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Dark radiation (DR) is generally predicted in new physics scenarios that address fundamental puzzles of
the Standard Model or tensions in the cosmological data. Cosmological data have the sensitivity to
constrain not only the energy density of DR but also whether it is interacting. In this paper, we present a
systematic study of five types of interacting DR (free-streaming, fluid, decoupling, instantaneous
decoupling, and recoupling DR) and their impact on cosmological observables. We modify the Boltzmann
hierarchy to describe all these types of interacting DR under the relaxation time approximation. We, for the
first time, robustly calculate the collision terms for recoupling scalar DR and provide a better estimation of
the recoupling transition redshift. We demonstrate the distinct features of each type of DR on the cosmic
microwave background and matter power spectra. We perform Markov-chain Monte Carlo scans using the
Planck 2018 data and baryon acoustic oscillation data. Assuming no new physics in the standard model
neutrino sector, we find no statistically significant constraints on the couplings of DR, although there is a
slight preference for the fluidlike limit of all the cases. In the case of instantaneous decoupling DR, this
limit corresponds to a late transition redshift around recombination. The ΔNeff constraint varies marginally
depending on the type of DR.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is a great
success because it unifies all elementary particles we have
detected and passes extensive experimental tests. The SM,
however, is not complete, because of several fundamental
puzzles, such as the existence of cold dark matter (CDM),
the Higgs hierarchy problem, and nonzero neutrino masses.
Physics beyond the SM (BSM) is needed to resolve these
puzzles. Many BSM models that are proposed to address
these fundamental puzzles predict some light particles that
behave like radiation during the epochs probed by the
cosmic microwave background (CMB). Since these light
particles typically have negligible interactions with the SM,
they are usually called dark radiation (DR). For example,
some well-motivated models addressing the Higgs hierarchy

problem tend to generate dark radiation, e.g., twin Higgs
models [1–4] and N-naturalness models [5]. On the
cosmological side, the so-called ΛCDM model describes
the evolution of our Universe extremely well and explains
the cosmological data across many scales [6]. Despite this
success, there are tensions between CMB measurements
and late Universe measurements. For example, the Hubble
and S8 tensions, referring to disagreement between the
predicted values of today’s expansion rate of the Universe
and matter clustering from CMB data in comparison with
locally determined quantities (see, e.g., Refs. [7–9] for
reviews on the Hubble tension and Ref. [10] for a study
of the S8 tension), have attracted significant attention.
Many BSM models that attempt to alleviate one or both of
these two tensions involve dark radiation (see, e.g.,
Refs. [11–41]). Constraining the properties of dark radi-
ation is therefore crucial to test BSM models that address
puzzles of the SM, with a potential link to tensions in
cosmological data.
Since dark radiation has extremely weak couplings with

the SM particles, it is challenging to constrain it directly
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from terrestrial and astrophysical measurements. Cosmolo-
gical data, however, are sensitive to components that only
have gravitational interactions with the SM sector. For
example, CMB datasets can determine the dark matter
density as well as the density of any decoupled radiation,
including dark radiation. One well-known example of such
decoupled radiation is SM neutrinos, which decouple from
the SM bath when the temperature of the Universe is around
the MeV scale, much earlier than the time of CMB
decoupling. Therefore, SM neutrinos only have gravita-
tional effects on the CMB. The current constraints from
Planck Collaboration on the energy density of decoupled
radiation, usually denoted as Neff , assumes such radiation is
free-streaming. This is because SM neutrino interactions
become negligible by the epochs probed by the CMB, so the
particles propagate freely at the speed of light. The effect of
radiation on the CMB power spectrum is to increase
damping of the higher l modes, and free-streaming radi-
ation additionally introduces a phase shift in the CMB
peaks, due to the fact that free-streaming radiation propa-
gating supersonically pushes the SM sound horizon
toward a larger scale [42,43]. Current CMB datasets have
the precision to resolve this damping and phase shift, and
therefore distinguish whether the decoupled radiation is
free-streaming or interacting.
Going beyond the SM, neutrinos or dark radiation can

have nontrivial self-interactions that prevent them from free-
streaming. Nonstandard neutrino interactions can generate
strong self-interactions among neutrinos. One example is
the Majoron model, where the Majoron is the Goldstone
boson from lepton number breaking and is related to the
generation of neutrino masses [44–46]. The Majoron will
mediate self-interactions among SM neutrinos. If the
coupling is strong, neutrinos behave as a coupled fluid,
and the constraints on Neff vary compared to the free-
streaming case due to the distinct signatures on the CMB
power spectrum [47–51]. More generally, these types of
models can also generate decoupling and recoupling fea-
tures in neutrinos depending on the mass of the Majoron
[52–70]. Recently, these models have been studied exten-
sively in the literature because they were also proposed to
solve the Hubble tension [71–73]. However, it has been
shown that the decoupling neutrino models do not solve the
Hubble tension [64–66]. Separately, these models are
generally in conflict with other terrestrial and astrophysical
constraints because they tend to modify SM neutrino
interactions significantly [74–77].
Much more freedom is allowed if we study interacting

dark radiation and assume no new physics in the neutrino
sector. Practically, we fix the Neff of neutrinos to its SM
prediction and study constraints on additional contributions
to DR (ΔNeff ). In this paper, we present a systematic study
of five types of DR, categorized by the behavior of their self-
interactions. We first discuss the standard free-streaming
and fluid DR. We then study decoupling DR, which is light

dark fermions mediated via a heavy scalar mediator. We also
study instantaneous decoupling DR, which can arise from
models with dark recombination or dark sector confinement.
For the recoupling case, we choose to study a self-
interacting scalar DR model that can originate from models
with axionlike particles. There is another popular scenario
for recoupling DR: the Majoron-like model with a light
mediator. In this scenario, the light mediator is unavoidably
generated in the process of recoupling, leading to additional
signatures that we do not consider here.
To describe the effects of these different kinds of

