Bioinformatics, 2023, 39(11), btad652
https://doi.org/10.1093/bioinformatics/btad652
Advance Access Publication Date: 25 October 2023

Original Paper

OXFORD

Sequence analysis

LexicHash: sequence similarity estimation via lexicographic
comparison of hashes

Grant Greenberg ® '*, Aditya Narayan Ravi’, llan Shomorony’

'Department of Electrical and Computer Engineering, University of lllinois at Urbana-Champaign, Urbana, IL, United States

*Corresponding author. Department of Electrical and Computer Engineering, University of lllinois at Urbana-Champaign, 306 N Wright St, Urbana, IL 61801,
United States. E-mail: gcgreen2@illinois.edu

Associate Editor: Can Alkan

Abstract

Motivation: Pairwise sequence alignment is a heavy computational burden, particularly in the context of third-generation sequencing technolo-
gies. This issue is commonly addressed by approximately estimating sequence similarities using a hash-based method such as MinHash. In
MinHash, all k-mers in a read are hashed and the minimum hash value, the min-hash, is stored. Pairwise similarities can then be estimated by
counting the number of min-hash matches between a pair of reads, across many distinct hash functions. The choice of the parameter k controls
an important tradeoff in the task of identifying alignments: larger k-values give greater confidence in the identification of alignments (high preci-
sion) but can lead to many missing alignments (low recall), particularly in the presence of significant noise.

Results: In this work, we introduce LexicHash, a new similarity estimation method that is effectively independent of the choice of k and attains
the high precision of large-k and the high sensitivity of small-k MinHash. LexicHash is a variant of MinHash with a carefully designed hash func-
tion. When estimating the similarity between two reads, instead of simply checking whether min-hashes match (as in standard MinHash), one
checks how “lexicographically similar” the LexicHash min-hashes are. In our experiments on 40 PacBio datasets, the area under the precision—
recall curves obtained by LexicHash had an average improvement of 20.9% over MinHash. Additionally, the LexicHash framework lends itself
naturally to an efficient search of the largest alignments, yielding an O(n) time algorithm, and circumventing the seemingly fundamental O(n?)

scaling associated with pairwise similarity search.

Availability and implementation: LexicHash is available on GitHub at https://github.com/gcgreenberg/LexicHash.

1 Introduction

Sequence alignment is an important first step in the analysis
of sequencing data, particularly in the context of third-
generation sequencing platforms, which produce long reads,
but with high error rates. The presence of errors in the reads
(substitutions, insertions, and deletions) makes the task of
identifying regions of similarity between pairs of reads
computationally intensive. Given a sequencing dataset
with 7 reads of length ¢, performing standard dynamic-
programming-based alignment algorithms [such as Smith—
Waterman (Smith and Waterman 1981)] for each pair of
reads requires O(#2(*) time, which is intractable when 7 and
£ are large.

One way to alleviate this problem is to note that, in many
applications, one is only interested in identifying pairs of
reads with a “significant” overlap or a “large” alignment
score. Moreover, the vast majority of read pairs typically do
not have any overlap, and estimating their alignment score
precisely is unnecessary. Based on these insights, the pairwise
alignment problem is solved in practice using a two-step ap-
proach: first, hashing-based methods are used to coarsely esti-
mate pairwise similarities scores in a computationally efficient
way; then, more precise alignment algorithms are applied

only to pairs that are identified as likely to have a significant
alignment (Chaisson and Tesler 2012, Berlin ef al. 2015,
Ondov et al. 2016, Jain et al., 2018).

A popular approach for the first step, similarity estimation,
is to estimate the fraction of k-mers shared by each pair of
reads (i.e. the k-mer Jaccard similarity). In practice, this can
be efficiently performed using a form of locality-sensitive
hashing called MinHash. In the MinHash paradigm (Broder
1997), we apply a hash function to each k-mer in a read and
take only the minimum value across all the computed hashes
(i.e. the min-hash). This allows us to generate a sketch for
each read, consisting of the min-hashes computed for several
different hash functions (Ondov et al. 2016, Shaw and Yu
2021). Given the sketches of two reads, one can estimate how
similar the reads are by counting the fraction of matching
min-hashes between the sketches. This can be shown to pro-
vide an unbiased estimate of the Jaccard similarity between
the reads (assuming hash functions are randomly generated).
With m hash functions, the sketch of all reads can be com-
puted in time O(mm{), and the pairwise similarity estimates
can be computed in O(n2m), which is significantly faster than
O(#n2¢*) for moderate values of 7. This leads to significant
computational savings in practice (Broder 1997, Li 2016, Jain
et al. 2018).

Received: 18 May 2023; Revised: 11 October 2023; Editorial Decision: 17 October 2023; Accepted: 23 October 2023

© The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

¥20z Ae|N 0z uo 1senb Aq /| /6Z€./2G9PEI0/ L L/6E/2]01HE/SOlBWLIOUIOIG/WO0D"dNodlWapede.//:sdly woly papeojumoq

https://orcid.org/0000-0003-0378-0471
https://github.com/gcgreenberg/LexicHash

The choice of the parameter k significantly affects the over-
all performance of MinHash by controlling an important
tradeoff. When k is large, a matching min-hash between two
reads is more meaningful, as it implies the presence of a longer
matching substring. However, depending on the read error
rates, picking a large k may lead to most k-mers containing
an error, reducing the probability of a min-hash match be-
tween two reads with a true overlap. As such, a larger value
of k leads to a higher precision, as we have more confidence
in the identified pairs, but lower recall, as more true align-
ments may be missed. This is illustrated in Fig. 1.

The choice of k depends on the dataset and specific require-
ments for precision or recall. A higher error rate in the
sequencing platform may require us to choose lower k values,
to make sure that a reasonable fraction of k-mers is not
corrupted by errors. On the other hand, if the composition of
k-mers in the genome being sequenced is highly skewed, e.g.
due to a significant nucleotide bias [as in the case of
Plasmodium falciparum, where the A, T fraction is 80.6%
(Vembar et al. 2016)], it may be preferable to choose a larger
value of k. This is because non-overlapping reads are more
likely to share common k-mers, and a matching min-hash is
thus less meaningful (Baharav et al. 2020). Given the tradeoff
controlled by the choice of k, a natural question is whether it
is possible to modify MinHash to be less sensitive to the
choice of k.

In this work, we introduce LexicHash, a new approach to
pairwise sequence similarity estimation that combines the
sketching strategy of MinHash with a lexicographic-based
hashing scheme. While LexicHash still requires the choice of a
parameter E,x, this value just represents an upper bound on
k, and the performance is nearly unaffected by its value. This
is because LexicHash identifies variable-length substring
matches (for lengths below kp.y) between the reads, simulta-
neously achieving the high precision of large k& and the high
recall of small k.

