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The Metagenomic Binning Problem:
Clustering Markov Sequences

Grant Greenberg

Abstract—The goal of metagenomics is to study the composi-
tion of microbial communities, typically using high-throughput
shotgun sequencing. In the metagenomic binning problem, we
observe random substrings (called contigs) from a mixture of
genomes and aim to cluster them according to their genome
of origin. Based on the empirical observation that genomes of
different bacterial species can be distinguished based on their
tetranucleotide frequencies, we model this task as the problem
of clustering N sequences generated by M distinct Markov
processes, where M <« N. Utilizing the large-deviation principle
for Markov processes, we establish the information-theoretic limit
for perfect binning. Specifically, we show that the length of the
contigs must scale with the inverse of the Chernoff divergence
rate between the two most similar species. Furthermore, our
result implies that contigs should be binned using the KL
divergence rate as a measure of distance, as opposed to the
Euclidean distance often used in practice.

Index Terms—Biological information theory, metagenomics,
Markov processes, clustering algorithms.

I. INTRODUCTION

N THE last decade, advances in high-throughput DNA

sequencing technologies have allowed a vast amount of
genomic data to be generated. Countless tasks such as genome
assembly, RNA quantification, and genome-wide association
studies have become a reality, opening up exciting new
research directions within biology and medicine [1].

Spurred by the advancements, several studies have utilized
information-theoretic frameworks and principles to provide
new insights into certain areas of bioinformatics. In [2], [3],
the authors employ a probabilistic model for DNA sequence
generation and characterize the fundamental limits of perfect
sequence reconstruction as the genome size and number
and length of sequencing reads, grow. In [4], [5], a similar
procedure is utilized to determine under what conditions
it is information-theoretically feasible to detect causal sub-
sequences in GWAS studies. State-of-the-art transcriptome
assemblers [6], [7] also draw from information theory princi-
ples to optimize the use of transcript abundances to overcome
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Fig. 1. (a) A metagenomic sample containing three species with various
abundances. (b) The short DNA sequencing reads obtained from the sample.
(¢) The contigs obtained after assembling the reads. (d) The genome
corresponding to the red species, with the position of the contigs labeled.
Note that the contigs are non-overlapping and do not cover the full genome.

repeat patterns. In the context of this progress, we aim to
provide a similar investigation in the area of metagenomics.

Significant attention has recently been given to the analysis
of the human microbiome through metagenomics [8]. In
metagenomics, a sample is taken from a microbial community,
such as the human gut. The genetic material in the sample
is then sequenced and analyzed to determine the microbial
composition of the community [9]. Recent research, including
the Human Microbiome Project [10], has shown that the
composition of the microbiome is a “snapshot” of an individ-
ual’s overall health, providing great potential for personalized
medicine.

Full reconstruction of the genomes in a metagenomic
sample is generally infeasible due to insufficient coverage and
high similarity across species [11]. In the typical analysis
pipeline, the millions of reads obtained via high-throughput
sequencing are used to create a much smaller number of
contiguous sequences, known as contigs, by merging reads
with large overlaps [12]. This process is illustrated in Fig. 1.
The set of resulting contigs typically make up only a small
fraction of the full genomes of all species present in the sample
and have no significant overlaps with each other.

Metagenomic binning is concerned with the following
question: is it possible to group the resulting contigs based
on the genome from which they were derived? Somewhat
surprisingly, it has been shown that contigs belonging to the
same species typically have similar sequence compositions.
Specifically, it was empirically verified that the distribution
of four-letter strings (e.g., AGCG) remains relatively con-
stant across an entire bacterial genome [13], [14], [15]. Even
plasmids and bacteriophages corresponding to a bacterial
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species tend to have similar nucleotide compositions as the
chromosome [16], [17]. Hence one can compute for each
contig the tetranucleotide frequency (TNF) vector, and group
together contigs with “similar” TNF vectors. Provided that
the underlying TNF distributions are distinct enough, metage-
nomic binning can thus be performed.

Based on this idea, many different algorithms and software
packages have been proposed to perform metagenomic bin-
ning [11], [18]. Usually, in addition to the TNF vector, the read
coverage of each contig is used as another feature to help with
the clustering. However, in this study, we focus on using the
TNF alone, which has been shown in previous studies to con-
tain significant statistical power [12]. Moreover, we show in
Section V that clustering with TNF alone largely preserves bio-
logical information. Other algorithms use a supervised learning
approach by comparing the sequence composition of reads to
a database of known bacterial genomes [19], [20], [21], [22],
or through direct alignment to said database [23], [24].

The fact that the distribution of four-symbol strings is
consistent throughout a given genome motivates the modeling
of each genome as a third-order Markov process. Hence, we
assume that a contig is generated by one out of M distinct,
unknown Markov processes p1, . . ., pys With equal probability,
where each p; corresponds to a certain species. To study the
fundamental limits of this problem, we assume all N contigs
have length L, and consider an asymptotic regime where N —
oo, and the contig length grows slowly with the number of
contigs. Specifically, we set L = Llog N, which is not based
on any natural phenomenon, but which we show is the correct
length scaling based on our model (e.g., L = N? makes
the problem too easy, and L = N makes the problem too
challenging). Our goal is to characterize how large L needs to
be to allow perfect binning with high probability. Note that in
practice L and N are essentially observed variables, whereas
they are controlled parameters in our framework. Nonetheless,
the results presented in this work indicate that studying our
model provides valuable insights for a practical setting.

