
Citation: Thompson, P.T.; Moseley,

H.N.B. MESSES: Software for

Transforming Messy Research

Datasets into Clean Submissions to

Metabolomics Workbench for Public

Sharing. Metabolites 2023, 13, 842.

https://doi.org/10.3390/

metabo13070842

Received: 31 May 2023

Revised: 7 July 2023

Accepted: 10 July 2023

Published: 12 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

MESSES: Software for Transforming Messy Research Datasets
into Clean Submissions to Metabolomics Workbench for
Public Sharing
P. Travis Thompson 1 and Hunter N. B. Moseley 1,2,3,4,5,*

1 Superfund Research Center, University of Kentucky, Lexington, KY 40536, USA
2 Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
3 Center for Clinical and Translational Science, Lexington, KY 40536, USA
4 Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
5 Institute for Biomedical Informatics, University of Kentucky, Lexington, KY 40536, USA
* Correspondence: hunter.moseley@uky.edu

Abstract: In recent years, the FAIR guiding principles and the broader concept of open science has
grown in importance in academic research, especially as funding entities have aggressively promoted
public sharing of research products. Key to public research sharing is deposition of datasets into
online data repositories, but it can be a chore to transform messy unstructured data into the forms
required by these repositories. To help generate Metabolomics Workbench depositions, we have
developed the MESSES (Metadata from Experimental SpreadSheets Extraction System) software
package, implemented in the Python 3 programming language and supported on Linux, Windows,
and Mac operating systems. MESSES helps transform tabular data from multiple sources into a
Metabolomics Workbench specific deposition format. The package provides three commands, extract,
validate, and convert, that implement a natural data transformation workflow. Moreover, MESSES
facilitates richer metadata capture than is typically attempted by manual efforts. The source code and
extensive documentation is hosted on GitHub and is also available on the Python Package Index for
easy installation.

Keywords: data sharing; dataset deposition; metadata capture; data transformation;
Python programming language; Metabolomics Workbench

1. Introduction

Open science is both a concept and movement to make all research data, products,
and knowledge openly accessible by anyone, both promoting collaborative research efforts
which can involve professionals, trainees, and non-professionals and improving the evalua-
tion, reproducibility, and ultimately the rigor of the science [1,2]. A fundamental part of
open science is the FAIR guiding principles for data management and stewardship, which
focuses on making research data Findable, Accessible, Interoperable, and Reusable [3]. And
the adoption of FAIR across the scientific community has spearheaded the growth of open
science. Within the context of biological and biomedical research involving metabolomics
and lipidomics experiments, a major goal of open science is for the resulting metabolomics
and lipidomics datasets be deposited in an open data repository like Metabolomics Work-
bench [4] or MetaboLights [5]. Moreover, new funding agency policies are requiring
deposition of research data into open scientific repositories, for example, the new National
Institutes of Health (NIH) Data Management and Sharing (DMS) Policy that went into
effect 25 January 2023 [6]. This new NIH DMS policy strongly promotes the deposition of
“scientific data” into the most appropriate scientific repository, especially NIH-supported
repositories like the Metabolomics Workbench.

Metabolites 2023, 13, 842. https://doi.org/10.3390/metabo13070842 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo13070842
https://doi.org/10.3390/metabo13070842
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-8198-1327
https://orcid.org/0000-0003-3995-5368
https://doi.org/10.3390/metabo13070842
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo13070842?type=check_update&version=1

Metabolites 2023, 13, 842 2 of 25

While deposition of metabolomics and lipidomics datasets has become essential to
satisfy both funding agency and publication requirements, there is less focus on the quality
of deposition. This is partly due to the significant effort required to produce a high-quality
deposition from whichever formats the data and related metadata are currently in. While
metabolomics deposition reporting standards exist [7], historically, data repositories have
used low deposition requirements and developed their own deposition tools with web
interfaces in order to encourage deposition [4,8–11]. Moreover, these deposition tools and
web interfaces were developed with the final deposition format in mind rather than the
initial formats of the data and related metadata. In most cases, the data and metadata start in
a tabular format within one or more spreadsheets, often with minimal organization, which
must be converted into an organized format that can be handled by a given deposition
system. Thus, the effort to generate a high-quality deposition is often manually intensive
and quite demanding.

MESSES stands for Metadata from Experimental SpreadSheets Extraction System and
originally was developed as part of a laboratory information management system (LIMS).
A LIMS is essentially a database and user interface for storing, organizing, and accessing
information needed to manage and document the activities in a lab. This can be inventory
information, personnel information, experiment information, etc. Initially, a predecessor of
MESSES was created to capture experimental data and related metadata that would go into
the relational database of a LIMS. Transforming messy semi- and unstructured experiment
data into a form that can be inserted into a relational database faces many of the same
challenges as uploading experimental data into an online repository. Over several years,
MESSES was improved, expanded, and re-implemented as a standalone package to handle
this new use case.

As illustrated in Figure 1, the MESSES package enables the overall capture, validation,
and conversion process using three major commands: ‘extract’, ‘validate’, and ‘convert’.
The MESSES ‘extract’ command is used to transform tabular data into a representative
JavaScript Object Notation (JSON) file format using a tagging system. Users provide
descriptive ‘tags’ above data columns that allow MESSES to extract and interpret the data.
Once extracted, the data is organized into a JSON representation. Tags can be added
manually, but MESSES provides tagging automation methods to easily add tags based on
header names present in the tabular data. There are also facilities to modify the data, such
as changing names or removing data not needed for a particular deposition.

The ‘validate’ command evaluates whether the extracted MESSES JSON representation
conforms to a specific data schema, i.e., a specific (nested) data structure with specific
fieldnames and associated values with specific data types, that is needed for eventual
conversion into a deposition format. The command includes sub-commands to assist with
creating and validating the schema(s) used for the actual validation.

The ‘convert’ command is used to convert the MESSES JSON representation into
the mwTab JSON and tab-delimited formats. MESSES can handle the heterogeneous
mwTab deposition format designed for both nuclear magnetic resonance (NMR) and mass
spectrometry generated (MS) datasets. Detailed documentation for installing and using
MESSES is available on GitHub and package installation is straight-forward via the Python
Package Index.

Metabolites 2023, 13, 842 3 of 25Metabolites 2023, 13, x FOR PEER REVIEW 3 of 24

Figure 1. MESSES Overall Workflow Diagram. This includes each of the major steps: Extract, Vali-
date, and Convert, along with error and warning correction steps represented by Correct Errors.

2. Materials and Methods
Figure 1 provides an overview of the data extraction, validation, and conversion

workflow enabled by MESSES. This workflow starts with metadata and data in tabular
format that is extracted into an intermediate MESSES JSON format which is further con-
verted into the final mwTab deposition formats. However, the process is not expected to
be error free in the beginning and MESSES provides warning and error feedback for the
user at each step, especially the validation step, enabling an error correcting workflow.

2.1. Third Party Packages
MESSES leverages many third-party Python libraries and packages to accomplish its

major tasks. MESSES uses the docopt library [12] to implement a command line interface
(CLI) from a Python docstring description. Next, MESSES uses the jsonschema library to
validate user JSON input against an expected schema generated by MESSES in JSON

Figure 1. MESSES Overall Workflow Diagram. This includes each of the major steps: Extract, Validate,
and Convert, along with error and warning correction steps represented by Correct Errors.

2. Materials and Methods

Figure 1 provides an overview of the data extraction, validation, and conversion work-
flow enabled by MESSES. This workflow starts with metadata and data in tabular format
that is extracted into an intermediate MESSES JSON format which is further converted into
the final mwTab deposition formats. However, the process is not expected to be error free
in the beginning and MESSES provides warning and error feedback for the user at each
step, especially the validation step, enabling an error correcting workflow.