DR on the perturbations in the CMB, we modify the
Boltzmann equations to account for these interactions.
References [78,79] provide the general framework to
calculate the collision terms due to interactions using
the relaxation time approximation. Under this approxi-
mation, the collision term is proportional to the product of
thermally averaged interaction rate hΓi and some numeri-
cal coefficient α, which we dub the relaxation time
coefficient, that needs to be calculated for different type
of interactions. References [78,79] calculate the coeffi-
cient α for the decoupling case, and so far no calculation
has been done for the recoupling case. In this work, we,
for the first time, calculate the relaxation time coefficient
for the recoupling case with scalar DR. Only after this can
one provide a robust map between the particle physics
model parameters and the cosmological constraints.
Moreover, the general expectation of the relaxation time
coefficient is order unity, which is the case for decoupling
DR. However, we found the relaxation time coefficient for
the recoupling case is nearly 1 order of magnitude smaller
than unity. This means the naive estimation of the time of
the transition will also be modified by including this
coefficient. In this paper, we provide a new definition of
the transition time (redshift) by setting αhΓi ¼ H instead
of the usual hΓi ¼ H. We demonstrate that this new
definition gives a better estimate of the transition redshift
according to numerical calculations of the DR behavior.
We modify the public Boltzmann solver CLASS [80–82] to

account for each type of interacting DR and show the
changes to the CMB temperature, polarization, and lensing
power spectra, together with matter power spectrum. We
discuss different features of these observables for each type
of DR and also give an intuitive physical understanding of
how they arise. After performingMarkov-chainMonte Carlo
(MCMC) scans using current CMB and baryon acoustic
oscillation (BAO) data, we place updated constraints on
BSM models with dark radiation. We find no statistically
significant bounds on the coupling constants of DR,
although we find a slight preference for a late transition
redshift for instantaneous decoupling DR at around recom-
bination and for the fluidlike limit of all the cases. The data
exhibit interesting features at some specific times/redshifts in
the early Universe, but more constraining data are required
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to derive statistically significant bounds. The constraints on
ΔNeff also differ marginally under different assumptions.
The rest of this paper is organized as the follows. In

Sec. II, we discuss the qualitative effect of five kinds of DR
on the CMB, including free-streaming, fluid, decoupling,
instantaneous decoupling, and recoupling DR. We also
present example particle physics models of these types of
DR. In Sec. III, we derive the Boltzmann hierarchy that can
account for all these types of DR, under the relaxation time
approximation. We calculate the relaxation time coefficient
for decoupling and recoupling cases (with more details in
Appendix A) and present a better way to estimate the
redshift of the transition. In Sec. IV, we present the CMB
temperature, polarization, and lensing spectra, together
with the linear theory matter power spectrum from
CLASS. In Sec. V, we show the results of MCMC scans
based on Planck 2018 data and BAO data. We conclude in
Sec. VI. In Appendix B, we discuss a simple model for
scalar DR that has the feature of recoupling DR. In
Appendix C, we show more details of the MCMC scans.

II. DARK RADIATION MODELS

For the purpose of this work, we classify DR according
to its gravitational effects on cosmological perturbations.
The energy density of DR contributes to the parameterNeff,
which is defined by

ρr ¼ ργ þ ρν þ ρDR ≡ ργ

!
1þ 7

8

"
4

11

#
4=3

Neff

$
; ð1Þ

where ρr denotes the energy density of total radiation in
the early Universe and ργ is the energy density of photons,
ρν is the energy density of neutrinos, and ρDR is the energy
density of DR. We fix the SM neutrino contribution to Neff
to theΛCDMvalue of 3.0461 and dub the contribution from
DR as ΔNeff . That is, we define

Neff ¼ 3.046þ ΔNeff : ð2Þ

Since SM neutrinos decouple from the photon bath much
earlier than CMB decoupling, neutrinos can be treated as
free-streaming for CMB analysis. The primary constraints
on free-streaming neutrinos from the CMB power spectrum
arise from the phase shift of the peaks and suppression of
high l modes [86]. If the DR is also free-streaming, it has
similar effects on CMB as neutrinos, and the size of the
effects is controlled by ΔNeff.
More generically, DR may have non-negligible self-

interactions or interactions with other particles that prevent
DR from free-streaming. For example, DR can behave as a
tightly coupled fluid if interactions are always strong
compared to the Hubble rate. One key difference between

free-streaming and tightly coupled fluid is that tightly
coupled fluid has vanishing quadrupole and higher multi-
poles of its density perturbation, while these moments are
nonzero and have nontrivial time evolution if DR is free-
streaming (see Sec. III for more detail). Because of this,
tightly coupled DR generates different signatures compared
to the free-streaming case with the same ΔNeff [48].
In many theoretical models, DR may have additional

features that are not captured in the above two cases. For
example, the rate of interactions that keep DR in equilibrium
are typically temperature dependent and can therefore drop
below the Hubble rate at an early time or a later time.
Depending on the type of interactions, DR may be tightly
coupled in the early Universe and starts to free-stream later
(the decoupling case), or the other way around (the
recoupling case). The effects of these types of DR on
observables should therefore be between those of free-
streaming and tightly coupled cases with the same ΔNeff .
Moreover, due to different properties before and after the
transition, decoupling/recoupling DR leaves distinct fea-
tures on the spectrum that depend on the transition time.
These features are discussed in detail in Sec. IV.
In what follows, we will identify DR by the behavior

