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Abstract— Motivated by the DNA storage paradigm, we con-

sider the torn-paper channel (TPC), which models data storage

in long DNA molecules and breaks the input sequence into a

random number of out-of-order variable-length non-overlapped

fragments. We propose a computationally-efficient code construc-

tion for this model. More specifically, we introduce a family of

nested Varshamov-Tenengolts (VT) codes to merge and sort the

fragments in order to recover the stored data. We numerically

show that our scheme (i) obtains rates that are higher than

in prior results, (ii) has a decoding complexity that is cubic in

the number of codeword fragments, which is significantly lower

than the complexity of the brute-force approach, and (iii) offers

decreasing and negligible error rates as the codeword length

increases. We also propose a new construction for VT codes,

quantify the number of required parity bits, and show that our

approach requires fewer parity bits compared to known results.

Index Terms— DNA storage, sequence assembly, unordered

communication, codeword fragmentation, shuffling channel.

I. INTRODUCTION

T
HE International Data Corporation estimates that by
2025 the global data storage demand will grow

to 175 Zettabytes [1]. Due to this ever-growing demand for
data storage, several alternative storage media have recently
been proposed. In particular, Deoxyribonucleic Acid (DNA)
has received significant attention as a viable medium for
archival data storage. Several results [2], [3], [4], [5], [6],
[7] have presented DNA-based storage prototypes, which as
of now are capable of storing in the order of hundreds of
Megabytes of data. The input binary data is encoded and
mapped onto the four nucleotides in DNA (Adenine, Cytosine,
Guanine, and Thymine), and the DNA molecules are then
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stored in a solution. DNA-based storage has the potential
to provide information densities and information lifetimes
far exceeding what is possible with state-of-the-art technolo-
gies [4], [6].

Currently, synthesizing long DNA molecules is challenging
due to the state of the technology and the resulting higher
error rates and costs [6], [8]. Hence, data is stored on short
DNA molecules in a solution, where the DNA molecules are
spatially out-of-order. This setup has been modeled mathemat-
ically as the shuffling channel, where data is synthesized on
short DNA molecules (strings), and the output of the channel
includes a multi-set of randomly shuffled strings [9], [10],
[11], [12]. The decoder’s goal is to recover the input data.
The information-theoretic capacity of the shuffling channel
is understood [13], and the capacity is achievable through
indexing the short DNA molecules and using the remaining
space for data bits. Additionally, several results have stud-
ied specific aspects of DNA storage caused by noise and
imperfect writing/reading procedures, which lead to insertions,
deletions, and substitutions of nucleotides in individual DNA
molecules [9], [11], [14].

It is then a natural question to ask how the dynamics
of the problem would change if synthesizing long DNA
molecules became technologically and economically viable.
To understand this problem, authors in [15] and [16] intro-
duced the torn-paper channel (TPC) in which a length-n
input data is stored on a long sequence that is then broken
into a random number of out-of-order variable-length non-
overlapped fragments, where the length of each fragment
follows a Geometric(pn) distribution. The breaking of the
input sequence into fragments models either natural breaks of
the physical DNA molecule or fragmentation that is induced by
the sequencing library preparation (e.g., via sonication [17]).
In [15] and [16], the authors derive the capacity of the TPC
and compare it with the capacity of the shuffling channel.
To make this comparison meaningful, the fixed-length strings
in the shuffling channel are assumed to be 1/pn in length. The
capacity expressions are then given by [16]:

CTPC = e�↵, Cshuffle = (1� ↵)+ , (1)

where ↵ = limn!1 pn log2(n) and (x)+ = max(0, x).
A comparison between the capacity expressions reveals an
interesting result as CTPC > Cshuffle, meaning that at least from
a capacity point of view, storing data on long DNA molecules
is advantageous. The capacity boost comes from the tail of
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the geometric distribution, which ensures having the length
of a part of the fragments significantly greater than the
expected value of the length of each fragment (i.e., 1/pn).
Recently, an adversarial TPC has been studied in [18], where
an information string is adversarially broken by a specific TPC
into random fragments such that the length of each fragment
is bounded. The findings in [18] show that the capacity of
this channel is determined by the upper-bound of pn. There-
after, [19] assumes partial overlap between read sub-strings in
the adversarial TPC and extends the code reconstruction in two
ways: First, for a single string, [19] establishes an upper bound
on achievable code rates and develops an efficient construction
with asymptotically optimal rates. Next, in the second case,
it studies a scenario involving multiple strings reconstructed
together. The authors in [19] also derive a lower bound on the
length of the read sub-strings and present two constructions
for multi-strand reconstruction codes. Further, motivated by
nanopore sequencing, a TPC with lost pieces is studied in [20]
wherein a fraction of the fragments do not appear at the output.

The main challenge in the TPC is reassembling the original
string in a computationally-efficient manner in order to recover
the input data. The capacity in [15] and [16] was achieved
via random coding, which is computationally prohibitive. One
natural idea is to include “signatures” within the codeword
to enable simpler reassembly as suggested in [16]. More
precisely, the authors in [16] propose interleaving a de Bruijn
sequence within the codeword, which achieves a rate in the
order of e�4↵, which is lower than e�↵ (the TPC capacity).
We refer to the rate obtained in [16] through the interleaved-
pilot scheme as the lower-bound achievable rates in the rest of
this paper. Another thought is to use code constructions that
could inherently reveal the position of a fragment (assuming it
is long enough) without mixing other sequences. The authors
in [21] present a more practical encoding/decoding mechanism
based on an embedded structure of Varshamov-Tenengolts
(VT) codes to recover data from the output of the TPC.
However, the results of [21] are limited to ↵ = 0 (i.e., capacity
is 1). In this paper, we aim to consider the full range of ↵
and propose practical codes to encode/decode the input data
bits in the TPC. We will further explain how the results can
be extended to a 4-letter alphabet in the nucleotide domain
in section VI. In general, code construction for the TPC,
and more broadly, out-of-order media, remains an interesting
coding challenge.

Our contribution includes the following. We focus on the
entire range for ↵ (i.e., ↵ � 0) and present a family of
nested Varshamov-Tenengolts codes for reassembling out-of-
order codeword fragments. In particular, we merge multiple
individual VT codewords with unique residues into a new
VT codeword and repeat this process to arrive at the final
codeword to be stored in the DNA molecule. We show
numerically that the rate obtained by our proposed method
is in the order of e�1.65↵, which is higher than the lower-
bound rate in [16]. Further, we define decoding complexity as
the number of permutations that the decoder uses to determine
the original data sequence. We present two decoding strategies:
(i) a greedy algorithm, which aims to reassemble the entire
sequence, and (ii) an opportunistic algorithm, which first finds

the exact locations of larger fragments with high confidence
and then fills up the remainder using the greedy algorithm. The
results show that our method significantly reduces the com-
putational complexity compared to the brute-force approach,
which checks all the possible permutations. In particular, the
complexity of our approach grows in proportion to M3, while
the brute-force method’s complexity approximately increases
as MM , with M being the number of fragments. Moreover,
we show through the simulations that our encoding/decoding
scheme provides negligible error rates as the codeword length
increases. Finally, we present a new construction for individual
VT codewords with linear complexity that needs fewer parity
bits compared to prior results [22].

