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Abstract—Lower limb amputees lack the neurological path-
ways needed for perception of how their prosthetic limbs are
interacting with the environment, leading to a lack of confidence
in their devices and reduced balancing capabilities. Sensory sub-
stitution methods, such as vibrotactile and electrotactile feedback
applied to unaffected body segments offer a potential way to
restore some of the lost information pathways. While high resolu-
tion haptic stimulation grids have become commercially available,
few studies have tried to make use of these devices to provide
more intuitive sensory substitution methods. This study developed
an encoding approach, which is based on the illusory “phantom
actuator’ phenomenon, to convert 1-D position information to a
wearer through a bHaptics Tactsuit. By evaluating performance
of 1-D manual tracking task among 14 participants under
the proposed approach and a traditional amplitude modulation
approach, we demonstrated an improvement of velocity tracing
accuracy (p=0.0375) with the proposed approach, although the
proposed approach did not lead to significant improvement in
the position tracing accuracy.

Index Terms—haptics, sensory substitution, phantom actuator

I. INTRODUCTION

Capacity to accurately sense the interaction between lower
limbs and their surrounding environments is critical for hu-
man beings to effectively maintain balance, coordinate body
motion, and handle external disturbance during locomotion.
However, lower limb amputees lose major neural pathways
needed for such perception when they go through amputation.
While amputees still receive some sensory feedback based
on loading distribution on the interface between the residual
limbs and their prosthetic sockets, studies have shown this
feedback is unreliable and that amputees often have to rely on
other senses. such as vision for compensation [1]. This loss of
sensation on the lower limb has significant negative impacts
on their gait efficiency, confidence of maintaining balance, and
contributes to their high rate of fall [2] [3]. Things can be
even more challenging for patients with neuropathy, which is
often related to diabetes, the number one reason for lower limb
amputations [4].
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To regain intuitive sensory feedback for lower limb am-
putees, major efforts are usually in one of the two solutions:
direct neural stimulation and sensory substitution. Although
direct neural stimulation aims to reconnect the broken neural
pathways and are expected to generate natural sensations,
the existing approaches have limited control on what type
of sensations can be generated and relies on intensive trial
and error to locate the point of sensation on the missing limb
[5]. Despite its popularity in the research field, direct neural
stimulation has not been adopted clinically, due to 1) majority
of them rely on invasive approaches to mount the electrodes
next to the targeted nerves [6], 2) scar tissues are often built
up close to the invasive electrodes and reduces their long term
effectiveness [7], and 3) noninvasive approaches, such as L.
Pan’s work on evoking sensations in the phantom limbs of
amputees, suffer additional reliability challenges [8].

One interesting alternative approach for direct neural stimu-
lation is Herr’s group, which constructed an agonist-antagonist
myoneural interface (AMI) to regain the natural agonist-
antagonist interaction [9]. Although the AMI is able to serve
both prosthesis control and biofeedback interfaces, it requires
new surgical operations and provides information related to
body segment orientation only.

Sensory substitution replaces the haptic sensation on the
missing limb with signals from other neural pathways, in-
cluding auditory [10], visual [11], and haptic feedback [12].
Because visual and audio sensations also play key roles in
everyday life, transferring continuous information through
them can be distracting. So, haptic sensation applied to other
body segments is a popular approach for sensory substitution.
The substituted sensation is often through stimulators, such
as electrotactile stimulation [13] [14], inflatable balloons for
pressure feedback [15] [16], or vibrotactile motors [17] [18].
Vibrotactile motors are very popular due to their small size
and low cost [19].

Several studies have investigated vibrotactile feedback as a
means of restoring sensory information back to lower limb
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amputees. The most common application is to convey the
center of pressure on the prosthetic foot, which is critical
knowledge to help them maintain balance [20] [21] [22]. Cur-
rently, amplitude modulation (AM) is the standard approach,
which can be realized using only two motors. However, there
is not clear way to integrate the existing binary AM approach
into a high resolution stimulation grid.

