Number of features in concatenated feature sets by atom color bond inclusivity.

Atom Color Bond Inclusivity(s) Number of Features

0 Bond (Atom Count Only) 23
0 and 1 Bond Concatenated 1100

0, 1, and 2 Bond Concatenated 8625
0, 1, 2, and 3 Bond Concatenated 14,923

Atom color features generated with higher bond inclusivity result in more possible combinations of atom colors
and therefore more features. Concatenating to features generated from lower bond inclusivity results in even
more features.

The md_harmonize package [20] allows for incorporating information about a com-
pound into its atom colorings in addition to the elemental identity of its atoms. The atom
coloring method can be configured to include specific chemical details from the molfile
(Table S1). This enabled us to add additional details such as stereochemistry, bond order,
and R groups. While we included R groups (Table S1) in the atom colors, we replaced the
‘R’ symbol in each with ‘C’ in order to emphasize the known chemical information when
training the model rather than exposing the model to unknown R groups, the chemical
information of which is obfuscated. We did not want to remove R groups entirely, since
that would remove details valuable for model performance and most R groups are attached
to the rest of the molecule through a carbon atom in these KEGG compound entries. Under
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the same rationale, we replaced repeat structures with ‘C’ (represented with an asterisk ‘*’
symbol in molfiles as compared to ‘R’).

Adding more information to the atom colors enabled us to generate a higher amount of
coloring combinations, which further distinguished one metabolite from another, reducing
the number of duplicate feature vectors. It is especially important to reduce the number
of duplicate feature vectors that map to different labels, since such entries confuse the
machine learning model. After the atom colors were generated and the feature vectors
of 0-bond-inclusive up to 3-bond-inclusive were concatenated together (Table 1), features
corresponding to duplicate columns were dropped since they do not provide additional
information and only slow down model training.

2.2.4. Manuel Curation and Filtering

While adding additional details by configuring the atom coloring method (Table S1)
reduced the amount of matching feature vectors mapping to non-matching labels, there
were still such entries present. We also noticed the presence of R groups representing
proteins or nucleic acids. Such macromolecules cannot be considered metabolites and
needed to be removed from the dataset. To facilitate the manual data cleaning, we first
programmatically constructed a list of compounds that resulted in duplicate feature vectors.
Then, we added to that list compounds with R groups that we detected as potential
macromolecules (i.e., nucleic acids or proteins). We determined if an R group was a
potential macromolecule by pulling the KEGG entries of only the compounds containing R
groups using kegg_pull [17] and searching those entries for keywords in their metadata.
The keywords we used were ‘protein’, ‘enzyme’, ‘peptide’, ‘rna’, and ‘dna’. If the entry
contained one of these keywords in the NAME or COMMENT field of the KEGG entry, we
marked it as a potential protein or nucleic acid and added it to the list.

The list served as a template, which we then manually filled in with instructions
to handle each case. Upon inspecting each compound using the KEGG browser, we
determined the action to take for each case and recorded that action in the file such that it
could be read into the next script in the pipeline and computationally modify the dataset.
Some entries were merged into one, meaning one entry was kept and any duplicates
removed with the pathway labels unioned into a single set. Other compounds were simply
removed and some compounds were retained. Either way, the dataset decreased in size
as manually detected invalid entries were handled. The removal of entries resulted in
more duplicate columns, necessitating removing duplicate columns once more. The actions
taken in the manual dataset cleaning along with the justification for those actions and the
amount of data removed for each action are described in Figure 1. After the manual dataset
cleaning was complete, the final dataset had 5683 metabolites and 14,656 features (Table 2).

Table 2. Number of entries and features before and after the manual dataset cleaning.

Stage Number of Entries Number of Features

Before Manual Dataset Cleaning 5884 14,923
After Manual Dataset Cleaning 5683 14,656

The number of entries decreased because of the removal and merging of entries in the manual dataset cleaning.
Decreasing the entries resulted in duplicate columns once again, the de-duplication of which resulted in another
decrease in features.

2.3. Machine Learning Model Design and Generation

The models trained on the final dataset included RF (popular tree-based method),
XGBoost (also tree-based though tends to perform better than the RF while training is
slower), and a Multi-Layer Perceptron (MLP) (deep learning method). For the MLP, it
was not practical to train it on feature vectors of size 14,656. Pragmatically, deep learning
methods require optimized training using a graphics processing unit (GPU), which has
GPU memory limitations. Therefore, we trained an autoencoder, a separate deep learning
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model, to compress the feature vectors. We will refer to these compressed features as the
encoded dataset, which contained 10% of the original number of features (Figure 4).
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Figure 4. Flowchart of the training and model evaluation pipeline. The autoencoder was created to
convert the final dataset into an encoded version with less features (feature reduction) such that it
could more practically be used to train the MLP. The autoencoder had hyperparameters tuned prior
to the final training as did the three pathway classifier models. Both the non-encoded and encoded
datasets were divided into three subsets, i.e., the ambiguous (entries with R-groups or repeating
groups), non-ambiguous, and full. The MLP was trained on both the full and non-ambiguous encoded
datasets and the RF and XGBoost models were trained on the non-encoded counterparts. When
trained on the full dataset, models were evaluated on the full, non-ambiguous, and ambiguous test
sets derived from each CV fold. When trained on the non-ambiguous dataset, models were evaluated
on the entire non-ambiguous fold and the entire ambiguous subset. A separate binary classifier was
trained for each combination of pathway category, dataset, and model. Various evaluation metrics
were computed for each test set (full, non-ambiguous, and ambiguous test sets when trained on
the full dataset and non-ambiguous and ambiguous test sets when trained on the non-ambiguous
dataset) that was evaluated using each classifier.

2.3.1. Hyperparameter Tuning

We tuned the hyperparameters of the autoencoder using the Bayesian optimization
method [21] and we used the same method for tuning the pathway classifier models. See
Table 3 for the list of hyperparameters tuned for each model along with the space of values
searched followed by the values that were actually selected. Note that Table 3 shows the
range of selected hyperparameter values across training dataset and pathway category
combinations (except for the autoencoder, which was not a pathway classifier and only
trained on the full dataset). See Table S2 for all the selected hyperparameter values for every
combination of training dataset and pathway category. With the hyperparameters decided,
we trained the autoencoder and used it to encode the final dataset into the encoded dataset
(Figure 4).
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Table 3. The hyperparameters tuned for each model.