The rest of the paper is organized as follows. In Sections II
and III, we formulate the problem and summarize VT codes,
respectively. In Sections IV and V, we explain our proposed
encoder and decoder, respectively. In Section VI, we explain
how the results can be extended to a 4-letter alphabet. Then,
we provide details on why our encoding/decoding scheme
contains nested VT code and erasure code in Section VII.
We show our simulation results in Section VIII, and Section IX
concludes the paper.

II. PROBLEM SETTING

Our goal is to create practical codes for DNA data storage
modeled as the TPC depicted in Fig. 1 in order to reliably
communicate input message W chosen uniformly at random
from {1, 2, . . . , 2nR

}.
The TPC can be described as follows [16]. The channel

first breaks the (binary) length-n input sequence, x, into M
random-length non-overlapped fragments (where 1 M  n
is random itself), and then shuffles these fragments resulting
in an out-of-order multi-set of output fragments. We use yj ,
Lj , and S(x) = {y1, y2, . . . , yM} to denote the jth output
fragment, its corresponding length, and the multi-set of all
fragments (i.e., channel output), respectively. We note that
M = 1 implies that the input sequence has gone through the
TPC perfectly (i.e., no error).

We assume that L̄1, L̄2, . . . is an independently and iden-
tically distributed (i.i.d.) (infinite) sequence of Geometric(pn)
random variables. Then M is defined as the largest integer
such that

PM�1
j=1 L̄j  n � 1. Finally, we set Lj = L̄j for

j = 1, . . . ,M � 1 and LM = n�
PM�1

j=1 L̄j . Notice that, due
to the truncation, the resulting distribution of the fragment
lengths is not technically Geometric (since it is bounded by
n). However, for large n, they are very close to Geometric.

Finally, we assume the decoder is aware of the statistics of
the channel, i.e., knows pn, and uses S(x) to find an estimate
Ŵ of the input message W . An error occurs if Ŵ 6= W , and
the probability of decoding error is equal to:

en = Pr
n

Ŵ 6= W
o

. (2)

We say that rate R is achievable if there exist encoders and
decoders such that en ! 0 as n!1. Then, the capacity of
the TPC is defined as the supremum of all achievable rates.
However, proving en ! 0 is challenging due to the intricate
nature of our code construction for the TPC.
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Fig. 1. The torn-paper channel breaks the input sequence, x, into a random number of variable-length non-overlapped fragments.

In light of this challenge, we provide practical insight into
the problem of reconstructing the out-of-order data fragments.
To address this, we propose a family of practical nested VT
codes to encode/decode the data bits for finite block lengths
and use simulations to evaluate the performance. Our main
goal is to create a code that reduces errors as much as
possible, ideally approaching zero. In real-world scenarios,
there is a trade-off between the computational complexity of
encoding and decoding associated with the code and the error
rate. Hence, in this paper, we aim to design our code with
acceptable error rate and complexity. As a result, we call R,
for which the error rate is evaluated through numerical analysis
as a computed rate to distinguish it from the achievable rate
defined above.

III. BACKGROUND ON VARSHAMOV-TENENGOLTS CODES
AND A NEW CONSTRUCTION

In this part, we present a summary of Varshamov-Tenengolts
(VT) codes, which were initially introduced for asymmetric
Z-channels in [23] as given below. We then propose a new
VT code construction that we will use in the rest of the paper.

Definition 1 [22]: For 0  r  n, the Varshamov-
Tenengolts (VT) code, VTr(n), is a set of binary encoded
strings with length n, which is given by:

VTr(n) =
n

x 2 {0, 1}n :
nX

i=1

ixi ⌘ r mod (n + 1)
o

, (3)

where xi is the ith element of x, the sum is evaluated as an
ordinary integer summation, and r is referred to as the residue.

In [24], it was shown that VT codes could correct single
deletions in the data bits, and in fact, VT codes have been
used in deletion channels extensively [25], [26], [27], [28],
[29]. In [22], the author describes a VT encoder that generates
codeword x from data bits d (d is a binary representation of
input message W ) with linear complexity. More precisely, [22]
constructs VT codeword x as:

x = [d p], (4)

where d is the data bits with length nd, p is the parity bits
with length np, and np equals to:

np =

&r
2nd +

9
4

+
1
2

'
, (5)

where d.e is the ceiling function.

1) New VT Construction: We introduce a new construction
for an individual VT code as it will form the building block
of our nested structure. The following lemma quantifies the
number of parity bits in our VT code construction. We also
provide a detailed description of how our VT encoder obtains
parity bits p with linear complexity in Appendices B and C.

Lemma 1: Given any data-bit sequence of length nd, it is
possible to construct a VT codeword following (3) with length
n and residue 0  r  n, where n = nd + np for np =lq

2nd + 1
4 + 1

2

m
.

Proof: The proof is deferred to Appendix A. ⇤
According to Lemma 1, our proposed VT construction

requires fewer parity bits than (5).

IV. PROPOSED NESTED VT ENCODER

In this work, we merge and stack individual VT codes with
unique residues in several layers to outline our `-layer nested
VT code. We use superscript (l), 1  l  ` to denote the
parameters in the lth layer of the nested VT code.

We design our `-layer encoder to map the input data bits,
d, with length nd = m`�1dsec into codeword x of length n,
where dsec, `, and m are integer encoding parameters, which
affect the computed rate, decoding complexity, and error rate.
We derive upper and lower bounds on the rate associated with
the nested VT code and describe how to select the encoding
parameters in Section VII. Here, our proposed nested VT
encoder applies the following steps to create x:

A. Breaking Input Data Bits d Into m`�1 sections
The proposed nested VT encoder considers d with length

nd as the input data bits. Our nested VT codeword includes
` layers, and in each layer, m VT codewords are merged to
form a new data section in the following layer. Thus, we need
m`�1 data sections in the first layer. We assume that data
sections in the first layer possess identical lengths denoted as
dsec, ensuring a consistent framework for further operations.
As a result, we have nd = m`�1dsec, and we break d into
m`�1 individual data sections to create the equal-length data
sections;

B. Encode Each Data Section
In this step, we encode the ith data section in the lth layer,

d
(l)
i , 1  l  `, 1  i  m`�l, to x

(l)
i , the ith VT codeword in

the lth layer with residue, r(l)
i = i � 1, by following the VT

codeword construction in (4) as:

x
(l)
i = [d(l)

i p
(l)
i ], 1  l  `, 1  i  m`�l, (6)
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Fig. 2. Our proposed nested VT encoder with ` = 4 and m = 2.

where p
(l)
i represents the parity bits of the ith VT codeword

in the lth layer with length p̃l and p̃l =
lq

2ñl�1 + 1
4 + 1

2

m

using Lemma 1. We use ñl to denote the length of x
(l)
i , where

ñl = m⇥ ñl�1 + p̃l and ñ0 = dsec;

C. Merging the Codewords
In layer l, 1  l  `� 1, we merge every m VT codewords

to create a new data section for layer l+1. Specifically, we set:

d
(l+1)
i = [x(l)

i , x
(l)
i+1, . . . , x

(l)
i+m�1], 1  i  m`�l�1. (7)

This way, the number of data sections is reduced by a factor of
m in each layer. Then, we use the same approach to encode the
data sections in the new layer. Ultimately, the VT codeword
of layer ` will be the output of the nested VT encoder (i.e.,
x = x

(`)
1 ). Fig. 2 depicts an example of the nested VT encoder

with ` = 4 and m = 2.
Notice that [21], [30] propose a quasi-systematic VT

encoder for a single VT code by placing the parity bits at
positions 2i, i = 0, 1, . . . , log2(n), which requires log2(n) +
1 parity bits. However, this method is limited to scenarios with
data lengths of 2k

� k � 1, where k is an integer and k � 2,
while in this paper, we generate VT codes in different layers
using variable-length data bits.