To obtain our main result, we establish the equivalent of
the Chernoff Information [25, Ch. 11.9] for Markov processes,
which gives the error exponent for the Bayesian error prob-
ability when testing between two known Markov processes.
This result, combined with a scheme to estimate the M Markov
distributions, allows us to show that perfect binning is possible
if and only if

- 1

b= ming ¢ C(pk, pr)’
where C(pg, pg) is the Chernoff divergence rate between py
and py. To estimate the unknown distributions, we consider
building a graph where contigs whose empirical distributions
are close are connected. We then show that, with high
probability, M large cliques can be found, which can be used to
find estimates py, £k = 1,..., M, of the Markov distributions.
Each contig x is then placed in bin k given by

argmin D (px||py)

ke{l,...,.M}
where px is the empirical 4-symbol distribution of x and
D(-||-) is the KL divergence rate (essentially the KL

divergence for random processes) between Markov processes
with distributions px and py.

Our main result suggests that the optimal way to bin metage-
nomic contigs is to estimate the underlying TNF distributions
and then bin contigs using the KL divergence rate as a metric,
as opposed to the commonly used Euclidean distance. By
simulating contigs from real bacterial genomes, we show that
this metric can lead to lower binning error probabilities.

The paper is organized as follows. In Section II we describe
the problem formulation in detail and state our main result.
In Section III we describe our achievability scheme and the
main technical ingredients used to prove it, and in Section IV
we describe the converse argument. In Section V we provide
preliminary simulation results, and we conclude the paper with
a discussion in Section VI.

II. PROBLEM STATEMENT

As shown in [13], the distribution of tetranucleotides (four-
letter strings), tends to be stationary across an individual
bacterial genome. Hence, it is natural to assume that each of
the species in our sample corresponds to a distribution over
all possible tetranucleotides' {AAAA, AAAC,..., TTTT}.

Let P be the |A]*-dimensional simplex, where
X = {A4,C,G,T}. Notice that not all distributions in P
are valid tetranucleotide distributions, as the tetranucleotides
in a sequence overlap with each other. Let P be the set of all
p € P with p(c) > 0, Vc € X1, which, in addition, satisfy

for all a € A8
> p(ab) =Y p(ba). )

beX beX

Condition (1) ensures that a given p € P corresponds to the
tetranucleotide distribution of a specific, stationary, irreducible
(due to p(c) > 0), third-order Markov chain. More precisely,
we can let the induced distribution over 3-letter strings be

p(a) = p(ab). )
beX

This uniquely determines a stationary Markov process with
initial state distributed as (2) and transition probabilities (i.e.,
conditional distribution)

p(bla) =

3)

Hence, we will model each species in the sample using a
distribution p; € P.

A. Metagenomic Binning Problem

We assume that we have M species in our sample (for a
known M). In our framework, each species is modeled by a
stationary third-order Markov process defined by p; € P, for
k=1,..., M. From this genomic mixture, we observe a set
of N realizations ) = {xi}f[: 1» wWhich we call contigs. Each
x € ) is generated independently by first choosing a species

n practical approaches, reverse-complementary tetranucleotides such as
ACAG and CTGT are treated as the same tetranucleotide, but we ignore that
fact for the sake of simplicity.
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k€ {1,..., M} with prior probabilities {mj}2Z, and then
generating a length-L sequence according to pj. The priors
are unknown, but we assume they are finite and do not change
with N. Furthermore, we assume to know a lower bound on
the minimum prior, which we call m;,; we argue this is a
reasonable assumption since, in practice, one can expect to
recover species only above a minimum abundance.

For each k, let C;, be the set of contigs generated according
to pi. We wish to reconstruct Cp, k& = 1,...,M, by
determining which contigs originated from the same genome.

We point out that in real metagenomic experiments, the cov-
erage depth, that is, the expected number of contigs containing
a specific nucleotide from one of the M genomes, is low [26].
Hence, contigs will have no overlap with high probability,
allowing us to model them as independent realizations of the
different Markov processes in the sample.

B. Perfect Binning

The goal of the metagenomic binning problem is to cluster
the N contigs into M “bins”, where each bin k corresponds
to a unique species with distribution p;. More precisely, the
goal is to find a decision rule 6 : X — {1,..., M} (using
notation from [27]) which correctly maps each contig to its
respective genome bin.

Perfect binning would be achieved if for every contig X,
d(x) chooses the label of the distribution from which it was
generated. However, we have the added difficulty that the
distributions are unknown. As a result, we can only require
the decision rule to be correct up to a consistent relabeling of
species indices. Hence, the error event for a decision rule ¢ is

Es={3x€Chry€Cpk#L:6(x)=0(y)}. @4

We would like to know under what circumstances we can
perfectly bin all N contigs. In order to study the information-
theoretic limits of this problem, we analyze an asymptotic
regime, similar to [2], in which N — oo and

L= Llog N (&)

where L is the “normalized contig length”. Intuitively, a larger
value of L should allow one to bin a contig with higher
accuracy. This scaling forces the contig length to be small
compared to the number of contigs and, as we will show, is a
meaningful scaling for the asymptotic problem we consider.