2.1. Third Party Packages

MESSES leverages many third-party Python libraries and packages to accomplish
its major tasks. MESSES uses the docopt library [12] to implement a command line in-
terface (CLI) from a Python docstring description. Next, MESSES uses the jsonschema
library to validate user JSON input against an expected schema generated by MESSES in
JSON Schema format. JSON Schema is a declarative schema language for describing an

Metabolites 2023, 13, 842 4 of 25

expected data schema for the purpose of validating and annotating JSON representations
of structured data [13,14]. JSON Schema is developed under an OpenJS Foundation [15]
project with incubation status and an active growing community of users. MESSES uses
the jsonschema library to perform the lion’s share of the validate command as well as
to validate user input in the convert command. The submodules validate_schema.py
and convert_schema.py include specific subschemas and schema templates used to gen-
erate final schemas for validation. The Protocol Dependent Schema (PD schema) and
Experiment Description Specification base schema (EDS base schema) provide the bulk
of the final integrated schema in JSON Schema format that is used for validation via the
jsonschema library.

MESSES uses a collection of packages to work with tabular data. Specifically, pan-
das [16], numpy [17], and openpyxl [18] are all used to work with tabular data. The pandas
package is used for reading and writing, numpy is used for optimized data access, and
openpyxl and xlsxwriter are used by pandas to write Excel files. To implement matching by
Levenshtein distance, the jellyfish package is used. The Cython package [19] is used to op-
timize and speed up some algorithms implemented with Cython language extensions that
enable translation to C++ code and compilation to a compiled importable submodule. The
mwtab package [8,20] is used to convert mwTab JSON format to the mwTab tab-delimited
format, both developed by the Metabolomics Workbench. A list of packages and their
versions are in Table 1.

Table 1. Library dependencies for MESSES.

Package Version Utilization PyPI URL a

docopt 0.6.2 Implement CLI. https://pypi.org/project/docopt/
jsonschema 3.0.1 Validate JSON files. https://pypi.org/project/jsonschema/
pandas 0.24.2 Read and write tabular files. https://pypi.org/project/pandas/

numpy 1.22.4 Optimize tabular
data algorithms. https://pypi.org/project/numpy/

openpyxl 2.6.2 Write Excel files. https://pypi.org/project/openpyxl/
xlsxwriter 3.0.3 Write Excel files. https://pypi.org/project/xlsxwriter/

jellyfish 0.9.0 Calculate
Levenshtein distance. https://pypi.org/project/jellyfish/

Cython 3.0.0a11 Optimize algorithms. https://pypi.org/project/Cython/
mwtab 1.2.5 Create mwTab formatted files. https://pypi.org/project/mwtab/

a Accessed on 1 January 2023.

2.2. Package Organization and Module Description

Although MESSES is primarily designed to be a command line tool, it does provide
an equivalent application programming interface (API), which can be utilized if so desired.
A high-level CLI that serves as an entry-point to each command is implemented in the
__main__.py submodule, but each command implements its own CLI as well. Each com-
mand, extract, validate, and convert, are in their own module. The extract module contains
the extract.py submodule that implements the entire extract command, with the addition
of a cythonized submodule that optimizes a part of the code for the extract command. The
heart of the extract module is a tag parser that identifies pound-delimited tags which direct
the extraction of data from tabular files as tags and associated data are parsed.

The validate module contains the validate.py submodule that implements the validate
command and the validate_schema.py submodule that simply holds the built-in schemas
and schema templates in JSON Schema format for the command. The convert module is
broken into more pieces. The convert.py submodule implements the convert command, the
convert_schema.py submodule holds the schemas and schema templates in JSON Schema
format for the command, the user_input_checking.py submodule validates conversion
directives, and there are submodules for the built-in conversion directives and specific code
for each supported conversion format. Table 2 lists the submodules of MESSES, Figure 2
shows a module diagram, and Figure A1 shows a directory tree of the source code.

https://pypi.org/project/docopt/
https://pypi.org/project/jsonschema/
https://pypi.org/project/pandas/
https://pypi.org/project/numpy/
https://pypi.org/project/openpyxl/
https://pypi.org/project/xlsxwriter/
https://pypi.org/project/jellyfish/
https://pypi.org/project/Cython/
https://pypi.org/project/mwtab/

Metabolites 2023, 13, 842 5 of 25

Table 2. Submodules of MESSES.

Submodule Description

__main__.py Contains the top-most CLI.
extract.py Implements the extract command and CLI.
cythonized_tagSheet.pyx Cythonized version of the tagSheet method for extract.
validate.py Implements the validate command and CLI.
validate_schema.py Contains the JSON Schema schemas used by the validate command.
convert.py Implements the convert command and CLI.
convert_schema.py Contains the JSON Schema schemas used by the convert command.
user_input_checking.py Validates conversion directives for the convert command.
mwtab_conversion_directives.py Contains the built-in conversion directives for the mwTab format.
mwtab_functions.py Contains functions specific to creating the mwTab format.

Metabolites 2023, 13, x FOR PEER REVIEW 5 of 24

of MESSES, Figure 2 shows a module diagram, and Figure A1 shows a directory tree of
the source code.

Table 2. Submodules of MESSES.

Submodule Description
__main__.py Contains the top-most CLI.
extract.py Implements the extract command and CLI.
cythonized_tagSheet.pyx Cythonized version of the tagSheet method for extract.
validate.py Implements the validate command and CLI.
validate_schema.py Contains the JSON Schema schemas used by the validate command.
convert.py Implements the convert command and CLI.
convert_schema.py Contains the JSON Schema schemas used by the convert command.
user_input_checking.py Validates conversion directives for the convert command.
mwtab_conversion_directives.py Contains the built-in conversion directives for the mwTab format.
mwtab_functions.py Contains functions specific to creating the mwTab format.

Figure 2. MESSES Module Diagram. Submodule and module dependencies are illustrated by con-
necting lines.

2.3. Tagging System
In order to extract organized data from arbitrarily placed and organized data tables

within a spreadsheet in a programmatic way, some kind of system has to be devised. This
could be something as simple as requiring a given data table be on the very first sheet row
and for the starting row to have column names for every column or columns in a certain
order; however, this type of implementation would be very fragile. Therefore, we decided
to create a more robust system that could handle more complicated and/or arbitrary data
arrangements and reduce the verbosity to a minimum. The system we devised uses an
extra layer of tags inserted into an existing data spreadsheet at specific locations that tell
the extract command how to transform the data sections of the sheet (i.e., data tables) into
key-based records representable in both JSON format and a relational database.

This initial system served its function well, but it became clear that more functionality
was sorely needed: (i) a way to programmatically add tags to sections of tabular data
within a sheet and (ii) a way to modify field values. So, the system was expanded to pro-
vide facilities to do both. Ultimately, there are three parts to the tagging system that are
distinct from one another but have similar syntax and ideas. The “export” part involves

Figure 2. MESSES Module Diagram. Submodule and module dependencies are illustrated by
connecting lines.

2.3. Tagging System

In order to extract organized data from arbitrarily placed and organized data tables
within a spreadsheet in a programmatic way, some kind of system has to be devised. This
could be something as simple as requiring a given data table be on the very first sheet row
and for the starting row to have column names for every column or columns in a certain
order; however, this type of implementation would be very fragile. Therefore, we decided
to create a more robust system that could handle more complicated and/or arbitrary data
arrangements and reduce the verbosity to a minimum. The system we devised uses an
extra layer of tags inserted into an existing data spreadsheet at specific locations that tell
the extract command how to transform the data sections of the sheet (i.e., data tables) into
key-based records representable in both JSON format and a relational database.