As we discussed above, r(l)
i = i � 1, 1  l  `, 1  i 

m`�l, meaning that max
l,i

{r(l)
i } = r(1)

m`�1 = m`�1
� 1. On the

other hand, according to Lemma 1, 0  r(1)
m`�1  ñ1. As a

result, we need the following condition to ensure the feasibility
of encoding each data section with a unique residue:

ñ1 � m`�1
� 1. (8)

We use Algorithm 1 to describe how our proposed encoder
works. First, we break d into m`�1 sections. Next, in each
encoding layer, we do the following tasks: (1) For all data
sections, we encode d

(l)
i to VT codeword x

(l)
i based on residue

r(l)
i = i � 1; (2) If l 6= `, we merge every m VT codewords

together to create a new data section for the next layer. Finally,
we define the output of the last layer as the nested VT
codeword.

We provide an example in Fig. 3 with ` = 2, m = 2, and
dsec = 7 (i.e., nd = 14) to illustrate our nested VT encoder.
We first break d into two sections as d

(1)
1 and d

(1)
2 . Then,

we apply VT codes with r(1)
1 = 0 and r(1)

2 = 1 to d
(1)
1 and

d
(1)
2 , respectively, to obtain x

(1)
1 and x

(1)
2 in the first layer.

Then, we merge x
(1)
1 and x

(1)
2 to construct d

(2)
1 in the second

Algorithm 1 Encoding Algorithm
Input: d;
Output: x;

1: Break d into m`�1 sections;
2: for l 2 [1, `] do

3: for i 2 [1, m`�l] do

4: Encode d
(l)
i to x

(l)
i using r(l)

i = i� 1;
5: if l 6= ` then

6: Merge every m codewords to create a new data
123456section for layer l + 1;

7: x = x
(`)
1 is the nested VT codeword.

Fig. 3. An example of the nested VT encoder when ` = 2, m = 2, and
dsec = 7.

layer. Finally, we apply a VT code with r(2)
1 = 0 to attain

x = x
(2)
1 as the nested VT codeword.

V. PROPOSED NESTED VT DECODER

We aim to merge and sort the out-of-order codeword frag-
ments, create a combination of them that satisfies (a subset
of) the VT conditions in different layers, and recover the input
data. We name this combination x̂ as an estimated version of
x, and then remove the parity bits from x̂ to recover d̂.

We propose two decoding strategies in this work to obtain x̂:
(i) a greedy algorithm that scans all fragments to merge and
sort them and then reassemble the entire codeword. Based
on Fig. 4, in each round of decoding, it seeks to add one
fragment to the current sequences and keeps the sequences
that satisfy a subset of the VT conditions in different layers;
(ii) an opportunistic algorithm that defines the sufficiently large
fragments (SLFs), determines (with high confidence) the exact
location of each SLF, and uses the greedy algorithm to fill up
the remainder, as shown in Fig. 4. Ultimately, after finding
x̂, both decoding strategies remove the parity bits from x̂

to recover d̂. We will show later in Section VIII that the
opportunistic algorithm provides lower complexity than the
greedy algorithm.

A. Opportunistic Algorithm
To track the fragments during the decoding process, we allo-

cate M labels as yj , j = 1, 2, . . . ,M to the fragments. In this
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Fig. 4. Decoding strategies based on the proposed greedy and opportunistic algorithms.

part, we demonstrate the details of the opportunistic algorithm.
To do so, we first define some useful parameters.

Nl,i: It denotes the position of the last bit in x
(l)
i , 1  l 

`, 1  i  m`�l. Based on the nested VT code structure, up to
Nl,i, there are i codewords in layer l with length ñl, and the
parity bits of some possible codewords in the layers above l.
Hence, Nl,i can be determined as follows:

Nl,i =

8
>><

>>:

iñl +
`�1X

l0=l+1

✓⇠
i

ml0�l

⇡
� 1

◆+

p̃l0 , 1  l < `� 1,

iñl, `� 1  l  `.

(9)

1) Sufficiently Large Fragments (SLFs): We divide S(x)
into two subsets: (i) S1(x), which contains the SLFs, and each
SLF is required to be long enough to guarantee that at least
m0 codewords from layer 1 are fully inside the SLF, for some
m0 such that 2  m0

 m`�1. The SLF can be located either
at the beginning/in the middle or at the end of the nested
VT code. Therefore, the minimum length of an SLF can be
expressed as:

L̃(m0) = max
n

L̃1(m0), L̃2(m0)
o

, (10)

where L̃1(m0) is the minimum length of an SLF, if it is
available at the beginning/in the middle of the nested VT code.
Here, we have:

L̃1(m0) = max
1jm`�1�m0

{N1,j+m0 �N1,j + ñ1 � 1} . (11)

If the SLF is located at the end of nested VT code, its
minimum length is equal to L̃2(m0), which is defined as
follows:

L̃2(m0) =
X̀

l0=2

p̃l0 + N1,m`�1 �N1,m`�1�m0+1 + ñ1; (12)

(ii) S2(x), which includes the non-SLFs having the length
smaller than L̃(m0).

2) High-Level Overview of Finding the Exact Location of
Each SLF: Our decoder wishes to obtain P ⇤j as the exact
location of yj 2 S1(x). The main idea is to extract the starting
points j0 in the fragment, for which yj meets all possible VT

conditions after yj,j0 with respect to Lj , where yj,j0 is the j
0th

bit of yj . We save these starting points, and if only one of them
leads to the highest number of satisfied VT conditions, we call
it j

0⇤ and use that to determine P ⇤j ; else, we declare that the
decoder fails to find the exact location of yj .

We explain how our decoder obtains P ⇤j with high confi-
dence in Algorithm 2. We provide further details below.

In Algorithm 2, we create ȳ with length ñ1 starting from
yj,j0 , 1  j0  Lj �m0ñ1 +1. Next, we compute r̄� 1 as the
residue of ȳ and consider ⌫ = 1 as the number of satisfied VT
conditions. Then, in line 5 to 12, we focus on the other possible
VT codewords in yj after ȳ. Specifically, while r̄ < m`�1

�

m0+ 2, ⌫ � 1, and j0+ (N1,r̄+1�N1,r̄�⌫+1) + ñ1� 1  Lj ,
we do the following: (1) define N̄ = (N1,r̄+1 � N1,r̄�⌫+1)
as the location where the new VT codeword begins; (2)
create a new ȳ from yj,j0+N̄ ; (3) if the residue of ȳ is equal
to r̄, we increase ⌫ and r̄ by one; else, we set ⌫ = 0,
meaning that it cannot satisfy the VT condition of the new
codeword, and this breaks the while loop. Next, if ⌫ � m0,
we consider a new row of matrix P as [j0 r̄ ⌫]. Then, we define
P
⇤ as the rows of P with the highest value of ⌫. Finally,

if P
⇤ includes one row, we calculate P ⇤j = N1,r̄⇤�⌫⇤+1 �

ñ1 + 2 � j0⇤ as the exact location of yj ; otherwise, we set
P ⇤j = �1 and the algorithm fails to find the exact location
of yj .