Model Hyperparameter Name Hyperparameter
Values Searched

Hyperparameter
Value(s) Selected

XGBoost

Alpha 0.0–2.0 0.0–2.0
Booster dart, gbtree dart, gbtree

ETA 0.01–0.5 0.0812–0.5
Lambda 0.0–2.0 0.0–2.0

Maximum Depth 6–9 6–9
Minimum Split Loss 0.0–2.0 0.0–0.9333
Scale Position Weight 0.5–2.0 0.9617–2.0

Subsample 0.2–1.0 0.6159–1.0

RF

CCP Alpha 0.0–0.9 0.0–0.0047

Class Weight balanced,
balanced_subsample

balanced,
balanced_subsample

Criterion entropy, gini, log_loss entropy, gini, log_loss

MLP

Activation relu, selu relu, selu
Beta 1 0.0001–0.99999 0.0001–0.9662
Beta 2 0.2–0.99999 0.3070–0.99999

Bias Regularization Factor 0.0–0.01 0.0–0.01
Bias Regularization Type l1, l2, l1l2 l1, l2, l1l2

Epsilon 0.00000001–0.0001 0.00000001–0.0001
Jitter 0.00001–0.05 0.00001–0.05

Kernel Regularization Factor 0.0–0.005 0.0–0.005
Kernel Regularization Type l1, l2 l1, l2

Learning Rate 0.0000001–0.001 0.0000167–0.001
Negative Class Weight 0.2–1.0 0.2–1.0

Number of Layers 2–5 2–5
Positive Class Weight 1.0–5.0 1.0–5.0

Train Set Augmentation Size 0.001–1.0 0.001–1.0

Autoencoder
Activation elu, relu, selu selu

Learning Rate 0.00001–0.001 0.00002176
Number of Layers 4–6 6

Every model had hyperparameters that were tuned including the autoencoder for making the encoded datasets, the
MLP trained on those encoded datasets, and the other two pathway classifier models trained on the non-encoded
datasets. The hyperparameters acted as configuration for the models in general as well as configuration for their
respective training algorithms. The space of hyperparameters searched is provided for numeric hyperparameters
as a range of the lowest to highest number while for categorical hyperparameters, the set of categories. The
hyperparameter value(s) selected are provided using the range of the lowest number selected to the highest
(numeric) or the subset of categories selected (categorical) across all combinations of pathway category and dataset
for the XGBoost, RF, and MLP models. Since the autoencoder did not train on different pathway categories nor
different datasets (it was only trained on the full dataset and the features themselves were the labels, so different
pathway category combinations are not applicable for the autoencoder), the single selected values are provided
rather than a subset or numeric range.

2.3.2. Ambiguous and Non-Ambiguous Subset Generation and Training

While some of the compounds had R groups, others had repeating units, i.e., the
molfile provided the molecular structure of the initial unit but not that of the repeats. Like
the R groups, underlying chemical information of the compounds containing repeating
units was obfuscated, making their complete molecular structure unknown. We will refer
to such compounds as ambiguous compounds. Hypothesizing that the ambiguous metabo-
lites would have different performance than the non-ambiguous, we created 2 subsets from
the full final dataset (Figure 4), i.e., the ambiguous subset (only containing metabolites with
either R groups or repeat units) and the non-ambiguous subset (only containing metabo-
lites with neither R groups nor repeat units). The two subsets, therefore, were mutually
exclusive with 353 entries in the ambiguous and 5330 in the non-ambiguous (Table 4). For
the MLP, we additionally created a corresponding encoded version of the ambiguous and
non-ambiguous subsets (Table 4, Figure 4).
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Table 4. Number of entries and features in each subset.

Dataset Number of Entries Number of Features

Full Dataset 5683 14,656
Ambiguous Subset 353 14,656

Non-ambiguous Subset 5330 14,656
Full Encoded 5683 1465

Ambiguous Encoded 353 1465
Non-ambiguous Encoded 5330 1465

The full dataset, including both the ambiguous and non-ambiguous subsets, had a size equal to the sum of their
sizes. The respective encoded versions had the same number of entries. However, there was only 10% of the
number of features in the encoded version to make training and evaluating the MLP more practical.

We trained a separate binary classifier for each of the 12 pathway labels and on both
datasets, i.e., full and non-ambiguous (Figure 4). While the ambiguous subset was used
for evaluation, it was too small to train on. Each classifier predicts whether a metabolite is
part of the corresponding pathway class or not and the combination of the 12 classifiers
determines all the pathway classes a metabolite is a part of. With 12 classifiers trained per
dataset, this resulted in 24 different classifiers for each of the 3 models (i.e., RF, XGBoost,
and MLP), totaling to 72 different classifiers. We tuned separate hyperparameter sets
for each of these 72 classifiers (Figure 4, Table 3) since the best hyperparameters may be
dependent on both the dataset trained on and the pathway category being predicted.

2.3.3. Cross-Validation Analysis and Performance Evaluation

We performed a cross-validation (CV) analysis, using a stratified train/test split to
maintain the ratio of training entries to test entries in each fold such that the ratio closely
matched that of the entire dataset. Use of stratified CV folds has been demonstrated to
reduce the variance in model performance across folds, increasing robustness [22]. For each
of the 72 classifiers, we trained and evaluated each model over 1000 CV iterations, each
iteration consisting of a stratified 95% train/5% test fold split randomly sampled from the
dataset. When training on the full dataset, each test fold was divided into 3 test sets, the full
fold, the ambiguous entries in the fold, and the non-ambiguous entries in the fold (Figure 4).
Evaluation scores were computed for each of the 3 test sets when trained on the full dataset.
For the non-ambiguous dataset, all the entries in the fold were, of course, non-ambiguous.
So, the two test sets for the non-ambiguous were the entire fold with only non-ambiguous
entries and the entire ambiguous subset (the non-ambiguous test set changed with each
fold and the ambiguous test set remained the same, being the entirety of the ambiguous
entries). After model performance was calculated for the full and non-ambiguous datasets,
we did the same for the unfiltered dataset on the XGBoost model only.