This initial system served its function well, but it became clear that more functionality
was sorely needed: (i) a way to programmatically add tags to sections of tabular data within
a sheet and (ii) a way to modify field values. So, the system was expanded to provide
facilities to do both. Ultimately, there are three parts to the tagging system that are distinct
from one another but have similar syntax and ideas. The “export” part involves “export”
tags that are directly inserted into an existing sheet before a section of tabular data. It is
the base system that must be used for the extraction to work at all. The “automation” part

Metabolites 2023, 13, 842 6 of 25

is used to automate adding “export” tags to tabular data. Based on the header values in
your data, you can use “automation” tags to insert (add) the “export” tags automatically.
A good use case for automation is when you have data generated by a program in a
consistent way. Instead of manually adding export tags to the program output each time,
you can create an “automation” spreadsheet that will add the “export” tags for you. The
last “modification” part is used to modify record values. It can be used to prepend, append,
delete, overwrite, or regex substitute values. An example use-case would be to update old
naming conventions. Validly tagged files in their tabular or JSON form can be referred to as
directives as they direct the extraction (automate, export, and modify) actions of MESSES.
To reduce confusion between tags and directives, “tags” generally refer to the extra text
added above a specific table, while “directives” are the tags and the associated table taken
as a whole. Each row of a tagged table is an individual directive.

Each part of the tagging system must be in their own sheet or file for the extract
command. By default, export tags are expected in a sheet named ‘#export’, if given an
Excel file without specifying a sheet name. If given a CSV file, then this file is expected to
have export tags. Modification tags are expected in a sheet named ‘#modify’ by default
but can be specified using the --modify option. The option is very flexible and can be
used to specify either a different sheet name in the given Excel file, a different Excel file,
a different Excel file with a different sheet name, a Google Sheets file, a Google Sheets
file with a different sheet name, a JSON file, or a CSV file. Automation tags are similarly
specified using the --automate option or otherwise expected in a sheet named ‘#automate’
by default. More detailed descriptions and examples of the tagging system can be found in
the package documentation.

2.4. MESSES JSONized Data and Metadata Representation

The data schema developed for MESSES was designed to capture generalized experi-
mental descriptions and data in an abstract way. To handle the arbitrary number of fields
that widely varying experimental datasets would have, the schema supports multiple
integrated entity–attribute–value (EAV) models. It is organized into several tables with
a unique record identifier and a flexible collection of fields, with certain fields having a
descriptive attribute relationship with another field. Note that we use the term “table” to
refer to the JSON object of the same name. A “record” would be a named element inside a
“table”, which would normally correspond to a row in a spreadsheet table. A “field” would
be a named element inside a “record”, which would normally correspond to a column in a
spreadsheet table.

There are 6 tables: project, study, protocol, entity, measurement, and factor.

• A project generally refers to a research project with multiple analytical datasets derived
from one or more experimental designs.

The project table entries would have information about the project, such as PI
contact information and a description of the project.

• A study is generally one experimental design or analytical experiment inside of the
project.

The study table entries would have information about each study, such as PI
contact information and a description of the study.

• A protocol describes an operation or set of operations done on a subject or sample
entity.

The protocol table entries would have information about each protocol, such as
a description of the procedure and details about the equipment used.

• Entities are either subjects or samples that were collected or experimented on.

The entity table entries would have information about each entity, such as sex
and age of a subject or weight and units of weight of a sample. These latter
examples demonstrate a descriptive attribute relationship between the weight

Metabolites 2023, 13, 842 7 of 25

field and the units of weight field typically indicated by ‘weight%unit’ used as
the field name for units of weight.

• A measurement is typically the results acquired after putting a sample through an assay
or analytical instrument such as a mass spectrometer or nuclear magnetic resonance
spectrometer as well as any data calculation steps applied to raw measurements to
generate usable processed results for downstream analysis.

The measurement table entries would have information about each measure-
ment, such as intensity, peak area, or compound assignment.

• A factor is a controlled independent variable of the experimental design. Experimental
factors are conditions set in the experiment. Other factors may be other classifications
such as male or female gender.

The factor table entries would have information about each factor, such as the
name of the factor and the allowed values of the factor.

Figure 3 shows a lean example MESSES JSON with all of the tables, and Table 3
summarizes the descriptions and entry information for table entries.

Metabolites 2023, 13, x FOR PEER REVIEW 7 of 24

o The entity table entries would have information about each entity, such as sex
and age of a subject or weight and units of weight of a sample. These latter ex-
amples demonstrate a descriptive attribute relationship between the weight field
and the units of weight field typically indicated by �weight%unit� used as the
field name for units of weight.

• A measurement is typically the results acquired after putting a sample through an
assay or analytical instrument such as a mass spectrometer or nuclear magnetic res-
onance spectrometer as well as any data calculation steps applied to raw measure-
ments to generate usable processed results for downstream analysis.
o The measurement table entries would have information about each measure-

ment, such as intensity, peak area, or compound assignment.
• A factor is a controlled independent variable of the experimental design. Experi-

mental factors are conditions set in the experiment. Other factors may be other clas-
sifications such as male or female gender.
o The factor table entries would have information about each factor, such as the

name of the factor and the allowed values of the factor.
Figure 3 shows a lean example MESSES JSON with all of the tables, and Table 3 sum-

marizes the descriptions and entry information for table entries.

Figure 3. MESSES JSON Tables Example. Ellipses indicate that there could be more fields or records,
while arrows point to records or fields that a field is referencing.

Table 3. MESSES JSON Table Entry Summary. The “Entry Information” column is not exhaustive
and simply presents examples of what kinds of information could be associated with each entry.

Table Entry Description Entry Information

project
A research project with multiple analytical datasets derived
from one or more experimental designs.

PI Name
PI Contact Information
Institution Name
Address
Department
Description
Title

Figure 3. MESSES JSON Tables Example. Ellipses indicate that there could be more fields or records,
while arrows point to records or fields that a field is referencing.

Table 3. MESSES JSON Table Entry Summary. The “Entry Information” column is not exhaustive
and simply presents examples of what kinds of information could be associated with each entry.

Table Entry Description Entry Information

project A research project with multiple analytical datasets derived from one or
more experimental designs.

PI Name
PI Contact Information
Institution Name
Address
Department
Description
Title

Metabolites 2023, 13, 842 8 of 25

Table 3. Cont.

Table Entry Description Entry Information

protocol An operation or set of operations done on a subject or sample entity.

Description
Type
Instrument Settings
Instrument Information
Software Settings
Software Information
Data Files Generated
File Detailing Protocol

entity Either subjects or samples that were collected or experimented on.

Type
Weight
Sex
Protocols Underwent
Parent Entity
Experimental Factor

measurement

The results acquired after putting a sample through an assay or analytical
instrument such as a mass spectrometer or nuclear magnetic resonance
spectrometer as well as any data calculation steps applied to raw
measurements to generate usable processed results for downstream analysis.

Measurement Protocol
Measurements Acquired
Associated Entity
Calculations or Statistics
Labels Obtained from
Measurements

factor
A controlled independent variable of the experimental design. Conditions
set in the experiment. May be other classifications such as male or
female gender.

Discrete Values of the Factor
Units of the Values
Name of Factor
Field Name of Factor

There are additional constraints within the tables. Protocols must be one of five types:
treatment, collection, sample_prep, measurement, or storage.

• A treatment protocol describes the experimental factors performed on subject entities.

For example, if a cell line is given 2 different media solutions to observe the
different growth behavior between the 2, then this would be a treatment type
protocol.

• A collection protocol describes how samples are collected from subject entities.

For example, if media is taken out of a cell culture at various time points, this
would be a collection protocol.

• A sample_prep protocol describes operations performed on sample entities.

For example, once the cells in a culture are collected, they may be spun in a
centrifuge or have solvents added to separate out protein, lipids, etc.

• A measurement protocol describes operations performed on samples to measure
features about them.

For example, if a sample is put through a mass spectrometer or into an NMR.

• A storage protocol describes where and/or how things (mainly samples) are stored.

This was created mostly to help keep track of where samples were physically
stored in freezers or where measurement data files were located on a share
drive.

Another constraint involves how subjects and samples inherit or derive from each
other.