Recent developments in virtual and augmented reality, es-
pecially in the gaming industry, have led to the commercial-
ization of high resolution stimulation grids. With these devel-
opments, numerous studies have demonstrated the existence
of haptic illusions, such as the “phantom actuator” (PA) [23].
The PA phenomenon is based on the observation that a single
PA appears when multiple adjacent stimulators are activated
together, and the location of the PA can be modulated by
the amplitudes of the adjacent stimulators. However, there has
been little effort to utilize this interesting illusion to improve
sensory substitution.

In this paper, we transformed the bHaptics Tactsuit x40
(bHaptics Inc., Daejeon, South Korea), a high definition haptic
feedback vest, into a sensory substitution evaluation tool. We
compared the performance of human subjects in 1-D tracing
tasks with two types of information encoding approaches,
the AM and PA approaches. Our results demonstrated that
implementing PA significantly improves velocity tracing per-
formance when compared to the AM approach although no
significant difference in position tracing performance was
noticed.

II. METHODS

To deliver vibrotactile stimulation, a bHaptics Tactsuit x40
was used. The Tactsuit provides two high definition haptic
feedback grids using vibrotactile motors on the front and back
of the vest respectively. Each grid is 4x5 with five rows of
motors. The distance between each motor is 7 cm along the
vertical direction and 8 cm along the horizontal direction. Each
motor has a fixed vibration frequency at approximately 90 hz
with vibration amplitude independently adjustable. Low level
control of the the Tactsuit is realized by using bHaptic’s open
source C# library available on github [24] and through the
Unity Asset Store [25].

The tracing task is conducted on a touchscreen laptop
(Lenovo Yoga, Lenovo, China) using a touch pen (Lenovo
Digital Pen, Lenovo, China). A user interface was made in
Unity which presented the participants with a graph containing
a 4x5 grid of red circles representing each of the motors on the
back of the vest. The rows of the interface were numbered -2
to 2, and the columns numbered 1-4. Users were prompted to
draw the path of the trajectory over this grid, the location of the
tip of the touch pen was recorded at 50 Hz and synchronized
with the bHaptic suit. A block diagram illustrating this process
can be seen in Fig. 1.

A. Encoding approaches

In this study we compared 2 haptic encoding approaches to
convey 1-D vertical movement of a target point to participants.

In order to avoid the influence of body shape on the perception
accuracy, we only consider the back grid of the vest, which
faces the back of the torso, a relatively flat surface.

The first encoding method was the PA approach. We ma-
nipulated the location of the PA to follow the movement of
the target point. The amplitude of the adjacent motors were
calculated using the tactile brush approach [26] shown in
equations 1 and 2:

Ay = VT FxP M
AN+1:\/BXP 2

Where Ay and Ay, represent the amplitudes of two adja-
cent actuators, which the PA is between. P is a constant, which
defines the maximum permitted amplitude of the motors, and
[ is the distance between the targeted point and actuator N
normalized by the distance between adjacent actuators. Fig 2a
shows the amplitude of the different motors as the target point
moves along the Y axis.

The second method was the AM approach in which the
distance from the center of the grid were linearly modulated
by the amplitude of the motors on the top and bottom of the
grid. As shown in Fig. 2b, only the motors close to the targeted
position were actuated. Because all motors were disabled when
the targeted point is at the center of the grid, the AM approach
led a very reliable reference at the center of the grid.

B. Experimental Procedures

14 participants were recruited for this study and provided
informed consent with ethical approval by the North Carolina
State University Institutional Review Board. Exclusion criteria
ensured participants had no cognitive impairments, serious
morbidities such as stroke or heart disease, and had no history
of epilepsy. Of the 14 recruited, 13 were able to perform well
in an evaluation segment and move on to the experimental
tracing task.
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Fig. 1. Block diagram illustrating flow of information during 1-D tracing task.
Predefined tracking trajectories are managed by Matlab and sent to Unity,
which then sends commands to the bHaptics interface to control the motors
on the vest. The user responds to haptic sensations by tracing their perceived
location of the moving point, the trajectory of their input is saved by the touch
screen for later post-processing.
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A cross-over design is adopted to compare the two encoding
approaches over two separate sessions. All participants were
tested with each of the two encoding approaches in different
sessions at least 48 hours apart. To compensate for the
carryover effects, we randomized the sequence of whether AM
or PA was tested first among participants.