Model performance metrics were collected for every combination of model, pathway
category, dataset, and test set (Figure 4). The metrics measured include accuracy, precision,
recall, F1 score, and Matthews correlation coefficient (MCC) [23]. Since the range of the
MCC is between −1 and 1, to make it more comparable to the other metrics, we also
included the unit-normalized MCC as described by Cao et al. [24]. For the XGBoost models
in particular, we measured the feature importance of each feature in the full dataset. To
make the feature importance scores comparable across pathway categories and CV folds, we
computed the relative feature importance. The relative feature importance was calculated
by dividing the score of each feature in each fold by the maximum feature importance (the
score of the most important feature) for a given fold. So, the most important feature for a
given fold would have a relative feature importance score of 1.0 and the least important
features would have scores of 0.0. For aggregating the score of each feature across CV folds,
we decided to use the median since the distribution of the mean minus median differences
is fairly wide, suggesting considerable skewness (Figure S1).
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2.4. Computer Hardware and Coding Details

For the RF hyperparameter tuning and training, we used a set of desktop computers
with 64 gigabytes (GB) of random access memory (RAM) and central processing units
(CPUs) ranging from 3.4 gigahertz (GHz) to 3.6 GHz, each with 6 hyperthreaded (HT) cores.
The CPU chips included ‘Intel(R) Core(TM)i7-2600 CPU@3.40 GHz’, ‘Intel(R) Core(TM)
i7-5930K CPU@3.50 GHz’, ‘Intel(R) Core(TM) i7-4930K CPU@3.40 GHz’, ‘Intel(R) Core(TM)
i7-6850K CPU@3.60 GHz’. For tuning the hyperparameters of and training the XGBoost and
MLP, we used high-performance computing (HPC) machines with up to 187 GB of RAM and
‘Intel® Xeon® Gold 6130 CPU@2.10 GHz’ CPUs. No more than 24 h of compute time was
allocated for the XGBoost runs and no more than 72 h for the MLP runs. Both the XGBoost
runs and MLP runs had 1 core allocated and used a GPU of up to 12 GB of GPU memory,
the name of the GPU card being ‘Tesla P100 PCIe 12 GB’. For the hyperparameter tuning
and training of the autoencoder, we used similar HPC machines with up to 187 gigabytes
of RAM and ‘Intel® Xeon® Gold 6130 CPU@2.10 GHz’ CPUs, but with ‘Tesla V100 SXM2
32 GB’ cards. Only 1 CPU core and no more than 72 h of compute time were allocated for
the autoencoder runs.

All code for this project was written in the Python programming language [25]. The
model performance metrics along with the RF model and the stratified CV train/test
splitting method were provided with the Sci-kit Learn Python package [26]. The MLP model
and autoencoder were created using the Tensorflow deep learning Python package [27]. The
XGBoost model and feature importance metric were provided with the XGBoost Python
package [28]. Data processing was facilitated using the Numpy [29], Pandas [30], and
DuckDB [31] Python packages. Tables and figures were created using the DuckDB [31],
Pandas [30], Matplotlib [32], and Seaborn [33] Python packages as well as the Tableau
desktop application [34]. The results data (model performance scores, feature importance
etc.) for producing the tables and figures in this manuscript were placed in a DuckDB
database file, which integrated with Tableau. The same data integrated with Python
scripts via SQL queries [35]. All code and data (including the DuckDB database file) for
complete reproducibility of the results in this manuscript along with instructions to do so
are available in the following Figshare item: 10.6084/m9.figshare.24021480.

3. Results
3.1. Misclassification Rates

After measuring the misclassification rates for the metabolites in the final dataset
(Figure 5b) in the same manner as the unfiltered dataset (Figures 2b and 5a), we see the
same pattern as before, where compounds with a higher number of non-hydrogen atoms
are more likely to classify correctly. However, the metabolites in the final dataset overall
classify correctly more frequently than in the unfiltered dataset (Figure 5).

To emphasize this trend, we see that the average misclassification rates in the sliding
window are much lower after filtering metabolites with non-hydrogen atom counts less
than 7 (Figure 6). The average misclassification rates are near 0 for the final dataset
(Figure 6b,c) as compared to the unfiltered dataset (Figures 3 and 6a). When zooming into
the sliding window misclassification rates of the final dataset (Figure 6c), we still see the
same pattern of metabolites with higher non-hydrogen atom counts classifying correctly
even more frequently, while the misclassification rate across the entire dataset improves
(drops) after filtering.
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Figure 6. Average misclassification rate of metabolites within windows (ranges) of non-hydrogen
atom count for both the unfiltered and the final datasets; (a) same as Figure 3a with y-axis rescaled
for comparison; (b) same as Figure 6a but for the final dataset rather than the unfiltered dataset;
(c) same as Figure 6b but zoomed in by fitting the y-axis to the data to be able to compare the
individual datapoints. We observe that average misclassification of metabolites within windows
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metabolites with more non-hydrogen atoms having even lower misclassification rates. Notice the
drastically lower y-axis scale of (c).
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3.2. Model Performance

Table S3 contains the model performance scores for all combinations of model trained
(i.e., XGBoost, RF, and MLP), dataset trained on (including the unfiltered dataset for the
XGBoost model only), test set evaluated on, pathway category predicted, and metric used
(i.e., accuracy, precision, recall, F1 score, MCC, and unit-normalized MCC). There are
1152 different combinations, each with four aggregates, i.e., average, standard deviation,
median, and maximum.

We can reduce the number of comparisons from 1152 to 96 by taking the overall
performance across the pathway categories. One could accomplish this by taking the
average and standard deviation of the scores for all 12 pathway categories and each of
their 1000 CV folds (i.e., average/standard deviation of 12,000 total scores). However, each
pathway category takes up a different proportion of each dataset. Table S4 shows each
dataset (i.e., full, non-ambiguous, and unfiltered) and the proportion that each pathway
category occupies in the corresponding dataset. Using these proportions as weights,
we can calculate the weighted average and standard deviation. Table S5 provides both
the unweighted and weighted averages and standard deviations of the scores across all
12 pathway categories.

Since the formulas for the performance metrics involve division, all but accuracy have
the possibility of dividing by zero. A division by zero is undefined and therefore invalid,
and any CV folds resulting in an invalid result were not included in the aggregation (i.e.,
average, standard deviation, median, etc.). Table S6 shows the number of valid scores out
of the 1000 CV iterations for all 1152 CV analyses. While there were CV analyses with
all 1000 folds resulting in a valid score, there were also analyses with some of their folds
producing invalid scores for the precision, recall, and F1 score metrics. Table S7 (subset
of Table S6) shows the analyses that had less than 300 valid scores. Notice that all these
analyses were evaluations on the ambiguous subset, likely because the ambiguous subset
usually produced worse classification and it has less entries, both of which increase the
likelihood of a division by zero. However, we see from Table S8 (same as Table S6 except
only for the MCC metric) that the MCC scores were valid for all 1000 iterations for every
CV analysis. This makes MCC the most reliable metric for the results presented here. While
accuracy, of course, also had all valid scores, it can be misleading since a binary classifier
that only predicts negatives would score very high on a dataset with unbalanced labels [24].
All pathway categories, except for perhaps ‘Biosynthesis of other secondary metabolites’,
are highly unbalanced (Table S4), favoring negatives. For these reasons, results from now
on will be reported for MCC only.