during epochs probed by CMB and large-scale structure
(LSS) data.2 We classify DR into five groups according to
their interactions and for each discuss examples of particle
physics models that can lead to these types of DR. Note that
our analysis in this paper is not restricted to the specific
model we present. It can be generalized to other models
where the interaction rate has the same temperature
dependence:
(1) Free-streaming: This type of DR does not have any

self-interactions, or the interaction strength is neg-
ligible compared to the Hubble rate during epochs
probed by CMB and LSS data. This kind of DR
behaves identically to massless SM neutrinos. Free-
streaming DR is therefore a natural consequence of
BSMmodels involving light sterile neutrinos. Gravi-
tational waves are another example of free-streaming
DR. The effect of free-streaming DR on cosmologi-
cal observables can be described by the ΛCDM
model with additional ΔNeff .

(2) Fluid: We refer to DR as a fluid or fluidlike if it has
strong self-interactions (the interaction rate is always
large compared to the Hubble parameter) during the
whole cosmological time of interest. For example,
non-Abelian gauge fields in the dark sector can
behave like fluid DR [13]. Moreover, fluid DR is the
strong coupling limit of the decoupling and recou-
pling DR mentioned below. Because of these strong

1Note that more recent calculations prefer 3.044 [83–85].

2While big bang nucleosynthesis probes cosmic history at an
earlier time than the CMB, relic abundances are sensitive to the
total amount of radiation rather than the perturbations to the
radiation. Big bang nucleosynthesis is therefore not generically
sensitive to interactions in DR.
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interactions, the anisotropic stress and all higher
multiples of fluid DR are dynamically set to zero.

(3) Decoupling: If the self-interactions among DR are
mediated by a heavy mediator, the thermal averaged
interaction rate Γ may scale as T3 or T5, depending
on the particle nature of DR and the mediator. In the
early Universe, this interaction rate can be larger
than the Hubble rate, which scales as T2=Mpl, so DR
interacts strongly and is tightly coupled. However, if
Γ drops below the Hubble rate at a later time, this
interaction decouples, and DR starts to free-stream.
We dub this case decoupling.
Many particle physics models predict decoupling

DR. To be concrete, we consider the example of
DR that is an effectively massless Majorana fermion
χ that couples to a massive mediator ϕ. The
Lagrangian can be written as

−L ⊃ 1

2
m2

ϕϕ
2 þ 1

2
gϕϕχ̄χ; ð3Þ

where mϕ is the mass of ϕ and gϕ is the Yukawa
coupling between ϕ and χ. This Lagrangian is
similar to that of Majoron models, where the scalar
ϕ couples to SM neutrinos instead of DR χ. At
T ≪ mϕ, ϕ can be integrated out, and we obtain an
effective Lagrangian with 4-fermi interactions

−L ⊃
1

8
Geff χ̄χχ̄χ; ð4Þ

where Geff ≡ g2ϕ=m
2
ϕ. This term generates self-

interactions among DR, and the thermally averaged
interaction rate scales as G2

effT
5, which can lead to

decoupling.
(4) Instantaneous decoupling: This is a special type of

decoupling DR, which undergoes much faster tran-
sition than the case discussed above. In this case, we
can simply treat the DR as a fluid before a certain
redshift zdec, which characterizes the time of decou-
pling, and free-streaming after zdec. Such DR can
arise in models that contain a complex dark sector
with a bound state that is neutral to DR. DR may
decouple from the bath of the dark sector when dark
sector particles form bound states, either a dark atom
similar to recombination in the SM sector or dark
baryons similarly to the QCD phase transition (see,
for example, atomic dark matter models [87–89] and
twin Higgs models [90]). In these cases, the inter-
action rate includes a factor expð−B=TÞ, where B is
the binding energy of the dark atom or the confine-
ment scale of dark baryons.3 This exponential factor

changes decoupling qualitatively, making the dura-
tion of the decoupling transition much shorter than
the standard decoupling described above. We as-
sume dark atoms or dark baryons form only a small
fraction of dark matter, so we can ignore any
changes to cold dark matter perturbations due to
interactions between dark atoms and DR. That is,
our instantaneous case only changes the behavior of
ΔNeff and no other cosmological parameters.

(5) Recoupling: Recoupling radiation free-streams in
the early Universe and becomes tightly coupled at a
later time. In this paper, we model recoupling DR as
a light scalar (ϕ) with ϕ4 interaction

−L ⊃
λϕ
4!

ϕ4; ð5Þ

where λϕ is the dimensionless coupling constant.
We present one explicit realization of such DR in
models of axionlike particles in Appendix B. The
interaction in Eq. (5) leads to a thermal averaged rate
that scales as λ2ϕT, which decreases more slowly than
the Hubble rate. Therefore, this type of DR has the
desired recoupling feature: the interaction rate can be
smaller than the Hubble rate initially but become
stronger later.
We note that the recoupling DR can also arise in

models with fermionic DR that interact with a light
mediator. For example, using the same Lagrangian
in Eq. (3) but setting mϕ → 0, the rate of self-
interactions among DR (χ) can be estimated to
be ∼ g4ϕT, which has the right T dependence for
recoupling. However, the light mediator ϕ will be
produced via χχ → ϕϕ and will come into equilib-
rium with χ after recoupling [67]. Therefore, the
abundance and perturbations of ϕ, which are
not covered in our analysis in this paper, can
potentially have an important impact on cosmologi-
cal observables.