10

0.8 4

0.6 1

04 -

Precision

Precision/Recall

0.2 1

0.0 1

Figure 1. MinHash was used with 500 hash functions to find read
overlaps for the NCTC4133 (Staphylococcus epidermidis genome) read
dataset (Public Health England, Pacific Biosciences, and Wellcome
Sanger Institute 2014), varying the value of k. The precision-recall tradeoff
is apparent as precision is poor for smaller k, and recall is poor for large k.
The alignment score threshold was set to 300.

Greenberg et al.

The LexicHash algorithm first generates a set of “masks,”
which are length-kp,y strings of symbols from {A, C, G, T}.
Each mask determines a different lexicographic ordering on
kmax-mers. For a given mask, the hash-value of a ky,-mer is
its lexicographic ranking according to the mask. Analogous
to MinHash, a sketch of a read is created by storing the min-
hashes for different mask choices. However, the similarity be-
tween two reads is not the number of min-hash exact matches
across the sketches, as in MinHash. Instead, given the
LexicHash sketches of two reads, it is possible to efficiently
compute the length of the prefix match of the corresponding
kmax-mers. This way, LexicHash can identify variable-length
substring matches between reads from their sketches. The
sketches are also constructed in such a way that, to compare
sketches, we can traverse the sketches position-by-position, as
with the MinHash sketch.

In addition to the sketching procedure, we present an effi-
cient method to compute the maximum match length simulta-
neously for all pairs of reads by building prefix trees on the
set of lexicographic first Ry, -mers. In terms of the number of
sequences 7, the prefix tree method can find the top T similar
read pairs, in O(n) time, for T = O(#n), circumventing the
O(n?) time complexity inherent to the vanilla MinHash
scheme.

We apply the LexicHash approach to read data from 40
genomes from the NCTC collection of Public Health England
(Public Health England, Pacific Biosciences, and Wellcome
Sanger Institute 2014), as well as read data from the
P.falciparum (Vembar et al. 2016) and Escherichia coli
genomes. We use minimap2 (Li 2018) and Daligner (Myers
2014) to create a ground truth of alignment sizes for all pairs
of reads. Our results indicate a significant improvement over
the standard MinHash approach. We further provide a brief
comparison to minimizers and the highly optimized stro-
bemers method for sequence similarity detection (Sahlin
2021a).

1.1 Related work

MinHash was introduced by Broder (1997), Broder (1997) as
a method to probabilistically estimate the Jaccard similarity
between documents. Starting with MHAP (Berlin et al. 2015),
the MinHash paradigm has been successfully applied to the
problem of sequence alignment of genomic sequencing data in
several settings (Ondov et al. 2016, Popic and Batzoglou
2016, Koren et al. 2017, Jain et al. 2018). The related idea of
minimizer schemes was introduced by Schliemer et al.
(Schleimer et al. 2003) for document similarity, and by
Roberts et al. (2004) for biological sequence alignment.
Minimizer methods use representative k-mers, called minimiz-
ers, as seeds for alignment. Minimizers are chosen based on
an ordering of the set of all k-mers. In this way, minimizer
methods are similar to MinHash, but in addition, they incor-
porate a window guarantee, where consecutive minimizers
are no farther apart than a window size w, which helps in the
accuracy of the “chaining” step, in which chains of minimiz-
ers are identified (Li 2016, 2018).

Important variations of the minimizers approach as well as
alternate methods have been proposed, including strobemers
(Sahlin 2021a,b, Maier and Sahlin 2023), which link mini-
mizers of short k-mers and showed more robustness to dis-
tinct mutation rates and indels (additionally, minimizers can
be applied on top of the strobemer sampling); FracMinHash
(Brown and Irber 2016, Irber et al. 2022), which creates

¥20z Ae|N 0z uo 1senb Aq /| /6Z€./2G9PEI0/ L L/6E/2]01HE/SOlBWLIOUIOIG/WO0D"dNodlWapede.//:sdly woly papeojumoq

LexicHash: sequence similarity estimation via lexicographic comparison of hashes 3

sequence sketches of the smallest fraction of hash-values to es-
timate containment between sequences; syncmers (Edgar
2021, Dutta et al. 2022), which find minimizers of substrings
within k-mers; weighted k-mers (Jain et al. 2020), which
assigns higher weights to infrequent k-mers; and fuzzy seed
matching (Firtina et al. 2023), which can match seeds in the
presence of sequencing errors. Some methods consider the
problem of selecting minimizers specifically with the aim of
reducing the density (i.e. fraction of k-mers selected) and in-
creasing conservation (Orenstein et al. 2017, Marqais et al.
2018, DeBlasio et al. 2019, Zheng et al. 2020, Shaw and Yu
2021). Others directly target efficient genome assembly (Chin
and Khalak 2019, Ekim et al. 2021). In addition, some works
have studied ways to use minimizer-based schemes to estimate
specific measures of sequence similarity such as edit distance
(Margais et al. 2019, Joudaki et al. 2020) and Spectral
Jaccard Similarity (Baharav et al. 2020).

The idea of using masks to generate different lexicographic
orderings and using those to sort suffixes was proposed in a
recent work (Shomorony and Kamath 2021), which used this
idea to study information-theoretic questions regarding the
rate-distortion tradeoff in sequence alignment. The present
work can be seen as building on these theoretical ideas to pro-
pose an actual similarity estimation algorithm that can be ap-
plied to read data sets in practice. As future work, we will
evaluate the effectiveness of LexicHash in a minimizer
scheme, for instance, to create sketches on the minimizer
space itself as in MashMap (Jain et al. 2018).

2 Materials and methods

In order to put in perspective the construction of LexicHash
sketches, we first briefly describe the standard MinHash
framework. We then present the LexicHash sketching ap-
proach, and an efficient method of doing pairwise
comparison.

For a parameter k, consider the set I'(s) of all length-k sub-
strings (k-mers) of a sequence s. The MinHash algorithm
picks m distinct hash functions {¢;}"",, each of which maps a
k-mer to an integer. For each hash function ¢;, the minimum
hash value (min-hash) b; is computed as

h; = argmin ¢;(x). (1)
xel(s)
By concatenating the min-hashes for i =1,...,m, we ob-

tain a “sketch” Sk(s) = [Hovip, b2, - - -, D).

Intuitively, when two reads s; and s, have a significant
overlap, it is likely that many k-mer entries in Sk(sq) will
match the corresponding entry in Sk(s;). Thus, a reasonable
measure of similarity between sy and s, can be computed by
traversing the sketches position-by-position and counting the
number of matching k-mers. It can be verified that the frac-
tion of matching min-hashes provides an unbiased estimate of
the k-mer Jaccard similarity (Berlin et al. 2015); that is,

1 & 1 2 |F(S]) ﬂF(sz)|
B> 1{h" =hP | = Js1.0) = it oA
mg V=P s = e Oy
The key advantage of this procedure, as opposed to com-
paring entire sets of k-mers of two reads, is that we can com-
pare the corresponding sketch entries one at a time, a much
more efficient computation. Note that MinHash operates on

fixed-length k-mers, which requires us to pick the value of k&
prior to utilizing this method, imposing the tradeoff described
in Section 1.