Table 5 provides the weighted averages and standard deviations of the MCC scores
for each combination of model, dataset, and test set (same as Table S5 except for only MCC
and only provides the weighted averages and standard deviations). We see that the best
performing analysis was the one training the XGBoost model on the full training set and
full test set. This is surprising considering the overall worse performance of the ambiguous
test sets (Table 5), which likely performed worse since they lack the chemical information
to completely represent the compound (atoms and bonds are missing in the corresponding
molfile). Since the full dataset includes ambiguous metabolites, one would expect it to
perform worse than the corresponding non-ambiguous subset. However, we see that
the full dataset outperforms the non-ambiguous for every model. Figure S2 provides an
explanation for this unexpected result, showing the MCC for each pathway category and
test set, training XGBoost on the full dataset. As seen in Figure S2, the ambiguous test set
outperformed the other two test sets for some pathway categories, especially for ‘Glycan
biosynthesis and metabolism’. The ambiguous test set’s higher performance had a greater
impact on the full test set than for the pathway categories where the ambiguous performed
much worse, resulting in the full test set performing better overall.
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Table 5. Weighted average MCC.

Model Dataset Test Set Weighted
Average

Weighted
Standard Deviation

XGBoost

Full
Ambiguous 0.4543 0.4567

Full 0.7677 0.1540
Non-ambiguous 0.7644 0.1552

Non-ambiguous Ambiguous 0.2435 0.1257
Non-ambiguous 0.7606 0.1569

Unfiltered Unfiltered 0.7454 0.1511

Random Forest
Full

Ambiguous 0.4101 0.4483
Full 0.7361 0.1874

Non-ambiguous 0.7329 0.1890

Non-ambiguous Ambiguous 0.2179 0.1147
Non-ambiguous 0.7372 0.1751

Multi-layer
Perceptron

Full
Ambiguous 0.4225 0.4409

Full 0.7240 0.1615
Non-ambiguous 0.7201 0.1634

Non-ambiguous Ambiguous 0.2721 0.1553
Non-ambiguous 0.7136 0.1617

Using the pathway category proportions of each dataset as weights, we calculated the weighted average and
standard deviation of the MCC scores across all pathway categories and CV folds (12,000 total scores per
aggregation) for each dataset and test set. The highest average and lowest standard deviation are in bold.

To emphasize the final dataset’s improved performance compared to the unfiltered
dataset, Table 6 shows the weighted average and standard deviation of the XGBoost’s MCC
score for both datasets. The final dataset’s results in Table 6 correspond to the full dataset
evaluated on the full test set (Table 5) and the unfiltered dataset’s results correspond to those
of the entirety of the unfiltered dataset’s CV folds (Table 5), which did not evaluate different
subsets of its folds. These results are consistent with what we observe in Figures 5 and 6.
Still, the improvement is only (0.7677 − 0.7454)/0.7454 × 100 ≈ 3%.

Table 6. Weighted Average XGBoost MCC of the final dataset compared to the unfiltered dataset.

Dataset Weighted Average Weighted Standard Deviation

Final 0.7677 0.1540
Unfiltered 0.7454 0.1511

Same weighted average MCC scores as seen in Table 5, but only for the XGBoost model trained on the final dataset
and the unfiltered dataset, using the entirety of the CV folds for each (the ‘full’ test set for the ‘full’ dataset while
the ‘unfiltered’ dataset was not divided into sub-folds i.e., it only had the one ‘unfiltered’ test set).

Figure 7 displays a violin plot of all the MCC scores for each model including all
pathway categories. These scores correspond to the ‘full’ dataset evaluated on the ‘full’
portion of the CV folds. We see from Figure 7 that the XGBoost model performed best
overall with the performance of the RF being comparable to that of the MLP. All models
experience a wide variance though, with the bulk of CV folds scoring higher, resulting in a
skew of the performance across CV folds.

Much of the variance observed in Figure 7 can be attributed to the stark difference
in performance across pathway categories, as seen in Figure 8. Using the XGBoost scores
only, we see that the ‘Chemical structure and transformation maps’ pathway class is the
most difficult to predict given the current data available in KEGG. This may explain why
it was left out of past studies involving this machine learning task. Nearly as poor is the
performance of ‘Energy metabolism’, with ‘Lipid metabolism’ performing the best. Similar
trends occurred for the other two models (Table S3).



Metabolites 2023, 13, 1120 15 of 24

Metabolites 2023, 13, x FOR PEER REVIEW  16  of  27 
 

 

To emphasize the final dataset’s improved performance compared to the unfiltered 

dataset, Table 6 shows  the weighted average and standard deviation of  the XGBoost’s 

MCC score for both datasets. The final dataset’s results in Table 6 correspond to the full 

dataset evaluated on the full test set (Table 5) and the unfiltered dataset’s results corre-

spond to those of the entirety of the unfiltered dataset’s CV folds (Table 5), which did not 

evaluate different subsets of its folds. These results are consistent with what we observe 

in Figures 5 and 6. Still, the improvement is only (0.7677 − 0.7454)/0.7454 × 100 ≈ 3%. 

Table 6. Weighted Average XGBoost MCC of the final dataset compared to the unfiltered dataset. 

Dataset  Weighted Average 
Weighted Standard Devia‐

tion 

Final  0.7677  0.1540 

Unfiltered  0.7454  0.1511 

Same weighted average MCC scores as seen in Table 5, but only for the XGBoost model trained on 

the final dataset and the unfiltered dataset, using the entirety of the CV folds for each (the ‘full’ test 

set for the ‘full’ dataset while the ‘unfiltered’ dataset was not divided into sub-folds i.e., it only had 

the one ‘unfiltered’ test set). 

Figure 7 displays a violin plot of all  the MCC scores  for each model  including all 

pathway categories. These scores correspond to the  ‘full’ dataset evaluated on the  ‘full’ 

portion of the CV folds. We see from Figure 7 that the XGBoost model performed best 

overall with the performance of the RF being comparable to that of the MLP. All models 

experience a wide variance though, with the bulk of CV folds scoring higher, resulting in 

a skew of the performance across CV folds. 

 

Figure 7. Violin plot displaying the distribution of scores for the MCC metric, full dataset, and full 

test set by model. The distributions include scores for all pathway categories, with lower performing 

pathway categories having the bulk of their scores occupy the lower end of the distributions and 

the higher performing pathway categories occupying the higher end of the distributions. 

Figure 7. Violin plot displaying the distribution of scores for the MCC metric, full dataset, and full
test set by model. The distributions include scores for all pathway categories, with lower performing
pathway categories having the bulk of their scores occupy the lower end of the distributions and the
higher performing pathway categories occupying the higher end of the distributions.