This asymptotic regime allows us to define when species
are resolvable as follows:

Definition 1: The M species with distributions {py }2  are
resolvable if there exists a sequence of decision rules {Jy}
such that Pr(&s, ) — 0 as N — oo.

C. Main Result

Interestingly, the fundamental limit of resolvability relies
on the Chernoff divergence rate, which we define next. The
Chernoff divergence rate can be thought of as a measure of
distance between the distributions. Specifically, it is the KL
divergence rate between one of the distributions and the closest
distribution that is equidistant (by KL divergence rate) to both
distributions.

Definition 2: For two Markov processes p; and pp, the
Chernoff divergence rate between p; and p, is given by

C(pg-pe) = D(p*|lpr) = D(p*llpe) (6)

where D is the KL divergence rate (Eq. (36)), and p* is the
solution to the following minimization problem.

p* = argmin D(p|py,)
peEP

s.t. D(pllpr) = D(pllpe) N

In [27, Sec. 10.1.3], an efficient way to calculate the
Chernoff divergence rate is given.

Our main result establishes that the minimum normalized
contig length, L, required for resolvability depends exclusively
on the minimum Chernoff divergence rate between species
distributions.

Theorem 1: Let Cpin = mingy C(pg, pe). The species’

distributions {pk}kM: | are resolvable if and only if

1
Cmin

Intuitively, this means that the contig length must be large
enough to distinguish between the two closest distributions.

L>

()

III. ACHIEVABILITY

The achievability proof of Theorem 1 is described in the
form of an algorithm to highlight the algorithmic nature
of metagenomic binning. Algorithm 1 first estimates the
species distributions by finding large cliques in the distance-
thresholded graph, then averaging the empirical distributions
of the contigs in large cliques. Finally, it bins the contigs based
on the estimates. Note that the algorithm as described is not
computationally efficient (specifically, finding large cliques)
and is used only to establish the achievability of Thm. 1.
Given a contig x € ), we define the empirical fourth-order
distribution of x as px and we use d as the L distance between
distributions, i.e., d(p, q) = > a4 [p(c) — g(c)|. We will
let din = mingzy d(py, pe) be the minimum L; distance
between any pair of the M species distributions.

A. Estimating Distributions

Recall that Cj, is the set of contigs generated by py. We
expect the empirical distribution of the majority of contigs in
C}. to be near py,. To identify those “good contigs”, let

N €
Cre=1{x€Cp : d(px,pr) < 5}.

To prove that the distribution estimates { ﬁk}g/[: , are close
to the true distributions {pk}kM: , (after proper reindexing),
we use three lemmas, which demonstrate that 1) sufficiently
large cliques exist in the graph that 2) are each close to a
different species distribution and 3) are not “contaminated” by
a significant number of contigs from a different species. The
proofs of each lemma can be found in Appendix.

We begin by establishing that M sufficiently large cliques
will exist in Ge with high probability using the following

Authorized licensed use limited to: University of lllinois. Downloaded on May 20,2024 at 16:07:23 UTC from IEEE Xplore. Restrictions apply.



GREENBERG AND SHOMORONY: METAGENOMIC BINNING PROBLEM: CLUSTERING MARKOV SEQUENCES 35

Algorithm 1: Decision Rule to Bin All Contigs. The Algorithm Searches for the Smallest Threshold e Which Gives Rise
to Sufficiently Large Cliques. It Then Uses the Cliques to Estimate the Corresponding Species Distributions, Which It Uses

to Bin the Contigs

Result: Decision Rule §(x)
Input: Contigs ), Parameter « € (0,1)
begin
D «+— sortinascendingorder{d(f)x, Dy), VX, y € y}
for ¢ in D
Ge (V =V, E.={(x,y) : d(i)Xai)y) < 6})
if G¢ has disjoint cliques {IC;C}/,]CM:1 :
for k+«—1toM
‘ Dk — ﬁ ZXE’Ck Px
break
forxec)

| 6(x) ¢— argmingegy sy D(bxlPr)

Kkl > (1= ) Nrgin, 4Ly 1Kkl > (1— )N

lemma, which says that a large fraction of the contigs will be
close to their respective generating distributions.
Lemma 1: Fore >0, k € {1,..., M} and N large enough,

Pr(|Cr.| < (1 — @) Nry,) < g1 L-loger )

where 7 is a positive constant. Moreover, by the triangle
inequality, any two contigs x, y € Cj, . will be at a distance
€ or less, and thus, Cj, . forms a clique in Ge.

dmln

Fixing € < , Lemma | guarantees that for a reasonably
chosen «, and large enough N, the right side of (9) will be
small, and thus, we will have |Cy, (| > (1 — a) N, with high
probability.

Next, we present Lemma 2, which establishes that the
cliques and species have a one-to-one mapping. Recall that
Tmin 1S @ lower bound on the minimum species prior.

Lemma 2: For € < % if Algorithm 1 finds cliques

{Kk}ﬂ/le, then there exists a bijection o : {1,..., M} —
{1,..., M} such that, for each k,
K ﬂC ¢ F 0, (10)
Ve £ ok ).’CkﬁC&e:@ (11)

with probability 1 — o(1).

Notice that dp,;, is not known, so the algorithm cannot
restrict its search to € < m““ . However, since the algorithm
con51ders different values of € in increasing order, for some
€< “““ , M cliques satisfying the constraints in Algorithm 1
will ex1st with probability 1 — o(1) (meaning that for any
probability arbitrarily close to 1, one can find an Ny such that
all N > Ny achieves that probability or greater).