The qualitative effects of decoupling or recoupling DR
on cosmological observables can be viewed from the
time dependence of their interactions. The opacity of
DR provides an intuitive way to visualize the time
dependence of different types of interactions. We define
the opacity for decoupling and recoupling DR as

OdecðtÞ ¼ 1 − exp
!
−
Z

t0

t
hΓidt

$
; ð6Þ

OrecðtÞ ¼ 1 − exp
!
−
Z

t

0
hΓidt

$
; ð7Þ

where hΓi is the thermal averaged interaction rate and t0 is
the time today [the exact definition of Γ for the models
above will be given below in Eq. (15)]. The opacity

3T here is the temperature of dark radiation, which may be
different from the photon temperature.
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indicates the fraction of particles that have been scattered
from the time t to the time today t0 for decoupling cases or
from the start of the Universe to the time t for recoupling
cases. Zero opacity means DR is free-streaming, while fluid
DR corresponds to opacity being unity. For decoupling and
recoupling cases, the opacity will start from 1 and evolve
to 0 (decoupling) or vice versa (recoupling).
The opacity (Odec;rec) for three difference cases (decou-

pling, instantaneous decoupling, and recoupling DR) is
shown as a function of redshift in Fig. 1. We have chosen a
step function to model OdecðzÞ for the instantaneous
decoupling case where the transition occurs at z ¼ 104

and selected values of the coupling constants (Geff , λϕ for
decoupling and recoupling cases) such that they lead to the
same transition redshift zdec;rec ¼ 104 [our precise defini-
tion of zdec;rec ¼ 104 will be given later in Eq. (20)]. While
the instantaneous decoupling transition is much faster than
standard decoupling, it is also clear from Fig. 1 that the
transition of the recoupling case is slower than the
decoupling case. This can be understood from the fact
that decoupling rate has a stronger T dependence (∝ T5)
than that of recoupling (∝ T). As we shall see, the time
dependences visible in the opacity in Fig. 1 will lead to
distinct signatures on observables.

III. BOLTZMANN EQUATIONS FOR SELF-
INTERACTING DARK RADIATION

In this section, we present the Boltzmann equations
relevant for self-interacting dark radiation. We use the
synchronous gauge and write perturbations around a flat
Friedmann-Robertson-Walker metric written as

ds2 ¼ a2ðτÞð−dτ2 þ ðδij þHijÞdxidxjÞ; ð8Þ

where τ is the conformal time and aðτÞ is the scale
factor. The metric perturbation Hij has the expression in
Fourier space

Hijðk; τÞ ¼ k̂ik̂jhðk; τÞ þ
"
k̂ik̂j −

1

3
δij

#
6ηðk; τÞ; ð9Þ

where h and η denote the trace and traceless longitudinal
parts of Hij, respectively. Here, k≡ kk̂ is Fourier con-
jugate to comoving position x. We consider the phase space
distribution of DR fðq;k; τÞ, which can be decomposed as

fðq;k; τÞ≡ f̄ðq; τÞð1þΨðq;k; τÞÞ; ð10Þ

where f̄ðq; τÞ is the averaged phase space distribution and
q≡ qq̂ is the comoving momentum of DR, which is related
to the physical momentum p as q ¼ ap. In this work, we
demand that all kinds of DR in our analysis have nearly
thermal distributions, which means the averaged phase
space distribution is set to the equilibrium distribution,

f̄ðq; τÞ ≈ f̄eqðqÞ ¼ Ne−q=TD;0 ; ð11Þ

where TD;0 is the temperature of DR today. Here,
we use the Maxwell-Boltzmann distribution as an
approximation, and the normalization factor N is chosen
to match the energy density between the Maxwell-
Boltzmann and Bose-Einstein/Fermi-Dirac distribution:R
dqq3f̄eqðqÞ ¼

R
dqq3fBE=FDðqÞ. Therefore, we will get

N ¼ π4=90 for bosons and N ¼ 7π4=720 for fermions.
Since the equilibrium distribution is independent of time,

all nontrivial time evolution due to self-interactions is
encoded in the perturbation Ψðq;k; τÞ. The nearly thermal
condition can be simply achieved in decoupling DR,
because strong self-interactions keep DR in equilibrium
before decoupling and the later evolution only generates
perturbations. For the recoupling case, however, self-
interactions cannot keep DR in equilibrium initially. To
satisfy this condition, we assume DR is a thermal relic
(like SM neutrinos) that inherits a thermal distribution from
other processes. We present an example of a scalar DR
model in Appendix B that predicts recoupling DR with
thermal initial conditions.
As mentioned before, the nontrivial time evolution of

fðq;k; τÞ appears in the perturbation Ψðq;k; τÞ defined in
Eq. (10). The Boltzmann equation for Ψ is given as

_Ψþ ikP1ðk̂ · q̂ÞΨþ d ln f̄
d ln q

!
−
_h
6
−
P2ðk̂ · q̂Þ

3
ð _hþ 6_ηÞ

$

¼ C½f&; ð12Þ

FIG. 1. The opacity for decoupling DR (orange), instantaneous
decoupling DR (orange dashed), and recoupling DR (blue) as a
function of redshift z. Couplings Geff and λϕ are chosen such that
zdec;rec ∼ 104. In this paper, we define the decoupling/recoupling
transitions in terms of the perturbations, rather than the back-
ground opacity, which leads to the visual offset of the transitions
above. Our precise definition of the decoupling/recoupling red-
shift will be given in Sec. III [see Eq. (20)], once we discuss the
perturbations to dark radiation.
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where Pl are the Legendre polynomials and · denotes the
derivative respect to τ. C½f& is the collision term that
accounts for self-interactions. The full expression of C½f&
was derived in Refs. [78,79] and is summarized in
Appendix A. Since we deal with purely relativistic
particles, it is convenient to use F instead of Ψ in the
analysis,