Metabolites 2023, 13, x FOR PEER REVIEW  17  of  27 
 

 

Much of the variance observed in Figure 7 can be attributed to the stark difference in 

performance across pathway categories, as seen  in Figure 8. Using  the XGBoost scores 

only, we see that the ‘Chemical structure and transformation maps’ pathway class is the 

most difficult to predict given the current data available in KEGG. This may explain why 

it was left out of past studies involving this machine learning task. Nearly as poor is the 

performance of ‘Energy metabolism’, with ‘Lipid metabolism’ performing the best. Simi-

lar trends occurred for the other two models (Table S3). 

 

Figure 8. Violin plot displaying the distribution of scores for the MCC metric, XGBoost model, full 

dataset, and full test set by pathway category. We see that the median performance and variance of 

performance across CV folds greatly depend on not just the model used, as seen in Figure 7, but also 

the pathway category being predicted. 

3.3. Feature Importance 

Figure 9 shows a line plot for each pathway category of the top 50 feature importance 

scores ordered from the most important feature to the least important feature. Each line 

plot includes the ordered feature importance for the XGBoost model trained to predict the 

given pathway category on the full dataset. Each point on the line is a feature where the 

entire  line  in each plot represents the top 50, the dependent variable being the median 

feature importance across CV folds. We see a sharp drop towards a feature importance of 

0.0 for most pathway categories, suggesting that only the top few features were particu-

larly important for classification using the XGBoost. Table S9 shows the data used to create 

Figure 9, with the actual atom colors specified for each of the 50 features for each of the 12 

pathway categories, resulting in 600 median feature importance scores. 

Figure 8. Violin plot displaying the distribution of scores for the MCC metric, XGBoost model, full
dataset, and full test set by pathway category. We see that the median performance and variance of
performance across CV folds greatly depend on not just the model used, as seen in Figure 7, but also
the pathway category being predicted.
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3.3. Feature Importance

Figure 9 shows a line plot for each pathway category of the top 50 feature importance
scores ordered from the most important feature to the least important feature. Each line
plot includes the ordered feature importance for the XGBoost model trained to predict
the given pathway category on the full dataset. Each point on the line is a feature where
the entire line in each plot represents the top 50, the dependent variable being the median
feature importance across CV folds. We see a sharp drop towards a feature importance of
0.0 for most pathway categories, suggesting that only the top few features were particularly
important for classification using the XGBoost. Table S9 shows the data used to create
Figure 9, with the actual atom colors specified for each of the 50 features for each of the
12 pathway categories, resulting in 600 median feature importance scores.
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While there are 600 different scores across the 12 categories (Table S9), 477 are distinct
features, suggesting only sparse overlap, i.e., only a minority of the top 50 features in one
pathway category are also some of the top 50 in another category. Figure S3 shows an
upset plot [36] displaying the amount of overlap of important features across the pathway
categories. We see from Figure S3 that the largest intersection is the set of features unique
to ‘Chemical structure transformation maps’, i.e., the features that are only important
for predicting ‘Chemical structure transformation maps’ and are not found among the
important features of the other categories. This tells us that most of the top 50 features for
predicting ‘Chemical structure transformation maps’ are unique to that category. Beyond
that, the largest 12 intersections (Figure S3) are those unique to a given pathway category,
further highlighting the sparse overlap of important features between the categories. Since
the importance of individual features is highly dependent on the pathway category that
they are predicting, a weighted average feature importance across all 12 classes would not
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be especially meaningful, so we will only show the median feature importance score for
each class separately.

Table 7 is a portion of Table S9, highlighting the top 3 (as compared to top 50) most
important features for each pathway category. Both Table S9 and Table 7 additionally
provide odds ratios for each pathway label corresponding to the presence of the feature
in each entry in the full/final dataset and whether each entry is a positive classification
(involved in the pathway class) or a negative classification (excluded from the pathway
class). We define an entry as having a feature if the atom color appears at least once in
the corresponding metabolite and as not having a feature if the atom color appears zero
times in the metabolite. The positive odds in Table S9 and Table 7 are the odds that an entry
has the feature given that it is a positive entry and the negative odds are the odds that an
entry has the feature given that it is a negative entry. The division of the positive odds by
the negative odds results in the odds ratio (Table S9 and Table 7) that indicates whether
a feature is important for predicting that a metabolite is involved in the pathway class or
whether it is important for predicting exclusion. Values well above one suggest the odds of
positive entries having the feature is much higher than the odds of negative entries having
the feature, i.e., the feature is associated with pathway involvement. Values well below one
suggest the odds of negative entries having the feature is much higher than the odds of
positive entries having the feature, i.e., the feature is associated with pathway exclusion.
Note that for some features, division by 0 resulted in odds ratios of infinity (∞).

Table 7. The top 3 most important features with their median feature importance score and odds ratio
corresponding to the presence of the feature in dataset entries and the positivity of the classification
of said entries.

Pathway Category Feature Name
Median
Feature

Importance

Positive
Odds

Negative
Odds Odds Ratio

Amino acid
metabolism

O0(O0((C0.10)))(C0((C2.10))((O0.10))((O0.20))) 0.685652852 0.055646483 0.007492113 7.427340984
O0(O0((C0.10)))(C0((C1.10))((O0.10))((O0.20))) 0.570630789 0.112929620 0.021687698 5.207082272
C0(C0((C0.10))((N0.10))((O0.20)))(C0((C0.10)))

(N0(2_(C0.10)))(O0((C0.20))) 0.566060364 0.019639935 0.002957413 6.640916348

Biosynthesis of other
secondary

metabolites

C0(C0((C0.10))((C0.21))((O0.10)))(C0((C0.10))
((C0.21)))(C0((C0.10))((C0.21))

((O0.10)))(O0(2_(C0.10)))
1 0.061911169 0.002144389 28.871242523

C0(C0((C0.10))((C0.21)))(C0((C0.10))((C0.21)))
(C0((C0.10))((C0.21))((N0.10))) 0.425127536 0.096904442 0.004765308 20.335397720

C0(C0((C0.10))((C0.21)))(C0((C0.10))((C2.10)))
(C0((C0.21))((C1.10))((C2.10))) 0.303291023 0.011440108 0 ∞

Carbohydrate
metabolism

C2(C2((C1.10))((N0.11))((O0.10)))(C1((C1.10))
((C2.10))((O0.16)))(N0(2_(C0.10))((C2.11)))

(O0((C1.10))((C2.10)))
1 0.132295713 0.020506868 6.451288223

C0(C0((C1.10))((N0.10))((O0.10))) 0.230698660 0.019455252 0 ∞
O0(O0((C0.10))((P0.10))) 0.204007506 0.410505831 0.154575348 2.655700445

