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Abstract—We consider the problem of reconstructing a se-
quence of independent and identically distributed symbols from
a set of equal-size, consecutive, fragments, as well as a dependent
reference sequence. First, in the regime in which the fragments
are relatively long and typically no fragment appears more
than once, we determine the scaling of the failure probability
of the maximum-likelihood reconstruction algorithm for a per-
fect reconstruction, and bound it for a partial reconstruction.
Second, we characterize the regime in which the fragments
are relatively short and repeating fragments abound. We state
a trade-off between the fraction of fragments that cannot be
adequately reconstructed vs. the distortion level allowed for the
reconstruction of each fragment, while still allowing vanishing
failure probability.

Index Terms—Fragment reordering, permutation reconstruc-
tion, reference sequence, side information, sequence reconstruc-
tion, sliced sequences, DNA sequencing, bee-identification prob-
lem.

I. INTRODUCTION

In this paper, we consider the problem of reconstructing a
sequence XN 2 XN from its non-overlapping consecutive
fragments and a reference sequence, as illustrated in Fig.
1. A sequence of N independent and identically distributed
(IID) symbols is drawn from a finite alphabet source, and is
then partitioned into non-overlapping, consecutive fragments
of length L each. The fragments are then permuted in an
arbitrary manner, and a multiset of M = N/L fragments
is observed, without any specific order. In order to facilitate
the correct reordering of the fragments, the observer of the
fragments is supplied with a reference sequence Y N 2 YN of
length N . This reference sequence is similar, yet not identical,
to the sequence of interest; for example, it can be its noisy
version, or slightly different due to statistical variations in
some population. A reconstruction algorithm observes the M
fragments of the original sequence as well as the reference
sequence Y N , and is required to recover the original sequence
XN .

This problem is motivated by settings in which data is ob-
served out of order, and ordering is made possible through side
information. It arises in various domains: First, genomic DNA
sequencing typically produces short fragments, which should
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Figure 1. Illustration of the reference-based reordering problem.

be assembled in order to obtain the correct sequence.1 Due to
the high similarity between the individual genomes, the recon-
struction algorithm may have access to a reference sequence
that can be aid the assembly of the target sequence [24]. Vari-
ations between the two individually sequenced genomes, may
arise, e.g., either due to sequencing noise, or due to genetic
variations such as single nucleotide polymorphisms (SNPs).
As such, it can be modeled as a noisy channel operating on one
of the sequences to produce the other. While genetic variations
and sequencing noise are not independent across the genome
locations, we will follow the literature [25] and for simplicity
model them as a discrete memoryless source. Second, as
described in [19], such problem arises in transmission of
information over (noiseless) permutation channels, such as
packet networks employing multipath routing as a means for
an end-to-end packet transfer [26]. The transmission of XN

over such link may use short packets, each one encoding
fragments of size L. Then, similarly to the standard distributed
compression problem — the Slepian-Wolf problem [31] —
the reconstruction of the sequence from the fragments can
be aided by a side-information sequence Y N . Third, as we
discuss below, the problem is related to the identification of
unordered entities marked by barcodes, from noisy fragments
of those barcodes [33]. The sequence reordering problem also
has connections with the problem of database alignment, for
which a framework to study the fundamental limits of database
alignment was proposed in [10], motivated by the problem of
database de-anonymization. Similar to our setting, one wishes
to match a set of (anonymized) fragments to a set of similar
fragments (with identity information).

1More accurately, the fragments in DNA sequencing typically start at
random locations along the sequence, and might have overlaps. In this sense,
our model is a distilled version of this problem, and extending our results to
overlapping fragments is an interesting open problem.
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In this paper, we assume that XN is drawn from a memory-
less source PX , and that Y N is obtained by passing XN in a
discrete memoryless channel PY |X . Furthermore, we assume
that the length of each fragment scales logarithmically with
the number of fragments, and specifically set L = � logM
for some length-scaling parameter �. As we show, for this
choice of scaling there exists a critical value of � that
is required for reliable reconstruction. In addition, for this
scaling, the problem described above is closely related, and
perhaps prima facie equivalent, to the bee identification (BI)
problem, recently introduced in [33] and further studied in
[6], [17], [32], [34]. In the BI problem, one assumes that
the fragments of Y N (obtained similarly to the fragments
of XN , as non-overlapping, consecutive segments of length
L) are each a barcode used for identification of some ob-
jects, via the fragments of XN , which are noisy unordered
observations of the barcodes. A codebook for this problem is
comprised of the M fragments of Y N , where XN is drawn
in a memoryless fashion according to the reverse channel
PX|Y . A plausible method to generate this codebook is via
random coding, and specifically, by drawing the N = LM
symbols of the fragments in an IID fashion. In this random
coding regime, the average error probability over the random
ensemble of codebooks is similar to the reconstruction error
in the fragments reordering problem we consider, with the
inconsequential difference that the channel for the BI problem
is the reverse channel PX|Y , rather than PY |X .

Nonetheless, there are two subtle, yet significant, differ-
ences between the ordering problem using reference sequences
considered here and the BI problem. First, in the ordering
problem, one is not necessarily interested in recovering the
exact permutation of the fragments, but rather just the correctly
reordered sequence. Second, the source sequence and the
reference sequence are random, and there is no design freedom
to optimally choose the source fragments. By contrast, in
the BI problem, only a single optimal codebook is sought.
As shown in [32], [33], improved bounds can be obtained
by considering the average error of the typical random code
[1], [22], or via expurgation techniques [32]. As said, in
the ordering problem considered here, this is impossible, and
thus it is the random coding analysis that is of interest. In
fact, these two matters are interrelated, as exemplified by the
following extreme case: In the event that all fragments of
XN are equal, there is no ambiguity in the reconstruction
of the sequence, and zero reconstruction error is obtained.
By contrast, as a codebook for the BI problem, this has
the maximal possible error probability. Generalizing upon
this observation, the difference between the ordering problem
and the BI problem is most pronounced whenever there are
repeated fragments in the sequence. This typically happens
when the fragments are relatively short (small �), and the
entropy of the source probability mass function (PMF) PX is
low.

When considering repeated fragments in a sequence, it is
also expected that similar fragments will also be observed,
and in such a scenario, it is unreasonable to expect a perfect
reconstruction. Therefore, we consider in this paper a relaxed
notion of imperfect reconstruction, comprised of two elements.

First, we assume that an additive distortion measure is given,
and consider a fragment to be successfully reconstructed if its
distortion within the source fragment in that location is below
a prescribed distortion level � 2 R+. Second, we consider
the reconstruction to be successful if at most a fraction ⇠ 2
[0, 1] of the fragments were unsuccessfully reconstructed (i.e.,
their distortion level is larger than �). We then may analyze
the failure probability of the reconstruction algorithm for a
pair (�, ⇠), or, the trade-off between � and ⇠ . The relaxed
definition of failure probability for ⇠ > 0 was also proposed
in the conclusion part of [33] for the BI problem, as well as
in [32] (although with ⇠M being replaced by a constant that
does not scale with M ).

As might be noted, and owing to the above described dif-
ferences, we describe our setting with a different terminology
compared to the way it is formulated in the BI problem. In the
BI problem, the fragment length is considered the decoding
blocklength, and is expected to be large. The number of bees
is then exponential in that blocklength, that is, M = e

L
� .2

Therefore, 1/� may be perceived as the rate of identification,
and reliable identification of the bees is shown to be possible
in [32], [33] as long as 1

� is less than a maximal possible
rate, which may be considered the capacity of the BI problem.
Here, we opt to equivalently refer to the fragment length as
a logarithmic function of the sequence length, as common
in various other fragmented sequences problems, such as
DNA storage [29], [36], [37]. Accordingly, the success of
reconstruction will be (equivalently) stated in terms of lower
bounds on the fragment-length scaling �.

A. Results Overview

We assume throughout that the optimal maximum-
likelihood (ML) decoder is used for reconstruction. In the
parlance of [33], this is termed joint decoding of all the
fragments.

1) The No-Repeating-Fragments Regime with Zero Distor-
tion: First, we consider the regime in which no repeated
fragments are expected, and assume zero distortion � = 0,
though we allow both perfect and imperfect reconstruction
(⇠ = 0 and ⇠ > 0, respectively). For ⇠ = 0, this revisits the
setting of random coding analysis for joint decoding in the BI
problem [33]. We show the following in Theorem 1: As long as
� > 1

 2(PXY ) , then the reconstruction algorithm succeeds with
high probability, where the threshold  2(PXY ) is explicitly
defined in (10) as a convex optimization problem over joint
PMFs QX1X2 , that is, over |X |2�1 free variables. For ex-
ample, when X is a uniform Bernoulli random variable (RV),
and PY |X is a binary symmetric channel (BSC) with crossover
probability ↵ then  2(PXY ) =

1
2 [log 2� log(1+4↵(1�↵))].

Specifically, if ⇠ = 0 then failure occurs with probability at
most O(M2[1�� 2(PXY )]), that is, a polynomial decay in M .
If ⇠ > 0 then the failure probability occurs with probability at
most e�⇠M logM ·[� 2(PXY )�1], that is, exponential decay with
respect to (w.r.t.) M logM . We then establish in lower bounds
in Theorem 3, which make mild, unavoidable assumptions.

2In the notation in [33], L $ n and M $ m.
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For ⇠ = 0, we show that the failure probability rate is in fact
tight for ⇠ = 0, and lower bounded as e�⇠M logM ·� 2(PXY )

for ⇠ > 0 (thus, there is a gap of ⇠ in the exponent w.r.t.
M logM ).

In the ⇠ = 0 setting, the improvement of Theorem 1
over [33] is twofold. First, [33] only considered a symmetric
(uniform) binary source with a BSC, and its analysis heavily
utilizes the symmetry properties of this distribution. We obtain
this result for a general source PXY . In addition, our bound is
tighter than the one obtained for the binary symmetric setting
considered in [33]. Specifically, the dependence on  2(PXY )
is related to the error probability of transpositions, i.e., cycles
of length 2 (hence the subscript 2), and as we show, this is
the dominant error event. The analysis of [33] only showed
that the dominant error event may be either a transposition
or a cycle of length 3. In terms of proof techniques, as in
previous papers, we condition on the source vector, use a
union bound of the pairwise error of all possible permutations,
and upper bound the pairwise error using the Bhattacharyya
bound. As previous analysis also showed, the average of this
upper bound over XN should be computed for permutations
which are cycles. Such a cycle may have any length from
{2, 3, ...,M�1,M}, and we proved that transpositions (cycles
of length 2) dominate the error probability. The key new
ingredient is to evaluate this expectation via the Donsker–
Varadhan variational formula [12] (e.g., [3, Corollary 4.15]).
This method is preferred over perhaps the more straightfor-
ward method of types [8] [9, Sec. 2.1], since the error term in
the latter blows up when the cycle length is on the order of
M . Interestingly, the argument used to show that transpositions
dominate cycles of length 3 and the analogous argument for
longer cycles are different. The argument for length-3 cycles is
direct, and is based on special symmetry properties along with
Han’s inequality for the Kullback-Leibler (KL) divergence [3,
Theorem 4.9] [16]. The argument for cycles of lengths 4 and
larger is based on a relaxation of the function  K(PXY ),
characterizing the Bhattacharyya error bound for length-K
cycles, which, intuitively speaking, breaks the cycle at its end
point.

2) The Repeating-Fragments Regime with Positive Distor-
tion: In this regime, we consider both positive fragment-
failure rate ⇠ > 0 and positive distortion � > 0. As in the
previous regime and in previous works, the analysis of the
reconstruction failure probability is based on a union bound
over all possible permutations of the M fragments. In the worst
case, in which all fragments are unique, this is a union bound
over M ! = eM logM+O(logM) fragments. However, in the
repeating-fragments regime, multiple permutations are in fact
equivalent, in the sense that they lead to the same reconstructed
sequence (e.g., if all fragments are equal except for one, then
there are just M different possible reconstruction vectors).
The number of possible distinct permutations is determined
by the histogram of the different |X |L possible fragments.
Clearly, repeated fragments are more prone to occur when
fragments are short (small �), or when the entropy of the
source H(PX) is low. The main technical contribution in this
regime, and the key ingredient in the analysis, is to show
that the possible number of reconstruction vectors is tightly

concentrated around e�H(PX)·M logM+o(M logM) (see Prop. 7),
with high probability of 1 � o(1). Thus, if H(PX)� < 1
then the effective number of permutations is smaller than
the maximal value of order eM logM . In turn, the proof
of this property is based on two main ingredients. First,
while the histogram vector of the fragments is distributed as
a multinomial and thus has dependent entries, probabilities
defined on events of this random vector are dominated by a
Poisson distribution with independent entries (an effect known
as Poissonization, see Fact 9 and Lemma 10). The logarithm
of the number of possible reconstruction vectors is then upper
bounded by the entropy of the histogram vector, which, using
the Poissonization effect, is the sum of independent terms of
the form �

P
i2[XL] Gi logGi, where Gi follows a Poisson

distribution. For � 2 (0, 2), the proof then uses a concentration
inequality on Lipschitz functions of Poisson RVs by Bobkov
and Ledoux [2], [18], however in a modified way, since
t ! �t log t is, strictly speaking, not a Lipschitz function.
For � > 2 a standard Bernstein inequality is used. The
derivation of the bound on the failure probability then follows
a different path compared to previous works. Rather then fixing
a permutation and analyzing the probability over a random
choice of XN , we upper bound the probability for a fixed,
typical, XN , in the sense that the number of its possible
reconstructions is e�H(PX)·M logM . Per the analysis above,
it holds that a-typical XN occurs with probability at most
o(1). Now, if we let d⇤PY |X

(�) be the minimal Bhattacharyya
distance for fragments of distortion larger than �, it is easily
shown that the failure reconstruction for such typical XN

decays as e�⇥(M logM) as long as ⇠ > H(PX)/d⇤PY |X
(�).