In Fig. 5, we show an example of how Algorithm 2
determines the exact location of each SLF. We assume a
codeword with length 41, generated from a 2-layer nested VT
encoder with m = 4 and dsec = 4, which is broken into three
fragments by the TPC. First, we assign random labels to each
fragment. Next, we consider m0 = 2, resulting in L̃(2) =
25 and consequently y1 is an SLF since L1 = 28 > 25.
Algorithm 2 then starts with j0 = 1, defines ȳ, and computes
r̄ and ⌫ for ȳ, which are equal to 5 and 1, respectively. Since
r̄ = 5 violates the condition of the while loop in Algorithm 2
(line 5), j0 = 1 cannot lead to the correct location. Therefore,
the algorithm increases j0 by one and repeats the process. This
process continues until j0  13. As Fig. 5 shows, j0 = 7 is the
only case that meets ⌫ � m0 and leads to r̄ = 3 and ⌫ = 2.
As a result, we have P

⇤ = [7 3 2], meaning that the exact
location of y1 is equal to 3.
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Fig. 5. An example of finding the exact location of an SLF in Algorithm 2 when n = 41, M = 3, ` = 2, m = 4, and dsec = 4.

Algorithm 2 Exact Location Algorithm for yj

Input: yj ;
Output: P ⇤j ;

1: for j0 2 [1, Lj �m0ñ1 + 1] do

2: ȳ = [yj,j0 , yj,j0+1, . . . , yj,j0+ñ1�1];
3: r̄ � 1 = residue of ȳ;
4: ⌫ = 1;
5: while j0 + (N1,r̄+1 � N1,r̄�⌫+1) + ñ1 � 1  Lj ,

1234r̄ < m`�1
�m0 + 2, and ⌫ � 1, do

6: N̄ = (N1,r̄+1 �N1,r̄�⌫+1);
7: ȳ = [yj,j0+N̄ , . . . , yj,j0+N̄+ñ1�1];
8: if residue of ȳ = r̄ then

9: ⌫  ⌫ + 1;
10: r̄  r̄ + 1;
11: else

12: ⌫ = 0;
13: if ⌫ � m0

then

14: New row of P = [j0 r̄ ⌫];
15: P

⇤ = Rows of P with the highest value of ⌫;
16: if P

⇤ is a vector (i.e., P
⇤ = [j0⇤ r̄⇤ ⌫⇤]) then

17: P ⇤j = N1,r̄⇤�⌫⇤+1 � ñ1 + 2� j0⇤;
18: else

19: P ⇤j = �1 (i.e., The algorithm fails.)

3) Candidate Combination (CC): Suppose � is a sequence
generated from the elements of S(x), with the goal of con-
structing either a part or the entirety of x̂, starting from the
beginning of x̂; specifically, � aims to be equal to the first �
bits of x̂, where � denotes the length of � and is obtained as
follows:

� =
X

j02Y�

Lj0 , Y� =
�
j0 2 {1, 2, . . . ,M} |yj0 2 �

 
. (13)

Then, we check the VT condition of every codeword
x
(l)
i , 1  l  `, 1  i  m`�l corresponding to Nl,i if

Nl,i  �. Finally, we call � a CC if it satisfies VT conditions
for all the above codewords and � < P ⇤j ,8j 2 S1(x)� �.

We provide an example to make the definition of a CC
clear. Consider dsec = 24, m = 2, ` = 4, and � is a
sequence of some fragments in S(x) with length � = 153.
Based on (9), we have N1,1 = 32, N1,2 = 64, N1,3 =
108, N1,4 = 140, N2,1 = 76, and N2,2 = 152, which are
smaller than � = 153. Therefore, if � meets VT conditions
of x

(1)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 , x

(2)
1 , and x

(2)
2 , and � < P ⇤j ,8j 2

S1(x)� �, it will be a CC.
Remark 1: We note that any sequence � that is generated

from the elements of S(x) with length � is also a CC if � <
P ⇤j ,8j 2 S1(x) � � and � is less than N1,1 (the position of
the last bit in x(1)

1 ) since it includes no codeword and needs
to wait for other fragments in future steps.

Remark 2: For consistency, we consider � = � (empty
sequence) as a CC in the first round of decoding.

4) Helpful Fragment: We say yj with length Lj is a helpful
fragment if the combination of yj and any CC creates a
new CC.

5) Limited Memory: If the TPC breaks x into a large
number of fragments, our decoder requires checking a vast
number of possible cases, resulting in high computational
complexity. To tackle this issue, we define a limited memory
with parameter ⌧ 2 Z+. After every ⌧ iterations, our decoding
algorithm keeps the CCs with the highest number of satisfied
VT conditions. If the algorithm cannot resume with any of the
kept CCs in the subsequent iterations, it increases ⌧ by one
and repeats the process. Our simulation results show that this
method reduces the complexity of our approach significantly
compared to a brute-force search, see Section VIII.

6) High-Level Overview of the Opportunistic Algorithm:
We use Algorithm 2 to find the exact location of the SLFs.
Then, it runs multiple rounds of a searching algorithm between
all fragments to find x̂, which satisfies all VT conditions.
In the first round, it searches through all fragments to
get helpful fragment(s) and consequently CCs. Then, the
decoder seeks to detect new helpful fragment(s) to merge
with CCs to create new longer CCs. Finally, the decoder
finds x̂ if it is a CC with length n. When our decoder
obtains x̂, the rest of the decoding procedure will be simple.
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In particular, the decoder removes the parity bits from x̂ to
get d̂.

In Algorithm 3, we demonstrate how our proposed nested
VT decoder performs the decoding procedure.

Algorithm 3 Decoding Algorithm
Input: S(x), S1(x), S2(x);
Output: d̂;

1: ⌧ = 1;
2: for yj 2 S1(x) do

3: Run Algo. 2 to calculate P ⇤j ;
4: if P ⇤j 6= �1 then

5: Save P ⇤j ;
6: else

7: Transfer yj from S1(x) to S2(x);
8: K = 1; �1 = �; �1 = S(x); ⌧ 0 = 0;
9: Rep = 0;

10: for k 2 [1, K] do

11: for yj 2 �k do

12: if yj is a helpful fragment then

13: Rep Rep + 1;
14: �K+Rep = [�k yj ] is a new CC;
15: �K+Rep = S(x)� �K+Rep;
16: if Length �K+Rep = n then

17: x̂ = �K+Rep;
18: Go to line 30;
19: Delete �k and �k, 1  k  K;
20: ⌧ 0  ⌧ 0 + 1;
21: if ⌧ 0 � ⌧ then

22: Save the CC(s) with the highest number of satisfied
123VT conditions;

23: ⌧ 0 = 0;
24: K = Rep;
25: if K = 0 then

26: ⌧  ⌧ + 1;
27: Go to line 8;
28: else

29: Go to line 9;
30: l = `
31: while l > 1 do

32: for i 2 [1, m`�l] do

33: Omit parity bits from x̂
(l)
i to get d̂

(l)

i ;
34: d̂

(l)

i = [x̂(l�1)
i , x̂

(l�1)
i+1 ,. . . , x̂

(l�1)
i+m�1];

35: l l � 1;
36: Decode d̂

(1)

i from x̂
(1)
i 8 1  i  m`�1;

37: Merge m`�1 data sections, as d̂.