Chemical structure
transformation maps

C0(C0((C0.10))((C0.21)))(C0((C0.10))((C0.21)))
(C0((C0.10))((O0.10))((O0.20)))(C0(2_(C0.10))

((C0.21)))(O0((C0.20)))(O0(2_(C0.10)))
1 0.013729977 0.001143728 12.004576683

N0(N0(3_(C0.10)))(C0((C0.10))((N0.10)))(C0((C0.10))
((N0.10))((O0.20)))(C0(2_(C0.10))((N0.10))) 0.558694124 0.009153318 0.002287457 4.001525402

C0(C0((C2.16)))(C2(2_(C0.10))((C0.16))) 0.523999751 0.020594966 0.007434235 2.770287037

Energy metabolism

C0(C0(2_(C0.10))((C0.2-1)))
(C0((C0.10))((C0.21)))(C0((C0.10))((O0.10)))

(C0((C0.2-1))((O0.10)))
0.478080899 0.034682080 0 ∞

C0(C0((C1.11))((O0.10)))(C1((C0.11))((C1.10))
((O0.10)))(O0((C0.10))((P0.10)))(C1(2_(C1.10))

((O0.16)))(O0(2_(C1.10)))(P0(3_(O0.10))((O0.20)))
0.395558566 0.063583814 0.002722323 23.356454849

C0(C0(2_(C0.10)))(2_C0(2_(C0.10)))(C0((C0.10))
((C1.10)))(C0((C0.10))((O0.10))((O0.20))) 0.286503404 0.017341040 0 ∞
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Table 7. Cont.

Pathway Category Feature Name
Median
Feature

Importance

Positive
Odds

Negative
Odds Odds Ratio

Glycan biosynthesis
and metabolism

C0(C0(2_(C0.10)))(2_C0(2_(C0.10)))
(C0((C0.10)))(C0(2_(C0.10))) 1 0.268518507 0.038813211 6.918224812

O0(O0((C0.10))((P0.10)))(C0((C1.11))((O0.10)))
(P0(3_(O0.10))((O0.20)))(C1((C0.11))((C1.10))

((O0.10)))(O0((P0.10)))(O0((P0.20)))(O0(2_(P0.10)))
0.639740050 0.287037045 0.026870685 10.682163239

C0(C0((C0.10)))(C0((C0.10))((N0.10))((O0.20))) 0.348376751 0.444444448 0.016980780 26.173381805

Lipid metabolism

C0(C0(2_(C0.10)))(C0((C0.10)))(C0((C0.10))((C0.21))) 0.840231776 0.088626295 0 ∞
H0 0.691794932 0.330871493 0.163004398 2.029831648

C0(C0((C0.10))((C0.21)))(C0((C0.10))
((C0.21)))(C0(2_(C0.10))) 0.640349686 0.271787286 0.003995206 68.028358459

Metabolism of
cofactors and

vitamins

C0(C0(2_(C0.10)))(C0(2_(C0.10)))(C0(2_(C0.10))
((C0.21)))(C0((C0.10))((C0.21))((N0.10)))(C0((C0.10))

((O0.10))((O0.20)))(C0(2_(C0.10))((C0.21)))
1 0.085610203 0 ∞

C0(C0((C0.10))((C0.2-1)))(C0(2_(C0.10)))
(C0(2_(C0.10))((C0.2-1)))(C0((C0.10)))

(C0(2_(C0.10)))(C0(2_(C0.10))((C0.2-1)))
0.917271197 0.018214935 0.000389560 46.757740021

C0(C0((C0.10))((C0.2-1))((O0.10)))(C0(2_(C0.10))
((C0.2-1)))(C0(2_(C0.10))((C0.21)))

(O0((C0.10))((C1.10)))
0.857100129 0.014571949 0 ∞

Metabolism of other
amino acids

C0(C0((C0.10))((N0.10)))(C0(2_(C0.10)))
(N0(2_(C0.10)))(C0((C0.10))((N0.10)))(C0(2_(C0.10))) 0.953770041 0.043795619 0.001294139 33.841503143

C0(C0((C0.10))((P0.10))) 0.654412329 0.124087594 0.000554631 223.729919434
C0(C0((C0.10))((N0.10)))(C0(2_(C0.10)))

(N0((C0.10)))(C0((C0.10))((N0.10))((O0.20))) 0.576080739 0.014598540 0 ∞

Metabolism of
terpenoids and

polyketides

C0(C0(2_(C0.10)))(C0((C0.10)))(C0(2_(C0.10))) 0.395134032 0.004574565 0.074509807 0.061395485
C0(C0((C1.10))((C2.10))) 0.377435565 0.156450137 0.036819171 4.249148846

C0(C0(2_(C0.10))((C0.21)))(C0((C0.10))((C0.21))
((O0.10)))(C0(2_(C0.10))((C0.2-1)))

(C0(2_(C0.10))((O0.20)))
0.372357339 0.043000914 0 ∞

Nucleotide
metabolism

C0(C0((N0.10))((N0.21)))(N0((C0.10))((C0.21)))
(N0(2_(C0.10))((C2.11))) 1 0.313609481 0.014508524 21.615531921

O0(O0((C1.16))((P0.10)))(C1(2_(C1.10))((O0.16)))
(P0(3_(O0.10))((O0.20))) 0.429942638 0.082840234 0.000906783 91.356216431

N0(N0(2_(C0.10))((C2.11))) 0.228152484 0.473372787 0.044613712 10.610477448

Xenobiotics
biodegradation and

metabolism

Cl0 0.821942925 0.160809368 0.007166948 22.437637329
C0(C0((C0.10))((C0.21)))(C0((C0.10))

((C0.21)))(C0(2_(C0.10))((C0.21))) 0.662525833 0.246006384 0.073566608 3.343995094

C0(C0(2_(C0.10)))(C0(2_(C0.10)))(C0(2_(C0.10))
((O0.20)))(2_C0(2_(C0.10))((C0.21)))(O0((C0.20))) 0.472949028 0.012779552 0.000421585 30.313098907

Table 7 only differs from Table S9 in that it highlights the top 3 most important features as compared to the top
50 used to generate Figure 9. Each feature is indicated as most important for predicting the respective pathway
class with its median relative feature importance across all 1000 CV folds, training XGBoost on the full/final
dataset. The feature name is a string representation of the atom color, i.e., the local chemical neighborhood or
subgraph around a specific atom. A dataset entry having a feature is defined as the atom color being present
in the molecular structure of the corresponding metabolite at least once. A positive entry is involved in the
corresponding pathway class and a negative entry is excluded from the class (i.e., having a positive or negative
label in binary classification). The positive odds are the odds that an entry has a feature given that it is positive
and the negative odds are the odds that an entry has a feature given that it is negative. The quotient of the two
values results in the odds ratio indicating whether a feature is important for predicting inclusion in a pathway
class or exclusion, with high values indicating the feature is associated with pathway involvement and low values
near or equal to 0 indicating the feature is associated with a lack of pathway involvement. Digits following the
elemental identity of atoms (e.g., C, O, Cl, etc.) indicate the chirality of those atoms, i.e., a 0 means it is not a chiral
atom and above 0 indicates it is chiral. Bear in mind that the atom coloring strings were designed for uniqueness
and not human readability.