This leads to a trade-off between � and ⇠ in the repeating-
fragments regime � < 1/H(PX), which is the main result in
this regime, stated in Theorem 6.

B. Additional Related Work

An information-theoretic study of sequence reconstruction
from short fragments taken at random locations was initiated
in [25], and its reference-based counterpart was considered
in [24]. The analysis in those papers is motivated by DNA
sequencing, and thus assumes a uniform source over the DNA
alphabet of size 4, and a quaternary symmetric channel PY |X ,
with the goal of detecting SNPs. The performance metric is the
average misdetection and false-alarm probabilities, as defined
therein, which is essentially equivalent to the total number of
failed fragments, ⇠M in our notation. In [4], the problem of
compressing a non-probabilistic source was considered when
the encoder has a possible list of reference vectors. In [14],
[15], compression methods were proposed and analyzed for
the setting in which fragments are compressed at the encoder
side and are reconstructed at the decoder side using a reference
sequence. The ordering problem is also tightly related to the
DNA storage sampling-shuffling channel [20], [29], [37], in
which short unordered fragments store the information. In
that setting too, the fragment lengths have the same scaling
of � logM , where M is the number of fragments, and a
positive capacity requires � to be above a critical value. More
generally, it is related to permutation channels [19], [21], [30],
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in which the output sequence is a permuted and possibly noisy
version of the input sequence.

C. Outline
The outline of the rest of the paper is as follows. In Sec. II

we formulate the problem, in Sec. III we state our main results,
and in Sec. IV we conclude the paper. Proofs are relegated to
the appendices.

II. PROBLEM FORMULATION

Notation conventions: Let QX be a PMF over a fi-
nite alphabet X . For j > i, the sequence comprised of
the components between i and j is denoted by Xj

i :=
(Xi, Xi+1, . . . , Xj) and is shorthanded as XN ⌘ XN

1 for
i = 1. Let PL(X ) denote the set of all types (empirical
distributions) of length L, and let P(X ) be the set of all PMFs
on X (i.e., the (|X |�1)-dimensional probability simplex). The
type class [9, Ch. 2] of a type QX 2 PL(X ) is denoted by
TL(QX), that is, the set of all empirical PMFs for length L
vectors over X . The Rényi entropy of order ↵ � 0, ↵ 6= 1 is
denoted by

H↵(QX) :=
1

1� ↵
log

 
X

x2X
Q↵

X(x)

!
, (1)

and the Shannon entropy is denoted by H(QX) ⌘ H1(QX) :=
lim↵#1 H↵(QX) = �

P
x2X QX(x) logQX(x). Specifically,

H2(QX) = � log
P

[QX(x)]2 is the collision entropy. The
binary entropy function is denoted by hbin(t) := �t log t �
(1 � t) log(1 � t) for t 2 (0, 1) and hbin(0) = hbin(1) =
0. For a pair of conditional PMFs QY |X and PY |X and
a PMF PX , the conditional KL divergence is denoted by
DKL(QY |X || PY |X | PX). The conditioning on PX is
removed when Y is independent of X under both QY |X
and PY |X . The binary KL divergence function is denoted
by dbin(p, q) := p log p

q + (1 � p) log 1�p
1�q for p, q 2 (0, 1),

dbin(0, 0) = dbin(1, 1) = 0, and dbin(1, 0) = dbin(0, 1) = 1.
The total variation distance (`1 distance) between a pair of
PMFs over a countable alphabet is denoted by dTV(P,Q) :=P

y2Y |P (y) � Q(y)|. The complement of an event A is
denoted by Ac. For an integer M , let [M ] := {1, . . . ,M}. The
maximum (resp. minimum) between a and b 2 R is denoted
by a _ b (resp. a ^ b). The maximum between t 2 R and 0 is
denoted by (t)+ := t _ 0.

Let (XN , Y N ) ⇠ P⌦N
XY be a pair of sequences of length

N , drawn IID from PXY , over the finite Cartesian product
alphabet X ⇥ Y . The PMF PX is assumed without loss
of generality (WLOG) to be fully supported on X . Let L
denote a fragment length. For simplicity of notation we assume
that M := N/L is integer, and ignore in what follows any
integer constraints on asymptotically large numbers, as they
do no affect the results. The sequence XN is partitioned into
M equal-length and non-overlapping fragments denoted by
X(i) := XiL

(i�1)L+1. A reconstruction algorithm observes the
multiset of fragments {X(i)}i2[M ] and the reference sequence
Y N , and is required to output the original ordered sequence
XN . Let SM denote the symmetric group of order M , i.e.,

the group of all bijections from [M ] to itself. A permuted
sequence of fragments is denoted by

⇡[XN ] := (X(⇡(1)),X(⇡(2)), . . . ,X(⇡(M))) , (2)

and
AL(X

N ) :=
�
⇡[XN ]

 
⇡2SM

(3)

is then the set of all possible reconstructed sequences from
fragments of XN of length L. In essence, conditioned on XN ,
the reconstruction problem is a multiple hypothesis testing
problem between a random number of |AL(XN )| hypotheses.
An ML reconstruction algorithm chooses an X̂N 2 AL(XN )
that satisfies

X̂N = argmax
X̃N2AL(XN )

P
h
Y N

��� X̃N
i
, (4)

or equivalently, a proper permutation (ordering) of the frag-
ments {X(i)}i2[M ]. The ML reconstruction can be cast as a
max-weight matching problem, and thus can be computed in
O(M3) time [13], or via message passing algorithms [5]. The
fragments of X̂N are similarly denoted by X̂(i) = X̂iL

(i�1)L+1,
and the fragments of Y N by Y (i) = Y iL

(i�1)L+1.
Let � : X ⇥ X ! R+ be a distortion measure. With a

slight abuse of notation, the distortion measure is additively
extended to length-L fragments X̃,X 2 XL as

�(X̃,X) =
1

L

X

j2[L]

�(X̃j , Xj). (5)

Given a desired distortion level � > 0, X̂(i) is said to fail to
reconstruct X(i) if �(X(i), X̂(i)) � �. Let

⌅�(X
N , X̂N ) :=

1

M

X

i2[M ]

{�(X(i), X̂(i)) > �} (6)

be the relative number of fragments that failed to be properly
reconstructed at distortion level �. The reconstruction failure
probability at distortion level � � 0 and failure level ⇠ 2 [0, 1)
is then

FP(�, ⇠) := P
h
⌅�(X

N , X̂N ) � ⇠
i
. (7)

Our goal is to establish conditions under which FP(�, ⇠)
asymptotically vanishes, as M ! 1. We assume that the
length of the fragments scales logarithmically with the number
of fragments M , and the scaling is determined by a fragment
length parameter � > 0 as

L = � · logM. (8)

Note that it holds for this parametrization that |X |L= M� and
M = e

L
� .

In what follows, the probability of a reconstruction failure
will be bounded using the Bhattacharyya distance and more
generally, using the Chernoff distance. For a pair of symbols
x, x̃ 2 X , a transition probability kernel PY |X , and a param-
eter s 2 [0, 1], the Chernoff distance is denoted by

dPY |X ,s(x, x̃) := � log
X

y2Y
P s
Y |X(y | x) · P 1�s

Y |X(y | x̃). (9)

In most of this paper, this distance will be used for s = 1/2.
In this case dPY |X ,1/2(x, x̃) is symmetric, it will be referred
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to as the Bhattacharyya distance, and s will be omitted
from the notation. The Chernoff distance for a pair of se-
quences x, x̃ 2 XL is additively defined by dPY |X ,s(x, x̃) :=P

i2[L] dPY |X ,s(xi, x̃i). This additive distance only depends
on the joint type of (x, x̃). Accordingly, for a given joint type
QXX̃ 2 PL(X 2) for some L 2 N, we denote (with a slight
abuse of notation) dPY |X ,s(QXX̃) := 1

LdPY |X ,s(x, x̃) where
(x, x̃) 2 TL(QXX̃) is arbitrary. The definition can then be
continuously extended to any joint PMF QXX̃ in the interior
of P(X 2). Similarly, the distortion �(x, x̃) between x and x̃
only depends on their joint type QXX̃ , and so we also denote
it by �(QXX̃). The definition is then continuously extended
to any QXX̃ in the interior of P(X 2).

III. MAIN RESULTS

We next describe our results for the no-repeating fragments
regime (Sec. III-A), and then for the repeating-fragments
regime (Sec. III-B).

A. The No-Repeating-Fragments Regime with Zero Distortion

In this section, we address the regime in which typically all
fragments of XN are unique, and no distortion is allowed, i.e.,
� = 0. We thus abbreviate to reconstruction failure probability
to FP(⇠). Let

 2(PXY ) := min
QX1X22P(X 2)

1

2
DKL

�
QX1X2 || P⌦2

X

�

+ dPY |X (QX1X2), (10)

where, we recall that dPY |X (QX1X2) =
EQX1X2

[dPY |X (X1, X2)], and dPY |X (X1, X2) is the
Bhattacharyya distance (9). Essentially,  2(PXY ) is the rate
function for the probability of a transposition reconstruction
error. Intuitively,  2(PXY ) can be thought of as follows. For
a given pair of fragment sequences x(1) and x(2) that have
a joint type QX1X2 , the term dPY |X (QX1X2) captures how
hard it is to confuse them after observing them through the
channel PY |X , and the term DKL(QX1X2 || P⌦2

X ) captures
how unlikely it is for us to see fragments X(1) = x(1) and
X(2) = x(2), when the two fragments are generated IID
according to PX . Minimizing over QX1X2 corresponds to
finding the worst-case pair of fragments type, which are most
likely to produce a reconstruction error.

The minimization problem in (10) can be easily solved
by using Jensen’s inequality to obtain a lower bound on the
minimized argument and show that it is achievable. The short
derivation appears in Appendix A, and the result is

 2(PXY ) :=

� 1

2
log

2

4
X

x1,x22X 2

PX(x1)PX(x2) · e�2dPY |X (x1,x2)

3

5 .

(11)

Furthermore, since dPY |X (x, x) = 0, an alternative expression
is

 2(PXY ) := �1

2
log

"
e�H2(PX)+

X

x1,x22X 2:x1 6=x2

PX(x1)PX(x2) · e�2dPY |X (x1,x2)

#
,

(12)

which shows that  2(PXY ) ! 1
2H2(PX) as the channel PY |X

approaches a clean channel.
1) An Upper Bound on the Reconstruction Error:

Theorem 1. If � > 1
 2(PXY ) then for ⇠ = 0

FP(⇠ = 0) = O
⇣
M2[1�� 2(PXY )]

⌘
(13)

with a constant that depends on PXY , and for ⇠ > 0

FP(⇠)

 exp


�M logM · ⇠

✓
� 2(PXY )� 1�O

✓
1

M

◆◆�
.

(14)

Discussion: The bound of Theorem 1 shows a sharp
threshold as a function of ⇠. For perfect reconstruction (⇠ = 0)
the failure probability decays polynomially in M , whereas for
imperfect reconstruction (⇠ > 0) it decays exponentially with
M logM , which is much faster. The error bound in the ⇠ = 0
case is dominated by transposition errors, that is, an almost
perfect reconstruction of the sequence, except for a single
pair of fragments that have exchanged their location. The
rate function determining the threshold is given by  2(PXY ).
When ⇠ > 0, a wrong placement of less than ⇠M fragments is
not considered to be a failure, and so transpositions and other
permutations with M �K fixed points, K fixed, do not lead
to a failure. For ⇠ > 0, the error event that dominates this
bound is a set of ⇠M

2 transpositions.
Proof sketch of Theorem 1: The proof of Theorem 1 first

addresses a fixed permutation ⇡ 2 SM . For any such ⇡, the
error is essentially a pairwise error event between XN and
its permuted version X̃N := ⇡[XN ]. This pairwise error is
bounded using the standard Bhattacharyya upper bound (e.g.,
[35, Sec. 2.3]), and then averaged over XN . Finally, using the
union bound, the reconstruction failure probability is upper
bounded by summing over all possible permutations.

Since each permutation is a composition of cycles, as in
[33], we upper bound the average pairwise error probability
for cycles. In this respect, a main ingredient of the proof is the
next lemma, which upper bounds the expected Bhattacharyya
upper bound for a cycle of length K.

Lemma 2. Let XK
1 ⇠ P⌦K

X IID over a finite alphabet X .
Let ⇡ 2 SK be a cycle of length K, and let X̃j = X⇡(j) for
j 2 [K]. Let PY |X be a transition probability kernel. Then,

E
h
exp

⇣
�dPY |X (XK

1 , X̃K
1 )

⌘i
 e�K· 2(PXY ), (15)

where  2(PXY ) is defined in (10).