We initialize the algorithm using ⌧ = 1. Next, for each
SLF, we run Algorithm 2 to obtain its exact location. If the
algorithm finds the exact location, we save its location; other-
wise, we transfer that SLF from S1(x) to S2(x). Then, we set
K = 1, �1 = �, �1 = S(x), and ⌧ 0 = 0, where K is the
number of CCs, �k, 1  k  K illustrates the kth CC, �k =
S(x)��k, and ⌧ 0 is an index that follows the limited memory.
Thereafter, we define Rep, initialized to zero, to denote the
number of new CCs constructed by merging �k and helpful

fragments. Then, for each �k, we search between all yj 2 �k

to find the helpful fragments. For each yj , we merge yj with
�k (i.e., [�k yj ]) and check if [�k yj ] is a CC utilizing S1(x)
and the exact locations of the SLFs. Then, if [�k yj ] is a
CC, meaning that yj is a helpful fragment, we increase Rep
by one, add �K+Rep = [�k yj ] as a new CC, and consider
�K+Rep = S(x) � �K+Rep. Next, we check the length of
�K+Rep. If its length is equal to n, we say x̂ = �K+Rep and
go to line 30. After checking all CCs, we remove the first K
CCs and their corresponding �’s because these K CCs have
created new CCs with more elements in lines 10 to 18. Then,
in line 20, we increase index ⌧ 0 by one and check whether
we have used the whole memory or not. If so, we keep only
the CC(s), which provide the highest number of satisfied VT
conditions and put ⌧ 0 = 0. Next, we use K = Rep as the
number of remained CCs. If K = 0, we realize that no CC
met the VT conditions using limited memory ⌧ . Hence, we set
⌧ = ⌧+1 and restart the decoding procedure. Otherwise, we go
to line 9 and continue with the remained CCs.

We remove the parity bits of x̂ in lines 30 to 37. Specifically,
we set l = ` and while l > 1, do the following: For the ith

codeword in the lth layer, where 1  i  m`�l, we remove the
parity bits from the end of x̂

(l)
i to decode d̂

(l)

i . In the next line,
we break d̂

(l)

i into m sections and consider each section as a
codeword of layer l�1. Next, we decrease l by one and repeat
lines 32 to 34. Then, we recover m`�1 data sections of layer
1 by removing the parity bits from corresponding codewords
in layer 1. Finally, we merge these m`�1 data sections and
obtain d̂.

In Fig. 6, we illustrate a decoding example based on the
opportunistic algorithm, where x is the same as the nested
VT codeword in Fig. 5, and the TPC breaks it into M = 3
different fragments. The decoder first obtains that y1 is an
SLF and then applies Algorithm 2 to find the exact location
of y1, which is P ⇤1 = 3. Thereafter, it follows Algorithm 3
to attain a CC with length n = 41, which satisfies all
VT conditions. Specifically, in round 1, after initializing the
decoding parameters, it scans all the fragments to determine
the helpful fragments. As the figure shows, only y3 is a helpful
fragment; thus, it set Rep = 1,�2 = [y3], and �2 = {y1, y2}.
In the second round, the algorithm deletes �1 and �1 and
repeats the decoding procedure. This round reveals that y1 is
a new helpful fragment, and thus we update the decoding
parameters accordingly. Finally, in round 3, the opportunistic
algorithm identifies x̂ = �2 = [y3 y1 y2] with length 41 meets
all VT conditions, and hence declares it as the estimation of x.

Remark 3: In the greedy algorithm, we set S1(x) = � (i.e.,
S2(x) = S(x)), which results in skipping Algorithm 2, and
then implement Algorithm 3 to decode the data bits.

VI. EXTENSION TO A 4-LETTER ALPHABET

As we mentioned earlier, the TPC is motivated by DNA-
based data storage, where data is stored in the nucleotide
domain characterized by a 4-letter alphabet (A, T, G,
and C). In [21], the authors devise a low-complexity encod-
ing/decoding scheme based on VT codes that suits the 4-letter
alphabet in DNA-based data storage. In this section, we follow
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Fig. 6. An example of the opportunistic decoding algorithm when n = 41, M = 3, ` = 2, m = 4, and dsec = 4.

Fig. 7. Our proposed encoder for a 4-letter alphabet.

the methodology in [21] and explain how our proposed nested
VT encoding/decoding scheme in the binary domain can be
extended to a 4-letter alphabet.

A. 4-Letter Alphabet Encoder

We consider data bit string d in binary domain with length
2nd as the input data bits. Then, we use our nested VT
encoder, described in Section IV, to build the new encoder.
Fig. 7 depicts our proposed encoder for a 4-letter alphabet.
The process is as follows:

1) Dividing Input Data Bits: We divide data bit string d

into two data bit sub-strings, d
[1] and d

[2], each containing nd

bits;
2) Encode Each Sub-String: We apply our nested VT

encoder to encode d
[1] and d

[2] individually. We use x
[1] and

x
[2] to denote the nested VT codeword sub-strings correspond-

ing to d
[1] and d

[2], respectively;
3) Concatenate x[1] and x[2] and Map to a 4-Letter Alpha-

bet: Finally, we place x
[1] on top x

[2] and map every two bits
with the same location in different sub-strings, as shown in

Fig. 7, into one letter exploiting the following mapping rule:
00! A, 01! T, 10! G, and 11! C. Here, x

D represents
the n-length codeword in a 4-letter alphabet.

B. 4-Letter Alphabet Decoder

Based on Fig. 8, the TPC randomly breaks codeword x
D

into M out-of-order fragments. To recover x̂
D, the estimated

version of x
D, we first assign M labels as y

D
j , j = 1, 2, . . . ,M

to the fragments and use Lj to denote the length of y
D
j , the jth

fragment. Next, we define S(xD) as a multi-set that includes
all fragments. Thereafter, we map all the fragments in S(xD)
back to the binary domain and use y

[1]
j and y

[2]
j as the binary

equivalent of the codeword sub-strings in y
D
j . This mapping

results in S
�
x
[1], x

[2]
�
, which denotes a multi-set that contains

the fragments in binary. Here, y
[1]
j , y

[2]
j , and y

D
j have the

same length, i.e., Lj . This is due to the fact that each letter
in y

D
j comprises two bits, one from y

[1]
j and the other from

y
[2]
j . Hence, the decoder considers {y

[1]
j , y

[2]
j } as a pair and

processes them such that, in a given solution, both y
[1]
j and

y
[2]
j occupy the same position within different codeword sub-

strings.
Similar to the nested VT decoder in the binary domain,

we have two decoding strategies for a 4-letter alphabet as
shown in Fig. 8: (i) greedy algorithm and (ii) opportunistic
algorithm, where the former scans all fragments to merge
and sort them and then reassemble the entire codeword, and
the latter initially finds the exact location of each SLF with
high confidence and uses the greedy algorithm to fill up
the remainder. The ultimate aim of these decoding strategies
is to find two reconstructed sequences x̂

[1] and x̂
[2] as the

estimated version of nested VT codeword sub-strings x
[1] and

x
[2], respectively, such that both sequences include the same

order of binary fragments, e.g., with M = 3, we have x̂
[1] =

[y[1]
1 , y

[1]
3 , y

[1]
2 ] and x̂

[2] = [y[2]
1 , y

[2]
3 , y

[2]
2 ]. After obtaining x̂

[1]
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Fig. 8. Our proposed decoding strategies based on the greedy and opportunistic algorithms for a 4-letter alphabet when M = 3.

and x̂
[2], we remove parity bits from each codeword sub-string

individually to get d̂
[1]

and d̂
[2]

. Consequently, we put d̂
[1]

and
d̂

[2]
in a row to recover d̂ as the estimated version of d.