• If a sample comes from a sample, it must have a sample_prep type protocol.
• If a sample comes from a subject, it must have a collection type protocol.
• Subjects should have a treatment type protocol associated with it.

Metabolites 2023, 13, 842 9 of 25

2.5. Testing

The MESSES package was originally developed in a Linux operating system (OS)
environment but has been directly tested on Linux, Windows, and MacOS operating
systems. Each module and submodule include unit-tests that test all critical functions.
Every function in every module is tested to make sure it gives the expected output when it
should and errors when it should. Every command and associated command line option
are tested, for example, the update and override options for the convert command. Testing
is automated using GitHub Actions. Total testing code coverage for the MESSES package is
above 90%.

3. Results
3.1. The Command Line Interface and Overall Metabolomics Workbench Deposition Workflow

The MESSES CLI has a delegated implementation. In other words, there are four
separate CLIs, one for each command and one main CLI. The main CLI serves as a gateway
to the three commands that perform the bulk of the work and have their own CLIs. Once
installed, a call to “messes --help” in the system terminal will show the gateway CLI,
and calls to “messes [command] --help” will show the CLI for the selected command.
Figures 4, A2–A4 show the main CLI, the extract CLI, the validate CLI, and the convert
CLI, respectively.

Metabolites 2023, 13, x FOR PEER REVIEW 9 of 24

• Subjects should have a treatment type protocol associated with it.

2.5. Testing
The MESSES package was originally developed in a Linux operating system (OS) en-

vironment but has been directly tested on Linux, Windows, and MacOS operating sys-
tems. Each module and submodule include unit-tests that test all critical functions. Every
function in every module is tested to make sure it gives the expected output when it
should and errors when it should. Every command and associated command line option
are tested, for example, the update and override options for the convert command. Testing
is automated using GitHub Actions. Total testing code coverage for the MESSES package
is above 90%.

3. Results
3.1. The Command Line Interface and Overall Metabolomics Workbench Deposition Workflow

The MESSES CLI has a delegated implementation. In other words, there are four sep-
arate CLIs, one for each command and one main CLI. The main CLI serves as a gateway
to the three commands that perform the bulk of the work and have their own CLIs. Once
installed, a call to “messes --help” in the system terminal will show the gateway CLI, and
calls to “messes [command] --help” will show the CLI for the selected command. Figures
4 and A2–A4 show the main CLI, the extract CLI, the validate CLI, and the convert CLI,
respectively.

Figure 4. MESSES main Command Line Interface (CLI). The extract, validate, and convert com-
mands represent distinct steps in the overall MESSES workflow.

The MESSES CLI was designed with a great deal of flexibility, anticipating users�
desire to use the software in unpredictable ways. However, Figure 1 illustrates the overall
workflow, using the three main commands with the intention of creating a deposition to
Metabolomics Workbench. Starting from the assumption that all data files are untagged,
the first step would be to add tags to the data so it will be exported into the MESSES JSON
format correctly. Tags can be added manually or with automation directives used by the
extract command (i.e, tagging step). Modification directives can also be used to modify
the data as necessary for tasks such as renaming. Once tagged, the extract command ex-
tracts and exports the (meta)data into a MESSES JSON file. You may have to fix some
errors if you have malformed tags or directives. Next, take the exported MESSES JSON
file and deliver it to the validate command. It is recommended to use the --format option
and specify “mwtab”. It is also recommended to create a protocol-dependent schema and
use the --pds option with the schema to perform additional validation. A protocol-de-
pendent schema is provided in the Supplementary Materials. There will likely be warn-
ings and errors after running the validate command, and they should be corrected in the

Figure 4. MESSES main Command Line Interface (CLI). The extract, validate, and convert commands
represent distinct steps in the overall MESSES workflow.

The MESSES CLI was designed with a great deal of flexibility, anticipating users’
desire to use the software in unpredictable ways. However, Figure 1 illustrates the overall
workflow, using the three main commands with the intention of creating a deposition to
Metabolomics Workbench. Starting from the assumption that all data files are untagged,
the first step would be to add tags to the data so it will be exported into the MESSES JSON
format correctly. Tags can be added manually or with automation directives used by the
extract command (i.e, tagging step). Modification directives can also be used to modify the
data as necessary for tasks such as renaming. Once tagged, the extract command extracts
and exports the (meta)data into a MESSES JSON file. You may have to fix some errors if
you have malformed tags or directives. Next, take the exported MESSES JSON file and
deliver it to the validate command. It is recommended to use the --format option and
specify “mwtab”. It is also recommended to create a protocol-dependent schema and use
the --pds option with the schema to perform additional validation. A protocol-dependent
schema is provided in the Supplementary Materials. There will likely be warnings and
errors after running the validate command, and they should be corrected in the data. After

Metabolites 2023, 13, 842 10 of 25

correcting the errors and warnings, re-export the MESSES JSON with the extract command
and re-validate with the validate command until there are no more errors or warnings of
concern. Once the MESSES JSON file validates with no errors or warnings, deliver it to the
convert command. Use the mwtab sub-command and select the appropriate machine type
for your data, ms, nmr, or nmr_binned. The convert command should output a mwTab
JSON and tab-delimited file. But even with a clean validation, it is still possible to have
some errors that prevent conversion. If there are errors, correct them and start from the
extraction step again.

3.2. Creation of an Example Mass Spectrometry Deposition

We demonstrate the capabilities of MESSES with a paired down example based
on an ion chromatography Fourier transform mass spectrometry (IC-FTMS)-targeted
metabolomics dataset of mouse colon tissue already deposited into Metabolomics Work-
bench Study ST001447 [21] using an earlier prototype of MESSES. Although this dataset
was previously uploaded using an earlier version of MESSES, what is demonstrated here
is using the latest version. This demonstration walks through the (meta)data extraction
from Excel spreadsheets, JSON validation, and conversion steps to produce a deposition-
compliant dataset in both the mwTab JSON and tab-delimited formats. Note that the figures
below are general truncated examples. There are full examples with package commands
and description that transform real datasets, available in the supplemental materials and in
the examples directory of the GitHub repository.

3.2.1. Extraction from Spreadsheets

Figure 5 shows screenshots of the executed command and directory of files when
running the extract command. The metadata Excel spreadsheet has metadata for several
tissues besides colon, which are removed with the ‘--delete’ option. Likewise, certain unre-
lated protocols (acetone_extraction and lipid_extraction) involving other related analytical
measurements are likewise removed. Figures 6 and 7 show screenshots of the metadata
and measurement data Excel files used with the extract command, respectively. Note that
the “#export” sheet is what the command will use by default. Figure 6 shows the original
sheet with its formatting and tags added, but the “#export” sheet is a copy that removes
formatting. Figures 8 and 9 show screenshots of the automation and modification tags
for the measurement data in separate ‘#automate’ and ‘#modify’ sheets, respectively. The
automation tags are used to add export tags internally and the “#export” spreadsheet
created can be saved out using the --save-export option. The modification tags are used
to modify the data after it has been extracted from the spreadsheet to a JSONized form.
Figure 10 shows portions of the extracted JSON organized in separate JSON objects which
are represented as dictionaries in Python. The ‘entity’ dictionary describes individual
subjects (mice in this instance) and individual samples derived from the subjects. The
‘factor’ dictionary describes the experimental design in terms of individual experimental
factors. The ‘protocol’ dictionary describes individual protocols used in the experiment.
The ‘measurement’ dictionary describes individual peak measurements derived from an
IC-FTMS spectrum collected per sample. The ‘project’ and ‘study’ dictionaries describe the
research project and specific study performed, including the contact and institution that
the deposition comes from.

Metabolites 2023, 13, 842 11 of 25
Metabolites 2023, 13, x FOR PEER REVIEW 11 of 24

Figure 5. Example execution of the extract command in a Windows Command Prompt. The result-
ing output directory is shown in the Windows folder at the bottom.