Figure 10 displays molecular structure diagrams of an example metabolite that is
involved in each pathway class. The single most important feature for that pathway class is
displayed within the metabolite, with the bonds of the atom color being highlighted and the
atoms being circled. While the examples in Figure 10 have the atom color occurring once,
other metabolites may have the atom color occurring multiple times in the molecule, and the
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features include the count that a given atom color appears. These diagrams highlight which
atom configurations in metabolites are important for predicting their pathway involvement.
Some of the most important features branched out to two bonds from the originating atom
while others branched out to three and in the case of Xenobiotics biodegradation and
metabolism, the 0-bond-inclusive feature of chlorine (the number of chlorine atoms in the
compound) was most important.
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Figure 10. Example metabolites within each pathway category that contain the single most important
feature for that pathway category. The bonds of the feature are highlighted with the atoms in the
feature circled (except for the carbon atoms that are part of carbon–carbon chains). Atom colors of
various bond inclusivity (e.g., 0-bond-inclusive, 2-bond-inclusive, etc.) were most important.

4. Discussion

In this work, we present a new KEGG-based dataset for the machine learning task
of predicting the pathway involvement of metabolites. It significantly improves on the
KEGG-SMILES dataset used in previous publications on metabolic pathway prediction,
which contained duplicate entries and lacked the code and description of its creation.
The lack of code precludes updating the dataset as more metabolites are discovered, the
duplicate entries invalidate the prior analyses, and the lack of description of its creation
makes the dataset suspect in general. Huckvale et al. outlined the optimal requirements of
a benchmark dataset for this machine learning task, specifying that it must be reproducible,
valid, accessible, and complete [15]. We use the highest standards of computational repro-
ducibility in our dataset [37,38], providing a thoroughly detailed description of how it was
created. This includes merging duplicate entries discovered in KEGG, filtering entries with
limited chemical information causing inferior classification reliability, and semi-automated
manual inspection of a small subset of entries with a range of potential issues (Figure 1).
We provide the raw data and code for complete reproducibility when re-generating the
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dataset, as well as the original scripts for obtaining the raw data in the first place, including
instructions for adding to the raw data as KEGG releases updates. Our final dataset with
a size of 5683 entries exceeds the size of the de-duplicated KEGG-SMILES dataset of size
4929 by 754 entries. Beyond being reproducible and malleable, the dataset is also valid
since it contains no duplicate metabolites and the description of its creation is transparent.
And finally, the dataset is complete according to the most up-to-date KEGG data as of 3 July
2023 (with the caveat of filtering entries by non-hydrogen atom count). Finally, this new
KEGG-based dataset is maintainable as KEGG changes. We recommend future research in
metabolic pathway prediction use our dataset, build off of our dataset, or otherwise use the
same standards of scientific computational reproducibility, data validation, accessibility,
and completion.

We present strong evidence for the correlation of the number of non-hydrogen atoms
in a metabolite and the ability for said metabolite to be classified reliably. This trend is
expected, since low information content is always an issue in classification. Considering
the clear drop in misclassification rate until reaching a non-hydrogen atom count of seven
(Figure 3), we recommend future work using our methods predict on metabolites with at
least seven non-hydrogen atoms, as our models were trained on a dataset with metabolites
that meet this restriction. This is pragmatic, since the prediction of pathway involvement
should primarily focus on molecules where direct pathway involvement is not directly
known and the pathway involvement of most molecules with less than seven non-hydrogen
atoms is better known. But if predicting on metabolites with less than 7 non-hydrogen
atoms is necessary, one will either need to be aware of lower reliability or produce models
more capable of predicting on such metabolites. When performing this machine learning
task using different models or different datasets, we recommend being cautious of non-
hydrogen atom count, monitoring misclassification rates of the metabolites.

We defined ambiguous metabolites as those containing R groups or repeat sequences
specified in their molfile such that underlying chemical information is obfuscated. We
expected and demonstrated that such metabolites would be more difficult to predict
correctly for most pathway categories. However, for some pathway categories, i.e., ‘Glycan
biosynthesis and metabolism’ and ‘Lipid metabolism’, ambiguous metabolites surprisingly
outperformed the non-ambiguous entries (Figure S2).

By generating features from the atom colors, we make features out of the molecular
substructures of the metabolites. Measuring the importance of these features enables
biochemists to determine which substructures are associated with the pathway involvement
of the corresponding metabolites. Some substructures are associated with a metabolite
being present in a pathway category while other substructures indicate that a metabolite is
absent from said category (Table 7). The ability to quantify the importance of metabolite
substructures and their positive association versus negative association provides insight
into what substructures are inclusively or exclusively identifying for a pathway category.
For example, the C-C-C-C atom color highlighted in Figure 10 would not be readily thought
of as an identifying feature for ‘Glycan biosynthesis and metabolism’; however, this feature
helps identify metabolites used in lipopolysaccharide biosynthesis along with the presence
of other identifying features.

Next, when comparing the performance of the three machine learning models, XG-
Boost unsurprisingly performed better overall than the Random Forest model while the
MLP deep learning method did not improve on the tree-based methods. This is incongruent
with deep learning-based methods exceeding the performance of tree-based methods in
past publications (albeit on an invalid dataset). However, those models were more sophisti-
cated than a simple MLP. It could be that such deep learning methods could surpass the
performance of the XGBoost trained on our atom color features. Though, the atom color
features do provide information on the molecular substructure of the metabolites similar to
the graph-based models, albeit in a linearized fashion, and it includes information not just
on atom configuration but also stereochemistry and bond order. It is still an open question
whether models capable of processing more complex data structures can improve upon
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the performance of XGBoost trained on a tabular dataset. And to our knowledge, such
models have yet to incorporate additional information beyond simple backbone molecular
structure, such as atom stereochemistry, bond stereochemistry, and bond order.