The decoding parameters are mostly the same as what we
explained in Section V, except for the definition of satisfying
VT conditions. As we mentioned above, our decoder processes
y
[1]
j and y

[2]
j together; therefore, we say VT conditions are

satisfied if the VT conditions in both codeword sub-strings
are satisfied simultaneously.

VII. ERASURE CODE AND NESTED VT CODE

Ideally, we would like to recover x perfectly; however,
for various reasons, we may not be able to obtain a unique
sequence as the output of the decoder. A simple reason would
be some of the fragments could fit at different positions, and
this results in multiple reassembled sequences as the outputs
of the nested VT decoder that satisfy all VT conditions. While
this may seem like an error at first glance, we take the overlap
of all the outputs as the final reassembled sequence, and our
simulations show this if treated with care, will result in a
correct reconstruction with high probability. Of course, taking
the overlap results in some missing pieces, which can be
viewed as erasures. For instance, in Fig. 9, the TPC breaks
codeword x into M = 7 different fragments, in which two
fragments contain only one bit each. By using our nested VT
decoder, we obtain two strings ⇧1 and ⇧2, both of which
meet all VT conditions, and removing the parity bits results
in two distinct decoded data bits as d̂1 and d̂2. However,
we take the overlap between d̂1 and d̂2 and conclude that

d̂ = [1 1 0 1 0 1 1 E E 1 E 1 E 1] is the recovered data bits
where E denotes the erasure.

To handle these erasures, as Fig. 10 shows, we first apply
an erasure code to the data bits before feeding the sequence
to the nested VT encoder. We note that since our nested VT
code preserves the data structure (i.e., it places parity bits at
the end of each codeword), we can apply the erasure code
before our proposed encoder, and data recovery requires an
erasure decoder at the end. This way, the total rate of our
scheme with erasure and nested VT codes is equal to:

Rt = (1� ✏)R, (14)

where (1� ✏) is the erasure code rate. We use the lower and
upper bounds on the computed rate, as (15) (in the middle of
the next page), and the derivation is given in Appendix D.

m`�1dsec✓
m

`�1
2
p

dsec +
p

2.5
2

m
`
2�1p
m�1

◆2

< R <
2m`�1dsec✓

m
`�1
2
p

2dsec + m
`
2�1p
m�1

◆2 . (15)

A. Encoding Parameter Selection

In order to set the values of the various parameters in our
proposed encoder, one goal is to have a computed rate below
the capacity of the TPC, i.e., Rt  CTPC. Moreover, to ensure
each codeword has a unique residue, from (8), we need ñ1 �

m`�1
�1. Further, our simulation findings reveal how different
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Fig. 9. An example of having more than one decoded data bits when n = 32, M = 6, ` = 2, m = 2, and dsec = 7.

Fig. 10. Our proposed encoder/decoder scheme includes erasure and nested VT codes.

values of `, m, and dsec affect the computed rate, complexity,
and error rate as shown in Table I when n ⇡ 210, ↵ = 0.05,
and ✏ = 0.01. Based on Table I, the error rate, which is attained
via simulations, is minimized if dsec is equal to the minimum
possible value satisfying ñ1 � m`�1

� 1. Also, the error rate
and the decoding complexity are reduced by increasing m and
decreasing dsec when ` is constant. Similarly, if m is fixed,
the error rate decreases by increasing ` and reducing dsec.
However, increasing m and ` negatively affects the computed
rate, and raising ` reduces the computed rate much faster than
increasing m. In addition, there is no specific trend for error
rate and complexity when dsec is fixed, and m and ` vary.
As a result, we provide Algorithm 4 to determine the encoding
parameters. Initially, we consider ✏0 = 0 as the initial value
of ✏. Next, we use ` = 2 and m = 2 and then set dsec as
its minimum possible value. Then, we compute R using `,
m, and dsec and set ✏ = (1� CTPC/R)+ + ✏0 to set Rt 

CTPC. Next, we calculate the error rate. If the error rate is
acceptable, we declare the current values of ✏, `, m, and dsec

as the encoding parameters. Otherwise, if m < mmax where
mmax is the maximum value of m, we increase m by one and
go to line 3. If m � mmax and ` < `max where `max is the
maximum value of `, we increase ` by one, set m = 2, and
go to line 3. Finally, if raising ` and m does not result in an
acceptable error rate, we set ✏0  ✏0 + 0.1 and go to line 2.

Fig. 11 compares the rate of our approach (i.e., erasure
code + nested VT code) with nested VT code, the capacity of
the TPC, and the lower-bound derived in [16] using de Bruijn
sequences. We observe that our approach outperforms the
interleaved-pilot scheme [16]. More precisely, our approach
offers the computed rate equal to 0.86e�1.65↵ using the curve
fitting toolbox in MATLAB, which is greater than the rate in
the order of e�4↵ in [16].

TABLE I
HOW DIFFERENT VALUES OF `, m, AND dsec CHANGE THE COMPUTED

RATE, COMPLEXITY, AND ERROR RATE

Fig. 11. A rate comparison between the nested VT code+erasure code,
lower-bound of [16], nested VT code, and TPC capacity.

VIII. SIMULATION RESULTS

This section presents the simulation results of our work,
which are done in MATLAB. We first compare the per-
formance of our layered framework with the most related
benchmark in [21]. Then, we analyze the error rate and com-
plexity of our proposed encoding/decoding scheme. As our
final step, we compare the complexity of our decoding
strategies.
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Fig. 12. A comparison between our nested VT code with ` � 2 and the embedded VT code [21] with ` = 1 in terms of (a) computed rate and (b) error
rate when n 2 {210, 212, 214}, ↵ = 0.05, and ✏ = 0.01.

Algorithm 4 Encoding Parameter Selection Algorithm
Input: d, CTPC, mmax, `max;
Output: `, m, dsec, ✏;

1: Set ✏0 = 0;
2: Set ` = 2 and m = 2;
3: Set dsec as its minimum possible value;
4: Compute R using `, m, and dsec;
5: Consider ✏ = (1� CTPC/R)+ + ✏0;
6: Generate x using d and Algorithm 1;
7: Calculate the error rate;
8: if the error rate is acceptable then

9: `, m, dsec, ✏ are the desired parameters;
10: else

11: if m < mmax then

12: m m + 1, go to line 3;
13: else if m � mmax and ` < `max then

14: ` ` + 1, m = 2, go to line 3;
15: else

16: ✏0  ✏0 + 0.1, go to line 2;

A. Simulation Setup

We assume input data bits d is a random binary string
wherein each element is an i.i.d. Bernoulli(1/2) random vari-
able. Moreover, we consider the length of d to be m`�1dsec,
and our nested encoder uses ` encoding layers to obtain
codeword x with finite length n. Then, the TPC breaks
codeword x into M out-of-order non-overlapped fragments
where the length of each fragment is an independent random
variable following a Geometric(pn) distribution. Although this
paper focuses on finite codeword lengths, we still restrict
our attention to rates that are less than or equal to capacity
CTPC since those rates likely admit lower error probabilities.
Therefore, in our numerical analysis, we need to know the
value of CTPC, which was derived analytically in [16] by letting
n ! 1. As a result, in order to characterize the capacity
and consequently make an informed choice for an appropriate
computed rate, we must let n!1 in (1) (i.e., CTPC = e�↵)
where ↵ = limn!1 pn log2(n).