Figure 6. Screenshot of a portion of the metadata spreadsheet used with the extract command.

Figure 5. Example execution of the extract command in a Windows Command Prompt. The resulting
output directory is shown in the Windows folder at the bottom.

Metabolites 2023, 13, x FOR PEER REVIEW 11 of 24

Figure 5. Example execution of the extract command in a Windows Command Prompt. The result-
ing output directory is shown in the Windows folder at the bottom.

Figure 6. Screenshot of a portion of the metadata spreadsheet used with the extract command. Figure 6. Screenshot of a portion of the metadata spreadsheet used with the extract command.

Metabolites 2023, 13, 842 12 of 25Metabolites 2023, 13, x FOR PEER REVIEW 12 of 24

Figure 7. Screenshot of a portion of the measurement spreadsheet data used with the extract com-
mand.

Figure 8. Screenshot of the automation tags used with the measurement data when executing the
extract command.

Figure 7. Screenshot of a portion of the measurement spreadsheet data used with the extract command.

Metabolites 2023, 13, x FOR PEER REVIEW 12 of 24

Figure 7. Screenshot of a portion of the measurement spreadsheet data used with the extract com-
mand.

Figure 8. Screenshot of the automation tags used with the measurement data when executing the
extract command.

Figure 8. Screenshot of the automation tags used with the measurement data when executing the
extract command.

Metabolites 2023, 13, 842 13 of 25Metabolites 2023, 13, x FOR PEER REVIEW 13 of 24

Figure 9. Screenshot of a portion of the modification tags used with the measurement data when
executing the extract command.

Figure 10. Portions of each table in the MESSES JSON file output generated by the extract command.

3.2.2. Validation of Extracted Data and Metadata
After extraction, a user should use the validate command on the (JSON) output to

validate the result. Typically, both the extract and validate commands will be used itera-
tively with dataset revision until no more errors or warnings are detected during valida-
tion, creating a combined extraction and validation process. If extraction involves datasets
generated in a consistent format from other programs, this could essentially become an
automated process; however, given the nature of most analytical labs and core facilities, a
semi-automated process is expected in most cases. But by following Good Laboratory
Practice (GLP) on Data Integrity [22], this semi-automated process should approach a fully
automated process, especially if tagged spreadsheet templates are used for manual data
collection steps. Figure 11 shows screenshots of the executed command and directory of
files when running the validate command. The json subcommand identifies the ex-
tracted_result.json as being in JSON format. The �--pds� option identifies the specific (pro-
tocol-dependent) PD schema to validate against. The �--format mwtab� option indicates
the conversion format specific schema to validate against. The �--silent nuisance� option

Figure 9. Screenshot of a portion of the modification tags used with the measurement data when
executing the extract command.

Metabolites 2023, 13, x FOR PEER REVIEW 13 of 24

Figure 9. Screenshot of a portion of the modification tags used with the measurement data when
executing the extract command.

Figure 10. Portions of each table in the MESSES JSON file output generated by the extract command.

3.2.2. Validation of Extracted Data and Metadata
After extraction, a user should use the validate command on the (JSON) output to

validate the result. Typically, both the extract and validate commands will be used itera-
tively with dataset revision until no more errors or warnings are detected during valida-
tion, creating a combined extraction and validation process. If extraction involves datasets
generated in a consistent format from other programs, this could essentially become an
automated process; however, given the nature of most analytical labs and core facilities, a
semi-automated process is expected in most cases. But by following Good Laboratory
Practice (GLP) on Data Integrity [22], this semi-automated process should approach a fully
automated process, especially if tagged spreadsheet templates are used for manual data
collection steps. Figure 11 shows screenshots of the executed command and directory of
files when running the validate command. The json subcommand identifies the ex-
tracted_result.json as being in JSON format. The �--pds� option identifies the specific (pro-
tocol-dependent) PD schema to validate against. The �--format mwtab� option indicates
the conversion format specific schema to validate against. The �--silent nuisance� option

Figure 10. Portions of each table in the MESSES JSON file output generated by the extract command.

3.2.2. Validation of Extracted Data and Metadata

After extraction, a user should use the validate command on the (JSON) output
to validate the result. Typically, both the extract and validate commands will be used
iteratively with dataset revision until no more errors or warnings are detected during
validation, creating a combined extraction and validation process. If extraction involves
datasets generated in a consistent format from other programs, this could essentially
become an automated process; however, given the nature of most analytical labs and core
facilities, a semi-automated process is expected in most cases. But by following Good
Laboratory Practice (GLP) on Data Integrity [22], this semi-automated process should
approach a fully automated process, especially if tagged spreadsheet templates are used for
manual data collection steps. Figure 11 shows screenshots of the executed command and
directory of files when running the validate command. The json subcommand identifies
the extracted_result.json as being in JSON format. The ‘--pds’ option identifies the specific
(protocol-dependent) PD schema to validate against. The ‘--format mwtab’ option indicates
the conversion format specific schema to validate against. The ‘--silent nuisance’ option

Metabolites 2023, 13, 842 14 of 25

ignores common warnings that most often can be ignored. Figure 12 shows a portion of this
PD schema used here, and Figure A5 shows a portion of this PD schema transformed into
JSON Schema. This example is clean and complete and thus does not show any warnings
or errors during validation. However, Figures A6 and A7 demonstrate common warnings
and errors that often occur.

Metabolites 2023, 13, x FOR PEER REVIEW 14 of 24

ignores common warnings that most often can be ignored. Figure 12 shows a portion of
this PD schema used here, and Figure A5 shows a portion of this PD schema transformed
into JSON Schema. This example is clean and complete and thus does not show any warn-
ings or errors during validation. However, Figures A6 and A7 demonstrate common
warnings and errors that often occur.

Figure 11. Example execution of the validate command in a Windows Command Prompt. The re-
sulting output directory is shown in the Windows folder at the bottom.

Figure 11. Example execution of the validate command in a Windows Command Prompt. The
resulting output directory is shown in the Windows folder at the bottom.

Metabolites 2023, 13, x FOR PEER REVIEW 14 of 24

ignores common warnings that most often can be ignored. Figure 12 shows a portion of
this PD schema used here, and Figure A5 shows a portion of this PD schema transformed
into JSON Schema. This example is clean and complete and thus does not show any warn-
ings or errors during validation. However, Figures A6 and A7 demonstrate common
warnings and errors that often occur.

Figure 11. Example execution of the validate command in a Windows Command Prompt. The re-
sulting output directory is shown in the Windows folder at the bottom.

Figure 12. A portion of the parent_protocol table and protocols in the protocol-dependent schema.
(A) is in JSON format and (B) is in tagged tabular format.

Metabolites 2023, 13, 842 15 of 25

3.2.3. Conversion into mwTab Formats

Once the extracted MESSES JSON is validated, it can be converted into the mwTab
JSON and tab-delimited formats. Figure 13 shows screenshots of the executed command
and directory of files when running the convert command. The ‘mwtab ms’ subcommand
identifies the output type, which is followed by the input extracted_results.json filename
and the output filename without file extension. Two separate output files are generated in
mwTab JSON (output.json) and tab-delimited (output.txt) formats. Technically, the mwTab
JSON format is generated first and then the mwtab library is used to convert it further into
the mwTab tab-delimited format. Figures 14 and 15 show screenshots of portions of the
mwTab JSON and tab-delimited text outputs, respectively. Note that the ANALYSIS_ID
and STUDY_ID default to 000000. Before submission to the Metabolomics Workbench these
need to be updated manually with the IDs they give you, or they can be updated by using
the --update option to update that portion of the conversion directives.

Metabolites 2023, 13, x FOR PEER REVIEW 15 of 24

Figure 12. A portion of the parent_protocol table and protocols in the protocol-dependent schema.
(A) is in JSON format and (B) is in tagged tabular format.