For each session, the procedure included two training seg-
ments and a testing segment. An evaluation segment is also
included when the PA approach was tested. First, participants
completed a training segment designed to get them used to the
location of the motors. The participant sat comfortably in front
of the user interface shown on the touch screen computer. The
system automatically activates all the motors on the back grid
one by one following the sequence from the right to the left
then from the top to the bottom. Each motor was activated to
its maximum vibration amplitude for 250 ms with 1 second
in between and a green circle was displayed on the interface
on the top of the corresponding motor to provide additional
visual feedback. The scanning was repeated three times and
could be requested anytime during the experimental procedure
to help participants re-calibrate their sensation.

Next, the evaluation segment was done to decide whether
the participant was able to reliably differentiate between the
different motors of the grid for the PA approach. The motors
were activated in a predefined random sequence at its maxi-
mum amplitude for 250 ms and the participants were required
to identify the location of the activated motor by clicking the
touch screen interface. If the location was identified correctly,
a green cycle would show around the identified motor. If the
location was incorrect, a red cross would be shown on the
identified motor and a green cycle would be shown at the
correct location. There was a 1 second delay between the user
clicking on the screen and the activation of the next motor. A
1 minute break was given after 20 activations.

If a participant was not able to reach the 70% accuracy
threshold in the previous 20 activations, we would repeat this
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Fig. 2. Encoding methods used in study. A. shows the amplitudes of the 5
motors used in the PA method. B. shows the amplitudes of the 4 motors used
in the AM method.
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Fig. 3. Illustration of how user input was time shifted to account for input
delay. The number of samples the input needed to be shifted was found using
a cross correlation function, in which the lag with the highest correlation
coefficient was used to determine the input delay.

identification task 20 times and do the evaluation again. If
the participant met the threshold, we would move to the next
training session. If the participant failed in 10 evaluations, we
excluded the participant.

A second training segment was then completed to help
the participants to get familiar with the tracing task. The
trajectories were constructed based on the work of A. Foulkes,
where tracks were randomly generated though the summation
of randomly phase shifted non-harmonic sinesoids with fre-
quencies .06 Hz, .11 Hz, .13 Hz, .25 Hz, and .33 Hz [27].
After generating the trajectories, the amplitude was normalized
to range of +2 to ensure each path used the full range of
motion provided by the vest. In total 33 of these paths were
generated and stored in a database for this study. 3 of the tracks
were picked for the training segment. Using the corresponding
encoding method, a track was projected to the bHaptics. At
the same time, the track was shown on the touch screen as a
moving green dot. The participants were instructed to follow
the track using the touch pen continuously based on their
haptic sensation. The track generated by the user was displayed
as blue curves on the touch screen. Each of the tracks lasted
about 20 seconds.

The final tests included the remaining 30 tracing tasks. The
procedure was identical to what the participants went through
in the training segment with the exception that no visual
reference was provided. The tasks were organized into six
sets with 5 tracks in each and a 2 minute break in between to
prevent participants from adapting and tuning out the feedback
[28]. The sequence of the tracks was also randomized for each
participant.

C. Data Analysis

The collected data were saved and the tracing performance
was quantified based on accuracy of position tracing and
velocity tracing.
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Because the starting points of the tracks were randomized,
it was expected that the participants would need some time
to align the touch pen with the track. So the data collected
from the first second of the tracing task was ignored to avoid
participants’ initial transient responses. Then the collected
1-D tracing data were filtered using the MATLAB signal
processing toolbox’s lowpass filter with cut-off frequency set
at 5 Hz to remove high frequency noise.