It is important to emphasize that pn generally depends on
the physical constraints of the TPC, and it can be obtained

using general function f(n). For the sake of simplicity, in this
study, we assume pn = ↵/ log2(n), while it is worth noting
that our findings can be extended to accommodate a broader
range of functions for pn beyond this specific assumption.
Further, we use an erasure code with a rate of 1 � ✏ before
our nested VT encoder to indicate the role of missing pieces
in our simulations.

As we mentioned in Section VII, Algorithm 4 needs an
acceptable error rate to determine the encoding parameters.
It is worth noting that the acceptable error rate can vary
depending on the target application. Given our motivation in
durable data storage, such as DNA-based data storage and
solid-state drives (SSDs), we adopt the acceptable error rate
observed in SSDs, which falls within the range of 10�2

to 10�3 [31] as a benchmark. Furthermore, we determine
the acceptable error rate such that the error rate decreases
as the codeword length increases. To do this, we initially set
the acceptable error rate in the order of 10�2 if n is small
(i.e., n < 2000) and then determine the encoding parameters.
Next, for n̄ where n < n̄ < 2000, we set the acceptable error
rate less than the error rate obtained using n. Thereafter, if the
codeword length exceeds 2000, we set the initial value of the
acceptable error rate in the order of 10�3 and repeat the same
process.

B. Our Scheme vs. the Baseline in [21]

We compare our proposed encoding/decoding scheme with
an embedded structure of VT codes [21] in terms of computed
rate and error rate, where the former scheme uses ` � 2 layers
and the latter is a single-layer scheme with ` = 1. Here,
n 2 {210, 212, 214

}, ↵ = 0.05, and ✏ = 0.01. Based on
Fig. 12, the embedded structure provides a higher rate but
suffers from a higher error rate, while our scheme gets a
better error rate and a lower computed rate as ` increases
due to using more VT codewords and thus more parity bits.
Moreover, Fig. 12(a) depicts that the rate reduction with
the number of layers disappears, and we get more flatted
rate curves as n increases. Therefore, we increase the code-
word length according to the number of layers to satisfy
the desired error rate and have a negligible rate reduction
simultaneously.
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Fig. 13. (a) Error rates with different values of ↵; (b) The complexity of the opportunistic decoding algorithm when ↵ = 0.05, ✏ = 0.01, Rt = 0.8194,
` = 3, and n 2 (28, 214).

C. Error Rate Analysis
Fig. 13(a) depicts the error rate of our solution as

a function of the codeword length n on a logarithmic
scale. Specifically, it includes three error rate curves when
(↵, CTPC, ✏, Rt) are equal to (0.05, 0.9512, 0.01, 0.8194),
(0.1, 0.9048, 0.01, 0.7535), and (0.2, 0.8187, 0.02, 0.6114).
As we can see in Fig. 13(a), the error rate decreases as n
grows. This happens since when ↵ is fixed and n increases,
the average length of data fragments increases; thus, more
VT codewords exist inside each fragment, which reduces the
probability of having more than one sequence satisfying all
VT conditions.

D. Complexity Analysis
In Fig. 13(b), we describe the complexity of our opportunis-

tic decoding scheme in terms of the number of permutations
that our approach explores during the decoding process, and
we use the brute-force search as the baseline. The brute-force
solution goes through M ! cases, which grows approximately
(Stirling’s approximation) as MM . In Fig. 13(b), we consider
↵ = 0.05, ✏ = 0.01, Rt = 0.8194, ` = 3, and n 2 (28, 214)
and show the complexity of our approach divided by M !
versus the codeword length in a logarithmic fashion. A curve
fitting of the results in Fig. 13(b) shows that the decoding
complexity of our approach is proportional to M3, which
is significantly lower than the complexity of the brute-force
method.

To obtain complexity and simulation runtime, we limit the
decoding time to �. We say an error occurs if the decoder
attains at least one d̂ during the given time, but d̂ 6= d.
In Table II, we compare the number of cases that the decoding
algorithm cannot recover any d̂ within � when dsec = 185,
m = 3, ` = 3, n = 2016, ↵ = 0.05, ✏ = 0.01, and
Rt = 0.8194. The results show that these cases represent a
small fraction of total cases and decrease as we increase �.

E. A Comparison Between the Proposed Decoding
Algorithms

Finally, to compare the opportunistic and greedy algorithms,
we consider a case when ↵ = 0, ` = 3, and n ⇡ 213. Table III
illustrates that the opportunistic algorithm reduces complexity,
and its gain grows as m increases owing to having more SLFs.

TABLE II

NUMBER OF CASES WHERE OUR DECODER FAILS TO FIND ANY d̂ WITHIN
� FOR: dsec = 185, m = 3, ` = 3, n = 2016, ↵ = 0.05, ✏ = 0.01,

AND Rt = 0.8194

TABLE III
COMPLEXITY RATIO BETWEEN THE OPPORTUNISTIC AND GREEDY ALGO-

RITHMS WHEN ↵ = 0, ` = 3, AND n ⇡ 213

According to Table III, this method is four times faster than
the greedy algorithm when dsec = 83 and m = 9.

IX. CONCLUSION

Motivated by recent advances in DNA-based storage, in this
paper, we focused on the TPC and devised a practical encod-
ing/decoding scheme based on a family of nested VT codes
to retrieve data bits from the out-of-order fragments. We took
into account practical considerations in real-world scenarios,
such as the trade-off between the computational complexity of
encoding and decoding associated with our nested VT code
and the error rate. Subsequently, we obtained the computed
rate in the TPC using simulations. We showed that our
approach enables higher computed rates than the lower-bound
in [16], provides two low-complexity decoding algorithms,
which are significantly more efficient than the brute-force
decoder, and the error rate reduces as the codeword length
increases. Finally, we proposed a new method with linear
complexity to build a single VT code that requires fewer parity
bits compared to [22].

A. Future Work
This paper focused on a computed rate in the TPC due to the

existing challenges in code reconstruction in the TPC. Hence,
a natural extension for this work would be a rigorous analytical
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proof of the achievable rate using nested VT codes in the TPC.
Another future direction could involve reducing the length of
parity bits in a single VT code. This could be accomplished by
adapting the state-of-art approaches, e.g., quasi-systematic VT
codes [21], [30] and shifted VT codes [32], thereby optimizing
the coding scheme.

APPENDIX A
PROOF OF LEMMA 1

Proof: We will show later in Appendix B that � is the
residue of parity bits, which is given by:

npX

i0=1

i0xn+1�i0 ⌘ �, mod (n + 1), (16)

where 0  �  n. We also know that np(np+1)
2 is the max-

imum value of
Pnp

i0=1 i0xn+1�i0 , which happens if all parity
bits are equal to 1. Hence, to find the binary representation of
�, we need:

np(np + 1)
2

� n = nd + np

n2
p � np � 2nd � 0! np �

r
2nd +

1
4

+
1
2
. (17)