The proof of Lemma 2 is based on first upper bounding
the expected Bhattacharyya upper bound (left-hand side of
(15)) using the Donsker–Varadhan variational formula [12],
[3, Corollary 4.15]. The resulting upper bound is given by
e�K· K(PXY ), where the rate function  K(PXY ) is a gener-
alized version of  2(PXY ) for cycles of length K, given as
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a minimization problem over P(XK) (see (A.8) in Appendix
(A)). The proof of the lemma then continues by establishing
that transpositions, i.e., cycles of length 2, have the minimal
rate function, to wit,  K(PXY ) �  2(PXY ) for all K � 2.
The proof of this claim involves two different arguments. First,
the special symmetry of the case K = 3 is used to show
that  3(PXY ) �  2(PXY ). Specifically, the Bhattacharyya
distance for a length-3 cycle is given by dPY |X (QX1X2) +
dPY |X (QX2X3) + dPY |X (QX1X3), which is half of the Bhat-
tacharyya distance of 3 length-2 cycles. Favorably, the third-
order KL divergence involved in the optimization problem
of  3(PXY ), to wit, DKL(QX1X2X3 || P⌦3

X ), is analogously
lower bounded by the KL divergence of the marginal pairs
using Han’s inequality for the KL divergence [3, Theorem
4.9] [16]. For K � 4, such a symmetry does not seem
possible to easily exploit. Instead, we consider a relaxed lower
bound  K(PXY ) � 'K(PXY ), where 'K(PXY ) is obtained
by a relaxation of the minimization problem involved in the
definition of  K(PXY ), and show that 'K(PXY ) �  2(PXY )
for all K � 4. The relaxation from  K(PXY ) to 'K(PXY ),
essentially breaks the cycle, by removing the constraint that
X̃1 = XK . This enables to show that the minimizer of
'K(PXY ) in P(XK) must satisfy a Markov chain condition
X1 �X2 � · · ·�XK , and consequently reduces the problem
from a K-dimensional joint PMF in P(XK) to a simple
pairwise joint PMF in P(X 2). This Markov condition clearly
cannot be satisfied with the original cyclic constraint of
X̃1 = XK , and this is why the relaxation from  K(PXY ) to
'K(PXY ) is necessary. Substituting the estimate of Lemma
2 to the aforementioned union bound over all permutations,
while taking into account the fact that different cycles of
a permutation are independent, directly leads to the upper
bounds in Theorem 1.

A comparison with [33]: The setting in [33] assumed that
PX is a uniform binary source PX(X = 0) = PX(X = 1) =
1/2, and that PY |X is a BSC (as well as ⇠ = 0, although
the results therein most likely can be extended to ⇠ > 0
in a simple way). For this setting, it was only established
that the worst permutation is either a transposition (length-
2 cycle) or a length-3 cycle. As we show here, it in fact holds
that the worst case is a transposition, and this holds for a
general PXY . The proof of this property leads to the improved
bound on the failure probability with polynomial decrease
O(M1�� 2(PXY )) compared to O(M1��( 2(PXY )_ 3(PXY )))
that can be conjectured from [33] for the general case. A
similar effect holds for the ⇠ > 0 case. We finally mention
that the “break of the cycle” argument that was use here to
relax  K(PXY ) to 'K(PXY ) is inspired from [33], in which
the contribution of the Bhattacharyya distance of the last pair
of fragments dPY |X (XK , X̃K) was ignored, in order to obtain
tractable bounds.

2) A Lower Bound on the Reconstruction Error: We next
state a lower bound on FP(⇠):

Theorem 3. Assume that dPY |X (x1, x2) < 1 and that

 2(PXY ) <
1

2
H2(PX). (16)

If � > 1
 2(PXY ) then it holds for ⇠ = 0 that

FP(⇠ = 0) � M2[1�� 2(PXY )]+o(1) (17)

and for ⇠ > 0 that

FP(⇠) � exp [�⇠M logM · [� 2(PXY ) + o(1)]] . (18)

Theorem 3 establishes the tightness of the upper bound in
Theorem 1 for ⇠ = 0, and suffers from a gap of ⇠M logM in
the exponent for ⇠ > 0.

The origin of the qualifying assumptions: The condition
dPY |X (x1, x2) < 1 is technical, and related to the uni-
form continuity of QX1X2 ! dPY |X (QX1X2) over P(X 2)
required to modify a maximum over types in PL(X 2) to
a maximum over PMFs in the entire probability simplex
P(X 2). The condition (16) is related to the fact that if
X(1) = X(2) has occurred then the probability that the
reconstruction algorithm erroneously transposes X(1) and
X(2) is zero, simply because they are identical (this is where
the design goal in the ordering problem setting defers from
that of the BI problem). This is gauged by the second-order
Rényi entropy, which is related to the collision probability
via P[X(1) = X(2)] = e�H2(PX), and the assumption
assures that this probability is negligible compared to the
probability of erroneous reconstruction exchanging X(1) and
X(2), whenever they are different.

Proof sketch of Theorem 3: The proof of Theorem 3
first considers the event in which exchanging the order of
X(i1) and X(i2) for some i1, i2 2 [M ], i1 < i2 is more
likely than the correct order (though this does not imply
that the ML reconstruction will actually have a transposition
error in these locations). The probability of this event can be
lower bounded using the technique of Shannon, Gallager and
Berlekamp [28, Corollary to Thm. 5]. In turn, this technique is
based on Chernoff’s bound, and hence, involves an optimized
version over s 2 [0, 1] of the Chernoff distance, rather than the
Bhattacharyya distance. Nonetheless, it is shown in the proof
that the optimum is obtained for s = 1/2. For ⇠ = 0, the lower
bound on the reconstruction failure then considers a union
over all possible

�M
2

�
= M(M�1)

2 different transpositions. As
is well known, the union bound clipped to 1 is order-tight
for independent events (or just pairwise independent events).
However, these transpositions are not pairwise independent
events, and so it is not obvious that the union bound is actually
tight in this case. For ⇠ = 0, we use de Caen’s inequality [11]
to establish the tightness of the union bound (as was also
used in [33]). For ⇠ > 0, we simply lower bound the error via
the error occurs for some (arbitrary) ⇠M/2 transpositions. In
principle, de Caen’s inequality [11] may be used for the ⇠ > 0
setting too. However, using a seemingly natural extension of
the ⇠ = 0 does not lead to an improvement over the simpler
bound of a single set of ⇠M/2 transpositions. It is possible that
de Caen’s inequality is not sufficiently tight for this setting (at
least in the way we have attempted to use it), and the tightness
in the ⇠ > 0 remains an open question.

Example 4 ( 2(PXY ) for binary sources). Consider a binary
source X = {0, 1}. The expression in (12) results
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 2(PXY )

=
1

2


H2(p)� log

✓
1 +

2p(1� p)

p2 + (1� p)2
· BC2(PY |X)

◆�

(19)

where BC(PY |X) := e�d1$0 with

d1$0 := � log
X

y2Y

q
PY |X(y | 0) · PY |X(y | 1) (20)

is the Bhattacharyya coefficient. More specifically, assume that
Y = {0, 1}, and PY |X is a BSC with crossover probability
↵ 2 [0, 1/2]. Then, BC(BSC(↵)) =

p
4↵(1� ↵) and then

 2(PXY )

=
1

2


H2(p)� log

✓
1 +

8p(1� p)

p2 + (1� p)2
· ↵(1� ↵)

◆�
.

(21)

It can be seen that as ↵ # 0, it holds that  2(PXY ) # 1
2H2(p).

The noiseless case ↵ = 0 shows the difference between our
problem (sequence recovering) and the BI problem (permu-
tation recovering): In our problem the actual exponent for
↵ = 0 is infinite (zero error, since X = Y with probability 1),
whereas for the BI problem 1

2H2(p). This agrees with the qual-
ifying condition of Theorem 3, given by  2(PXY )  1

2H2(p).

Example 5 ( 2(PXY ) for symmetric general sources). Con-
sider PX to be uniform over X = Y , and let the channel PY |X
be symmetric, in the sense that

PY |X(y | x;↵) :=
(
1� ↵, y = x
↵

|Y|�1 otherwise
(22)

(this transition kernel generalizes the BSC to larger alphabets).
The computed value of  2(PXY ) for PXY = PX ⌦PY |X(y |
x;↵) as a function of ↵ appears in Fig. 2. As might be
expected,  2(PXY ) increases with |X |, and hence the lower
bound on � decreases. This agree with intuition since ordering
the fragments is easier for larger entropy sources.

B. The Repeating-Fragments Regime with Positive Distortion

In this section, we address the regime in which � is small,
or the source PMF PX has low entropy. This is the setting in
which the difference between the BI problem and the ordering
problem is most pronounced, since when fragments repeat
themselves in the sequence, reconstruction of the sequence
is possible without a reconstruction of the permutation. In this
regime, multiple identical fragments are typically present in
the sequence XN . Since in that case fragments which are
similar according to the distortion measure � are also likely to
be abound, we tolerate a positive distortion level. Intuitively,
in this setting, a successful reconstruction is possible, because
if a pair of fragments has distortion larger than the threshold �,
then it also has large Bhattacharyya distance, and so the correct

order can be identified using the corresponding fragment in the
reference sequence. Concretely, this can be gauged by

d⇤PY |X
(�) := min

QX1X22P(X 2):�(QX1X2 )��
dPY |X (QX1X2),

(23)
which is the minimal Bhattacharyya distance possible for any
joint PMF of a pair of fragments whose distortion level is
above �. Clearly, there is a trade-off between the distortion
level � and the fraction ⇠ of failed reconstructed fragments
that can be tolerated – increasing the distortion level � allows
to reduce ⇠. Our main result in this section characterizes the
trade-off between ⇠ and �, which still allows for vanishing
failure probability, as follows:

Theorem 6. Assume that � < 1
H(PX) . Then, if

⇠ >
H(PX)

d⇤PY |X
(�)

(24)

then FP(�, ⇠) = o(1).

Discussion: Theorem 6 states a trade-off between �
and ⇠ in the repeating-fragments regime � < 1/H(PX).
Interestingly, the minimal possible ⇠ for a given � does not
depend on � (as long as the later is sufficiently small).
The resulting reconstruction failure probability then decays
to zero, though in an unspecified rate, which is most likely
slower rate compared to the no-repeating fragments regime,
for which the reconstruction failure probability decays as
e�⇥(⇠M logM) for ⇠ > 0. Evidently, the lower bound on ⇠
can be improved by increasing the Bhattacharyya distance,
which can be considered as a measure of the signal strength,
or signal-to-noise ratio. Specifically, given any ⇠ > 0, the
“quality” of PY |X should be such that d⇤PY |X

(�) � H(PX)/⇠.
In other words, any arbitrarily small ⇠ > 0 can be compensated
by taking d⇤PY |X

(�) ! 1, that is, making the channel PY |X
“cleaner” (specifically, if Y = X with probability 1 then
d⇤PY |X

(�) " 1 for any non-trivial distortion measure �).
Theorem 6 states an achievable trade-off between (⇠, �) and �,
and evaluating the tightness of this trade-off and its possible
dependence on � is an interesting open problem.

Proof of Theorem 6 – The typical cardinality of the set
AL(XN ): As stated in the problem formulation, the recon-
struction problem is a hypothesis testing problem between a
random number of |AL(XN )| hypotheses, or equivalently, all
possible different reconstructed sequences. Upper bounds on
the error probability in multiple hypothesis testing typically
involve some sort of a union bound over the alternative
hypotheses, and similarly so is our upper bound on the failure
probability. Therefore, a main technical part is to establish a
tight upper bound on the number of alternative hypotheses.
If all fragments {X(i)}i2[M ] are unique, then the number
of possible reconstruction vectors is M ! = eM logM+O(M).
However, if the source PMF PX is such that some frag-
ments in XL are expected to repeat multiple times, then it
is expected that log|AL(XN )| will be significantly smaller
than M logM + O(M). The main ingredient of the anal-
ysis of the reconstruction failure in this regime shows that
log|AL(XN )| �H(PX) · M logM essentially holds with
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Figure 2.  2(PXY ) for uniform PX and symmetric channels parameterized by ↵.

probability 1 � o(1). This cardinality can be much smaller
for low � or sources with low entropy.

To accurately present this bound, let us assume for nota-
tional simplicity, that the Lth order Cartesian product of X is
arbitrarily ordered as XL ⌘ {a1 . . . , aM�}, where we recall
that |XL|= M� . Then, for any given vector xN 2 XN and
any j 2 [M� ],

gL(j;x
N ) :=

X

i2[M ]

{x(i) = aj} (25)

is the number of times that the length-L vector aj 2 XL

appears in the fragments of xN , and

gL(x
N ) :=

�
gL(1;x

N ), gL(2;x
N ), . . . , gL(M

� ;xN )
�

(26)

2 [M + 1]M
�

(27)

is the histogram vector of xN for length-L fragments. It holds
that

P
j2[M� ] gL(j;x

N ) = M . For brevity, we next denote
the random number of appearances of the jth letter of XL in
the M fragments of XN as G(j) := gL(j;XN ). The formal
bound is as follows:

Proposition 7. Assume that H(PX) > 0. There exists a
constant c > 0 so that for any ⌘ 2 (0, 1), the log-cardinality
of AL(XN ) is concentrated as

P

1

M
log

��AL(X
N )
�� � L ·H(PX) + ⌘ logM

�

=

(
exp

⇥
�⌦(·⌘2M1_(2��))

⇤
, 0 < � < 2

2
M⌘/2 , � � 2

, (28)

for all M � M0(PX ,�, ⌘).