2.1 LexicHash

LexicHash is similar to MinHash in that distinct hash func-
tions are used to create sketches of a sequence by storing the
vector of minimum hash values over all k-mers in the se-
quence. However, the k-value used in LexicHash actually cor-
responds to a maximum match length kp,x, and the hashing
scheme maintains the ability to capture any match-length be-
low the chosen k.

The LexicHash scheme utilizes # masks, each of which is a
length-k,.x sequence over {A, C, G, T}, as shown in Fig. 2a
where m = 4 and k. = 6. To compute hash-values, all bases
in the masks and sequences, A, C, G, and T, are mapped to
bits 00, 01, 10, and 11, respectively. For a mask M, the hash-
value of a kpyax-mer x is simply the bitwise XOR between M
and x, which can be seen as a 2kp,x-bit integer. Notice that,
for the all-zeros mask, the hash integer value can be thought
of as the kpya-mer’s lexicographic rank (among all k.-
mers). For other masks, the hash value can be similarly
thought of as a ranking that uses a different lexicographic or-
dering for each position of the string. An example is given in
the top-right of Fig. 2, where the hash-value of the first 6-mer
of s, is computed according to the fourth mask, My. For each

[et eyl =S Jalidiein i 1

(a) M;: GCAGCA | M, :== CCATAT = 010100110011, I
M;: GACGCC !'s¥5 = GGATCC = 101000110101, |
M;: ARATGA | o——— |
M,: CCATAT 1 111100000110, = 3846, !
(b) s;: TACAGCGGATCGA S2: GGATCCACCCGAC
M, M, M; M, oM, M, My M,

Y ¥

1389 1068 3185 2426 TACAGC
2050 2371 286 1045 ACAGCG
3518 3327 1186 425 CAGCGG
2892 2573 592 1883 AGCGGA
135 454 2459 3216 GCGGAT
4009 3816 1717 958 CGGATC
786 595 2574 3845 GGATCG
508 189 2272 3563 GATCGA

GGATCC 785 592 2573 3846
GATCCA 496 177 2284 3559
ATCCAC 2677 2868 873 1634
TCCACC 1121 1312 3453 2166
CCACCC 3121 3440 1325 38
CACCCG 3442 3123 1134 357
ACCCGA 2172 236 352 1131
CCCGAC 3141 3332 1369 82

(e) LHS(s1,5,) = max y(sy,5;) = 4 e 8 bits = 4 bases |

(€) [135, 189, 286, 425] [496, 177, 352, 38]
7189, = 000010111101, !

(d) y(sy,s2) =[1, 4, 2, 1] 1177,, = 000010110001, |
1

1

S1: TACAGCGGATCGA
1
Sz GGATCCACCCGAC

Figure 2. LexicHash pipeline. (a) Four masks are randomly generated for
kmax = 6. All mask and read bases, A, T, C, G, are mapped to bits
00,01,10,11, respectively. (b) Hash-values are computed for all
constituent kmax-mers of two length-13 reads across all masks. An
example calculation is given for the fourth mask and first kmax-mer of sy,
where a simple XOR operation is applied to the binary representations of
My and s9°®, resulting in the lexicographic ranking (3846st) according to
the mask. (c) The sketches of s and s, consist of their minimum
lexicographic rankings (min-hashes) across all masks. (d) The vector of
match lengths between the reads, y(s1, s;), is determined by counting
the matching bits in the prefixes of each pair of min-hashes in the
sketches. For example, the similarity score (i.e. match-length)
corresponding to the second mask is four, since the binary
representations of the min-hashes, 189 and 177, share eight bits. (e) The
similarity score of 4 is the maximum of all match-lengths. (f) The similarity
score represents a true 4-mer match between the two sequences. To
illustrate the effectiveness of LexicHash, a sequencing error was inserted
in the length-7 overlap between s; and s;; the lexicographic-based min-
hashes allow for the detection of the matching 4-mer, but the MinHash
scheme for k = 6 would not capture any similarity.

¥20z Ae|N 0z uo 1senb Aq /| /6Z€./2G9PEI0/ L L/6E/2]01HE/SOlBWLIOUIOIG/WO0D"dNodlWapede.//:sdly woly papeojumoq

mask M;, the minimum lexicographic rank of a sequence s is
computed as

r; = argmin M;®Dx, (2)
xel'(s)

splitting ties arbitrarily. The sketch of s is then
Sk(s) = [r1,72,---,7m], as shown in Fig. 2¢c. The time com-
plexity of the sketching procedure is the same as that of
MinHash, O(nmt), where ¢ is the average sequence length.
Despite operating on longer k-mers, sketching is potentially
more computationally efficient than typical MinHash sketch-
ing due to the speed of the bitwise XOR operation.

To estimate the similarity between a pair of sequences, we
traverse the two sketches position-by-position and determine
the match lengths. For a pair of min-hashes at index i in the
sketch, r,(l) and r;z)’ the match length is simply the length of
the longest matching prefix of their binary re%)resentations.
An example is shown in Fig. 2d, where rf) =189 and
1’52) =177, and the match length is four bases since the first
eight bits of the ranks match. The real corresponding match is
shown in red in Fig. 2f. After performing this process on each
of the m pairs of min-hashes we obtain a vector of match-
lengths y(s1,s,), as seen in Fig. 2d. Note that in the MinHash
scheme, the similarity score is computed in an “all or noth-
ing” manner, where a pair of min-hashes only count if they
match exactly. In LexicHash, pairs of min-hashes correspond
to match lengths that can contribute to the overall similarity
score regardless of equality. This makes the choice of kyax
nearly irrelevant for the resulting vector y(s1,s2).

Intuitively, the vector of match lengths y(s1,s2) can be
thought as the sequence of observations for a binary hypothe-
sis test between hypotheses “H,,: there is no significant
alignment between s1 and s,” and “H,,y,: there is a significant
alignment between s; and s;.” To visualize this hypothesis
test problem, in Fig. 3, we plot the probability mass functions
(PMFs) of the match lengths under the two hypotheses for
two different datasets. Notice that the match length distribu-
tions under H,,; and H,, have significantly different tails,
with the tail under H,,, being significantly heavier. This sug-
gests that a good test statistic for Hyy versus Hoy, is simply

Greenberg et al.

the maximum value of the vector y(s1,s2). Hence, we define
the LexicHash score as

LHS(s1,s2) = max y(s1,$2), (3)

which provides as a measure of similarity between s; and s;.
While this test statistic may not be theoretically optimal—if
the PMFs were known, an optimal decision rule would be the
likelihood ratio test—it suffices to obtain a significant im-
provement in performance over MinHash, and allows for the
runtime improvements described in Section 2.2.