Fðk; q̂; τÞ≡
R
dqq3f̄ΨR
dqq3f̄

≡
X∞

l¼0

ð−iÞlð2lþ 1ÞFlðk; τÞPlðk̂ · q̂Þ: ð13Þ

The explicit expression for C½f& is complicated; we
then use the relaxation time approximation [91] to
simplify the formula. The basic assumption is that the
leading-order contribution in C½f& is linear in F:
C½f& ∝ −F. It has been checked in Ref. [79] that this
approximation agrees well with the exact results for the
decoupling case. To our knowledge, the explicit check
for the recoupling case has not been performed yet.
However, for both cases, the key approximations are the
same: (i) keeping only linear order in perturbations
and (ii) applying the separable ansatz, Ψlðk; q; τÞ ≈
− 1

4
d ln f̄
d ln q Flðk; τÞ [79], which can be easily derived for

radiation using the separate universe argument. In the
separate universe argument, the only x dependence of Ψ
is in temperature TðxÞ. Therefore, we expect the approxi-
mation works for the recoupling case as well.
Under the relaxation time approximation, the full

Boltzmann hierarchy for Fl can be simplified as

_F0 ¼ −kF1 −
2

3
_h;

_F1 ¼
k
4
F1 −

k
2
F2;

_F2 ¼
2k
5
F1 −

3k
5
F3 þ

4

15
_hþ 8

5
_η− α2ahΓiF2;

_Fl ¼
k

2lþ 1
½lFl−1 − ðlþ 1ÞFlþ1&− αlahΓiFl; l ≥ 3;

ð14Þ

where hΓi is the thermally averaged rate for self-
interactions and αl is the relaxation time coefficient.
The above formula is general and can be applied to all
kinds of self-interacting DR. As we discuss below,
different types of interactions will lead to different
values of hΓi and αl.
The thermal averaged rate for a 2 → 2 self-interaction

process (p1 þ p2 → p3 þ p4) is simplified under the
assumption of f̄ðEÞ ≪ 1 [66],

hΓi≡ 1

n̄

Z
dΠ1dΠ2dΠ3dΠ4f̄ðE1Þf̄ðE2Þ

× ð1' f̄ðE3ÞÞð1' f̄ðE4ÞÞhjMj2i

× ð2πÞ4δð4Þðp1 þ p2 − p3 − p4Þ

≈
g2

n̄

Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3
f̄ðE1Þf̄ðE2Þσ2→2vrel; ð15Þ

where pi ¼ ðEi;piÞ is the 4-momentum of each particle
and dΠi ≡ gd3pi

ð2πÞ32Ei
with spin degeneracy g, n̄≡

g
R
d3p=ð2πÞ3f̄ðEÞ is the equilibrium number density,

and we use n ¼ gNT3=π2 for massless particles. The
quantity σ2→2 is the cross section for 2 → 2 self-interaction,
and vrel ¼ s=ð2E1E2Þ is the relative velocity of initial
particles. The matrix element squared hjMj2i is averaged
over initial and final spins of all particles and includes a
factor 1=ðNi!Nf!Þ that removes the double-counting of
identical particles, as well as a factor of Ni, because the
number of initial identical particles changes by Ni units per
interaction in the Boltzmann equations. Here, NiðNfÞ
denotes the number of identical particles in the initial
(final) states. In our case, we always consider 2 ↔ 2
process of all identical particles. Therefore, this factor
becomes Ni=ðNi!Nf!Þ ¼ 1=2. We will show the analytical
expression of hΓi for the different cases below.
The calculations of the relaxation time coefficients αl

are shown in Appendix A, where we follow calculations in
Refs. [78,79].4 We note that for all models α0 ¼ α1 ¼ 0 due
to energy and momentum conservation.
We summarize the thermal averaged rate and the

relaxation time coefficients for our DR scenarios below:
(1) Free-streaming: Free-streaming DR has no self-

interactions; therefore, we should set hΓi ¼ 0 in
Eq. (14). This result coincides with the Boltzmann
hierarchy for free-streaming neutrinos.

(2) Fluid: Fluid DR has very strong self-interactions and
is always tightly coupled. This corresponds to the
limit hΓi → ∞ in Eq. (14). In this limit, the term
−αlahΓiFl dominates in the time evolution, and the
solution is Fl ∝ expð−αl

R
ahΓidτÞ for l ≥ 2. This

indicates that all l ≥ 2 modes will be dynamically
set to zero for the whole thermal history. Therefore,
we can set Flðk; τÞ ¼ 0 for l ≥ 2 for all τ. This
means that the anisotropic stress and all higher
multiples of DR are always zero.