The proof of Prop. 7, which is fully presented in Appendix
B, is based on the standard entropy bound on the multinomial
coefficient, which then leads to the bound

1

M
log

��AL(X
N )
��  �

X

j2[M� ]

G(j)

M
log

G(j)

M
. (29)

Given the fragments model, the histogram vector G =
(G(1), . . . , G(M�)) is distributed as a multinomial RV, and

thus its components are statistically dependent. The upper
bound on 1

M log|AL(XN )| is thus a complicated function of
this random vector, and so it is difficult to directly analyze
its random perturbation around its mean. Nonetheless, as is
well known, the probability of an event under the multinomial
distribution can be upper bounded by the probability of the
same event under a properly defined Poisson distribution that
has independent components (see Fact 9 and Lemma 10). We
thus consider a Poissonized version G̃ of G, and analyze the
tail behavior of f(g):N+ ! R for f(g) := � g

M log g
M . For

� 2 (0, 2), we show using concentration bounds for Lipschitz
functions of Poisson RVs [2] that f(g) is a sub-gamma
random variable [3, Ch. 2], and then bound the concentration
of

P
j2[M� ] f(G̃(j)) via Bernstein’s inequality. A truncation

argument is required since, strictly speaking, f(g) involved
in the upper bound is not Lipschitz continuous on N+. For
� > 2 we use a standard Bernstein’s inequality, after using
looser bounding techniques.

Example 8 (A symmetric channel and Hamming distortion
measure). Assume that X = Y and that PY |X is a symmetric
channel parameterized by ↵, as in (22). In this case, it holds
that

d
P (↵)

Y |X
(x, x̃) = d↵ · [x 6= x̃] (30)

where for any x, x̃ 2 X with x 6= x̃

d↵

:= � log
X

y2Y

q
PY |X(y | x) · PY |X(y | x̃) (31)

= � log

"q
PY |X(x̃ | x) · PY |X(x̃ | x̃)

+
q

PY |X(x | x) · PY |X(x | x̃)

+
X

y2X\{x,x̃}

q
PY |X(y | x) · PY |X(y | x̃)

#

(32)
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= � log

"r
↵

|Y|�1
· (1� ↵)

+

r
(1� ↵) · ↵

|Y|�1
+

(|Y|�2) · ↵
|Y|�1

#
(33)

= � log

"s
4(1� ↵)↵

|Y|�1
+

(|Y|�2) · ↵
|Y|�1

#
. (34)

Further assume that the distortion measure is the Hamming
distortion measure �(x, x̃) = [x 6= x̃]. Thus, d

P (↵)
Y |X

(x, x̃) /
�(x, x̃) and then it is simple to obtain that d⇤(�) = � · d↵,
and the bound of Theorem 6 results in

⇠ >
H(PX)

� · d↵
. (35)

The achievable trade-off between ⇠ and � is shown in Fig. 3 for
↵ = 0.1 and H(PX) = 0.1 [nats], for varying alphabet sizes.
As can be seen, the minimal ⇠ is improving for larger alphabet
sizes, though this improvement has diminishing returns. We
finally remark that computing d⇤PY |X

(�) for general channels is
a simple linear program (23), and thus can be easily computed
for any arbitrary PY |X and distortion measure �.

IV. CONCLUSION AND FUTURE RESEARCH

We have considered the problem of ordering the multiset
of consecutive fragments of a sequence, based on a reference
sequence. We have assumed a general setting, in which each
fragment can be reconstructed with a low distortion level, and
a constant fraction of the fragments can be reconstructed with
a high distortion. First, we considered the regime in which
typically all fragments are unique, and so focused on zero
distortion. For a general joint source PXY , we have derived
an upper bound on the fragment length required for reliable
reconstruction, both for a perfect and a partial reconstruction.
These results tighten and extend previous results derived for
the BI problem in the random coding regime, which were
restricted to uniform binary sources PX and symmetric PY |X .
In the perfect reconstruction setting (⇠ = 0) the bound was
proved to be tight, whereas a lower bound was derived for the
partial reconstruction (⇠ > 0) setting. There is a gap between
the bounds in the latter setting, which is an interesting and
challenging open problem, mainly since using the standard
technique based on de Caen’s inequality [11] appears to
fail. Second, we considered the regime in which repeating
fragments abound, and showed its relation to the entropy
of the source PX . In this regime, it is natural to tolerate a
positive distortion � > 0 between the fragments and their
reconstruction. We show that as long as � is small enough
(� < 1/H(PX)) so the reconstruction algorithm operates
in the repeating-fragments regime, there is a trade-off (24)
between the minimal ⇠ possible for the given �, which still
assures vanishing failure probability. As said, evaluating the
tightness of the trade-off is an interesting open problem, and
specifically, whether the optimal trade-off depends on � or
not. Furthermore, it is of interest to investigate the optimal
decay rate of the reconstruction failure probability, and how it
depends on the problem parameters.

Other avenues for future research include: (i) Reconstruction
with possibly overlapping fragments and high coverage, taken
at random locations (as in [24]) (ii) Reconstruction with a
compressed version of either the fragments or the reference
sequence (or both), (iii) Reconstruction using fragments that
were obtained from Y N via other channels, e.g., those which
include deletions or insertions (or both), (iv) Reconstruction
using multiple reference fragments, and more.

APPENDIX A
PROOFS FOR THE NO-REPEATING-FRAGMENTS REGIME

WITH ZERO DISTORTION

Proof of (11) and (12): The argument in the optimization
problem (10) defining  2(PXY ) satisfies for any QX1X2 2
P(X 2)

1

2
DKL

�
QX1X2 || P⌦2

X

�
+ dPY |X (QX1X2)

= �1

2

X

x1,x22X 2

QX1X2(x1, x2)

⇥

log

PX(x1)PX(x2)

QX1X2(x1, x2)
� 2dPY |X (x1, x2)

�
(A.1)

= �1

2

X

x1,x22X 2

QX1X2(x1, x2)

⇥ log
PX(x1)PX(x2)e

�2dPY |X (x1,x2)

QX1X2(x1, x2)
(A.2)

(a)
� �1

2
log

X

x1,x22X 2

PX(x1)PX(x2)e
�2dPY |X (x1,x2), (A.3)

where (a) follows from Jensen’s inequality for the convex
function t ! � log t, and equality is achieved when the
averaged arguments are all equal, that is,

QX1X2(x1, x2)

=
PX(x1)PX(x2)e

�2dPY |X (x1,x2)

P
x0
1,x

0
22X 2 PX(x0

1)PX(x0
2)e

�2dPY |X (x0
1,x

0
2)
. (A.4)

This proves (11). The expression in (12) follows directly from
the definition of the second-order Rényi entropy.

In order to prove Theorem 1, we begin by proving Lemma
2.

Proof of Lemma 2: We denote the length-K cycle, in a
two-line notation, as

⇡�
K :=

✓
1 2 3 · · · K � 1 K
K 1 2 · · · K � 2 K � 1

◆
. (A.5)

By the variational representation of Donsker–Varadhan [12]
(e.g., [3, Corollary 4.15] ), for any QX1X2...XK 2 P(XK)

DKL(QX1X2...XK || P⌦K
X )

+ EQX1X2...XK

h
dPY |X (XK

1 , X̃K
1 )

i

� � logEP⌦K
X

h
exp

⇣
�dPY |X (XK

1 , X̃K
1 )

⌘i
. (A.6)
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Figure 3. The trade-off between ⇠ and � for H(PX) = 0.1[nats] and symmetric channels P
(↵)
Y |X for ↵ = 0.1.

Minimizing over QX1X2...XK while using that P⌦K
X has full

support and thus P⌦K
X � QX1X2...XK holds for any PMF

QX1X2...XK , results

E
h
exp

⇣
�dPY |X (XK

1 , X̃K
1 )

⌘i
 e�K· K(PXY ) (A.7)

where  K(PXY ) is given by

 K(PXY )

:= min
QX1X2...XK

2P(XK)

1

K
DKL

�
QX1X2...XK || P⌦K

X

�

+
1

K

X

i2[K]

dPY |X (QXiX⇡�
K

(i)
). (A.8)

We next show that  K(PXY ) �  2(PXY ) for all K � 2. We
prove this property separately for K = 3 and K � 4.

We prove that  3(PXY ) �  2(PXY ) by utilizing Han’s
inequality for the KL divergence [3, Thm. 4.9] [16], which
states that for any probability measure QZ1Z2···ZK 2 P(ZK)
and a product probability measure PZ1 ⌦ PZ2 · · · ⌦ PZK 2
P(ZK) it holds that

DKL(QZ1Z2···ZK || PZ1 ⌦ PZ2 · · ·⌦ PZK )

� 1

K � 1

X

j2[K]

DKL(QZ1···Zj�1Zj+1···ZK ||

PZ1 ⌦ · · ·PZj�1 ⌦ PZj+1 · · ·⌦ PZK ), (A.9)

where QZ1···Zj�1Zj+1···ZK is understood as the joint PMF of
ZK
1 marginalized over Zj . Indeed, it then holds that

 3(PXY )

= min
QX1X2X3

1

3
DKL

�
QX1X2X3 || P⌦3

X

�

+
1

3

3X

i=1

dPY |X (QXiX⇡�
K

(i)
) (A.10)

(a)
� min

QX1X2X3

1

3
· 1
2

"
DKL

�
QX1X2 || P⌦2

X

�
+ 2dPY |X (QX1X2)

+DKL
�
QX1X3 || P⌦2

X

�
+ 2dPY |X (QX1X3)

+DKL
�
QX2X3 || P⌦2

X

�
+ 2dPY |X (QX2X3)

#
(A.11)

� 1

3
· 1
2

"
min

QX1X2

�
DKL

�
QX1X2 || P⌦2

X

�
+ 2dPY |X (QX1X2)

 

+ min
QX1X3

�
DKL

�
QX1X3 || P⌦2

X

�
+ 2dPY |X (QX1X3)

 

+ min
QX2X3

�
DKL

�
QX2X3 || P⌦2

X

�
+ 2dPY |X (QX2X3)

 
#

(A.12)
=  2(PXY ), (A.13)

where (a) follows from Han’s inequality (A.9).
We now turn to prove that  K(PXY ) �  2(PXY ) for

all K � 4. To this end, consider the minimization problem
involved in the upper bound rate function  K(PXY ), to wit,

min
QX1X2...XK

1

K
DKL

�
QX1X2...XK || P⌦K

X

�

+
1

K

X

i2[K]

dPY |X (QXiX⇡�
K

(i)
). (A.14)

Now, suppose that Q(0)
X1...XK

is a solution of the minimization
problem in (A.14). Then, due to the circular symmetry of the
objective function of (A.14),

Q(1)
X1...XK

= Q(0)
X⇡�

K
(1)...X⇡�

K
(K)

(A.15)

attains the same value for the objective function. We may then
recursively define

Q(j)
X1...XK

= Q(j�1)
X⇡�

K
(1)...X⇡�

K
(K)

(A.16)

for all j 2 [K � 1]\{1}, and similarly, each Q(j)
X1...XK

also
attains the same value for the objective function. Since the KL
divergence is convex and the Bhattacharyya distance is linear
in QX1X2...XK , the objective function in (A.8) is convex in
QX1X2...XK . Thus,

QX1...XK
=

1

K � 1

K�1X

j=0

Q(j)
X1...XK

(A.17)
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may only attain a lower value for the objective function.
Moreover, QX1...XK

is such that QX1X2
= QX2X3

= · · · =
QXKX1

. Thus, the solution of the minimization problem in
(A.8) must satisfy that all marginals of consecutive pairs is
the same, let say QX̃1X̃2

2 P(X 2). Let us define this set of
PMFs as

Qpairs(QX̃1X̃2
) :=

n
QX1X2···XK 2 P(XK):

QX1X2 = QX2X3 = · · ·QXK�1XK = QXKX1 = QX̃1X̃2

o
.