3.2.3. Conversion into mwTab Formats
Once the extracted MESSES JSON is validated, it can be converted into the mwTab

JSON and tab-delimited formats. Figure 13 shows screenshots of the executed command
and directory of files when running the convert command. The �mwtab ms� subcommand
identifies the output type, which is followed by the input extracted_results.json filename
and the output filename without file extension. Two separate output files are generated in
mwTab JSON (output.json) and tab-delimited (output.txt) formats. Technically, the
mwTab JSON format is generated first and then the mwtab library is used to convert it
further into the mwTab tab-delimited format. Figures 14 and 15 show screenshots of por-
tions of the mwTab JSON and tab-delimited text outputs, respectively. Note that the
ANALYSIS_ID and STUDY_ID default to 000000. Before submission to the Metabolomics
Workbench these need to be updated manually with the IDs they give you, or they can be
updated by using the --update option to update that portion of the conversion directives.

Figure 13. Example execution of the convert command in a Windows Command Prompt. The re-
sulting output directory is shown in the Windows folder at the bottom.

Figure 14. A portion of the mwTab JSON output generated by the convert command.

Figure 13. Example execution of the convert command in a Windows Command Prompt. The
resulting output directory is shown in the Windows folder at the bottom.

Metabolites 2023, 13, x FOR PEER REVIEW 15 of 24

Figure 12. A portion of the parent_protocol table and protocols in the protocol-dependent schema.
(A) is in JSON format and (B) is in tagged tabular format.

3.2.3. Conversion into mwTab Formats
Once the extracted MESSES JSON is validated, it can be converted into the mwTab

JSON and tab-delimited formats. Figure 13 shows screenshots of the executed command
and directory of files when running the convert command. The �mwtab ms� subcommand
identifies the output type, which is followed by the input extracted_results.json filename
and the output filename without file extension. Two separate output files are generated in
mwTab JSON (output.json) and tab-delimited (output.txt) formats. Technically, the
mwTab JSON format is generated first and then the mwtab library is used to convert it
further into the mwTab tab-delimited format. Figures 14 and 15 show screenshots of por-
tions of the mwTab JSON and tab-delimited text outputs, respectively. Note that the
ANALYSIS_ID and STUDY_ID default to 000000. Before submission to the Metabolomics
Workbench these need to be updated manually with the IDs they give you, or they can be
updated by using the --update option to update that portion of the conversion directives.

Figure 13. Example execution of the convert command in a Windows Command Prompt. The re-
sulting output directory is shown in the Windows folder at the bottom.

Figure 14. A portion of the mwTab JSON output generated by the convert command. Figure 14. A portion of the mwTab JSON output generated by the convert command.

Metabolites 2023, 13, 842 16 of 25Metabolites 2023, 13, x FOR PEER REVIEW 16 of 24

Figure 15. A portion of the mwTab tab-delimited text output generated by the convert command.

4. Discussion
MESSES is a useful tool for turning messy, disorganized data and metadata into the

proper format for deposition into Metabolomics Workbench. MESSES and its prior proto-
types have been used to deposit over 40 studies into Metabolomics Workbench (see Table
A1), many of which provide the richest level of metadata demonstrated so far in dataset
deposition into Metabolomics Workbench. MESSES was designed to improve deposition
quality and metadata consistency, which are known issues in scientific repositories like
Metabolomics Workbench [8,9]. The package provides a way to organize, filter, and mod-
ify data so that it can be put into the proper form, and its automation support makes add-
ing MESSES into workflows much easier. Although a significant amount of time and effort
went into refining the package so that it is as easy to use and understand as possible, there
is some intellectual overhead required to initially setup all the tags, validation schemas,
and conversion directives. Additional supportive sub-commands are included where ap-
plicable to make learning and troubleshooting the tool easier for new users. Also, there is
extensive documentation available to help with the learning curve: https://moseleybioin-
formaticslab.github.io/MESSES/ (accessed on 30 June 2023). In addition, when installed
via the Python package management system pip, a console script “messes” is created au-
tomatically for the user, providing easy access to the CLI.

The package has been developed in a way such that additional formats can be added
into the list of inherently supported formats. But the package is also generalized enough
that anyone should be able to use it to convert to whatever arbitrary format is desired, as
long as it has a JSON representation. Going from the JSON representation to another non-
JSON representation would have to be done using another tool if the format is not sup-
ported in MESSES. Currently, only the mwTab format is directly supported, but as the
tool is used to create more diverse depositions, it is likely that more formats will be added.
Another notable limitation is that deeply nested JSON structures cannot be created using
MESSES without supplying your own Python code for the convert command. This is due
to a desire to keep tags and directives simple enough to be in a tabular form, but if there
is enough demand or need for deeper nesting, the tags and directives can be expanded.

5. Conclusions
The MESSES Python package enables a straight-forward mwTab deposition creation

process that involves iterative extraction-validation steps followed by a final conversion

Figure 15. A portion of the mwTab tab-delimited text output generated by the convert command.

4. Discussion

MESSES is a useful tool for turning messy, disorganized data and metadata into the
proper format for deposition into Metabolomics Workbench. MESSES and its prior pro-
totypes have been used to deposit over 40 studies into Metabolomics Workbench (see
Table A1), many of which provide the richest level of metadata demonstrated so far in
dataset deposition into Metabolomics Workbench. MESSES was designed to improve
deposition quality and metadata consistency, which are known issues in scientific reposito-
ries like Metabolomics Workbench [8,9]. The package provides a way to organize, filter,
and modify data so that it can be put into the proper form, and its automation support
makes adding MESSES into workflows much easier. Although a significant amount of
time and effort went into refining the package so that it is as easy to use and understand
as possible, there is some intellectual overhead required to initially setup all the tags,
validation schemas, and conversion directives. Additional supportive sub-commands
are included where applicable to make learning and troubleshooting the tool easier for
new users. Also, there is extensive documentation available to help with the learning
curve: https://moseleybioinformaticslab.github.io/MESSES/ (accessed on 30 June 2023).
In addition, when installed via the Python package management system pip, a console
script “messes” is created automatically for the user, providing easy access to the CLI.

The package has been developed in a way such that additional formats can be added
into the list of inherently supported formats. But the package is also generalized enough
that anyone should be able to use it to convert to whatever arbitrary format is desired,
as long as it has a JSON representation. Going from the JSON representation to another
non-JSON representation would have to be done using another tool if the format is not
supported in MESSES. Currently, only the mwTab format is directly supported, but as the
tool is used to create more diverse depositions, it is likely that more formats will be added.
Another notable limitation is that deeply nested JSON structures cannot be created using
MESSES without supplying your own Python code for the convert command. This is due
to a desire to keep tags and directives simple enough to be in a tabular form, but if there is
enough demand or need for deeper nesting, the tags and directives can be expanded.

5. Conclusions

The MESSES Python package enables a straight-forward mwTab deposition creation
process that involves iterative extraction-validation steps followed by a final conversion
step. MESSES was developed to help solve the specific deposition problems we faced in

https://moseleybioinformaticslab.github.io/MESSES/

Metabolites 2023, 13, 842 17 of 25

helping collaborators deposit their data, and we believe it can help many others with their
depositions. While there is an initial learning curve, once a user sets up the needed tagging
directives and validation schemas, repetitive generation of mwTab formatted depositions
should be much easier. Moreover, MESSES enables a more comprehensive extraction of
metadata to promote FAIRer depositions into Metabolomics Workbench.

Supplementary Materials: The following supporting information can be downloaded at: https:
//figshare.com/articles/dataset/MESSES_Supplemental_Material/23148224, DOI: https://doi.or
g/10.6084/m9.figshare.23148224.