(3) Decoupling: As mentioned in Sec. II, we consider a
Majorana fermion χ with a heavy scalar mediatorϕ as
a model for decoupling DR. The Lagrangian is given
in Eq. (4) with Geff ≡ g2ϕ=m

2
ϕ being the effective

4Note that we define αl with respect to the thermal averaged
rate, not the rate from the dimensional analysis used in
Refs. [78,79].
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Fermi constant. We assume the mediator is heavy for
the interest of cosmological evolution and thus its
abundance can be neglected. The only effect of the
heavy mediator is that it generates self-interactions
among dark radiation. This case will lead to

ahΓi ¼
7πG2

effT
5
D;0

576a4
; ð16Þ

in Eq. (14), where TD;0 is the temperature of the DR
today. Note that ahΓi ∝ a−4 blows up for very small
a (early times). Physically, this limit corresponds to
the radiation behaving as a fluid, but to avoid
numerical issues, we set a cutoff on ahΓi: ahΓi ¼
Min½7πG2

effT
5
D;0=ð576a4Þ;Λ&, with Λ chosen be

100=Mpc. We have checked numerically that the
observables are not very sensitive to the precise
value of Λ chosen, for Λ ≥ 100=Mpc. The relax-
ation time coefficients are α2 ¼ 1.39, α3 ¼ 1.48,
α4 ¼ 1.57, α5 ¼ 1.62 in this model (see details in
Appendix A). Since the αl are very similar in value
and αl>2 have weaker effects on observables, we
simply set αl ¼ α2ð2 ≤ l ≤ lmaxÞ, where lmax ¼
17 is the standard cutoff on the number of moments
in CLASS. We verify that this approximation, com-
pared to setting α2 ¼ 1.39; α3 ¼ 1.48; α4 ¼ 1.57;
αlð5≤l≤lmaxÞ ¼ 1.62, makes a negligible effect on
the CMB and matter power spectra we consider.

(4) Instantaneous decoupling: Instantaneous decou-
pling dark radiation behaves like a coupled fluid
at early times and rapidly transitions to free-
streaming radiation at some redshift zdec. This case
mimics the transition of photons in the SM sector
that behave as an interacting fluid due to interactions
with free electrons but quickly transition to free-
streaming after hydrogen formation. As mentioned
before, the fluid regime can be modeled as
Fl ¼ 0ðl ≥ 2Þ, while the free-streaming case cor-
responds to setting hΓi ¼ 0 in Eq. (14). To account
for both regions, we set the initial condition for Fl as
Fl≥2 ¼ 0 and modify the Boltzmann equation in
Eq. (14) to be

_F2 ¼
"
2k
5
F1 −

3k
5
F3 þ

4

15
_hþ 8

5
_η

#
gðz; zdecÞ;

_Fl ¼
"

k
2lþ 1

½lFl−1 − ðlþ 1ÞFlþ1&
#
gðz; zdecÞ;

l ≥ 3; ð17Þ

where gðz; zdecÞ is a function of z and zdec, which has
the feature that g ¼ 0 for z > zdec and g ¼ 1 for
z < zdec. We choose a smooth function for gðz; zdecÞ,

gðz; zdecÞ ¼
1

2

!
tanh

"
zdec − z
Δzdec

#
þ 1

$
; ð18Þ

with Δzdec ¼ 0.01zdec. Typically, the decoupling
width Δzdec for instantaneous decoupling cases is
a few percent of zdec, but the observables we show
are not particularly sensitive to Δzdec for values of
Δzdec=zdec ≲ 0.1, as we discuss in Sec. IV. We have
checked that the results from Eq. (17) are almost
identical to those from the general Eq. (14) with a
large hΓi at z > zdec and hΓi ¼ 0 for z < zdec. We
note that the above choice of gðz; zdecÞ can also
model decoupling DR with heavy mediators, with
the choice of Δzdec ¼ 0.4zdec [66].

(5) Recoupling: As mentioned in Sec. II, we consider a
light scalar with a ϕ4 self-interaction as a model for
recoupling DR. This type of recoupling DR [with
Lagrangian shown in Eq. (5)] can be described by
Eq. (14) with

ahΓi ¼
πλ2ϕTD;0

23040
; ð19Þ

and α2 ¼ 0.188, α3 ¼ 0.294, α4 ¼ 0.356, and α5 ¼
0.395 (see Appendix A for details). Since Γ ∝ T
andH ∝ T2 in the radiation-dominated era, the self-
interaction rate will be significant compared to the
Hubble rate at late times, leading to recoupling.
This means dark radiation is free-streaming at early
times but behaves as a fluid at late times. Similar to
the case of decoupling DR, we make the approxi-
mation αl ¼ α2ð2 ≤ l ≤ lmaxÞ for recoupling
DR, which we have checked (compared to setting
α2 ¼ 0.188; α3 ¼ 0.294; α4 ¼ 0.356; αlð5≤l≤lmaxÞ ¼
0.395) does not affect physical observables.

While all expressions above allow for a general TD;0, for
simplicity in all numerical calculations, from here on,
we will set TD;0 ¼ Tν;0, where Tν;0 is the SM neutrino
temperature today.
We choose adiabatic initial conditions at superhorizon

scales for DR perturbations assuming that DR is free-
streaming [42,92]. This initial condition provides the
correct free-streaming limit when the rate hΓi goes to zero.
If the rate hΓi is large around the initial time, i.e., the fluid
limit, the higher moments Fl≥2 of DR are dynamically set
to zero rapidly and remain zero as long as hΓi is large (for
the instantaneous decoupling case, we simply set Fl≥2 ¼ 0
as discussed before). As a result, other perturbations (e.g.,
F1 and metric perturbation η in the synchronous gauge)
will also deviate from free-streaming values and quickly
approach the fluid limit of the corresponding perturbations.
As long as the mode evolution begins sufficiently early
(kτ ≪ 1), this is equivalent to setting initial conditions that
treat DR as fluid directly. We have checked that these two
types of initial conditions agree in the fluid limit.
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To develop insight into the physical effects of DR, it is
helpful to study the time dependence of self-interactions
and identify the time, or redshift, of decoupling/recoupling
transitions. The opacity given in Eqs. (6) and (7), and
shown in Fig. 1, is one way of doing this and characterizes
the average scattering of DR particles. The observable
effects of interacting DR, however, are due to changes to
the behavior of DR perturbations. Therefore, we will
define the transition redshift based on the effects on DR
perturbations.
As shown in the general Boltzmann hierarchy, Eq. (14),

the time dependence of self-interactions comes from
αlahΓi. Since the dominant effect comes from l ¼ 2
moment, we define the zdec=rec as