We point out that the tail of the match length distribution
under H,,; is different for different datasets, as shown in
Fig. 3. In particular, how heavy the tail is under H, can be
thought of as a measure of the difficulty of identifying align-
ments in a given dataset. For example, the genome in Fig. 3b,
P.falciparum, the malaria parasite, is a notoriously difficult
genome to assemble (Vembar ef al. 2016). At a high level, the
reason is that the GC content in the genome is very low,
meaning that k-mers with high AT content are fairly common,
which leads to many substring matches between non-
overlapping reads. As such, H, in Fig. 3b has a heavier tail
than in Fig. 3a.

2.2 Efficient pairwise read comparison via prefix
trees
Given the sketches Sk(s;) for all reads sy, .. ., s, one still needs

to perform pairwise comparisons to compute

n
(5
LHS(s;,s;) for each pair. For the downsampled datasets used
in the results in Section 3 with 7 ~ 103, this can still be done
quickly. For large datasets, however, the quadratic scaling
with 7 makes this step slow. In this section, we show how the
LexicHash framework is amenable to an efficient search for
pairs (s;,s;) with large values of LHS(s;, s;). In particular, we
describe an algorithm that finds the top-T values of
LHS(s;, s;) and avoids the O(n?) scaling when T = O(n).

Suppose one is interested in finding the top-T pairs of most
similar sequences, i.e. the T largest values of LHS(s;, s;) (e.g.
we could set T =10z, to find roughly 10 alignments per
read). For each mask M;, we build a prefix tree data structure,

(a) E. coli NCTCB86) (b) P, falciparum
— Hnull 10-! — Hnull
107! §]
—Hovlp —Hovlp
1072 1 | 107% 1 .
:‘
Py 5] 10-3i
:g 10
E 1074 4 1073
107 | 10"’3
10‘°3
10-6 N
1077 A e e
0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55
Match Length Match Length

Figure 3. Empirical PMFs of match lengths for Hy (non-overlapping reads) versus Hoy, (overlapping reads with alignment fraction > 0.2). The PMF in (b)
has a heavier tail for H, and lighter tail for Hg,p, indicating a more challenging dataset than that of (a). The genome of (b), P.falciparum, has a very low

GC-content, which increases the match lengths for non-overlapping reads.

¥20z Ae|N 0z uo 1senb Aq /| /6Z€./2G9PEI0/ L L/6E/2]01HE/SOlBWLIOUIOIG/WO0D"dNodlWapede.//:sdly woly papeojumoq

LexicHash: sequence similarity estimation via lexicographic comparison of hashes 5

(a) Mask
TGGAAC CAGACT
Index Read Lexicographic First Substring
1 TGCATTGGACA TGGACA CATTGG
2 CAGTCACTA TCACTA CAGTCA
3 ATTGGATATCCG TGGATA GATATC
4 GGATTGTCAGGG. TGTCAG CAGGG
5 CTGTAAT TGTAAT CTGTAA
6 AATACGCAGTGA TACGCA CAGTGA
(b)

Pairs Obtained
(1,3) (2,6)

starting depth

Figure 4. (a) Table of lexicographic first substrings (of length kmax = 6) for
six reads across two lexicographic orders, specified by a mask (explained
in Fig. 2). Two significant read overlaps are indicated in read and green,
and include sequencing errors. (b) Prefix Trees obtained from the
lexicographic first kmax-mers for each mask. We use bases here for clarity,
but our implementation uses binary representations. To collect pairs of
reads with potential overlaps, we start at the maximum depth, four in this
case, and add each pair of reads below. Note how the use of different
masks enables the discovery of all significant overlaps.

as shown in Fig. 4. Each prefix tree is built using the min-hash
values of all 7 sequences in binary form. Each level of a tree
requires a partition of all subtrees, which consists of at most 7
elements. Thus, the time complexity of building all prefix trees
is at most O (nmkum,y).

At a depth of b in the prefix tree, each subtree contains
kmax-mers whose length-h prefixes match exactly, indicating a
likely overlap for large . Hence, we start at a depth of
b = kmax, collect all pairs of substrings in each subtree at that
depth (simultaneously across all prefix trees). Then we itera-
tively decrement / and continue collecting pairs (which have
not already been added) until the target number of pairs, T,
have been collected. Note that any single pair may only be
seen a maximum of #kp,y times, i.e. once at each depth for
each tree. Thus, even in the worst case, the overall time com-
plexity for building and aggregating pairs is O(mmky,x+
Tmkpnay). Importantly, when T = O(n), this avoids the
natural O(n?) scaling associated with having to find signifi-
n
2

We point out that, in the standard MinHash paradigm, one
could also try to mitigate the burden of having to compare all
pairs of sketches. This can be done by first creating a list of all
computed min-hash values for each hash function. Then, a
match count table for read pairs can be computed by going
through the list of min-hash values and, for each one, incre-
menting the count of each pair of reads that share that min-
hash value. However, this approach still has a O(#?) worst-
case time complexity since, in principle, there can be a set of
©(n?) pairs each of which shares at least one min-hash (which
would lead to ®(#?) increment operations).

The memory requirement of the prefix tree method is rela-
tively low at O(nmkmyax). The algorithm used in the current
implementation is presented in Supplementary Algorith C1. It
takes advantage of the fact that the full prefix tree structure

cant pairs among a total of) = O(#?) pairs.

need not be stored, only a partition of sequence indices at
each level of the tree. Furthermore, a ki, can be set so that
only partitions at depths » € [kmin, kmax] are stored. Lastly,
singleton subtrees also do not need to be stored. These
improvements greatly reduce the memory requirements of
LexicHash.

3 Results

We present the results in three subsections. The first compares
the similarity estimation performance of LexicHash and
MinHash in terms of the receiver operator characteristic
(ROC) and precision-recall curves (PRC). The second evalu-
ates the runtime performance of LexicHash, validating the
prefix-tree method described in Section 2.2. Finally, in Section
3.3, we provide a brief performance comparison to a basic
minimizer method as well as the state-of-the-art strobemers
seeding method.

3.1 Performance comparison of LexicHash and
MinHash

To compare LexicHash and MinHash, we perform read simi-
larity estimation on 41 PacBio datasets, 40 from NCTC
(Public Health England, Pacific Biosciences, and Wellcome
Sanger Institute 2014), and also a P. falciparum dataset. The
datasets have a wide range of nucleotide compositions. In par-
ticular, P. falciparum, the malaria parasite, has a very low GC
content, leading to long stretches of As and Ts. Each dataset
is downsampled to 7 ~ 10° reads, such that each read over-
laps with roughly 0.5-2% of all reads after preprocessing.
More details on the preprocessing steps used to create the
datasets are explained in Supplementary Section B. We gener-
ate a ground truth for each dataset using DALIGNER (Myers
2014) for the NCTC datasets and minimap2 (Li 2018) for the
P.falciparum dataset. Each ground truth consists of a set of
overlapping reads, using a threshold of 0.2 for the alignment
fraction (defined as for reads with lengths ¢; and ¢,
overlap size a).