Now that we have established that sufficiently large cliques
will exist covering all species distributions with high proba-
bility, we finally use Lemma 3, which says that fraction of
“good contigs” in each clique goes to one.

Lemma 3: Let o be the bijection from Lemma 2 which
maps the clique index to the species index. If &« — 0 as N —
00, then

1Kk O Co (k) el

— 1 12)
Ky (

with probability 1 — 0 (D).

If we set o = o T (12) holds and (9) converges to O as
N — oo. Thus, w1t}% high probability, a vanishing fraction of
the contigs in XCj; does not belong to Cy . Since distribution
vectors are bounded, the impact of wrong contigs in Kj on py,
also vanishes, and we conclude that the distribution estimate

~ 1 A
PE = m ZXG’Ck Px — po-(k) as N — oo.

B. Binning Contigs

In Section III-A, we established that we can construct
estimates of the underlying distributions {pk}ljyz , that are
arbitrarily accurate as N — oo. Next, we show that, binning
the contigs based on the KL divergence rate using the
underlying distributions achieves (8) in the limit.

Consider the hypothesis test between two Markov processes
pr. and pp (assumed to be known). Given prior probabilities
my, and 7y, the Bayesian probability of error is

m Pr(choose ¢|k true) + m,Pr(choose k|¢ true)

for the decision rule on a contig generated by either p; or py.

Theorem 2: Let SSCLK) be the error event for the decision rule

which minimizes the Bayesmn probability of error. Then
Lh—>moo E log Pr (ngg)) = —C(pg, pe), (13)
i.e., C(py, pp) is the optimal error exponent.

The proof of Theorem 2 is given in Appendix. For a given
contig, the last step of Algorithm 1 can be thought of as M — 1
binary hypothesis tests between the true distribution and each
of the remaining distributions. Thus, we will use Theorem 2 to
bound the overall error probability, Pr(s, ), by considering
the two closest distributions.

Pr (s, ) ZZWkZPr< ) (14)
i=lhk=1 £k

< N(M-1) r&gPr(f%}) 15)

< MQL(I/E—Fman#(l/L) 1OgPr(5/(f4?)> (16)
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where (14) follows from the union bound. By Theorem 2,
1 L .
max 7 log Pr (522) — —min C(pk,pe) = — Cmin

as N — oo. Hence, if L > ﬁ Pr(&s, ) — 0. Consider the
case when instead we have estimates of the true distributions.
The decision boundary for the optimal assignment of contigs
is continuous on {i)k}ﬁ/lz 1 Since each pj, — py, a continuity
argument can be used to show that the probability of error of
the binary hypothesis test converges to the same value as the
distributions converge to the true ones. Then, it follows that
the overall error probability converges to (16). This concludes
the achievability proof of Theorem 1.

IV. CONVERSE
Without loss of generality, let p; and pp be such that
Cmin = C(p1,p2). Given the decision rule éy, contigs
x1 € C; and x2 € Co, and a contig x € ), let
E1px = {x € C1,0n(x) # Oy (x1)}
U{x € Cy,dn(x) # dn(x2)}
i.e., the event that x was generated by either p; or ps and

incorrectly binned. Note that Pr(£12x) > 2mpminPr(€1.2).
Then

N
Pr(55N) > Pr(U ?1,2,Xi>

i=1

1- (1 - Pr(z’l,gxl))N

1— {(1 — 27rminPr(51,2))UPr(gl’Q)}
1 _ 6_27TminNPr(£1,2)

NPr(&1,2)

Y

Y

A7)

where (17) follows from the bound (1 — ap)/P < ¢ — @
for p € (0,1],a € R. We see that, if NPr(£12) # 0, then
Pr(€) # 0. Since

NPr(£; o) = 2L/ L+(1/L) log Pr(€1.2)) |

then by Theorem 2, NPr(€12) 4 0 when L < Cl, . This
concludes the converse proof for Theorem 1.

V. EXPERIMENTAL RESULTS

From the point of view of practical metagenomic binning
algorithms, our main result suggests that:

1) the KL divergence rate is a good metric for binning

contigs,

2) the Chernoff divergence rate can be used as a measure

of how difficult it is to distinguish two species.

In this section, we provide preliminary empirical evidence
of these claims through two sets of experiments. For the first
set of experiments shown in Figures 2a-c, we utilized several
previously sequenced and assembled bacterial genomes, avail-
able at NCBI [28]. For each bacterial species k, we numerically
computed its fourth-order distribution pj (i.e., the overall
tetranucleotide frequency vector). We were able to simulate
contigs of a desired length L by sampling from all length-L
substrings from the genome. For each experiment, we assume

N = 109 for concreteness (thus L = Llog105). Note that
the results are not meaningfully affected by the choice of N.
For example, setting N = 10% would “stretch out” the plots
in Fig. 2a and 2c compared to N = 106, since a larger L is
needed to obtain the same contig length, but the actual error
values and structure of the graphs will not change.