(A.18)
Furthermore, let us define a slightly modified version of this
set, given as

Q̂pairs(QX̃1X̃2
) :=

n
QX1X2···XK 2 P(XK):

QX1X2 = QX2X3 = · · ·QXK�1XK = QX̃1X̃2

o
,

(A.19)

where the only difference between Qpairs(QX̃1X̃2
) and

Q̂pairs(QX̃1X̃2
) is the relaxation of the constraint QXKX1 =

QX̃1X̃2
. Note that the removal of this constraint effectively

“breaks” the cycle. Returning to (A.8), we get from this
property that

 K(PXY )

:= min
QX̃1X̃2

(
min

QX1X2···XK
:Qpairs(QX̃1X̃2

)

1

K
DKL

�
QX1X2...XK || P⌦K

X

�
+ dPY |X (QX̃1X̃2

)

)

(A.20)

� min
QX̃1X̃2

(
min

QX1X2···XK
:Q̂pairs(QX̃1X̃2

)

1

K
DKL

�
QX1X2...XK || P⌦K

X

�
+ dPY |X (QX̃1X̃2

)

)

(A.21)
=: 'K(PXY ). (A.22)

This “cycle-break” of the set Q̂pairs(QX̃1X̃2
) and the relaxation

of  K(PXY ) to 'K(PXY ) is crucial to establish the following
property: The optimal solution Q⇤

X1X2...XK
of 'K(PXY ) must

respect the Markov chain X1�X2� · · ·XK�1�XK . Indeed,
assume by contradiction that, under Q, this is not the case for
XK , that is QXK |XK�1

6= QXK |XK�1···X1
. Then,

DKL
�
QX1X2···XK || P⌦K

X

�

= DKL

⇣
QX1X2···XK�1 || P⌦(K�1)

X

⌘

+DKL
�
QXK |XK�1XK�2···X1

|| PX | QX1X2···XK�1

�

(A.23)

� DKL

⇣
QX1X2···XK�1 || P⌦(K�1)

X

⌘

+DKL
�
QXK |XK�1

|| PX | QXK�1

�
, (A.24)

where the inequality follows since the convexity of the KL
divergence implies that

DKL
�
QXK |XK�1XK�2···X1

|| PX | QX1X2···XK�1

�

= EQX1···XK�2|XK�1⇥
DKL

�
QXK |XK�1XK�2···X1

(· | X1X2 · · ·XK�1) || PX

�⇤

(A.25)

� DKL

⇣
EQX1···XK�2|XK�1

⇥
QXK |XK�1XK�2···X1

⇤

|| PX | QX1X2···XK�1

⌘

(A.26)
� DKL

�
QXK |XK�1

|| PX | QXK�1

�
. (A.27)

Thus, we can replace any Q⇤
X1X2...XK

with Q⇤
X1X2...XK�1

⌦
Q⇤

XK |XK�1
. Next, using a similar argument, the first KL diver-

gence term DKL(QX1X2···XK�1 || P⌦(K�1)
X ) in (A.24) can be

similarly lower bounded, showing that Q⇤
X1X2...XK�1

can be
replaced by Q⇤

X1X2...XK�2
⌦ Q⇤

XK�1|XK�2
to obtain a lower

objective. Continuing repeating this argument in a recursive
fashion results the Markov chain relation any optimal solution
must satisfy.

Consequently, by the chain rule for the KL divergence
1

K
DKL

�
Q⇤

X1X2...XK
|| P⌦K

X

�

=
1

K

"
DKL

�
Q⇤

X1
|| PX

�

+
KX

j=2

DKL

⇣
Q⇤

Xj |Xj�1
|| PX | Q⇤

Xj�1

⌘#
(A.28)

=
1

K

"
DKL

⇣
Q⇤

X̃1
|| PX

⌘

+
KX

j=2

DKL

⇣
Q⇤

X̃2|X̃1
|| PX | Q⇤

X̃1

⌘#
(A.29)

=
1

K
DKL

⇣
Q⇤

X̃1
|| PX

⌘

+
K � 1

K
DKL

⇣
Q⇤

X̃2|X̃1
|| PX | QX̃1

⌘
, (A.30)

where the first equality holds since the optimal solution
Q⇤

X1X2...XK
must satisfy that Markov chain relation X1 �

X2 � · · ·XK�1 �XK . Moreover, observing (A.21), we may
add the constraint QX̃1

= QX̃2
to the outer minimization,

since otherwise the inner constraint QX1X2 = QX2X3 , e.g.,
would make the problem infeasible. Hence, from all the above,

'K(PXY ) = min
QX̃1X̃2

:QX̃1
=QX̃2

(
1

K
DKL

�
QX̃1

|| PX

�

+
K � 1

K
DKL

⇣
QX̃2|X̃1

|| PX | QX̃1

⌘
+ dPY |X (QX̃1X̃2

)

)
.

(A.31)

Now, by convexity of the KL divergence, it holds that

DKL

⇣
QX̃2|X̃1

|| PX | QX̃1

⌘
� DKL

�
QX̃1

|| PX

�
, (A.32)

that is, the first KL divergence in (A.31) is smaller than the
second one. Thus, the worst bound is obtained for K = 4,
that is 'K(PXY ) � '4(PXY ) for all K � 4. Finally,

'4(PXY )
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= min
QX̃1X̃2

:QX̃1
=QX̃2

(
1

4
DKL

�
QX̃1

|| PX

�

+
3

4
DKL

⇣
QX̃2|X̃1

|| PX | QX̃1

⌘
+ dPY |X (QX̃1X̃2

)

)

(A.33)
(a)
� min

QX̃1X̃2
:QX̃1

=QX̃2

(
1

4
DKL

�
QX̃1

|| PX

�

+
1

4
DKL

�
QX̃2

|| PX

�
+

1

2
DKL

⇣
QX̃2|X̃1

|| PX | QX̃1

⌘

+ dPY |X (QX̃1X̃2
)

)
(A.34)

(b)
= min

QX̃1X̃2
:QX̃1

=QX̃2

(
1

2
DKL

�
QX̃1

|| PX

�

+
1

2
DKL

⇣
QX̃2|X̃1

|| PX | QX̃1

⌘
+ dPY |X (QX̃1X̃2

)

)

(A.35)
(c)
= min

QX̃1X̃2
:QX̃1

=QX̃2

1

2
DKL

�
QX̃1X̃2

|| P⌦2
X

�
+ dPY |X (QX̃1X̃2

)

(A.36)
=  2(PXY ), (A.37)

where (a) follows using the convexity of the KL divergence,
as in (A.32) (used with a factor of 1/4), (b) follows from
the constraint QX̃1

= QX̃2
, and (c) follows from the chain

rule for KL divergence. Thus, 'K(PXY ) �  2(PXY ) for all
K � 4. This, combined with the bound '3(PXY ) �  2(PXY )
previously derived completes the proof.

The proof of Theorem 1 is then as follows:
Proof of Theorem 1: Let F (⇡) be the number of fixed

points of the permutation ⇡ 2 SM , that is, F (⇡) := |{i 2
[M ]:⇡(i) = i}|. So, if F (⇡) � M(1 � ⇠) then ⇡(XN ) is a
successful reconstruction of XN with probability 1. Hence,

FP(⇠)
(a)


X

⇡2SM :F (⇡)M(1�⇠)

pe[X
N ! ⇡(XN )] (A.38)

(b)


MX

K=⇠M

X

⇡2SM :F (⇡)=M�K

E
h
e
�dPY |X (XN ,⇡[XN ])

i
(A.39)

(c)


MX

K=⇠M

e
K
� L · max

⇡2SM :F (⇡)=M�K
E
h
e
�dPY |X (XN ,⇡[XN ])

i
,

(A.40)

where (a) follows from the union bound, (b) follows from
Bhattacharyya’s bound [35, Sec. 2.3], and (c) follows since
the set of permutations which has exactly M �K fixed points
has cardinality of

�M
K

�
K!

QK�1
j=0 (M � j)  MK = e

K
� L.

Now, recall that the Bhattacharyya distance is additive, that
is, dPY |X (XN ,⇡[XN ]) =

P
i2[M ] dPY |X (X(i),X(⇡(i))).

Now, consider a permutation with F (⇡) = M�2 fixed points.

This is a transposition, and since dPY |X (X(i),X(⇡(i)) = 0
if ⇡(i) = i, it follows from Lemma 2 that

E
h
e
�dPY |X (XN ,⇡[XN ])

i
 e�2L· 2(PXY ). (A.41)

Similarly, a permutation with F (⇡) = M � 3 fixed points
can only be a cycle of length 3, and so it follows again from
Lemma 2 that

E
h
e
�dPY |X (XN ,⇡[XN ])

i
 e�3L· 3(PXY )  e�3L· 2(PXY ).

(A.42)
Next, a permutation with F (⇡)  M � 4 may be either a
cycle or comprised of independent cycles. Suppose that the
permutation has C cycles of lengths {Kj}j2[C]. By permuting
the fragments of XN if necessary, we may assume WLOG
that they are consecutive, that is, the first cycle includes
indices I1 := {1, 2, . . . ,K1}, the second includes I2 :=
{K1+1, . . . ,K1+K2} and so on. Since there are F (⇡) fixed
points it holds that

P
j2[C] Kj = M � F (⇡). Thus we may

write

dPY |X (XN ,⇡[XN ]) =
CX

j=1

X

i2Ij

dPY |X (X(i),X(⇡(i))) ,

(A.43)
in which the outer summation is over independent RVs. Then,

E
h
e
�dPY |X (XN ,⇡[XN ])

i

(a)
=

CY

j=1

E
h
e
�

P
i2[M] dPY |X (X(i),X(⇡(i)))

i
(A.44)

(b)


CY

j=1

e�LKj 2(PXY ) (A.45)

(c)
= e�(M�F (⇡))L· 2(PXY ), (A.46)

where (a) holds by independence, (b) follows from Lemma
2, and (c) follows since ⇡ has F (⇡) fixed points.

Combining all the above,

FP(⇠) 
MX

K=⇠M

exp


�KL ·

✓
 2(PXY )�

1

�

◆�
. (A.47)

Now, suppose that ⇠ = 0. Then if K = 0 then the permu-
tation must be the identity permutation, and this is a perfect
reconstruction. K = 1 is impossible, since a permutation in
SM cannot have M � 1 fixed points. Hence,

FP(⇠ = 0) 
1X

K=2

exp


�KL ·

✓
 2(PXY )�

1

�

◆�
(A.48)

(a)
=

exp
h
�2L ·

⇣
 2(PXY )� 1

�

⌘i

1� exp
h
�L ·

⇣
 2(PXY )� 1

�

⌘i (A.49)

(b)
 2 ·M2(1�� 2(PXY )), (A.50)

where (a) is a geometric series, and (b) holds when 1 �
exp[�L · ( 2(PXY ) � 1

� )] 
1
2 , which holds for all M �

M0(PXY ). Otherwise, if ⇠ > 0 then we may upper bound the
sum by M times its maximal term, and so
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FP(⇠)

 exp


�M logM · ⇠

✓
� 2(PXY )� 1�O

✓
1

M

◆◆�
.

(A.51)

This completes the proof of the theorem.
We now turn to prove the lower bound in Theorem 3.

Proof of Theorem 3: To lower bound the error probability,
we first focus on a single pair of fragments (i1, i2) and
lower bound the probability that a reconstruction which puts
X(i1) in the i2th location and X(i2) in the i1th location is
more likely than the opposite ordering. Concretely, for a pair
(i1, i2) 2 [M ]2 such that i1 < i2, we let

Ẽi1i2 :=

(
P⌦2L
Y |X [(Y (i2),Y (i1)) | (X(i1),X(i2))]

P⌦2L
Y |X [(Y (i1),Y (i1)) | (X(i1),X(i2))]

� 1

)
,

(A.52)
and the event of interest is defined as the intersection of this
event with the event that the two fragments are different, to
wit,

Ei1i2 := Ẽi1i2 \ {X(i1) 6= X(i2)} . (A.53)

It should be noted, however, that the event Ei1i2 does not
necessarily imply that the ML reconstruction transposes the
pair (i1, i2), since, for example, placing X(i1) in an index
different from i2 could result larger likelihood. For notational
simplicity, we next assume that i1 = 1 and i2 = 2. Then,
the probability of E12 equals to the error probability of the
hypothesis testing problem between H0 : (X(1),X(2)) =
(X̃(1), X̃(2)) and H1 : (X(1),X(2)) = (X̃(2), X̃(1))
based on the observations Y ⇠ P⌦2L

Y |X (· | (X(1),X(2))),
when X̃(1), X̃(2) ⇠ P⌦L

X , independently, except whenever
X̃(1) = X̃(2), because then the hypothesis testing problem
has large error probability, whereas the reconstruction failure
probability is zero.