Author Contributions: Conceptualization, H.N.B.M.; methodology, H.N.B.M. and P.T.T.; software,
P.T.T. and H.N.B.M.; validation, P.T.T. and H.N.B.M.; resources, H.N.B.M.; data curation, P.T.T.;
writing—original draft preparation, P.T.T.; writing—review and editing, H.N.B.M.; visualization,
P.T.T.; supervision, H.N.B.M.; project administration, H.N.B.M.; funding acquisition, H.N.B.M. All
authors have read and agreed to the published version of the manuscript.

Funding: The research was funded by the National Institutes of Health, grant number P42 ES007380
(University of Kentucky Superfund Research Program Grant; PI Pennell), and by the National Science
Foundation, grant number 2020026 (PI Moseley). The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National Institute of Environmental Health
Sciences nor the National Science Foundation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Python package is available on the Python Package Index (https:
//pypi.org/project/messes accessed on 30 June 2023) and on GitHub (https://github.com/Mos
eleyBioinformaticsLab/MESSES accessed on 30 June 2023), along with extensive end-user docu-
mentation (https://moseleybioinformaticslab.github.io/MESSES/ accessed on 30 June 2023). Ex-
amples of dataset capture, validation, and conversion into mwTab deposition format are avail-
able on Figshare: https://figshare.com/articles/dataset/MESSES_Supplemental_Material/23148224
(accessed on 30 June 2023).

Acknowledgments: The authors would like to acknowledge the large continual effort that Shankar
Subramaniam, Eoin Fahy, and the whole MW/UC San Diego team have put into maintaining and
expanding the repository.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations

FAIR Findable, Accessible, Interoperable, Reusable.
NIH National Institutes of Health
DMS Data Management Sharing
MESSES Metadata from Experimental SpreadSheets Extraction System
LIMS Laboratory Information Management System
JSON JavaScript Object Notation
mwTab Metabolomics Workbench Tabular format
NMR Nuclear Magnetic Resonance
MS Mass Spectrometry
PyPi Python Package Index
CLI Command Line Interface
API Application Programming Interface
PD schema Protocol-Dependent schema
EDS Experiment Description Schema
CSV Comma Separated Values

https://figshare.com/articles/dataset/MESSES_Supplemental_Material/23148224
https://figshare.com/articles/dataset/MESSES_Supplemental_Material/23148224
https://doi.org/10.6084/m9.figshare.23148224
https://doi.org/10.6084/m9.figshare.23148224
https://pypi.org/project/messes
https://pypi.org/project/messes
https://github.com/MoseleyBioinformaticsLab/MESSES
https://github.com/MoseleyBioinformaticsLab/MESSES
https://moseleybioinformaticslab.github.io/MESSES/
https://figshare.com/articles/dataset/MESSES_Supplemental_Material/23148224

Metabolites 2023, 13, 842 18 of 25

Appendix A

Metabolites 2023, 13, x FOR PEER REVIEW 18 of 24

Appendix A

Figure A1. MESSES Source Code Directory Structure. The convert, extract, and validate subdirecto-
ries represent submodules for each major section of the codebase.

Figure A1. MESSES Source Code Directory Structure. The convert, extract, and validate subdirectories
represent submodules for each major section of the codebase.

Metabolites 2023, 13, x FOR PEER REVIEW 18 of 24

Appendix A

Figure A1. MESSES Source Code Directory Structure. The convert, extract, and validate subdirecto-
ries represent submodules for each major section of the codebase.

Figure A2. MESSES extract CLI. This command enables extraction of (meta)data from spreadsheets
into a MESSES JSON representation.

Metabolites 2023, 13, 842 19 of 25

Metabolites 2023, 13, x FOR PEER REVIEW 19 of 24

Figure A2. MESSES extract CLI. This command enables extraction of (meta)data from spread-
sheets into a MESSES JSON representation.

Figure A3. MESSES validate CLI. This command enables validation of the MESSES JSON represen-
tation against an expected schema(s).
Figure A3. MESSES validate CLI. This command enables validation of the MESSES JSON representa-
tion against an expected schema(s).

Metabolites 2023, 13, 842 20 of 25Metabolites 2023, 13, x FOR PEER REVIEW 20 of 24

Figure A4. MESSES convert CLI. This command enables conversion of a MESSES JSON representa-
tion into mwTab deposition format.
Figure A4. MESSES convert CLI. This command enables conversion of a MESSES JSON representation
into mwTab deposition format.

Metabolites 2023, 13, 842 21 of 25Metabolites 2023, 13, x FOR PEER REVIEW 21 of 24

Figure A5. Section of the protocol-dependent schema transformed into JSON Schema and combined
with the Experiment Description Specification base JSON Schema. The fields required for a protocol
are shown, but Chromatography_MS_measurement has fields for a measurement as well.

Metabolites 2023, 13, 842 22 of 25

Metabolites 2023, 13, x FOR PEER REVIEW 22 of 24

Figure A5. Section of the protocol-dependent schema transformed into JSON Schema and combined
with the Experiment Description Specification base JSON Schema. The fields required for a protocol
are shown, but Chromatography_MS_measurement has fields for a measurement as well.

Figure A6. Example of warnings printed by the validate command.

Figure A7. Example of errors printed by the validate command.

Figure A6. Example of warnings printed by the validate command.

Metabolites 2023, 13, x FOR PEER REVIEW 22 of 24

Figure A5. Section of the protocol-dependent schema transformed into JSON Schema and combined
with the Experiment Description Specification base JSON Schema. The fields required for a protocol
are shown, but Chromatography_MS_measurement has fields for a measurement as well.

Figure A6. Example of warnings printed by the validate command.

Figure A7. Example of errors printed by the validate command. Figure A7. Example of errors printed by the validate command.

Metabolites 2023, 13, 842 23 of 25

Appendix B

Table A1. Studies deposited into Metabolomics Workbench with MESSES prototypes.

Study ID Title

ST000076 A549 Cell Study

ST000110 SIRM Analysis of human P493 cells under hypoxia in [U-13C/15N] labeled Glutamine medium (Both positive and
ion mode FTMS)

ST000111 Study of biological variation in PC9 cell culture

ST000113 SIRM Analysis of human P493 cells under hypoxia in [U-13C/15N] labeled Glutamine medium (Positive ion mode
FTMS)

ST000114 SIRM Analysis of human P493 cells under hypoxia in [U-13C] labeled Glucose medium

ST000142 H1299 13C-labeled Cell Study

ST000148 A549 13C-labeled Cell Study

ST000367 Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator
b-glucan in a two-case ex vivo non-small cell lung cancer study

ST000949 Human NK vs. T cell metabolism using 13C-Glucose tracer (part I)

ST000950 Human NK vs. T cell metabolism using 13C-Glucose tracer with/out galactose (part II)

ST000951 Human NK vs. T cell metabolism using 13C-Glucose tracer with/out oligomycin (part III)

ST000952 Human NK vs. T cell metabolism using 13C-Glucose tracer with/out oligomycin and galactose (part IV)

ST001044 PGC1-A effect on TCA enzymes

ST001045 FASN effect on HCT116 metabolism probed by 13C6-glucose tracer (part I)

ST001046 FASN effect on HCT116 metabolism probed by 13C6-glucose tracer (part II)

ST001049 P4HA1 knockdown in the breast cell line MDA231 (part I)

ST001050 P4HA1 knockdown in the breast cell line MDA231 Gln metabolism (part II)

ST001129 P4HA1 knockdown in the breast cell line MDA231 (part III)

ST001138 P4HA1 knockdown in the breast cell line MDA231 Gln metabolism (part V)

ST001139 P4HA1 knockdown in the breast cell line MDA231 Gln metabolism (part VI)

ST001445 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Colon NMR 1D

ST001446 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Colon NMR HSQC

ST001447 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Colon ICMS

ST001449 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Colon DI-FTMS

ST001453 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Liver ICMS

ST001455 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Liver NMR 1D

ST001456 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Liver NMR HSQC

ST001459 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Lung NMR 1D

ST001460 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Lung NMR HSQC

ST001461 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Plasma NMR 1D

ST001462 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Plasma NMR HSQC

ST001463 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Small Intenstines NMR 1D

ST001465 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Spleen NMR 1D

ST001466 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation Spleen—NMR HSQC

ST001469 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Lung DI-FTMS

ST001470 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Lung ICMS

Metabolites 2023, 13, 842 24 of 25

Table A1. Cont.