We use a vanilla version of MinHash, without any algorith-
mic or heuristic improvements (such as those used in MHAP
and Minimap2), to obtain a fair conceptual comparison of
the two hash-based sketching approaches. We run MinHash
on several appropriate values of k, ranging from 7 to 16
(MHAP default). A maximum match length of k. = 32 is
used by default for LexicHash. In a more memory-efficient
implementation of LexicHash (e.g. in C++), using 2-bit
encoding for the masks, this could leverage 64-bit architec-
tures, but our current implementation does not take advan-
tage of that. In such an efficient implementation, a kyax > 32
would increase runtime and memory usage of LexicHash due
to the need for more than one integer per hash-value. In the
context of pairwise long-read similarity estimation, our results
indicate that kya.x > 32 does not improve the accuracy. For
highly accurate reads, km.x > 32 may be necessary, but would
not limit the functionality of LexicHash beyond the increase
in runtime (see Supplementary Fig. S8). Masks are generated
uniformly at random over {A, C, G, T}. In Section 4, we dis-
cuss more sophisticated possibilities for mask generation. To
account for reverse complement matches, we include for each
dataset D, the set of reverse complement reads D. Sketches
are created for all reads in D U D; sequence similarity estima-
tion is then performed for read pairs within the original

_a
l1+lr—a

¥20z Ae|N 0z uo 1senb Aq /| /6Z€./2G9PEI0/ L L/6E/2]01HE/SOlBWLIOUIOIG/WO0D"dNodlWapede.//:sdly woly papeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad652#supplementary-data

6
(a) NCTC2218 (PRC) (b) NCTC2218 (ROC)
10 - - AUC 0.85 10 AUC0.98 —
“SAUC 05 — 7
\W 7/
0.8 R 0.8 v'é
\ &
o6 \ o AUCO82 ~
go aucos2\ 2 o ° ,
.2 \ 7
i — =9
E MH (k=10) — | H
02 e MH (k=12) 02 — MH (k=7)
e MH (k=16) s MH (k=10)
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall FPR

Greenberg et al.

(c) P, falciparum (PRC) (d)

- | H
. e MH (k=12) o8
e MH (k=16)
.5 0.6 o 0.6
w
S04 & 0.4
E F
02 il e MH (k=12)
e = MH (k=16)
0.0 0.0
00 02 04 06 08 10 00 02 04 06 08 10
Recall FPR

Figure 5. ROC and PRC plotted for the NCTC2218 (S.pyogenes genome) dataset (a, b) and the P.falciparum dataset (c, d). The blue lines represent the
performance of LexicHash (LH), and the purple, orange, green and red, those of MinHash (MH) for k = 7,10, 12, 16, respectively. In all plots, LexicHash
outperforms MinHash as measured by area under the curve (AUC). In the case of the challenging P.falciparum dataset, MinHash performs close to
random guessing (dashed line in (c) where TPR=FPR), and has almost no signal in the PRC of (d).

o
N
G

80,25 .
0.8 &,
& 0.20
—~ &
%‘) 0.7 Zo1s
< 8 0.10
8 0.6 20
|
0.05
< 05 05
0.4 o MH(k=12) = %0 ‘
< .
0.022 0.026 0.030 0.034 0.038 0.022 0.026 0.030 0.034 0.038

®
N
c

o g0t [O 018 . o
095] o % o c O « s = ‘
X s .
5 o & 0.16 - .
. .. . E °
0.90 &% ., 014 Ve
i Y . 1} . .
. L & i ous D 0.12 /
0.85 _.L.".' i <F . E .
. .
. o] ° °
oss] 5® = S LH S 0.10 - .
. L4 Ll
o o e MH(k=12) D o008 . .
s . . < e o .
0.024 0.028 0.032 0.036 0.022 0.026 0030 0.034 0.038

<+—— Dataset “Difficulty” (Variance of Log-Noise PMF) —>

Figure 6. AUC comparison between LexicHash and MinHash across 40 NCTC datasets (each point corresponds to one dataset). (a) The AUC of the ROC
versus dataset “difficulty” as measured by the variance of the log of the noise (match lengths of non-overlapping read pairs) PMF. (b) Improvement in
AUC (ROC) versus difficulty. The gap in performance is seen to increase somewhat linearly as the difficulty increases. (c, d) Same as (a, b) but for the

PRC. The performance gap increases slightly with more difficulty.

dataset D < D, and pairs of one original read and one com-
plemented D « D.

For each dataset, we run LexicHash and MinHash with
100 hash functions, respectively. Overall for the 40 NCTC
datasets, the area under the curve (AUC) of PRC and ROC
for LexicHash increased by 20.9% and 14.7% on average, re-
spectively, when compared to MinHash using k= 12.
Performance for a larger number of hash functions follows a
similar pattern as that of Figs 5 and 6, but the performance
gap from LexicHash to MinHash narrows (e.g. at 1000 hash
functions, AUC-ROCs are all nearly 1 for the NCTC data-
sets). See Supplementary Section A for more results. In Fig. 5,
we plot ROC curves and PRCs for two of the datasets, from
the Streptococcus pyogenes (NCTC2218) and P.falciparum
genomes. To be as conservative as possible, we identify and
plot the k-value that achieves the greatest AUC for MinHash
(k = 12 for (a), k = 10 for (b), and k = 16 for (c, d)), as well
as other k-value(s) for comparison. We note that, since the
fraction of read pairs that have an overlap is small, the false
positive rates tend to be low, but precision and recall are not
directly affected.

Observing the results on the S. pyogenes dataset
(NCTC2218) shown in Fig 5a and b, LexicHash (LH) per-
forms better than MinHash (MH) consistently for different
false positive rates, and overall with AUCs of 0.85 and 0.73
(k =12) for the PRC, and 0.98 and 0.94 (k = 10) for the
ROC. As expected, the large-k MinHash (k = 16) achieves
high precision, but is unable to find more than 55% of over-
laps, which is why the PRCs seems to stop suddenly (see
Davis and Goadrich, 2006 for more details on PRC behavior).

On the other hand, the precision for small-k (k= 10)
degrades rapidly as the similarity threshold increases since
small k captures spurious matches in non-overlapping read
pairs. MinHash for k& = 12 strikes a balance, but its perfor-
mance is inferior compared to LexicHash. Similarly,
LexicHash greatly outperforms MinHash on the P.falciparum
dataset, as shown in Fig 5c and d, with an AUC-PRC of 0.49
for LexicHash and only 0.11 for k = 16 MinHash. It is worth
noting that due to very high AT content, performing sequence
alignment on the P.falciparum dataset is particularly difficult
(Vembar et al. 2016), and the minimap2 “ground truth” may
be far from perfect, which may partially explain the poor per-
formance of both MinHash and LexicHash. Nevertheless, the
improvement of LexicHash over MinHash is still quite
meaningful.