Consider first a fixed X̃(1) = x̃(1), X̃(2) = x̃(2), and
let the probability of erroneously deciding H1 when H0 is
true (resp. deciding H0 when H1 is true) be p0!1(x̃(1), x̃(2))
(resp. p1!0(x̃(1), x̃(2))). By the celebrated result of Shannon,
Gallager and Berlekamp [28, Corollary to Thm. 5] the error
probability is lower bounded using the Chernoff distance (9).
Specifically, the version in [9, Problem 10.20(b)] states that
for any � > 0

max {p0!1(x̃(1), x̃(2)), p1!0(x̃(1), x̃(2))}

� e
�L·maxs2[0,1] dPY |X,s((x̃(1),x̃(2)),(x̃(2),x̃(1)))�L� (A.54)

= e
�Lmaxs2[0,1]

n
dPY |X,s(x̃(1),x̃(2))+dPY |X,1�s(x̃(1),x̃(2))

o
�L�

(A.55)

holds for all L � L0(�, PY |X). Now, s ! dPY |X ,s(x, x̃)
is a concave function of s 2 [0, 1] (its second deriva-
tive @2

@2sdPY |X ,s(x, x̃) is the variance of the tilted distri-

bution
P s

Y |X [y|x]·P 1�s
Y |X [y|x̃]

exp[�dPY |X,s(x,x̃)]
and hence nonnegative; see [28,

Thm. 5] and [35, Proof of Thm. 3.5.1.]). Then, s !
dPY |X ,s (x̃(1), x̃(2)) is an average of concave functions and
thus concave. Thus, for any s 2 [0, 1]

1

2
dPY |X ,s (x̃(1), x̃(2)) +

1

2
dPY |X ,1�s (x̃(1), x̃(2))

 dPY |X ,s/2+(1�s)/2 (x̃(1), x̃(2)) = d (x̃(1), x̃(2)) , (A.56)

that is, the Bhattacharyya distance. We thus get from the above
that

max {p0!1(x̃(1), x̃(2)), p1!0(x̃(1), x̃(2))}
� exp

⇥
�L ·

�
2dPY |X (x̃(1), x̃(2)) + �

�⇤
. (A.57)

We next average this bound over the randomness of
X̃(1), X̃(2), while accounting for the requirement that
X̃(1) 6= X̃(2). To this end, let a(X̃(1), X̃(2)) be any inte-
grable function of X̃(1), X̃(2) (w.r.t. the probability measure
P⌦2L
X ), that is upper bounded as a(x̃(1), x̃(2))  1 for all

x̃(1), x̃(2) 2 XL. Then,

E
h
a(X̃(1), X̃(2)) · {X̃(1) 6= X̃(2)}

i

= E
h
a(X̃(1), X̃(2))

i

� E
h
a(X̃(1), X̃(2)) · {X̃(1) = X̃(2)}

i
(A.58)

� E
h
a(X̃(1), X̃(2))

i
� P

h
X̃(1) = X̃(2)

i
(A.59)

= E
h
a(X̃(1), X̃(2))

i
� e�LH2(PX), (A.60)

where H2(PX) is the second-order Rényi entropy (the colli-
sion entropy). Hence, using the method of types [9, Sec. 2.1]

E
h
max

n
p0!1(X̃(1), X̃(2)), p1!0(X̃(1), X̃(2))

o

⇥ {X̃(1) 6= X̃(2)}
i

� E
h
exp

h
�L ·

⇣
2dPY |X

⇣
X̃(1), X̃(2)

⌘
+ �

⌘ii

� e�LH2(PX) (A.61)

=
X

QX̃1X̃2
2PL(X 2)

P
h
(X̃(1), X̃(2)) 2 TL(QX̃1X̃2

)
i

⇥ exp
⇥
�L ·

�
2dPY |X (QX̃1X̃2

) + �
�⇤

� e�LH2(PX)

(A.62)

� 1

(L+ 1)|X |2

⇥ max
QX̃1X̃2

2PL(X 2)
e
�2L·

⇣
1
2DKL(QX̃1X̃2

||P⌦2
X )+dPY |X (QX̃1X̃2

)+ �
2

⌘

� e�LH2(PX) (A.63)

= e
�2L·


minQ

X̃1X̃2
2PL(X2) f(QX̃1X̃2

)+ �
2�O

✓
|X|2log L

L

◆�

� e�LH2(PX), (A.64)

where

f(QX̃1X̃2
) :=

1

2
DKL(QX̃1X̃2

|| P⌦2
X ) + dPY |X (QX̃1X̃2

)

(A.65)
is the objective function involved in the optimization of the
above rate function. Our next goal is to consider the opti-
mization over this function, which in (A.64) is over PL(X 2).
In order to replace this optimization set with a simpler
optimization over the entire probability simplex P(X 2), it
suffices to prove that the function QX̃1X̃2

! f(QX̃1X̃2
) is

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3390068

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Illinois. Downloaded on May 20,2024 at 16:10:42 UTC from IEEE Xplore.  Restrictions apply. 



14

equicontinuous w.r.t. to QX̃1X̃2
over the probability simplex

P(X 2). First, we decompose the KL divergence as

DKL(QX̃1X̃2
|| P⌦2

X )

= �H(QX̃1X̃2
)� EQ

h
logP⌦2

X (X̃1, X̃2)
i
. (A.66)

Now, first, for any QX̃1X̃2
, QX1X2

2 P(X 2) it holds that [9,
Lemma 2.7]

��H(QX̃1X̃2
)�H(QX1X2

)
��

 dTV
�
QX̃1X̃2

, QX1X2

�

⇥ log
|X |2

dTV
�
QX̃1X̃2

, QX1X2

� , (A.67)

and, furthermore,
���EQ

h
logP⌦2

X (X̃1, X̃2)
i
� EQ

⇥
logP⌦2

X (X1, X2)
⇤���

=

�����
X

x1,x22X

⇥
QX̃1X̃2

(x1, x2)�QX1X2
(x1, x2)

⇤

⇥ log
�
P⌦2
X (x1, x2)

�
����� (A.68)

 dTV
�
QX̃1X̃2

, QX1X2

�
· 2max

x2X
[� logPX(x)] . (A.69)

Second, for the Bhattacharyya distance
��dPY |X (QX̃1X̃2

)� dPY |X (QX1X2
)
��



�����
X

x1,x22X

⇥
QX̃1X̃2

(x1, x2)�QX1X2
(x1, x2)

⇤

⇥ dPY |X (x1, x2)

����� (A.70)

 dTV
�
QX̃1X̃2

, QX1X2

�
· max
x1,x22X

dPY |X (x1, x2). (A.71)

Thus, the triangle inequality implies
��f(QX̃1X̃2

)� f(QX1X2
)
��  dTV

�
QX̃1X̃2

, QX1X2

�

⇥
"
log

|X |2

dTV
�
QX̃1X̃2

, QX1X2

� + c(PXY )

#
, (A.72)

where

c(PXY ) = 2max
x2X

[� logPX(x)] + max
x1,x22X

dPY |X (x1, x2).

(A.73)
Now, for any given PMF QX1X2

2 P(X 2) there exists a type
QX̃1X̃2

2 PL(X 2) such that

dTV
�
QX̃1X̃2

, QX1X2

�

=
X

x1,x22X 2

��QX̃1X̃2
(x1, x2)�QX1X2

(x1, x2)
�� (A.74)

 |X |2

L
. (A.75)

It further holds that t ! t log(1/t) is increasing for t 2
[0, e�1]. Hence, if L is large enough so that |X |2

L  e�1 and
c(PXY )  logL, it holds that

��f(QX̃1X̃2
)� f(QX1X2

)
��

 |X |2

L
[log(L) + c(PXY )] (A.76)

 2|X |2logL
L

. (A.77)

So there exists L1(PXY ) such that for all L � L1(PXY ) it
holds that

��f(QX̃1X̃2
)� f(QX1X2

)
��  2|X |2logL

L
. (A.78)

We may then replace the first exponent in (A.64) with

min
QX̃1X̃2

2P(X 2)

 
1

2
DKL(QX̃1X̃2

|| P⌦2
X ) + dPY |X (QX̃1X̃2

)

+
�

2
�O

✓
|X |2logL

L

◆!
, (A.79)

where now the outer minimization is over QX̃1X̃2
that is not

necessarily restricted to be a type in PL(X 2), but rather any
joint PMF in the probability simplex P(X 2). Ignoring the
terms of �/2 and the asymptotically vanishing term, (A.79)
is exactly  2(PXY ) defined in (A.8). After taking � # 0, we
obtain the lower bound

P[E12]

� E
h
max

n
p0!1(X̃(1), X̃(2)), p1!0(X̃(1), X̃(2))

o

⇥ {X̃(1) 6= X̃(2)}
i

(A.80)

� e�2L·[ 2(PXY )+o(1)] � e�LH2(PX) (A.81)
(a)
� e�2L·[ 2(PXY )+o(1)] (A.82)

= M�2� 2(PXY )+o(1), (A.83)

where (a) holds under the assumption 2 2(PXY ) < H2(PX)
assuming that L is sufficiently large L � L0(PXY ) _
L1(PXY ). Note that P[E12] is less than the probability of
a transposition error of X(i1) and X(i2), which was upper
bounded in the proof of Theorem 1 as

P[E12]  P[Ẽ12] (A.84)

 P
h
X̂(i1) = X(i2), X̂(i2) = X(i1)

i
(A.85)

 e�2L· 2(PXY ) (A.86)

= M�2� 2(PXY ). (A.87)

So, the bound on E12 is tight in its polynomial decay rate, and
we denote its probability as

p := P[Ẽ12] = P[E12] = M�2� 2(PXY )+o(1). (A.88)

We next consider separately the case of ⇠ = 0 and
⇠ > 0, beginning with the former. To this end, we will lower
bound the failure probability by the probability of the unionS

(i1,i2)2[M ]2:i1<i2
Ei1i2 , and to lower bound the probability

of this union, we will use de Caen’s inequality [11]. This
inequality requires evaluating the probability of each event, as
well as the probability of intersections of events Ei1i2 \ Ei3i4 .
For single events, it readily holds from the assumption that
the fragments {X(i)}i2N+ are drawn IID and from symmetry
that P[Ei1i2 ] = p for any pair (i1, i2) 2 [M ]2 so that i1 < i2.
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For the probability of an intersection of events, there are two
possible cases. If i1, i2, i3, i4 are all distinct then the events
Ei1i2 and Ei3i4 are independent, and so trivially,

P [Ei1i2 \ Ei3i4 ] = P [Ei1i2 ] · P [Ei3i4 ] = p2. (A.89)

Otherwise, if i1 = i3 and i2 6= i4, then the events are
dependent, and the probability is larger. We next assume for
notational simplicity that i1 = 1, i2 = 2, i4 = 4 and upper
bound the probability P[E12 \ E14]. First, we remove the
constraint that the fragments are different and upper bound

P[E12 \ E14]

= P
h
Ẽ12 \ {X(1) 6= X(2)} \ Ẽ14 \ {X(1) 6= X(4)}

i

(A.90)
 P[Ẽ12 \ Ẽ14]. (A.91)

We thus bound the probability on the right-hand side, as
in the proof of the Bhattacharyya bound [35, Sec. 2.3].
To this end, let (X(1),X(2),X(4)) ⇠ P⌦3L

X and let
(Y (1),Y (2),Y (4)) | (X(1),X(2),X(4)) ⇠ P⌦3L

Y |X . Then,

P
h
Ẽ12 \ Ẽ14

i

= E
" ⇢

P [Y (2),Y (1) | X(1),X(2)]

P [Y (1),Y (2) | X(1),X(2)]
� 1

�

⇥
⇢
P [Y (4),Y (1) | X(1),X(4)]

P [Y (1),Y (4) | X(1),X(4)]
� 1

�#

(A.92)
(a)
 E

"
X

(y(1),y(2),y(4))2Y3L

P⌦L
Y |X [y(1) | X(1)]

⇥ P⌦L
Y |X [y(2) | X(2)]

⇥ P⌦L
Y |X [y(4) | X(4)]

⇥

vuutP⌦L
Y |X [y(2) | X(1)]P⌦L

Y |X [y(1) | X(2)]

P⌦L
Y |X [y(1) | X(1)]P⌦L

Y |X [y(2) | X(2)]

⇥

vuutP⌦L
Y |X [y(4) | X(1)]P⌦L

Y |X [y(1) | X(4)]

P⌦L
Y |X [y(1) | X(1)]P⌦L

Y |X [y(4) | X(4)]

#

(A.93)

= E
"
X

y(1)

q
P⌦L
Y |X [y(1) | X(2)]P⌦L

Y |X [y(1) | X(4)]

⇥
X

y(2)

q
P⌦L
Y |X [y(2) | X(1)]P⌦L

Y |X [y(2) | X(2)]

⇥
X

y(4)

q
P⌦L
Y |X [y(4) | X(4)]P⌦L

Y |X [y(4) | X(1)]

#

(A.94)
(b)
=

X

QX1X2X42PL(X 3)

P [(X(1),X(2),X(4)) 2 TL(QX1X2X4)]

⇥ e
�L·

⇣
dPY |X (QX2X4 )+dPY |X (QX1X2 )+dPY |X (QX4X1 )

⌘

(A.95)

(c)

��PL(X 3)

�� max
QX1X2X42PL(X 3)

e�L·DKL(QX1X2X4 ||P
⌦3
X )

⇥ e
�L·

⇣
dPY |X (QX2X4 )+dPY |X (QX1X2 )+dPY |X (QX4X1 )

⌘

(A.96)
(d)
 exp


�L ·

✓
3 3(PXY )�

|X |3log(L+ 1)

L

◆�
(A.97)

= M�3� 3(PXY )+o(1) (A.98)
(e)
 M�3� 2(PXY )+o(1) =: q, (A.99)

where (a) follows from the standard Bhattacharyya bound
technique of bounding

⇢
P [Y (2),Y (1) | X(1),X(2)]

P [Y (1),Y (2) | X(1),X(2)]
� 1

�



s
P [Y (2),Y (1) | X(1),X(2)]

P [Y (1),Y (2) | X(1),X(2)]
, (A.100)

(b) follows since the Bhattacharyya distance between X(1)
and X(2) only depends on their joint type QX1X2 (and simi-
larly for the other Bhattacharyya distances), (c) follows from
the method of types (the upper bound of the probability of a
type class [9, Lemma 2.3]), (d) follows from the type counting
lemma [9, Lemma 2.2] and the definition of  K(PXY ) in
(A.8), and (e) holds since as was shown in (A.13), it holds
that  3(PXY ) �  2(PXY ).