To verify the usefulness of the KL divergence rate and
compare it to the Euclidean distance (used in state-of-the-
art tools such as [11], [18]), we considered the following
experiment: we extracted random contigs from a species p;
and then tested whether it was closer to species p; or to
another species ps based on both the Euclidean distance and
the KL divergence rate. In Figure 2a, the KL divergence rate
metric” consistently outperforms the Euclidean metric as we
vary L in the test between the species Alistipes obesi and
Megamonas funiformi.

We performed this experiment for 45 different choices of
pairs of bacterial genomes from NCBI. For each pair (k, /),
we considered a fixed normalized contig length given by
L = C(py,ps)~'. As shown in Figure 2b, the conditional
divergence improves the error compared to the Euclidean
distance in almost 90% of cases.

Theorem 1 implies that an appropriate similarity mea-
sure is the inverse of the Chernoff divergence rate since it
characterizes how long the extracted contigs need to be in
order for two species to be reliably distinguishable. To verify
that, we calculated i5%, the minimum normalized contig
length required to guarantee a 5% error rate in the Bayesian
hypothesis test between species p; and p, with equal priors.
In Figure 2c, we plot Lse, vs C~Y(pg,pe) for many such
pairs and observe a roughly linear relationship between these
two quantities. Such a linear relationship agrees with the
relationship suggested by Theorem 1. Moreover, it provides
support to the claim that C_l(pk,pg) is a measure of how
difficult it is to distinguish contigs from two species based on
tetranucleotide frequencies.

In the second experiment, shown in Figures 2d-f, we
use metagenomic datasets simulated by CAMISIM [29] for
the first Critical Assessment of Metagenome Interpretation
(CAMI) challenge [30]. The datasets are simulated to mimic
the taxonomic profiles of the Human Microbiome Project [31]
for the Gastrointestinal (samples 0 and 1) and Oral (samples 6
and 7) microbiomes. We preprocess each dataset by removing
contigs shorter than 1kbp, as well as all contigs from families
that represent less than 0.1% of the dataset (most of these were
complete or nearly complete metagenomes).

We aim to strengthen the evidence that KL divergence rate
is a more effective measure compared to Euclidean distance
when binning contigs. To this end, we perform k-means

clustering for each dataset, ). In the first step, we initialize

a set of cluster means {NEO) le, p; € R256, by choosing

k contigs at random and calculating their TNFs. In k-means
we iterate between an assignment step, where we partition the
dataset into clusters

SZ.(t) ={ze€)Y:i=argmind(z,pu;)},
j=1,...k

2D(]]-) is not technically a metric as it is not symmetric.
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Fig. 2. (a) Comparison of KL divergence rate (conditional divergence) and Euclidean distance for a hypothesis test between Alistipes obesi and Megamonas

funiformis; (b) A stem plot of the (sorted) improvement in performance from Euclidean distance to KL divergence rate with L = C(p ks p@)*l; (c) Normalized
contig length required for 5% error (Zs%) vs species similarity as measured by the inverse of the Chernoff divergence rate for several pairs of species. (d,e)
Bar graphs of adjusted Rand index and completeness, respectively, for k-means clustering on several CAMI samples using three different measures for the
assignment step. (f) -SNE plot of the first HMP CAMI sample, colored by family (with taxonomic IDs in the legend).

and an update step,

t 1
NE)ZW > @
|Si zes?

We use three different distance measures, d(-,-), for the
assignment of contigs to means>: 1) KL divergence rate,
2) Euclidean distance, and 3) KL divergence rate for only the
final assignment, much like Algorithm 1 of the achievability
proof. Note that the KL divergence rate requires the addi-
tional calculation of the (stationary) third-order distribution
to determine. For each sample, the k chosen is equal to the
number of families in the sample. In practice, this quantity
cannot be known, but there exist several heuristics to choose an
appropriate number of clusters, including the “elbow method”,
AIC [32], and BIC [33]. Furthermore, methods such as [11]
use a greedy method for binning, obviating the need to choose
a k-value.

To evaluate our simple binning scheme, we calculate
purity and completeness, which are typical binning met-
rics [11], [12], as well as adjusted Rand index (ARI). For
each predicted bin, corresponding to family f (i.e., by majority
vote of ground-truth labels in the bin), purity measures the
contamination by families other than f, and completeness, the
fraction of all contigs from f the bin contains. ARI measures
the fraction of all pairs of contigs in either the same or
different clusters in both the predicted clustering (bins) and the
ground truth clustering (families). In Figure 2e, we see that the
fraction of complete clusters (greater than 50%) significantly
increases when using KL divergence rate for three of four

3Though k-means clustering method is designed to minimize the sum of
Euclidean distances, we believe that it is nonetheless natural to use KL
divergence rate for the assignment step despite no convergence guarantees.

samples. Similarly, the KL divergence greatly improves the
ARI for three of four samples, indicating that KL. divergence
rate is indeed the correct measure to capture the biology of
bacterial reads. Additionally, note that performing the final
assignment step using KL divergence rate generally improves
the performance metrics as well. We chose to provide the
purity values in Fig. 3a in the Appendix since the results
were similar across binning methods, with KL divergence
outperforming Euclidean distance in one dataset, and matching
in the remaining three.

VI. DISCUSSION

In this paper, we modeled the metagenomic binning problem
as the problem of clustering sequences generated by distinct
Markov processes. While overly simplistic, this model allowed
us to establish the Chernoff divergence rate as a measure of
how easy it is to distinguish contigs generated by two species.