Since np is an integer number, we use np =lq
2nd + 1

4 + 1
2

m
, and this completes the proof. ⇤

APPENDIX B
FINDING PARITY BITS P

In this section, we demonstrate how to obtain parity bits p

with length np =
lq

2nd + 1
4 + 1

2

m
to ensure that codeword

x meets desired residue 0  r  n. To do this, we define r0

as:
ndX

i=1

idi ⌘ r0 mod (n + 1), (18)

where di is the ith element of d. Moreover, we know that d

represents the first nd elements of x. Therefore, we have:
nX

i=1

ixi

=
ndX

i=1

ixi +
nX

i=nd+1

ixi = �(n + 1) + r0 +
nX

i=nd+1

ixi

(i0,n+1�i)
= �(n + 1) + r0 +

n�ndX

i0=1

(n + 1� i0)xn+1�i0

= �(n + 1)| {z }
a1

+r0 + (n + 1)
npX

i0=1

xn+1�i0

| {z }
a2

�

npX

i0=1

i0xn+1�i0 ,

(19)

where � = b
Pnd

i=1 ixi

n+1 c and b.c is the floor function. We know
that the residues of a1 and a2 in (19) are equal to zero. As a
result, we have:

nX

i=1

ixi ⌘ r0 � �, mod (n + 1), (20)

where � is equal to:

npX

i0=1

i0xn+1�i0 ⌘ �, mod (n + 1). (21)

Here, (21) shows that by calculating the residue of codeword
x from the right-hand side (starting from the parity bits), �
represents the residue of parity bits string from the right-hand
side. Therefore, to achieve desired residue r, all we need is to
create parity bits p such that:

� =

(
r0 � r, r0 � r,

(n + 1)� (r � r0), r0 < r.
(22)

To derive parity bits p, we propose a three-step procedure
as below:

Step 1: We define k = np�i0+1 to show the position of the
parity bit, which starts from the left side of parity bits. Then,
we solve npk�

k(k�1)
2  � and obtain the largest non-negative

integer value of k as kmax. Here, it is essential to show that
npk�

k(k�1)
2  � is feasible for np � 1. To do this, we have:

npk �
k(k � 1)

2
 �

(a)


n2
p + np

2
(23)

k2
� (2np + 1)k + n2

p + np � 0,

where (a) holds true since the maximum value of � is equal
to (n2

p +np)/2 when all bits of p are equal to 1. To solve the
quadratic inequality in (23), we need to find k in the equality
case. More precisely, we derive the roots of the following
quadratic equality:

k2
� (2np + 1)k + n2

p + np = 0

k =
2np + 1± 1

2

!

(
k1 = np,

k2 = np + 1.
(24)

Thus, based on k1 and k2 in (24), we know that either
kmax  k1 = np or kmax � k2 = np + 1 satisfies the
inequality in (23). Moreover, we know 0  kmax  np and
kmax at most can be equal to np. As the result, it shows that
always there is 0  kmax  np, which satisfies the quadratic
inequality in (23), and this proves that npk �

k(k�1)
2  � is

feasible for np � 1.
Step 2: In this step, we create an initial version of parity bits

by placing one in position(s) 1  k  kmax. Thus, we have
an initial parity bits such that

Pnp

i0=1 i0xn+1�i0 = npkmax �
kmax(kmax�1)

2 ;
Step 3: From Step 2, we have:

npX

i0=1

i0xn+1�i0 = npkmax �
kmax(kmax � 1)

2
 �. (25)

Therefore, to convert the inequality to equality in (25),
we add b = � � npkmax �

kmax(kmax�1)
2 to

Pnp

i0=1 i0xn+1�i0

in (25). To do this, we put 1 in the position of b.
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APPENDIX C
COMPLEXITY OF FINDING PARITY BITS P

In this appendix, we describe the complexity of our strategy
to find parity bits. To explain the details, we divide the
complexity into the following three parts:

(i)
Pn

i=1 ixi: Here, we need to perform (n � 1) additions
to get

Pn
i=1 ixi. We note that we do not need multiplications

as xi 2 {0, 1}, which simply means add or do not add i.
Furthermore, each addition is a constant-time operation. Thus,
O(n) is the complexity of

Pn
i=1 ixi;

(ii) Mod Function: The author in [33], shows that the
computing complexity of mod function of r ⌘

Pn
i=1 ixi

mod(n+1) is O(length(n+1)⇥ length(q)) where q satisfies:
nX

i=1

ixi = q(n + 1) + r, (26)

and length(z) = blog2(z)c+1 describes the length of number
z in binary domain. We know that q  n

2 because
Pn

i=1 ixi 
n(n+1)

2 . Hence, the computing complexity of mod function is
O(length(n + 1) ⇥ length(n

2 )) = O(
h
blog2(n + 1)c + 1

i
⇥

h
blog2

n
2 c+ 1

i
);

(iii) Solving Quadratic Inequality: In [34], the authors
explain that the complexity of finding the roots of a quadratic
polynomial with ✏-error is equal to O(log10 ✏).

We note that since all calculations are done in the binary
domain, we need to take into account the complexity of
converting the root of the quadratic equation into the binary
domain, which is given as:

O(blog2 kmaxc)  O(blog2 npc), (27)

since kmax  np. As a result, the overall complexity of finding
the root of the quadratic equation equals O(blog2 npc+ 1).

According to the above results, we conclude that the com-
plexity of our encoding method is also linear (i.e., O(n)),
similar to Sloane’s approach [22].

APPENDIX D
DERIVATION OF EQUATION (15)

The computed rate of our nested VT code is given by:

R =
m`�1dsec

n
. (28)

To obtain the lower and upper bounds on R, we need to
find the lower and upper bounds of n. Therefore, we divide
the proof into two parts:

A. Lower Bound on n
According to Lemma 1, the length of each codeword in the

first layer is equal to:

ñ1 = dsec +

&r
2dsec +

1
4

+
1
2

'
. (29)

Here, we use ñl to denote the length of each codeword in the
lth, 1  l  ` layer. Next, we have:

ñ1

(a)
� dsec +

r
2dsec +

1
4

+
1
2

>
(
p

2dsec + 1)2

2
(b)
=

(d̃sec + 1)2

2
, (30)

where (a) is correct because due � u for any real number u
and (b) follows d̃sec ,

p
2dsec. Moreover, each codeword in

the second layer contains m different codewords of the first
layer, which means:

ñ2 = mñ1 +

&r
2mñ1 +

1
4

+
1
2

'
. (31)

Similar to (30), we have:

ñ2 >
(
p

2mñ1 + 1)2

2
=

(
p

m(d̃sec + 1) + 1)2

2
. (32)

Then, following the same rule, we can show:

ñ` >
(

`�1 coefficientsz }| {
p

m(
p

m . . .
p

m(d̃sec + 1)

`�1 coefficientsz }| {
+1) + 1) . . .) + 1)2

2

=
(m

`�1
2 d̃sec + m

`�1
2 + m

`�2
2 + . . . +

p
m + 1)2

2

=
1
2
(m

`�1
2 d̃sec +

m
`
2 � 1

p
m� 1

)2

=
1
2
(m

`�1
2
p

2dsec +
m

`
2 � 1

p
m� 1

)2. (33)

Since the nested VT code in layer ` includes only one section,
(33) is the lower bound on n.

B. Upper Bound on n
To derive an upper bound on n, we have:

ñ1

(c)
< (dsec + 1) +

r
2dsec +

1
4

+
1
2

< (dsec + 1) + 0.5 +
p

2(dsec + 1)

= (
p

dsec + 1 +
p

2
2

)2
(d)
< (

p
dsec +

p
2.5
2

)2, (34)

where (c) holds true since due < u + 1 for any real number
u. Then, we simplify (34) and obtain dsec > 35.288, which
means that the condition in (34) holds true if dsec � 36.

Then, following the same steps in deriving the lower bound
of n leads to:

ñ` < (m
`�1
2
p

dsec +
p

2.5
2

m
`
2 � 1

p
m� 1

)2. (35)

Finally, we use (28), (33), and (35) to derive equation (15).
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