Using the above bounds, we may lower bound the failure
probability as

FP(⇠ = 0)

� P

2

4
[

(i1,i2)2[M ]2:i1<i2

Ei1i2

3

5 (A.101)

(a)
�

X

(i1,i2)2[M ]2:i1<i2

P2 [Ei1i2 ]P
(i3,i4)2[M ]2:i3<i4

P [Ei1i2 \ Ei3i4 ]
,

(A.102)

where (a) follows from de Caen’s inequality [11]. The sum’s
denominator is bounded for any given (i1, i2) as follows. For
the single term (i3, i4) = (i1, i2)

P [Ei1i2 \ Ei3i4 ] = P [Ei1i2 ] = p. (A.103)

For the terms in which either i1 = i3 or i2 = i4 it holds that

P [Ei1i2 \ Ei3i4 ]  q, (A.104)

given in (A.99). There are less than 2M such pairs of pairs.
Finally, for the terms in which i1, i2, i3, i4 are all distinct it
holds that

P [Ei1i2 \ Ei3i4 ] = p2. (A.105)

There are less than M2 such terms. Hence, (A.102) may be
further lower bounded as

FP(⇠ = 0)

�
X

(i1,i2)2[M ]2:i1<i2

p2

p+ qM +M2p2
(A.106)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3390068

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Illinois. Downloaded on May 20,2024 at 16:10:42 UTC from IEEE Xplore.  Restrictions apply. 



16

� 1

3

X

(i1,i2)2[M ]2:i1<i2

p ^ p2

2qM
^ p2

M2p2
(A.107)

(a)
� 1

24
·
✓
M2p ^M

p2

q
^ 1

◆
(A.108)

(b)
� Mo(1) ·

⇣
M2(1�� 2(PXY )) ^M1�� 2(PXY ) ^ 1

⌘

(A.109)
(c)
= M2�2� 2(PXY )+o(1), (A.110)

where (a) follows since there are M(M�1)
2 � M2

4 pairs
(i1, i2) 2 [M ]2 such that i1 < i2 (assuming trivially that
M � 2), (b) follows by the definition of p in (A.83) and
the definition of q = M�3� 2(PXY )+o(1) in (A.99), (c) holds
by the assumption of the theorem that � > 1

 2(PXY ) . This
completes the proof of the bound for ⇠ = 0.

We now prove the bound for ⇠ > 0. Let I :=
{{ij , i0j}}j2[⇠M/2] be a set of ⇠M/2 unordered pairs of unique
indices in [M ], that is \j2[⇠M/2]{ij \ i0j} = ;.3 Consider the
event of ⇠M

2 transposition replacements of correct likelihood
order between pairs of fragments in I , that is

EI :=

⇠M/2\

j=1

n
Eij ,i0j

o
(A.111)

using the definition of the event Ei1i2 in (A.53). Then,

P[EI ]
(a)
=

⇠M/2Y

j=1

P
h
Eij ,i0j

i
(A.112)

(b)
� e�⇠ML·[ 2(PXY )+o(1)] (A.113)
(c)
= e�⇠M logM ·[� 2(PXY )+o(1)], (A.114)

where (a) follows since disjoint pairwise transpositions are
independent events, (b) follows from the lower bound on
P[Ei1i2 ] in (A.83), and (c) from L = � logM .

APPENDIX B
PROOFS FOR THE REPEATING-FRAGMENTS REGIME WITH

NONNEGATIVE DISTORTION

We first prove Prop. 7. Recall that G ⇠
Multinomial(M ; (p1, p2, . . . , pM�}) where M is the
fixed number of fragments. Consider the random
vector G̃ = (G̃(1), . . . , G̃(M�)), which has the same
dimension as G, yet each of its components is distributed
G̃(j) ⇠ Poisson(Mpj), where pj := P[XL = aj ] is the
probability of aj 2 XL, the jth letter in XL, and where the
components of G̃ are independent (unlike those of G). By
construction, the expected value of each coordinate in G and
G̃ is equal, and given by E[G̃(j)] = E[G(j)] = Mpj . We
recall that “Poissonization of the multinomial” effect (see
[23, Sec. 5.4] for the case PX is uniform and {pj}j2[M� ] are
all equal. This has a straightforward extension to non-uniform
probabilities, see, e.g., [27, Lecture 11]).

3As mentioned we ignore integer constraints, as they do not affect the final
result, and thus assume that ⇠M/2 is integer.

Fact 9 (Poissonization of the multinomial distribution). Let
M̃ ⇠ Poisson(M), and let G̃ be a random vector such that
G̃ ⇠ Multinomial(M̃, (p1, p2, . . . pM�}) conditioned on M̃ ,
where

P
j2[M� ] pj = 1 and pj > 0. Then, {G̃(j)}j2[M� ]

are statistically independent and G̃(j) ⇠ Poisson(Mpj)
(unconditioned on M̃ ).

Fact 9 can be verified by spelling out the conditional PMF
of G̃ conditioned on M̃ [23, Thm. 5.6] in case {pj} are all
equal, and easily extended to the non-uniform case (e.g., [27,
Lecture 11, Thm. 3.2]). The following then follows from [23,
Corollary 5.9]:

Lemma 10. Let G ⇠ Multinomial(M, (p1, p2, . . . pM�}), and
let G̃ be an independent Poisson vector of the same dimension
so that E[G̃(j)] = E[G(j)] = Mpj . Then, for any event E

P [G 2 E ] 
p
eM · P

h
G̃ 2 E

i
. (B.1)

We will also need the following results on Poisson RVs. The
first one is a standard Chernoff bound for Poisson RVs, and
the second one is the aforementioned concentration inequality
for Lipschitz functions of Poisson RVs.

Lemma 11 (Chernoff’s bound for Poisson RVs [23, Theorem
5.4]). For W ⇠ Poisson(�) it holds that

P [W � ↵E[W ]]  e��
⇣ e

↵

⌘↵�
(B.2)


⇣ e

↵

⌘↵�
= e�↵� log(↵/e)  e�↵�, (B.3)

where the rightmost inequality holds for any ↵ > 3e ⇡ 8.15.

Lemma 12 (Poisson concentration of Lipschitz functions, a
variant of [2], [18]). Let W ⇠ Poisson(�), and assume that f
is 1-Lipschitz, that is, |Df(w)|:= |f(w + 1) � f(w)| 1 for
all w 2 N. Then, for any t > 0

P [f(W )� E[f(W )] > t]  exp


� t2

16�+ 3t

�
. (B.4)

Proof: Under the conditions of the lemma

P [f(W )� E[f(W )] > t]
(a)
 exp


� t

4
log

✓
1 +

t

2�

◆�
(B.5)

(b)
= exp


��
2
u log(1 + u)

�
(B.6)

(c)
 exp


� �u2

4(1 + u/3)

�
, (B.7)

where (a) is the Bobkov and Ledoux’s bound [2, Prop. 10]
[18], (b) follows by setting u := t

2� , (c) follows from

u log (1 + u) = (1 + u) log(1 + u)� u+ u� log(1 + u)

(B.8)
(⇤)
� u2

2(1 + u/3)
+ u� log(1 + u) (B.9)

(⇤⇤)
� u2

2(1 + u/3)
, (B.10)
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where (⇤) was stated in [3, Exercise 2.8], and (⇤⇤) follows
from u � log(1 + u) for u � 0. The result follows by re-
substituting u = t

2� , and performing a (minor) numerical
relaxation.

We may now prove Prop. 7.
Proof of Prop. 7: The entropy upper bound on the

multinomial coefficient implies that it surely holds that4

C(XN ) :=
1

M
log

��AL(X
N )
�� (B.11)

=
1

M
log

✓
M

G(1), G(2), . . . , G(M�)

◆
(B.12)

(a)
 H

✓
G(1)

M
,
G(2)

M
, . . . ,

G(M�)

M

◆
(B.13)

= �
X

j2[M� ]

G(j)

M
log

G(j)

M
. (B.14)

Let us denote

C̃ :=
X

j2[M� ]

� G̃(j)

M
log

G̃(j)

M
, (B.15)

where G̃(j) ⇠ Poisson(M · P[XL = aj ]), for which it holds
that E[G̃(j)] = E[G(j)]. Let X ⇠ P⌦L

X be a random length-
L fragment. By Jensen’s inequality for the function f(t) :=
�t log t in R+,

E[C̃] =
X

j2[M� ]

E
"
� G̃(j)

M
log

G̃(j)

M

#
(B.16)


X

j2[M� ]

�E[G̃(j)]

M
log

E[G̃(j)]

M
(B.17)

= �
X

j2[M� ]

P[X = aj ] · logP[X = aj ] (B.18)

= H(X) (B.19)
= L ·H(PX). (B.20)

Hence, for any ⌘ > 0, the Poissonization effect of Lemma 10
implies that

P
⇥
C(XN ) � L ·H(PX) + ⌘ logM

⇤

 P
h
C(XN ) � E[C̃] + ⌘ logM

i
(B.21)

 e
p
M · P

h
C̃ � E[C̃] + ⌘ logM

i
. (B.22)

We next bound the concentration of C̃ above its expected
value E[C̃]. We first derive a bound which is effective in the
regime � 2 (0, 2). To this end, we would like to invoke the
concentration inequality of Lipschitz functions of Poisson RVs
by Bobkov and Ledoux [2], [18], see Lemma 12. However,
writing C̃ :=

P
j2[M� ] f(G̃(j)) for f(g) := � g

M log g
M ,

it is apparent that this is not a Lipschitz function on N+

since f(g) has unbounded derivative for g " 1. To address
this, we first consider a Lipschitz approximation to f(g)
given by f+(g) = (f(g))+, and establish the concentration
of C̃+ =

P
j2[M� ] f

+(G̃(j)) to its expected value E[C̃+].

4See e.g., [7, Lemma 17.5.1] for the binomial coefficient; the extension to
multinomial is straightforward and well known.

Afterwards, we show that E[C̃+] is close to E[C̃]. It can be
easily verified that the discrete derivative satisfies

��f+(g + 1)� f+(g)
��  logM

M
, (B.23)

that is, f+(g) is a ( logM
M )-Lipschitz continuous function. We

first consider the tail behavior of each of the terms defining
C̃+. Let j 2 [M� ] be given. Then, for any ⌘ > 0

P
h
f+

⇣
G̃(j)

⌘
� E

h
f+

⇣
G̃(j)

⌘i
> ⌘ logM

i

(a)
= P

h
f̂+

⇣
G̃(j)

⌘
� E

h
f̂+

⇣
G̃(j)

⌘i
> ⌘M

i
(B.24)

(b)
 exp


� M2⌘2

16 · E[G̃(j)] + 3M⌘

�
, (B.25)

where (a) is obtained by setting f̂+(g) := Mf+(g)
logM and noting

that f̂+(g) is a 1-Lipschitz continuous function, (b) is obtained
by Poisson concentration of Lipschitz functions, as stated in
Lemma 12. Since �f̂+(g) is also a 1-Lipschitz continuous
function, an analogous bound holds for the left tail. Denoting
for brevity

Z(j) := f̂+
⇣
G̃(j)

⌘
� E

h
f̂+

⇣
G̃(j)

⌘i
, (B.26)

we note that if

M⌘ =
q
32 · E[G̃(j)]t+ 6t (B.27)

then

M2⌘2

16 · E[G̃(j)] + 3M⌘
� M2⌘2

2
⇣
16 · E[G̃(j)] _ 3M⌘

⌘ (B.28)

=
M2⌘2

32 · E[G̃(j)]
^ M⌘

6
(B.29)

� 32 · E[G̃(j)]t

32 · E[G̃(j)]
^ 6t

6
(B.30)

� t, (B.31)

and so (B.25) implies that

P

|Z(j)|

q
32 · E[G̃(j)]t+ 6t

�
 2e�t (B.32)

holds for any t � 0. Hence, the two statements of [3, Thm. 2.3]
together imply that Z(j) is a sub-gamma random variable with
a variance proxy 4(128 ·E[G̃(j)]+576) and a scale parameter
48. Since E[G̃(j)] = M ·P[XL = aj ], there exists a numerical
constant c1 > 0 so that

X

j2[M� ]

E[Z2(j)]  512
X

j2[M� ]

⇣
E[G̃(j)] + 2 · (24)2

⌘
(B.33)

 c1(M +M�). (B.34)

Furthermore, |Z(j)| 2maxt2[0,1] �t log t  3c2 for some
numerical constant c2 > 0 (depending on the choice of base
for the logarithm), and so Z(j) satisfies Bernstein’s condi-
tion with a sum of second moments

P
j2[M� ] E[Z(j)2] 

c1(M+M�) and a scale constant c2. Since {Z(j)}j2[M� ] are
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independent and centered, Bernstein’s inequality [3, Corollary
2.11] then results

P

2

4
X

j2[M� ]

Z(j) � r

3

5  exp


� r2

2(c1M + c1M� + c2r)

�
.

(B.35)
Setting r = M⌘, while restricting now that ⌘ 2 (0, 1), then
results

P
h
C̃+ � E[C̃+] + ⌘ logM

i

= P

2

4
X

j2[M� ]

f+
⇣
G̃(j)

⌘
� E

h
f+

⇣
G̃(j)

⌘i
> ⌘ logM

3

5

(B.36)

= P

2

4
X

j2[M� ]

f̂+
⇣
G̃(j)

⌘
� E

h
f̂+

⇣
G̃(j)

⌘i
> M⌘

3

5 (B.37)

 exp


� M2⌘2

2(c1M + c1M� + c2M⌘)

�
(B.38)

 exp


�M ·min

⇢
⌘2

4c1
,
M1��⌘

c1
,
⌘

c2

��
(B.39)

 exp
h
�c3 · ⌘2M1_(2��)

i
, (B.40)

for some numerical constant c3 > 0.
Next, we bound the absolute difference E[C̃+] and E[C̃].