The algorithm used to prove the achievability suggests
that a good “metric” for binning is the KL divergence rate
between a contig and an estimate of a species TNF. Through
experiments, we provided preliminary evidence that this metric
often outperforms the Euclidean metric in the problem of
assigning a contig to a species bin. However, this assumes
knowledge of the overall TNF of a genome, which is not
known in practical settings. Therefore, a natural direction for
future investigation is how to efficiently estimate the TNF
distribution for the species present in the sample.

Furthermore, it is unclear whether estimating the underlying
TNF distributions is necessary to achieve the fundamental
limit. Alternatively, one could consider an approach that
directly clusters the contigs based on their pairwise distances
or based on a graph obtained by thresholding the distances
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(similar to our G¢). We point out that, for such a graph, the
problem becomes a community detection problem, and bears
similarities with the stochastic block model [34], since for
each species there is a given probability that an edge is placed
among two of its contigs, and for each pair of distinct species,
there is another probability that an edge is placed between
their contigs. These probabilities would in general depend
on the species TNF distributions (or the Markov processes
generating the contigs). Notice that, unlike in the standard
stochastic block model, here the placing of the edges would
not be independent events.

Finally, we point out that in most approaches to metage-
nomic binning, the read coverage, or abundance, is used to
compare contigs in addition to the TNFE. The read coverage
of a contig is essentially the average number of reads that
cover any given base in the contig. Intuitively, this number
is proportional to the abundance of the corresponding species
in the mixture. Hence, one expects contigs from the same
species to have similar read coverages, which can be used to
improve metagenomic binning. Another direction for future
work is thus to consider the metagenomic binning problem
where the different species have different abundances and, for
each contig, one observes a read coverage value that is related
to the species abundance.

APPENDIX
A. Proof of Lemma 1

Recall from Section II that Cp is the set of
contigs generated according to pg. Let &, be the
event of interest, {[Cp | < (1—a)Nm;}, and let
Ar = {|Ck] < (1 — §)Nmy}. Note that we use § for
Ay, as opposed to a because we need |Cy| to be larger than
|Ck |- By Hoeffding’s inequality,

et 2 22
Pr(Ay) < exp <—2(2NN7.%)> = exp (—Na;k)

This means, with high probability, p; will generate enough
contigs.
Let F}, be the set of distributions “far” from py:

Fo={peP:dp.p) =5} (18)

By a version of Sanov’s theorem for Markov chains, given in
Theorem 4 in Appendix D, for any x € Cy,

Pr(jx € Fi) < (L+1)*2 ED@" lIpe) (19)

where p* = arginf,cr, D(p||py); i.e., p* is the distribution
in Fj, closest to pg in KL divergence rate. Notice that &
occurs when more than |C,| — (1 — «)Nmy contigs lie in
Fi, leaving an insufficient number of “good” contigs. Letting
xo € Cj, be some contig generated by py,

Pr(&|AL)

=Pr| Y {px € Fr} > |Ckl — (1 — a)Nmy, | Af
x€Cy,

(20)

<Pr| 3 pxe F} > %ka AS Q1)
x€Cy
2 .

where (21) follows the definition of A, and (22) from
Markov’s inequality and symmetry across contigs. Combining
the probabilities,

Pr(&y,) = Pr(&|AL)Pr(AL) + Pr(&| Ag)Pr(Ayg)
2
< — Pr(f)xO S ]:k) + Pr(.Ak)

Toamg

2,2
i(L—i— 12~ L@ IPe) 4 exp (_Na Wk)

(23)
(24)

IN

AT 2
(25)

< ef'ya2 L—log« (26)

where v > 0 is a constant that does not depend on «
or L, guaranteed to exist such that (26) holds for large N.
v can be found by manipulating (25) using simple algebraic
operations.

B. Proof of Lemma 2
Given the constraints from Algorithm 1,
IKk| = (1 — ) NTin,
> k=1M|Ky| > (1 -0a)N,

27)
(28)

we aim to show that o indeed represents the one-to-one
mapping from cliques to “good contigs”. We first show that
there is a function f : {1,..., M} — {1,..., M, err} which
maps the cliques to at most one species’ “good contigs” (or
none). Suppose by contradiction that x,y € K, x € Cj, . and
y € Cyc, for k # L. Then d(x,y) < ¢, and we have

d(pr, pe) < d(pg, Px) + d(Px pr)
< d(pk, px) + d(ﬁx»@y) + d(f)yapl)

% +e+ % < dmina

which is a contradiction to the definition of d,,;,,. Hence, any
K}, may only contain contigs from one Cy ., and we can define
the function f described above.

Second, we show that all species must be covered. Suppose,
again by contradiction, that f maps some k to “err” or that
there exists j, k such that f(j) = f(k). Then, there should exist
some ¥, such that, for no &, f(k) = ¢. Hence, for a sufficiently
small «,

<

M
U’Ck <N -

k=1

<N —(1—-a)Nmyin
= N(l — Tmin — QTmin
< N(1-a),

‘ CZ,E|

(29)
(30)
with probability 1 — o(1) from Lemma 1. Note that the

inequality in (30) results from (29 tending toward N(1 —
Tmin) and (30) toward N as « decreases. This shows that if
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at least one species is not covered, then Algorithm 1 cannot
satisfy (27) and (28), which is a contradiction.