α2hΓiðzÞ ¼ HðzÞjz¼zdec=rec : ð20Þ

We note that this is different than the usual definition hΓi ¼
H by a relaxation time coefficient α2. These two definitions
are similar if α2 is close to unity, as in the decoupling DR
case. For recoupling DR, however, α2 is nearly 1 order of
magnitude smaller than unity, and the rate has only weak z
dependence (hΓi ∝ z), resulting a big shift of the value of
zdec=rec. More generally, α2 might be different than one for
other types of interactions, and thus a dedicated calculation
of α2 is needed to determine zdec=rec.
To illustrate the time dependence of self-interactions on

perturbations and the estimate of zdec=rec, we present in
Fig. 2 the ratio of the anisotropic stresses from interacting
DR and free-streaming DR, σdec;rec=σfs, where σ ¼ 2F2.
These are shown for different choices of Geff for the
decoupling case and λϕ for the recoupling case. Plotted
are the ratios of the k ¼ 10−3=Mpc modes, which are

superhorizon for the times shown and clearly illustrate the
time-dependent changes to the behavior of DR. Fluidlike
DR should have σ ¼ 0, whereas free-streaming DR will
have nonzero σ. Normalizing by the anisotropic stress of
the free-streaming case removes the additional cosmologi-
cal time dependence.
The ratio in Fig. 2 has the expected behavior, evolving

from 0 to 1 for the decoupling cases and 1 to 0 for the
recoupling cases. The vertical grid lines show two defi-
nitions of zdec=rec: our definition α2hΓi ¼ H (solid) and the
usual definition hΓi ¼ H (dashed). In the decoupling panel
(a) in Fig. 2, the two definitions of zdec provide similar
results because α2 here is close to one and hΓi ∝ z5. For the
recoupling case in panel (b), however, the two definitions of
zrec differ by nearly 1 order of magnitude. Our definition
gives a better estimate of the transition time for σrec=σfs. For
comparison, we also plot the ratio of σdec=σfs for the
instantaneous decoupling case in panel (c). For instanta-
neous decoupling, the interaction rate has a sharp transition
around the parameter zdec in Eq. (17) with a large hΓi at
z > zdec and hΓi ¼ 0 for z < zdec. Both definitions
(α2hΓi ¼ H or hΓi ¼ H) therefore provide the identical
results: the parameter zdec naturally denotes the decoupling
redshift.

IV. IMPACT ON OBSERVABLES

In this section, we discuss how the interacting dark
radiation scenarios described in Sec. II affect the CMB
temperature and polarization power spectra and the matter
power spectrum. While the physical effects of fluidlike,
decoupling, and recoupling radiation on CMB power spectra
are discussed in, e.g., Refs. [42,47,48,50,60] and on matter
power spectra are discussed in Ref. [71], we will review

(a) (b) (c)

FIG. 2. The ratio of anisotropic stress of decoupling (a), recoupling (b), and instantaneous decoupling (c) DR to that of free-streaming
DR (σdec;rec=σfs) as a function of redshift z. In all panels, we choose k ¼ 10−3=Mpc and a cosmology withΔNeff ¼ 0.5 in interacting DR
compared with free-streaming DR. Panel (a) shows multiple values of Geff for the decoupling case, and panel (b) shows multiple values
of λϕ for the recoupling case. Vertical lines show the estimate of zdec (a) and zrec (b) from our definition α2hΓi ¼ H (solid lines, in both
panels chosen to be zdec=rec ¼ 103; 104; 105; 106) and the usual definition hΓi ¼ H (dashed lines). The two estimates are similar for
decoupling DR, but for the recoupling case, the standard definition (hΓi ¼ H) produces estimates of the recoupling redshift that are
significantly larger (note that the dashed line for λϕ ¼ 2.2 × 10−12 is nearly overlapping with the solid line for λϕ ¼ 5.2 × 10−12). Panel
(c) shows the same ratio for the instantaneous decoupling case, for which the two estimates of zdec are identical.

BRINCKMANN, CHANG, DU, and LOVERDE PHYS. REV. D 107, 123517 (2023)

123517-8



them here for completeness. Our focus in this section is to
extend the analysis of the effects of interacting DR on CMB
and matter power spectra to describe the different changes
made by different types of interactions. The main new results
are a discussion of the differences between interacting
scenarios with radiation that decouples instantaneously
versus via a slower transition described by decoupling from
four-Fermi interaction or radiation that starts out as free-
streaming and recouples at a later time. As we shall see, each
of the five examples raised in Sec. II—free-streaming, fluid,
decoupling, instantaneous decoupling, and recoupling—
leave a distinct imprint on the CMB and matter power
spectra.
The CMB and matter power spectra are sensitive to

interactions in relativistic dark-sector particles because
interactions change the behavior of linear perturbations
in the stress-energy tensor of the DR, and the DR is
gravitationally coupled to the photon and matter perturba-
tions we observe in the CMB and large-scale structure.
We first review physics of the two extreme cases, free-
streaming and fluid DR, before moving on to discuss
radiation that transitions between the two extremes.
Radiation with frequent interactions can be characterized