As seen in Fig. 3, it becomes harder to differentiate between
real overlaps (signal) and spurious ones (noise), when the
noise PMF has a heavy right tail. In Fig. 6, we plot the AUC
of ROC and PRC for all 40 NCTC datasets, as the size of the
right tail increases. The measure of tail heaviness is captured
by the Variance of Log of PMF under H,,; (The log was
taken to amplify the variation in the x-axis. A similar, but less
linear plot results in taking the regular variance of the noise
PMF.), which is calculated based on histograms obtained
from each dataset, such as those in Fig. 3. In particular, we
notice that the MinHash AUC-PRC degrades in datasets with
a heavier tail, while LexicHash performs consistently well. In
datasets where the match length has a heavy right tail under
Hyui, differentiating between H,,; and H,y, requires a

¥20z Ae|N 0z uo 1senb Aq /| /6Z€./2G9PEI0/ L L/6E/2]01HE/SOlBWLIOUIOIG/WO0D"dNodlWapede.//:sdly woly papeojumoq

LexicHash: sequence similarity estimation via lexicographic comparison of hashes 7

method to detect long matches, and LexicHash is particularly
effective at that.

3.2 Runtime comparison

As discussed in Section 1, the bottleneck typically lies in the
pairwise comparison of sketches for larger datasets. Using a
hash table for MinHash drastically reduces the required num-
ber of pairs for which to compute the similarity score.
However, even assuming the number of reads sharing a hash
value for a given hash function is a small percentage of the to-
tal number, the time complexity remains O(7?m). As an im-
provement over MinHash, we describe in Section 2.2 an
O(mm) time algorithm to obtain the top-T most similar pairs
of reads using LexicHash sketches. To compare the methods,
we have both methods return the top T = 5n.

For the runtime experiment, we perform similarity estima-
tion on a full PacBio RS II E. coli dataset, which was used in a
recent survey of long-read technologies (Tvedte et al. 2021).
After filtering out reads with an average error rate of 30% or
greater, there remain 113378 reads. To evaluate the time
complexity in practice, we create five new datasets of sizes 10,
30, 50, 70, and 90 thousand reads, by downsampling the full
dataset. We compare runtimes using 100 hash functions each,
k = 12 for MinHash, and k. = 32 for LexicHash. Eighty
CPUs are used to parallelize the sketching and pairwise com-
parison procedures for both methods.

Shown in Fig. 7 are the total runtimes for both methods.
LexicHash and MinHash appear to closely fit linear and qua-
dratic curves, respectively, which is confirmed by the very
high coefficients of determination (R* = 0.999 and 0.998).
We stress that the absolute times for MinHash are not as im-
portant, as it is based on our Python implementation, which
could be optimized. Instead, we argue that the experiment
indicates that LexicHash avoids the O(#?) time complexity of

® LexicHash
MinHash

Runtime (min)
=] 8 8 8

—
o
"

0«0—0—"——'——‘__—‘

0 10000 30000 50000 70000 90000 113378
Number of Reads

Figure 7. A comparison of runtimes between LexicHash and MinHash,
with increasingly downsampled versions of an E.coli read dataset. For the
task of finding the top-T most similar read pairs, the plots illustrate the
O(n) time complexity of the LexicHash pipeline (R? = 0.999), compared
to the inherent O(n?) scaling for MinHash (R? = 0.998). To perform
pairwise similarity estimation, the LexicHash method compares read
sketches using the prefix tree method described in Section 2.2, which
intrinsically “collects” the pairs with largest similarity scores first.
Conversely, MinHash requires the calculation of all similarity scores
before determining those with the top-T highest scores.

standard MinHash in the task of finding the most similar read
pairs.

On the full E.coli dataset (2.4 GB of reads), LexicHash
took 100.1 CPU-min, and 515.7 MB of RAM, when run on
one CPU. MinHash took 339.3 CPU-min and 1.95 GB of
RAM. For both methods, reads only need to be loaded one at
a time in RAM to compute sketches. The memory consump-
tion is favorable for LexicHash for this task because only
512 550,000 read-pairs need to be stored at maximum,
whereas over 30 million read-pairs shared at least one k-mer
for k = 12 MinHash.

3.3 Comparison of LexicHash and minimizer
methods

Although we view LexicHash as an improvement to the stan-
dard MinHash scheme and present performance comparisons
with MinHash as a baseline, it is natural to try to compare
the performance of LexicHash with other sequence similarity
estimation methods. A fair comparison with MinHash is eas-
ily achieved by using the same number of hash functions in
MinHash as in LexicHash; however, setting parameters for
different methods in a fair manner is not as straightforward.
Nevertheless, here we present a brief comparison between
LexicHash and three methods: (i) the standard minimizer
technique as presented by Roberts et al. (2004), (ii) the state-
of-the-art strobemers method (Sahlin 2021a), and (iii) the
FracMinHash method as implemented in the sourmash tool-
box (Brown and Irber 2016, Irber et al. 2022).

Minimizer methods work by subsampling the k-mer set of
a sequence so as to guarantee that at least one out of every w
consecutive k-mers in the sequence will be sampled, for some
choice of k and w. The sampled k-mers are called seeds. After
the seeding step, in order to estimate the similarity between
two sequences, a chaining step is performed with the goal of
identifying chains of matching seeds with similar spacings
across the different genomic sequences. For the standard mini-
mizer scheme, we implement the chaining technique described
in the minimap paper (Li 2016). See Supplementary Section B
for more details. To obtain a crude similarity score, we use
the number of “hits” (i.e. matching seeds) in the longest chain
between two sequences. For strobemers, we use the
StrobeMap (Sahlin 2021a) package using the randstrobes op-
tion. The similarity score is the sum of alignment sizes found
between two sequences. For FracMinHash, given number of
LexicHash hash functions 7z, we use an scale factor s which
theoretically samples a similar number of k-mers from each
read,

where L is the average read length (typically 9-12 kpb). The
corresponding estimated containment values are taken as the
similarity measure itself.

After testing several parameter sets for all methods, we use
those with the highest overall performance, which is (k,w) =
(14,10) for minimizers, (7, k, Wmin, Wmax) = (3, 8,25,50) for
StrobeMap, and k = 16 for sourmash. Note that sourmash
was not necessarily optimized for read-read similarity
estimation.