Note that each of them is comprised of M� terms, and as
before, we first focus on a single term j 2 [M� ]. For brevity,
we let G̃ ⇠ Poisson(�), where �  M

10  M � 1 is assumed.
Then,

E
h
f+(G̃)

i
� E

h
f(G̃)

i

= E
"
G̃

M
log

G̃

M
· {G̃ � M}

#
(B.41)

=
1X

g̃=M+1

P[G̃ = g̃]
g̃

M
log

g̃

M
(B.42)

=
1X

g̃=M+1

�g̃e��

g̃!

g̃

M
log

g̃

M
(B.43)

=
�

M

1X

g̃=M+1

�g̃�1e��

(g̃ � 1)!
log

g̃

M
(B.44)

(b)
=

�

M

1X

g=M

�ge��

g!
log

g + 1

M
(B.45)

=
�

M
E
"
log

G̃+ 1

M
{G̃ � M}

#
(B.46)

(c)
 �

M
E
"
(G̃+ 1�M)

M
· {G̃ � M}

#
(B.47)

(d)
 �

M
E
"
(G̃� �)

M
· {G̃ � M}

#
(B.48)

(e)
 �

M

s

E (G̃� �)2

M2
·
r
P
⇣
G̃ � M

⌘
(B.49)

=
�3/2

M2

r
P
⇣
G̃ � M

⌘
(B.50)

(f)
 1 · e�M/2, (B.51)

where (a) follows since f+(g) = (f(g))+, (b) is using the
change of variables g = g̃�1, (c) follows from log(t)  t�1
for t � 1, (d) holds since �  M � 1  M was assumed, (e)
follows from the Cauchy-Schwarz inequality, and (f) follows
from Lemma 11 and the assumption that �  M

10 .
Now, under the assumption that H(PX) > 0 it must hold

that maxx2X PX(x) < 1. Hence,

E[G̃(j)] = M · P[XL = aj ] = M(maxPX(x))L = o(M)
(B.52)

and we may use the approximation of (B.51) assuming that
M � M0(PX ,�) is sufficiently large. Then,

���E[C̃]� E[C̃+]
���


X

j2[M� ]

���E
h
f+

⇣
G̃(j)

⌘i
� E

h
f
⇣
G̃(j)

⌘i��� (B.53)

 M�e�M/2  e�M/4 (B.54)

for all M � M1(PX ,�) sufficiently large. Returning to (B.22)
we obtain

P
⇥
C(XN ) � L ·H(PX) + ⌘ logM

⇤

 e
p
M · P

h
C̃ � E[C̃] + ⌘ logM

i
(B.55)

(a)
 e

p
M · P

h
C̃+ � E[C̃] + ⌘ logM

i
(B.56)

(b)
 e

p
M · P

h
C̃+ � E[C̃+] + ⌘ logM � e�M/4

i
(B.57)

(c)
 e

p
M · P

h
C̃+ � E[C̃+] +

⌘

2
logM

i
(B.58)

(d)
 e

p
M · exp

h
�c4 · ⌘2M1_(2��)

i
(B.59)

(e)
 exp[�c5 · ⌘2M1_(2��)], (B.60)

where (a) follows since C̃+ � C̃, (b) follows from (B.54), (c)
holds for all M � M2(⌘) sufficiently large, (d) holds from
(B.40), and (e) holds for some numerical constant c5 > 0
and all M � M3(PX ,�, ⌘) sufficiently large. The result then
follows for all M � M0 _M1 _M2 _M3.

The bound derived above is non-trivial only for � 2 (0, 2)
Next, we derive a different bound on the one-sided concentra-
tion of C̃ above its expected value E[C̃] in (B.22), which is
valid for any � > 0. Consider the events

F(j) :=
n
G̃(j) � M

o
. (B.61)

As before, under the assumption that H(PX) > 0 it must hold
that E[G̃(j)]  M

10 for all M � M0(PX). Hence, Lemma 11
implies that

P [F(j)] = P

2

4G̃(j) �
E
h
G̃(j)

i

P[XL = aj ]

3

5  e�M (B.62)
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(using ↵ = 1/P[XL = aj ] � 3e). Letting F =
T

j2[M� ] F(j),
the union bound implies that

P[F ]  M�e�M = e�M(1� � log M
M ), (B.63)

and the probability in (B.22) is then bounded as

P
h
C̃ � E[C̃] + ⌘ logM

i

 P
hn

C̃ � E[C̃] + ⌘ logM
o
\ Fc

i
+ P [F ] (B.64)

= P
hn

C̃ � E[C̃] + ⌘ logM
o
\ Fc

i
+ e�M(1� � log M

M ).

(B.65)

We further upper bound the first probability. Under Fc, it holds
that G̃(j)  M , the argument of f(t) is less than 1, and
f(t) � 0. Thus,

P
hn

C̃ � E[C̃] + ⌘ logM
o
\ Fc

i

= P
"(

X

j2[M� ]

f
⇣
G̃(j)

⌘
�

E

2

4
X

j2[M� ]

f
⇣
G̃(j)

⌘
3

5+ ⌘ logM

)
\ Fc

#

(B.66)

= P
"(

X

j2[M� ]

f+
⇣
G̃(j)

⌘
�

E

2

4
X

j2[M� ]

f
⇣
G̃(j)

⌘
3

5+ ⌘ logM

)
\ Fc

#

(B.67)

 P
"

X

j2[M� ]

f+
⇣
G̃(j)

⌘
�

E

2

4
X

j2[M� ]

f
⇣
G̃(j)

⌘
3

5+ ⌘ logM

#
. (B.68)

The difference in expectation when switching from f to f+

is bounded, as in (B.51), as
X

j2[M� ]

E
h
f
⇣
G̃(j)

⌘i
� E

h
f+

⇣
G̃(j)

⌘i

 M�e�M/2  e�M/4 (B.69)

for all M � M1(PX ,�). Hence,

P
hn

C̃ � E[C̃] + ⌘ logM
o
\ Fc

i

 P
"

X

j2[M� ]

f+

 
G̃(j)

M

!

� E

2

4
X

j2[M� ]

f+

 
G̃(j)

M

!3

5� e�M/4 + ⌘ logM

#

(B.70)

 P
"

X

j2[M� ]

f+

 
G̃(j)

M

!

� E

2

4
X

j2[M� ]

f+

 
G̃(j)

M

!3

5+
⌘

2
⌘ logM

#
(B.71)

for all M � M2(⌘). To further bound this probability, we note
that {f+(G̃(j))}j2[M� ] are IID RVs which are bounded from
above as

f+
⇣
G̃(j)

⌘
 max

t�0
(�t log t) =

1

e
. (B.72)

We thus may use the regular Bernstein’s inequality to bound
the deviation of their sum from its mean. To this end, we
bound their second moment, by noting that G̃(j) 2 N+, and
that for any g 2 N+ it holds that

0  f+ (g)  g

M
logM (B.73)

(as the intersection of the concave function f(t) = �t log t
and t logM occurs at t = 1/M ). Hence,

E
⇣

f+
⇣
G̃(j)

⌘⌘2
�

 E

2

4
 
G̃(j)

M
logM

!2
3

5 (B.74)

=
log2 M

M2
· E

h
G̃2(j)

i
(B.75)

=
log2 M

M
· P[XL = aj ], (B.76)

since G̃(j) is Poisson with parameter E[G̃(j)] = M ·P[XL =
aj ] for all M � M0. So, Bernstein’s inequality [3, Corollary
2.11 and the discussion that follows it] implies that for any
r � 0

P

2

4
X

j2[M� ]

f+
⇣
G̃(j)

⌘
� E

2

4
X

j2[M� ]

f+
⇣
G̃(j)

⌘
3

5+ r

3

5

 exp

2

4� r2

2
⇣

log2 M
M + r

3e

⌘

3

5 . (B.77)

Setting r = ⌘
2 logM in (B.77) we obtain

r2

2
⇣

log2 M
10M + r

3e

⌘ � 10Mr2

4 log2 M
_ 3e

4
r (B.78)

� 1

2
·
�
⌘2M _ ⌘ logM

�
(B.79)

� 1

2
· ⌘ logM, (B.80)

where the inequalities hold for all M � M3(�, ⌘) large
enough. This, together with (B.71) and (B.65), implies that

P
h
C̃ � E[C̃] + ⌘ logM

i

 exp


�1

2
⌘ logM

�
+ e�M(1� � log M

M ) (B.81)

 2 exp


�1

2
⌘ logM

�
(B.82)

=
2

M⌘/2
, (B.83)
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for all M � M0 _M1 _M2 _M3.
We may now prove Theorem 6.

Proof of Theorem 6: If H(PX) = 0 then trivially
FP(�, ⇠) = 0 for any � � 0 and ⇠ 2 [0, 1]. We thus assume
henceforth that H(PX) > 0. In what follows, we will upper
bound the pairwise error probability between two sequences
using the Bhattacharyya bound. To this end, let x̃N , xN 2 XN

be a pair of sequences, where x̃N 6= xN . Let pe(x̃N ! xN )
denote the error probability of a pairwise test between x̃N

and xN from the observations Y N ⇠ PY N |XN (· | x̃N ). Then,
the Bhattacharyya bound on the probability of erroneously
deciding in favor of xN in a pairwise test is given by (e.g.,
[35, Sec. 2.3])

pe(x̃
N ! xN )


X

yN2YN

q
P⌦N
XY [yN | x̃N ] · P⌦N

XY [yN | xN ] (B.84)

(a)
=

X

yN2YN

Y

i2[M ]

q
P⌦L
XY [y(i) | x̃(i)] · P

⌦L
XY [y(i) | x(i)]

(B.85)

=
Y

i2[M ]

X

y2YL

q
P⌦L
XY [y | x̃(i)] · P⌦L

XY [y | x(i)] (B.86)

= e
�

P
i2[M] dPY |X (x̃(i),x(i))

, (B.87)

where (a) holds since the fragments are independent. Assume
that � > 0 and ⇠ 2 (0, 1) are given, set ⌘ 2 (0, 1), and define
the event

F⌘ :=
⇢
xN 2 XN :

1

M
log

��AL(x
N )
��  L ·H(PX) + ⌘ logM

�
.

(B.88)

Let us denote the failure error probability conditioned on
XN = xN by FP(�, ⇠ | xN ). Then,

FP(�, ⇠)

= E
⇥
FP(�, ⇠ | XN )

⇤
(B.89)

(a)
 E

⇥
FP(�, ⇠ | XN ) · {XN 2 F⌘}

⇤
+ P

⇥
XN 62 F⌘

⇤

(B.90)
(b)
 E

⇥
FP(�, ⇠ | XN ) · {XN 2 F⌘}

⇤
+ o⌘(1), (B.91)

where (a) follows from the union bound, and (b) follows from
Prop. 7. We next focus on the first term. Let SL(xN ) ⇢ SM

be a set of permutations that generates AL(xN ), that is,
|SL(xN )|= |AL(xN )| and for each x̃N 2 AL(xN ) there exists
⇡ 2 SL(xN ) such that x̃n = ⇡[xN ]. Let FP(�, ⇠,⇡[xN ] |
XN = xN ) be the probability of the event in which the
reconstruction failed and the ML output was the erroneous
⇡[xN ]. For any xN 2 F⌘ it then holds that

FP(�, ⇠ | XN = xN )
(a)


X

⇡2SL(xN )

FP(�, ⇠,⇡[xN ] | XN = xN ) (B.92)


��SL(x

N )
�� · max
⇡2SL(xN )

FP(�, ⇠,⇡[xN ] | XN = xN ) (B.93)

(b)
 e(�·H(PX)+⌘)M logM

⇥ max
⇡2SL(xN )

FP(�, ⇠,⇡[xN ] | XN = xN ) (B.94)

(c)
 e(�·H(PX)+⌘)M logMe

�⇠M ·Ld⇤
PY |X

(�)
, (B.95)

where (a) follows from the union bound, (b) follows from
Prop. 7 and the assumption that xN 2 F⌘ , and (c) follows
from the following consideration: Consider an arbitrary per-
mutation ⇡ 2 SL(xN ), and denote x̃n = ⇡[xN ]. If

X

i2[M ]

{�(x(i), x̃(i)) � �} � ⇠M (B.96)

then the definition of d⇤PY |X
(�) in (23) implies that

X

i2[M ]

dPY |X (x(i), x̃(i)) � ⇠ML · d⇤PY |X
(�). (B.97)

In this case, (B.87) implies that

FP(�, ⇠,⇡[xN ] | XN = xN )  exp
h
�⇠ML · d⇤PY |X

(�)
i
.

(B.98)
Alternatively, if (B.96) does not hold, we have that
FP(�, ⇠,⇡[xN ] | XN = xN ) = 0 (by the definition of
reconstruction success at failure level ⇠). Inserting (B.95) back
to (B.91), using L = � logM , shows that if

⇠ >
H(PX)� ⌘

d⇤PY |X
(�)

(B.99)

then FP(�, ⇠) = o⌘(1) for all M large enough. The result then
follows by taking ⌘ # 0.
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