C. Proof of Lemma 3

Consider a clique K, and let £ be such that I, NCy . # 0.
By Lemma 1, the fraction of “good” contigs in K will be

KiNCoel | N—-M-(1-a)Nm
Krl (1 - )Ny
_,_ M 31)
11—«

with probability 1 — o(1) from Lemma 1. The lower bound
results from dividing the maximum number of contigs not in
any Cj . by the minimum number of contigs in Xy

D. Proof of Theorem 2

We define the type of a contig x to be its empirical fourth-
order distribution, denoted px. Let the set of all possible types
of length-L, stationary, third-order Markov sequences be Pj,.
The cardinality of Py, is upper-bounded by (L+1)* as shown
in [35]. The type class, Ty, of a given type, p € Py, is then
defined as the set of all length-L sequences whose types are
equal to p:

Tp(p) = {x € Xy —p}-

To facilitate analysis, we use a cyclical Markov model,
where three artificial transitions are added from the end of
the sequence to the beginning. This model ensures that px is
consistent. More precisely, for a € X3,

Z Px(ab) = Z Dx(ba).

beX beX

(32)

(33)

Note that this implies px € P as defined in Section II.
Furthermore, the third-order and conditional empirical distri-
butions can be derived from py as follows, for any b € &,

=) px(abd) (34)
beX
and
Px(ab)
Px(bla) = OR (35)

We now use some Large Deviations theory to make an
argument about the probability of error in the hypothesis test.

1) Large Deviations Principle: Vidyasagar [35] provides
an extensive analysis of large deviations theory for Markov
processes. Theorems 3 and 4, shown below, utilize this
analysis along with [36, Lemma 1], which allows us to make
an argument about the probability of error for the subsequent
hypothesis test. For the proofs of Theorems 3 and 4, the reader
is referred to [35, Th. 7] and [25, Ch. 11].

The results in [35] show that a Markov process
X = (Xi,...,X1) with type p and generated by ¢ satisfies
the large deviations property with rate function D(p||q). Here,
D is the KL divergence rate defined as the KL divergences
averaged over p:

S vta) Y- avitos( 2 )

ae‘)(‘?’ bEX
p(ab)

= 2 q(ab)

ac X8 beX

- Y platos 2
anB a(a)
= DW(pllg) = DD (p]lq) (36)
i.e., the divergence between the fourth-order distributions

minus the divergence between the third-order distributions.
Similarly, the “Markov conditional entropy” can be written as

H(p)=Y_ p(a) Y p(bla)logp(bla)
acA® bekX
= HW(p) — HO(p)

We use D and H without superscript so as to distinguish
between the divergence and entropy rates.
Theorem 3: The probability of x under g depends only on
its type px and is given by
P (x) = 9—L[D(pxllq)+H (px)]+log ox (37)

where o = ¢(z1a223), i.e., the probability of the initial state
of x.

Theorem 4 (Sanov’s Theorem for Markov Processes): Let
X = (X1,Xs,...,X1) be a Markov process g, and let
F C P. The probability that the empirical distribution of X is
contained in F, denoted q(L) (F), is upper-bounded as

D(pllq)

p(ab)log

log

dD(F) < |prl2~ LP @ lla)Hoga (38)
where p* is the information projection of ¢ onto JF:
p* = arginf D(p||q). (39)

pEF

If, in addition, the closure of JF is equal to the closure of its
interior (F = F°), then
m L log oD (F) =
Jim, 7102 =
2) Hypothesis Test: In the binary hypothesis test, there are
two candidate models for ¢ : p; and po, where p; # po. We
decide between the two hypotheses:
e Hi:g=m
e Ho:qg=p2
Let P; and P2 be the decision regions for Hy and Hy,
respectively. The sets P1 and P form a partition of P (P1U
Py = P). As a result, given any x € X, §y(x) decides Hy
if px € P1 and Hy if px € Pa. The Bayesian probability of
error, P, for the binary hypothesis test with priors 71 and 7o
is given by

—D(p*|lq)- (40)

Pe = mptP (Py) + mapl (Py). @1

To minimize the error, the decision rule* uses a Neyman-
Pearson test

(ML) > 2
5N(px) = {H2 if E(X) < % (42)

4The decision rule & 1, uses overloaded notation with the decision rule for
the main problem.
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where the likelihood ratio, £, is defined as:

(L)
Pr(x|Hpt
£(x) = LriHytrue) ph)(x). (43)
Pr(x|Hatrue) P (x)

Using Theorem 3, the normalized log-likelihood ratio is
1 R R log oy
Flog£00) = ~ [D(xllp) + H ()] + 5

N . log ap
+[D(pxllp2) + H(px)] = —
. . 1 aq
= D(pxllp2) — D(bxllp1) + 7 log —
(%)

Again, a1 and a9 represent the probabilities of the ini-
tial states of x under p; and po, respectively. Notice that
as L — oo, the optimal decision rule simply chooses

argmin D(p|ps) because the effect of the priors washes out
ke{1,2}

with L, along with the probability of the initial states. We will
show that, by using the decision regions, P; and P3, given by

Pr=A{pc 7:’ : D(pllp2) — D(pllp1) = 0}
Py ={p € P: D(plpz2) — D(plp1) < 0}

the optimal error exponent is achieved in the limit. First, we
will prove Lemmas 4 and 5, which allow for the use of (40)
in Theorem 4.