In order to appropriately compare LexicHash with mini-
mizer methods, it is useful to bear in mind the size of the
sketch produced by each method (from which the sequence

¥20z Ae|N 0z uo 1senb Aq /| /6Z€./2G9PEI0/ L L/6E/2]01HE/SOlBWLIOUIOIG/WO0D"dNodlWapede.//:sdly woly papeojumoq

—_
Q0

~

—_

S. enterica (NCTC129) M. morganii (NCTC235)

-
o
\
[]
1

1

1

1

1

|

1

'

|

1

1

|
]
-
o

g RS SN P i pinig g e e
“osg ¥ - - 08 |
X ’I P
h
& 0.6 b 0.6 7
‘5 N 1
" —————————— Ty o ————
5§04 [/ == LexicHash 04 |
RZ) /i === FracMinHash i
§ 0.2} == strobemers (3,8,25,50) 0.2 /
=%} ¢ == = Minimizers (k=14, w=10) L]
0.0 ® 0.0
200 400 600 800 1000 200 400 600 800 1000

Number of Hash Functions Number of Hash Functions

Greenberg et al.

(c) (d)

E. coli (NCTC4174) o P. falciparum

0.8 . LexicHash
0.7 ——————————:_—_;—. 0.8 lle (m:l(.)OO)
- N FracMinHash

0:0 /"— - A " (k.s=16,26)
05 _ = Ay e o 06 \ strobemers
0.4 g \ = (3.10,25,50)
I 174 \
03 / ‘5 0.4 AUC 0.16
. I o
0.2 & AUC 0.54
aly/ 02 AUC 0.09
0.1 ¢ .
0.0

200 400 600 800 1000
. 00 02 04 06 08 10
Number of Hash Functions Recall

Figure 8. A comparison in performance between LexicHash, strobemers, FracMinHash, and the standard minimizer method. (a-c) The precision at 80%
recall is plotted for increasing numbers of hash functions for LexicHash and FracMinHash (corresponding to a decreasing scale), and for strobemers and
minimizers, represented by a dashed line, independent of the x-value. As the number of hash functions increases, the performance of LexicHash and
usually FracMinHash becomes comparable to that of strobemers. (d) The precision—recall curve for the P.falciparum dataset is shown for LexicHash,
strobemers, and FracMinHash. The similarity scores predicted by LexicHash is seen to better match the ground truth generated by minimap2.

similarity is estimated). The number of k-mers sampled by
minimizers is approximately 2¢/(w + 1), where £ is the length
of the sequence. For example, for a PacBio read of length
12000 (the average read-length in the NCTC datasets), with
w = 10, the standard minimizer method would store nearly
2200 minimizer k-mers, and it would be arguably reasonable
to compare it with LexicHash on as many masks, so that the
sketch size is roughly of the same size. The strobemers sketch
is of size nearly ¢, since it samples at every position in the se-
quence. To show the comparison for different numbers of
masks, in Fig. 8a—c, we provide a comparison of LexicHash
to strobemers, FracMinHash, and standard minimizers as the
number of LexicHash hash function increases. Furthermore,
since in practice, one is more interested in the performance at
larger recall values, we plot the precision at 80% recall [a
number cited in the MHAP paper (Berlin e al. 2015)]. As the
number of hash functions increases from 100 to 1000, the
precision of LexicHash approaches that of strobemers.
LexicHash appears to plateau in precision after a certain
number of hash functions for certain datasets. For instance, in
the NCTC129 and NCTC235 datasets, the precision is 0.99
and 0.98, respectively, at both 500 and 1000 hash functions.
In most cases, the highly optimized strobemers method out-
performs the standard minimizers method, but that is not al-
ways the case, as shown in Fig. 8c.

A particularly interesting comparison is on the challenging
P.falciparum dataset. Most similarity estimation methods per-
form poorly on this dataset (and it is in fact unclear how good
the ground truth provided by minimap2 is). However, by
plotting the entire precision-recall curve, we see that
LexicHash significantly — outperforms strobemers and
FracMinHash on recall values lower than 80%, and in gen-
eral, with AUCs of 0.54, 0.09, and 0.16, respectively. This
illustrates how LexicHash can be highly effective when the
nucleotide composition is skewed.

4 Discussion

We present a new approach to sequence sketching and simi-
larity estimation called LexicHash. As in the MinHash
scheme, the method creates a sketch of a read based on min-
hash values, for several hash functions based on distinct lexi-
cographic orders. The LexicHash hashing scheme increases
statistical power by effectively capturing matches of various
sizes, thereby avoiding the precision—recall tradeoff of

choosing a k-value in MinHash. Moreover, the lexicographic-
based sketches of sequences utilized by LexicHash provide an
efficient data structure to perform pairwise comparisons.

One idea to increase accuracy is to choose masks in a
dataset-specific manner. For example, the P.falciparum ge-
nome has a greatly skewed nucleotide composition (specifi-
cally a very low GC content). Intuitively, this means that
substrings of reads which have more Gs and Cs are more in-
formative. Thus, a reasonable hypothesis is that if we choose
lexicographic orders which favor G and C, the noise PMF
might have a smaller tail, making it easier to distinguish from
signal. Interestingly, however, we empirically show in
Supplementary Section B that masks generated with a similar
nucleotide composition as the dataset performs even better.
We hypothesize that this is due to the GC content not being
evenly distributed in real datasets (e.g. being concentrated in
CpG islands). Alternatively, we could assign different weights
to the masks, analogous to what is done for Spectral Jaccard
Similarity (Baharav ez al. 2020) or the weighted k-mer scheme
(Jain ez al. 2020).

The results in this article represent an initial exploration of
the use of LexicHash as a sketching procedure for sequence
similarity estimation. The results presented are conceptual in
nature, as they focus on a comparison to a vanilla MinHash
approach, and do not take into account a number of useful al-
gorithmic techniques that can be used in combination with
the scheme to improve the overall performance. A full explo-
ration of LexicHash could also include other types of se-
quence alignment problems, including read-to-reference
alignment and genome distance estimation such as Mash
(Ondov et al. 2016), and applications outside of bioinformat-
ics, such as plagiarism detection, where we search for similari-
ties between text documents.

Acknowledgements

The idea of using masks to generate different lexicographic
orderings and using those to sort suffixes originated from dis-
cussions with Govinda Kamath and corresponding publica-
tion (Shomorony and Kamath 2021).

Supplementary data

Supplementary data are available at Bioinformatics online.

¥20z Ae|N 0z uo 1senb Aq /| /6Z€./2G9PEI0/ L L/6E/2]01HE/SOlBWLIOUIOIG/WO0D"dNodlWapede.//:sdly woly papeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad652#supplementary-data

LexicHash: sequence similarity estimation via lexicographic comparison of hashes 9

Conflict of interest

The work of G.G. and LS. was supported in part by the
National Science Foundation (NSF) under grants CCF-
2007597 and CCF-2046991.

Funding

None declared.

Data availability

The data underlying this article can be found at https://github.
com/TavorB/spectral_jaccard_similarity (NCTC datasets),
and in the Sequence Read Archive at https://www.ncbi.nlm.
nih.gov/sra and can be accessed with accession numbers
SRR3194822 (P. falciparum dataset) and SRR3194822 (E.
coli dataset).