Two factors contributed to the delay between the reference
tracks and the tracing results, the time needed for data to
transfer from Unity to the bHaptics vest and the time for the
participants to trace the haptic feeling using their forearms.
As a pilot work, we did not have enough data to quantify
either of them accurately. To avoid the impact of delay, we
estimated the delay using cross correlation and calculated the
tracing errors after the delay was corrected. The procedure was
shown in Fig. 3.

We calculated their mean absolute tracing error for position
and velocity across each tracing task and averaged across
all the tracing tasks for a given participants for the two
approaches. The maximum cross correlation between tracing
records and the reference was also used for evaluation. The
jerk of the tracing trajectory was also calculated to quantify the
smoothness of the tracing. Because all position measurements
were done through the GUI, all data were recorded simply
in “units” where 1 unit represents the distance between each
motor on the screen, which is approximately 3.5 cm.

A two-tail paired-t test was adopted to compare the per-
formance under the two encoding approaches. The significant
level was set at 0.05 to reject the null hypothesis that selected
participants achieved similar performance under two encoding
approaches.

Since the study was counter balanced with different partic-
ipants starting with different encoding methods, we analyzed
whether the starting method had any impact on performance.
Participants were divided into 2 groups, group A and group
B, based on whether the PA approach of the AM approach
was used first respectively. We compared the mean absolute
position error for a given encoding approach between groups,
as well as the mean absolute velocity error. A two-tail t
test was adopted and the null hypothesis, being that the
performance of group A and group B was identical, was
rejected with a significant level 0.05.

III. RESULTS

Of the 13 participants that passed the evaluation segment,
two participants seemed to be using a quite different tracing
strategy in the experimental procedure and generated very
jerky results and were treated as outliers (more details are
shown in the discussion section).

Fig. 4a shows the mean absolute positional errors for each
participant. For the PA and AM approaches, the mean absolute
errors were 0.6988 + 0.1052 units (meanzstandard deviation)
and 0.6991 + 0.1120 units respectively. No statistical signifi-
cance was observed between the two approaches (p=0.9919).

TABLE I
Between Day Analysis
A (AM 1st) B (PA 1st) p-val
Pos Err AM | 0.7453+0.0624 | 0.6436+0.0684 | 1.2659e-07*
Pos. Err. PA | 0.6629+0.0529 | 0.7418+0.0760 | 1.8875e-05*
Vel. Err. AM | 0.7804+0.0602 | 0.7131+0.0683 | 1.5494e-04*
Vel. Err. PA | 0.7052+0.0460 | 0.6943+0.0651 0.4566

*Statistical significance

The PA approach permitted the participants to trace the
velocity more accurately (p=0.0375). As shown in Fig 4b, the
mean absolute velocity errors were 0.7003+£0.0788 units/s and
0.7498+0.1109 units/s for PA and AM respectively.

No significant differences were noticed from the maximum
value of cross correlation between the tracing trajectories and
the reference for the PA and AM approaches. As shown
in Fig 5, the PA approach reached a maximum cross cor-
relation, 0.9460+0.0114 and 0.6953+0.0617 across partici-
pants for position and velocity respectively; AM approaches
reached a maximum cross correlation, 0.9459+0.0118 and
0.6946+0.0532 for position and velocity respectively.

The final parameter investigated was lag. The AM method
saw significantly less lag on average than the PA method,
with the average PA lag being 961.2727+£196.1033 ms, while
the AM lag averaged at 790.7879+115.6915 ms. This was a
significant difference at p = 0.0130.

Table 1 shows the results of the between session analysis,
in which group A (N=6) consists of participants that started
with the AM method and group B (N=5) shows participants
that started with the PA method. For both groups there was
a general trend where whichever method was used first saw
worse positional accuracy then the method used on the second
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averaged across each subject after time shifting data to account for input delay.
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Fig. 5. Average correlation coefficients of each participant for A. position
and B. velocity tracking of user input compared to target trajectory.

day of testing. For velocity tracking there was a trend in which
those who started with the PA method performed better with
the AM method than those who started with AM, however
for the PA method there was no significant velocity tracking
differences brought about by starting method.