Lemma 4: P; and Py are convex.

Proof: Let pg, pp € P1 and let

(44)
(45)

DPab :)‘p(l‘i’(l*)‘)pb? A€ (031)

be a convex combination of p, and p;. Then

D(papllp2) — D(papllp1)

ac A8 beX
ac A3 beXx
_ Z pi(bla)
bla
ac X beXx p2(bla)
= A[D(pallp2) — D(pallp1)]
+ (1= N[D(psllp2) = D(psllp1)] = 0
SO pgpy € P1 and therefore, P; is a convex set. A similar
argument can be made for the set Ps. Note that since P and
Py are both convex, this implies that the boundary linearly

divides the set of stationary fourth-order distributions, 7. H
Lemma 5:

pab(b|a)
p2(bla)

Pab(bla)
p1(bla)

Pap(ab) log

Pab(ab)log

Pap(ab) log

Pr=P) and Pp=7P3 (46)

Proof: The boundary between P1 and P consists of the set
of distributions p € P for which D(p||p2) — D(pl|lp1) = 0.
We see that p; does not lie on this boundary because

D(p1llp2) — D(p1llp1) = D(p1llp2) >0

by the non-negativity of the KL-divergence. Furthermore, p;
cannot lie on any other boundary of P; because all the

47)

elements of p; are nonzero. Thus, p; is an interior point of
P1 as it does not lie on any of the boundaries.

Finally, we need to show that convexity and a non-empty
interior imply (46).

Take a point p € Pp. Then either p € P{ or p € 0P,
the boundary of P;. If p € Pf, then p € P9, trivially. If
p € 0Py, we must prove that p is a limit point of P{. Since
p1 is an interior point of P1, then there exists an open ball
Uy centered at p; which is completely contained in P;. We
define V7 as the set of distributions that result from a convex
combination of p and U

Vi={aU1i+(1—-a)p:0<a<1} (48)

using Minkowski addition. The set V7 clearly has non-zero
volume (by Lebesgue measure) and all of its points are interior
points of P; due to Lemma 4. Therefore, there exists a
sequence of interior points {p:}, p+ € Vi such that p; — p.

Thus, p € PY.
A similar argument can be made for Po. Hence, the proof
of Lemma 5 is complete. |

Now, by Theorem 4 and Lemmas 4 and 5, the error
exponents are

.1 L *
Jim Zlogp”(P2) = = D(pilp1) (49)
lim L logp(L) (P1) = — D(p3|lp2) (50)
L—oo L 2 2 '

Distribution pj is found by minimizing D(p]||p1), subject to
the decision boundary constraint,

D(pillp1) — D(pillp2) >0, (51)
the consistency constraints for all a € X3 s
> pilab) = pi(ba), (52)
beX beX
and the sum-to-one constraint,
> pile) =1 (53)

cext

This will yield the distribution p} € Po that is closest to p;.
Moreover, we claim that p* must lie on the boundary, i.e., (51)
holds with equality. This can be proven by contradiction:
suppose p’ is the optimal solution to the minimization problem
and suppose

D¢ (p'|lp1) — De(p'||p2) > 0.

For0 < A < L letpy, = Apt + (1—X) p bea
convex combination of p’ and p;. We know from Lemma 4
that py € P for any value of A and furthermore, there exists
a A = \* such that

De(pa«llp1) — De(paxllp2) =0

since the boundary linearly divides P. Now, to show by
contradiction that

D¢(px+1lp1) < De(p'[lp1),
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(a) Bar graphs of purity for k-means clustering on several CAMI samples using three different measures for the assignment step, with k set to the

number of ground-truth clusters. (b,c) Adjusted Rand index and #-SNE plots for k = 1.5% the number of ground-truth clusters. The taxonomic IDs are given

in the legend in (c).

we will show that KL divergence rate is convex in its first
argument. For some distribution ¢ € P,

De(pallq)

_ pa(bla)
= a(g‘% pA(ab) log m
B op 22(012)
_)\3124:01 (ab) log —=———= a(bla)

+(1=X) > p'(ab)log pA(,)b'a)

abe Xt ( | )
_onl) | pi)
—Aaba“ (a0) (l & 4(bla) m(b|a>>
. o (10 PO 20

e A)abe%m b><1 T lgp,\(b|a)>
= ADc(p1llq) + (1 = A)De(p' ]l q)

— AD¢(p1llpa) — (1 = N)De(p'l|py)
< ADC(ﬁlHQ) + (1 - )\)Dc(p/H(]),

which proves convexity and concludes the proof of Theorem 2.

E. Extended Results

In Section V, we present the results of two sets of experi-
ments. In the second experiment, we ran k-means clustering on
several simulated CAMI metagenomic samples. In Figure 3a,
the results are shown for the purity metric. We can see that
the fraction of pure bins is similar across samples, with
KL divergence rate outperforming the other methods in only
Sample 6.

Thus far, the results presented using k-means clustering
have only set k equal to the number of ground truth clusters
(families) in the given sample. As we point out in Section V,
in practice, we cannot know the true number of clusters in a
sample; thus, evaluating the methods for different numbers of
clusters is pertinent. To that end, in Figures 3b,c, we present
brief results with & set to 1.5x the number of families. We see
that the ARI is generally improved when using KL divergence
rate as the binning measure.
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