References

Baharav TZ, Kamath GM, Tse DN et al. Spectral jaccard similarity: a
new approach to estimating pairwise sequence alignments. Patterns
(N'Y) 2020;1:100081.

Berlin K, Koren S, Chin C-S et al. Assembling large genomes with single-
molecule sequencing and locality-sensitive hashing. Nat Biotechnol
2015:33:623-30.

Broder A. On the resemblance and containment of documents. In:
Proceedings. Compression and Complexity of SEQUENCES 1997
(Cat. No.97TB100171), Salerno, Italy, 1997, 21-9.

Brown CT, Irber L. sourmash: a library for minhash sketching of DNA.
JOSS 2016;1:27.

Chaisson M]J, Tesler G. Mapping single molecule sequencing reads using
basic local alignment with successive refinement (BLASR): applica-
tion and theory. BMC Bioinformatics 2012;13:238.

Chin C-S, Khalak A. Human genome assembly in 100 minutes. bioRxiv
2019, preprint: not peer reviewed.

Davis], Goadrich M. The relationship between precision-recall and roc
curves. In: Proceedings of the 23rd International Conference on
Machine learning. 2006, Pittsburgh, PA, USA. New York, NY, USA:
Association for Computing Machinery, 233-40.

DeBlasio D, Gbosibo F, Kingsford C et al. Practical universal k-mer sets
for minimizer schemes. In: Proceedings of the 10th ACM
International Conference on Bioinformatics, Computational
Biology and Health Informatics, BCB °19. New York, NY, USA:
Association for Computing Machinery, 2019, 167-76.

Dutta A, Pellow D, Shamir R. Parameterized syncmer schemes improve
long-read mapping. PLOS Computational Biology. 2022 Oct
28;18(10):e1010638.

Edgar R. Syncmers are more sensitive than minimizers for selecting con-
served k-mers in biological sequences. Peer] 2021;9:e10805. (

Ekim B, Berger B, Chikhi R. Minimizer-space de bruijn graphs: whole-
genome assembly of long reads in minutes on a personal computer.
Cell Syst 2021;12:958-68.¢6.

Firtina C, Park J, Alser M et al. Blend: a fast, memory-efficient and accu-
rate mechanism to find fuzzy seed matches in genome analysis. NAR
Genom Bioinform 2023;5:1qgad004.

Irber L, Brooks PT, Reiter T et al. Lightweight compositional analysis of
metagenomes with fracminhash and minimum metagenome covers.
bioRxiv 2022, preprint: not peer reviewed.

Jain C, Dilthey A, Koren S et al. A fast approximate algorithm for map-
ping long reads to large reference databases.] Comput Biol 2018;25:
766-79.

Jain C, Rhie A, Zhang H et al. Weighted minimizer sampling improves
long read mapping. Bioinformatics 2020;36:1111-8.

Joudaki A, Ritsch G, Kahles A. Fast alignment-free similarity estimation
by tensor sketching. bioRxiv 2020, preprint: not peer reviewed.

Koren S, Walenz BP, Berlin K et al. Canu: scalable and accurate long-
read assembly via adaptive k-mer weighting and repeat separation.
Genome Res 2017;27:722-36.

Li H. Minimap and miniasm: fast mapping and de novo assembly for
noisy long sequences. Bioinformatics 2016;32:2103-10.

Li H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 2018;34:3094-100.

Maier BD, Sahlin K. Entropy predicts sensitivity of pseudo-random
seeds. Genome Research. 2023 May 22:gr-277645.

Marcais G, DeBlasio D, Kingsford C. Asymptotically optimal minimiz-
ers schemes. Bioinformatics 2018;34:113-22.

Margais G, DeBlasio D, Pandey P, Kingsford C. Locality-sensitive
hashing for the edit distance. Bioinformatics. 2019 Jul
15;35(14):1127-35.

Myers G. Efficient local alignment discovery amongst noisy long reads.
In International Workshop on Algorithms in Bioinformatics 2014
Sep 8 (pp. 52-67). Berlin, Heidelberg: Springer Berlin Heidelberg.

Ondov BD, Treangen TJ, Melsted P et al. Mash: fast genome and meta-
genome distance estimation using minhash. Genome Biol 2016;17:
132.

Orenstein Y, Pellow D, Marqais G et al. Designing small universal k-mer
hitting sets for improved analysis of high-throughput sequencing.
PLoS Comput Biol 2017;13:¢1005777.

Popic V, Batzoglou S. Privacy-preserving read mapping using locality
sensitive hashing and secure kmer voting. bioRxiv 2016, preprint:
not peer reviewed.

Public Health England, Pacific Biosciences, and Wellcome Sanger
Institute. National Collection of Type Cultures. 2014. Hinxton,
Cambridgeshire,CB10 1SA. UK: Wellcome Sanger Institute.

Roberts M, Hayes W, Hunt BR ef al. Reducing storage requirements for
biological sequence comparison. Bioinformatics 2004;20:3363-9.
Sahlin K. Effective sequence similarity detection with strobemers.

Genome Res 2021a;31:2080-94.

Sahlin K. Faster short-read mapping with strobemer seeds in syncmer
space. bioRxiv 2021b, preprint: not peer reviewed.

Schleimer S, Wilkerson DS, Aiken A. Winnowing: Local algorithms for
document fingerprinting. In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data,
SIGMOD °03. New York, NY, USA: Association for Computing
Machinery, 2003, 76-85.

Shaw J, Yu YW. Theory of local k-mer selection with applications to
long-read alignment. Bioinformatics 2021; 4659-4669.

Shomorony I, Kamath GM. Sketching and sequence alignment: a rate-
distortion perspective. In: 2021 IEEE International Symposium on
Information Theory (ISIT). Melbourne, Australia, 2021, 3308-13.
New York, NY, USA: IEEE.

Smith TF, Waterman MS. Identification of common molecular subse-
quences. | Mol Biol 1981;147:195-7.

Tvedte ES ef al. Comparison of long-read sequencing technologies in in-
terrogating bacteria and fly genomes. G3 2021;11:jkab083.

Vembar SS, Seetin M, Lambert C et al. Complete telomere-to-telomere
de novo assembly of the Plasmodium falciparum genome through
long-read (>11 kb), single molecule, real-time sequencing. DNA Res
2016;23:339-51.

Zheng H, Kingsford C, Margais G. Improved design and analysis of
practical minimizers. Bioinformatics 2020;36:1119-27.

¥20z Ae|N 0z uo 1senb Aq /| /6Z€./2G9PEI0/ L L/6E/2]01HE/SOlBWLIOUIOIG/WO0D"dNodlWapede.//:sdly woly papeojumoq

https://github.com/TavorB/spectral_jaccard_similarity
https://github.com/TavorB/spectral_jaccard_similarity
https://github.com/TavorB/spectral_jaccard_similarity
https://github.com/TavorB/spectral_jaccard_similarity

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	Acknowledgements
	Supplementary data
	Data availability
	References