We recommend using separate classifiers per pathway category. Depending on the
pathway category that a classifier is being trained to predict, different hyperparameter
values will result from the hyperparameter tuning. We also see that the importance of the
features used is highly dependent on the pathway category being predicted (Figure S3)
while the majority of features have little to no importance (Figure 9). If future work uses
our atom coloring method to generate features, one may consider selecting features based
on importance. However, one should be mindful of the pathway class being predicted
since different target classes will require different features selected. It is possible that
the important features will change further if training models are to predict more specific
pathway classes, and we recommend using separate binary classifiers for the more specific
pathway classes as well and perhaps a hierarchical classification method.

While the weighted average MCC of XGBoost trained on our final dataset (full feature
set, full test set) was 0.7677 with a weighted standard deviation of 0.1540 (Table 6), these
weighted aggregates include ‘Chemical structure transformation maps’, the worst perform-
ing pathway category (Figure 8). This category was excluded from previous publications
on this machine learning task, including the most recent model for metabolic pathway
prediction proposed by Du et al. called the MLGL-MP [14]. Huckvale et al. re-ran the
MLGL-MP on a de-duplicated version of the KEGG-SMILES dataset [15], making it more
comparable to our own dataset (though even the de-duplicated version is suspect). Table 8
shows that the MCC improves significantly when ‘Chemical structure transformation maps’
are removed from the weighted average and weighted standard deviation calculations. We
also see from Table 8 that the F1 score of XGBoost trained on our dataset is comparable to
that of the MLGL-MP trained on the de-duplicated version of the KEGG-SMILES dataset,
keeping in mind that theirs was not a weighted average since their model predicted all the
pathway categories at once rather than separating into an isolated classifier per pathway
class. It should also be noted that the MLGL-MP was originally evaluated using the test
set in each training epoch and choosing the highest scores from multiple evaluations, thus
using the test set for model selection [15], while we instead followed the best practice of
training the models completely and evaluating on the test set only once per CV fold. We
do not compare to the standard deviation of the MLGL-MP, since the MLGL-MP was only
evaluated on 10 unique folds, which does not provide a reasonable estimate of the actual
model performance variation.

Table 8. Performance of the XGBoost trained on our dataset compared to that of the MLGL-MP
trained on the SMILES dataset.

Model/Dataset XGBoost Trained/Tested on Our Dataset
MLGL-MP

Trained/Tested on The
SMILES Dataset

Metric Weighted Average Weighted Standard
Deviation Average

F1 Score 0.8180 0.1190 0.8224
MCC 0.7933 0.1196 N/A

The weighted average and weighted standard deviations of the MCC and F1 score of the XGBoost after excluding
‘Chemical structure transformation maps’, the worst performing pathway category, which was excluded from
previous publications on the metabolic pathway prediction machine learning task. The most recent model
proposed for metabolic pathway prediction, i.e., the MLGL-MP deep learning model, scored a slightly higher
F1 score when trained on the de-duplicated version of the SMILES dataset compared to the weighted average
of XGBoost on our new dataset. It should be noted that the MLGL-MP predicted all possible 11 labels at once
rather than calculating the weighted average scores of individual binary classifiers. The standard deviation of the
MLGL-MP’s F1 score is not compared since it was evaluated on only 10 unique folds which does not provide a
good estimate on performance variance.
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In all of these cross-validation analyses and performance evaluations, KEGG is treated
as a gold standard, making the assumption that KEGG’s description of pathway involve-
ment is complete and without error. This assumption is necessary for training and evalua-
tion and should be somewhat reasonable for central metabolism; however, this assumption
is clearly not true, since KEGG is growing. Thus, there are implications with using a
“gold standard” that is evolving. Besides improved machine learning methods and models,
metabolic pathway prediction may also improve with more positive entries, i.e., metabolites
that are involved in particular pathway classes (positive) as compared to not being involved
in said pathway class (negative). A higher amount of positive entries was simulated by
duplicating already extant positive entries in the SMILES dataset as shown by Huckvale
et al. [15], which of course resulted in impressive scores for this machine learning task in
past publications but rendered the dataset invalid. However, the higher scores from du-
plicated entries do provide evidence that having more non-duplicate (real/valid) positive
entries can greatly improve model performance, including in currently poor performing
categories like ‘Energy metabolism’. For low performing pathways, more positive entries
may be added to KEGG over time. However, additional positive metabolites may already
be available in other data sources such as MetaCyc and PubChem.

Since the overall performance as well as the variance in performance are greatly
dependent on the pathway category being predicted, certain use-cases may need to exclude
certain pathway categories. As illustrated with the violin plots of MCC scores per pathway
category in Figure 8 as well as Table S3, ‘Chemical structure transformation maps’, Energy
metabolism‘, and ‘Metabolism of other amino acids’ pathway category predictions fall
below a median MCC performance of 0.6 and should likely be excluded from many
practical applications.

5. Conclusions

We present a new KEGG-based benchmark dataset for the machine learning task of
metabolic pathway prediction, which is valid, comprehensive, completely transparent, fully
reproducible, readily accessible via our Figshare, and maintainable as KEGG changes. In
our hands, the XGBoost machine learning method outperformed both Random Forest and
MLP with autoencoder methods for the classification of metabolites to 12 KEGG-defined
pathway categories. While the scores attained with the XGBoost model trained on our
dataset are seemingly less impressive than those obtained with other methods developed
on the KEGG-SMILES dataset, we maintain that the previous publications are invalidated
with the duplicate entries in the KEGG-SMILES dataset. Therefore, the results of KEGG
metabolic pathway prediction performance presented here are trustworthy. Furthermore,
the atom color features employed in our methods provide chemical insight into which
molecular substructures are informative for pathway category prediction. Finally, we
recommend that individual pathway category prediction performance be evaluated for
each potential use case and application.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13111120/s1, Table S1: Parameters for configuring the
atom coloring method; Table S2: Tuned hyperparameter values for all pathway category and training
dataset combinations; Table S3: All model performance scores; Table S4: Pathway category pro-
portions in each dataset; Table S5: Weighted and unweighted average scores across all 12 pathway
categories including standard deviations; Table S6: All the counts of CV iterations resulting in a valid
score; Table S7: Counts of CV iterations with less than 300 valid scores; Table S8: Valid score counts
for the MCC metric only; Table S9: The top 50 most important features for each pathway category
based on the median across CV iterations; Figure S1: Distribution of mean minus median differences
of feature importance scores for each pathway category in the full dataset trained on the XGBoost
model; Figure S2: MCC by test set for each pathway category for the XGBoost model trained on the
full dataset; Figure S3: Upset plot showing overlap between pathway categories of their top 50 most
important features.
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