IV. DISCUSSION
A. Tracing performance

Although the PA approach permitted participants to trace
velocity of the targeted point more accurately, it did not im-
prove the performance of position tracing. This phenomenon
may be explained by the different strategies used by the partic-
ipants with the different encoding approaches. When the AM
approach was used, all participants noticed the clear reference
point at the center of the grid, so participants usually adopt a
“catch then guess” strategy. When the target point passes the
center, the participants quickly re-calibrates themselves, then
moves along the targeted point (often with an overshoot). As
shown in Fig. 6b, the “catch then guess” strategy often leads
to huge velocity peaks when the target point passes the center.

When the PA is adopted, a ”wait then evaluate” strategy was
noticed. Because it is always easier to locate the target point
when it is near the boundary of the grid, the participants tended
to use the -V2 and +V2 (as shown in Fig. 6a) as the reference
points and re-calibrate themselves after the point was close to
them However, these reference points were not as clear as the
center one with the AM approach; and participants often need
time to make sure that the targeted points are closer to these
reference points.

These different strategies affect the performance of the
participants. Although the AM approach did not lead to very
accurate tracing, the participants experienced better and more
frequent reference points than the ones they experienced with
the PA approach. The repeated calibration helped to reach a
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Fig. 6. 10 second sample of an example trial showing performance of PA
and AM methods for A. position and B. velocity.

reasonable tracing performance. Because the starting location
of the targeted point was also decided randomly, the partici-
pants might wait until the point moves close to a reference,
then they were more confident about their perception and
tracing. The fact that the reference was given more often when
the AM was adopted may also reduce tracing delay.

B. Outliers

Of the 14 participants recruited for this study, one partic-
ipant was excluded for being unable to achieve the motor
identification evaluation criteria. This was an indicator that
the participant struggled to perceive the feedback provided by
the vest and so they were excluded from the study.

In addition to this, 2 other participants were excluded
from the final results as outliers. Their outlier status was
determined by investigating the mean jerk of each participant.
Jerk is the 3rd derivative of position and an indicator of rapid
acceleration and high frequency vibration [29]. Because the
target trajectory is the summation of low frequency sinusoids
with very low jerk, observed jerky motion can be attributed to
sudden and rapid movements coming as a result of uncertainty
of the target position or quick corrections to the user’s input.
The mean jerk for the 13 participants was 0.0351 +£0.0154
units/s® for the PA method and 0.0397 +0.0236 units/s® for
the AM method.

Using the 1.5 IQR rule [30] we declared any jerk greater
than 0.0511 units/s® in the PA method or .0553 units/s? in
the AM method as an outlier. Participant P4 was defined as
an outlier with 0.0556 and 0.1146 units/s3 jerk for the PA
and AM methods respectively, and S9 was also excluded with
0.0781 and 0.0504 units/s® in PA and AM respectively. While
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S9 was not an outlier with the AM method, their high jerk with
the PA method showed they were not able to properly use that
method and so their data was excluded from the final results.
When we take a closer look of their tracing performance, it
seemed that both of them used the catch then guess” strategy
with both encoding approaches extensively.

C. Limitations

As a pilot effort to explore the feasibility to apply PA in
sensory substitution, there are a quite few limitations in the
experimental design besides the limited number of partici-
pants. The results analyzing performance differences between
different study sessions show that there are some significant
carry-over effects between sessions, which can be addressed
in future work by either increasing the time between sessions
or providing more training at the start to reduce learning
effects during data collection. The threshold for the evaluation
segment is very low to validate that reliable feedback has
been established. The evaluation segment could be treated
as additional training for the PA approach and biased the
results. Starting the tracks at a given reference point might
help participants to avoid the initial uncertainty, which is often
reported by the participants, and reduce observed lags. We only
explore linear AM, and there are other types of AM encoding
approaches.

V. CONCLUSION

Lee for her guidance on relevant background knowledge for
this project.
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