Study ID Title

ST001471 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Small Intestines DI-FTMS

ST001472 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Small Intestines ICMS

ST001473 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Spleen DI-FTMS

ST001474 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Spleen ICMS

ST001475 Metabolomics of lung injury after allogeneic hematopoietic cell transplantation—Liver DI-FTMS

References
1. Carroll, M. National Academies of Sciences, Engineering, and Medicine, Open Science by Design: Realizing a Vision for 21st Century

Research; The National Academies Press: Washington, DC, USA, 2018.
2. Vicente-Saez, R.; Martinez-Fuentes, C. Open Science now: A systematic literature review for an integrated definition. J. Bus. Res.

2018, 88, 428–436. [CrossRef]
3. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva

Santos, L.B.; Bourne, P.E. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018.
[CrossRef] [PubMed]

4. Sud, M.; Fahy, E.; Cotter, D.; Azam, K.; Vadivelu, I.; Burant, C.; Edison, A.; Fiehn, O.; Higashi, R.; Nair, K.S. Metabolomics
Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and
training, and analysis tools. Nucleic Acids Res. 2016, 44, D463–D470. [CrossRef] [PubMed]

5. Haug, K.; Cochrane, K.; Nainala, V.C.; Williams, M.; Chang, J.; Jayaseelan, K.V.; O’Donovan, C. MetaboLights: A resource
evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020, 48, D440–D444. [CrossRef] [PubMed]

6. Final NIH policy for data management and sharing. In NOT-OD-21-013. Vol NOT-OD-21-013. NIH Grants & Funding; National
Institutes of Health: Bethesda, MD, USA, 2020.

7. Fiehn, O.; Robertson, D.; Griffin, J.; van der Werf, M.; Nikolau, B.; Morrison, N.; Sumner, L.W.; Goodacre, R.; Hardy, N.W.; Taylor,
C. The metabolomics standards initiative (MSI). Metabolomics 2007, 3, 175–178. [CrossRef]

8. Powell, C.D.; Moseley, H.N. The mwtab Python Library for RESTful Access and Enhanced Quality Control, Deposition, and
Curation of the Metabolomics Workbench Data Repository. Metabolites 2021, 11, 163. [CrossRef] [PubMed]

9. Powell, C.D.; Moseley, H.N. The Metabolomics Workbench File Status Website: A Metadata Repository Promoting FAIR Principles
of Metabolomics Data. bioRxiv 2022. [CrossRef]

10. Haug, K.; Salek, R.M.; Conesa, P.; Hastings, J.; de Matos, P.; Rijnbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S.; Rocca-
Serra, P. MetaboLights—An open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic
Acids Res. 2012, 41, D781–D786. [CrossRef] [PubMed]

11. Salek, R.M.; Haug, K.; Conesa, P.; Hastings, J.; Williams, M.; Mahendraker, T.; Maguire, E.; Gonzalez-Beltran, A.N.; Rocca-Serra,
P.; Sansone, S.-A. The MetaboLights repository: Curation challenges in metabolomics. Database 2013, 2013, bat029. [CrossRef]
[PubMed]

12. Docopt Python Library for Creating Command-Line Interfaces. Available online: http://docopt.readthedocs.io/en/latest/
(accessed on 1 January 2023).

13. Pezoa, F.; Reutter, J.L.; Suarez, F.; Ugarte, M.; Vrgoč, D. Foundations of JSON schema. In Proceedings of the 25th International
Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 263–273.

14. Droettboom, M. Understanding JSON Schema. 2014. Available online: http://spacetelescope.github.io/understanding-jsonsch
ema/UnderstandingJSONSchema.pdf (accessed on 1 January 2023).

15. Open JS Foundation. 2019. Available online: https://openjsf.org/ (accessed on 1 January 2023).
16. McKinney, W. Pandas: A foundational Python library for data analysis and statistics. Python High Perform. Sci. Comput. 2011, 14, 1–9.
17. Oliphant, T.E. A Guide to NumPy; Trelgol Publishing: Spanish Fork, UT, USA, 2006; Volume 1.
18. Gazoni, E.; Clark, C. openpyxl—A Python Library to Read/Write Excel 2010 xlsx/xlsm Files. 2016. Available online: http:

//openpyxl.readthedocs.org/en/default (accessed on 1 January 2023).
19. Behnel, S.; Bradshaw, R.; Citro, C.; Dalcin, L.; Seljebotn, D.S.; Smith, K. Cython: The best of both worlds. Comput. Sci. Eng. 2011,

13, 31–39. [CrossRef]
20. Smelter, A.; Moseley, H.N. A Python library for FAIRer access and deposition to the Metabolomics Workbench Data Repository.

Metabolomics 2018, 14, 64. [CrossRef] [PubMed]

https://doi.org/10.1016/j.jbusres.2017.12.043
https://doi.org/10.1038/sdata.2016.18
https://www.ncbi.nlm.nih.gov/pubmed/26978244
https://doi.org/10.1093/nar/gkv1042
https://www.ncbi.nlm.nih.gov/pubmed/26467476
https://doi.org/10.1093/nar/gkz1019
https://www.ncbi.nlm.nih.gov/pubmed/31691833
https://doi.org/10.1007/s11306-007-0070-6
https://doi.org/10.3390/metabo11030163
https://www.ncbi.nlm.nih.gov/pubmed/33808985
https://doi.org/10.1101/2022.03.04.483070
https://doi.org/10.1093/nar/gks1004
https://www.ncbi.nlm.nih.gov/pubmed/23109552
https://doi.org/10.1093/database/bat029
https://www.ncbi.nlm.nih.gov/pubmed/23630246
http://docopt.readthedocs.io/en/latest/
http://spacetelescope.github.io/understanding-jsonschema/UnderstandingJSONSchema.pdf
http://spacetelescope.github.io/understanding-jsonschema/UnderstandingJSONSchema.pdf
https://openjsf.org/
http://openpyxl.readthedocs.org/en/default
http://openpyxl.readthedocs.org/en/default
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1007/s11306-018-1356-6
https://www.ncbi.nlm.nih.gov/pubmed/29706851

Metabolites 2023, 13, 842 25 of 25

21. Hildebrandt, G. Metabolomics of Lung Injury after Allogeneic Hematopoietic Cell Transplantation—Colon ICMS. Available
online: https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Project&ProjectID=PR000993 (accessed
on 1 January 2020).

22. Organisation for Economic Co-Operation Development. Draft Advisory Document of the Working Group on Good Laboratory
Practice on GLP Data Integrity. Available online: https://www.oecd.org/env/ehs/testing/DRAFT_OECD_Advisory_Documen
t_on_GLP_Data_Integrity_07_August_2020.pdf (accessed on 1 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Project&ProjectID=PR000993
https://www.oecd.org/env/ehs/testing/DRAFT_OECD_Advisory_Document_on_GLP_Data_Integrity_07_August_2020.pdf
https://www.oecd.org/env/ehs/testing/DRAFT_OECD_Advisory_Document_on_GLP_Data_Integrity_07_August_2020.pdf

	Introduction
	Materials and Methods
	Third Party Packages
	Package Organization and Module Description
	Tagging System
	MESSES JSONized Data and Metadata Representation
	Testing

	Results
	The Command Line Interface and Overall Metabolomics Workbench Deposition Workflow
	Creation of an Example Mass Spectrometry Deposition
	Extraction from Spreadsheets
	Validation of Extracted Data and Metadata
	Conversion into mwTab Formats

	Discussion
	Conclusions
	Appendix A
	Appendix B
	References