as fluidlike. Perturbations in a relativistic fluid are com-
pletely characterized by the equation of state w ¼ P=ρ and
sound speed cs ¼ δp=δρ. For a tightly coupled relativistic
fluid, these quantities take simple values, w ¼ c2s ¼ c2=3.
The only nonzero quantities in the fluid stress-energy
tensor are the energy density and pressure, the fluid
anisotropic stress and all higher moments vanish, and fluid
perturbations propagate at cs ¼ c=

ffiffiffi
3

p
. On the other hand,

perturbations in relativistic free-streaming particles will
have the same equation of state w ¼ 1=3, and adiabatic
sound speed cs ¼ _P=_ρ, but perturbation fronts propagate

at c. Free-streaming particles also have significant aniso-
tropic stress, and the full Boltzmann hierarchy, rather than
just the continuity equation, is required to describe the
evolution of perturbations. Decoupling or recoupling DR
transitions between these two regimes. As shown in Figs. 1
and 2, the duration of the transition varies with the model.
The process of decoupling from self-interactions is rela-
tively slow in comparison with instantaneous DR decou-
pling, and the process of recoupling is even slower.
Differences in the duration of the transition between

fluidlike and free-streaming behaviors change the evolution
of perturbations in the DR energy density. Figure 3 illus-
trates these differences for perturbations to the DR energy
density, δDR ¼ δρDR=ρDR, with wave number k ¼ 1=Mpc.5

The horizon-crossing transition occurs at cskτ ∼ 2π, which
for this mode is around z ∼ 105, deep in the radiation-
dominated era. For each DR example, we show a range of
decoupling/recoupling times corresponding to transitions
occurring prior to horizon crossing, during horizon crossing,
and after horizon crossing. If the decoupling or recoupling
transition is complete prior to horizon crossing, then the DR
perturbations match the free-streaming and fluidlike cases
exactly, and we do not show those curves. As expected, the
DR perturbations that decouple instantaneously show a
nearly immediate transition between following fluid and
free-streaming curves. On the other hand, the decoupling
radiation with slower transition begins to deviate from
the fluidlike curve at an earlier time and takes a longer
time to approach the free-streaming solution. Finally, the
recoupling DR transition is sufficiently slow that, even for

(a) (b) (c)

FIG. 3. The evolution of perturbations in the Newtonian gauge dark radiation energy density, δDR, plotted as a function of kτ, with
k ¼ 1=Mpc. The (a) panel compares free-streaming and fluidlike radiation perturbations to decoupling models with values of
Geff ¼ 0.87=ðMeVÞ2, 0.021=ðMeVÞ2, and 6.1 × 10−4=ðMeVÞ2, corresponding to decoupling at zdec ∼ 103; 104; 105. The (b) panel
illustrates perturbations that decouple instantaneously at zdec ∼ 103; 104; 105. The (c) panel compares free-streaming and fluidlike
radiation perturbations to recoupling models with values of λϕ ¼ 5.2 × 10−12; 1.5 × 10−11; and 4.8 × 10−11, corresponding to
recoupling at zrec ∼ 104; 105; 106. The recoupling curve with λϕ ¼ 5.2 × 10−12 is nearly indistinguishable from the free-streaming curve.

5For figures in this section, we use a larger cutoff Λ ¼
108=Mpc in order to achieve good accuracy at very high kτ
[see the discussion below Eq. (16)].
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zrec ∼ 106 (λϕ ¼ 4.8 × 10−11), the evolution does not fully
match the fluid solution.
The DR perturbations couple gravitationally to the

photon and matter perturbations that generate CMB and
matter power spectra. Fluid DR will undergo acoustic
oscillations along with the photon-baryon fluid (see
Fig. 3), enhancing the amplitude of acoustic oscillations
in photon-baryon fluid, and therefore CMB temperature
and polarization power spectra. Free-streaming particles do
not participate in acoustic oscillations and thereby suppress
the amplitude of oscillations in CMB power spectra.
Additionally, since perturbations in a relativistic fluid to
propagate at a speed cs < c, while perturbations in free-
streaming radiation propagate at c, there is a slight differ-
ence in horizon crossing times. This subtle difference, just
barely visible as a shift to the right for the interacting cases
in Fig. 3, induces a phase shift in the acoustic peaks in
CMB power spectra. This phase shift is a particularly
distinct signature that is hard to mimic via changes in other
cosmological parameters [42,48].
For DR that transitions between fluidlike and free-

streaming during the radiation-dominated era, the observ-
ables acquire a scale dependence, with the behavior of each
mode depending on the behavior of the DR around the
horizon crossing. For instance, photon perturbations that
cross the horizon while the DR is fluidlike [k ≫ ðcsτdecÞ−1
or k ≪ ðcsτrecÞ−1] will have larger amplitude oscillations
and no phase shift, while those that cross while the species is
free-streaming [k ≪ ðcsτdecÞ−1 or k ≫ ðcsτrecÞ−1] will have
reduced oscillation amplitude and a phase shift with respect
to the fluidlike case [47,50,71]. Modes that cross the
horizon during the transition have intermediate behavior.
This is visible in Fig. 3. Consider the decoupling case in
panel (a), the curve with Geff ≥ 0.021 (zdec ≲ 104) matches
the fluid curve through horizon crossing and only later starts
to depart. The curve with Geff ¼ 6.1 × 10−4 (zdec ∼ 105)
matches the fluid case as it begins to oscillate, then
gradually switches to follow the free-streaming curve before
the first oscillation is complete. Similar features are visible
in panel (b), though the transition between fluid and free-
streaming behavior is much more abrupt. The recoupling
scenarios are shown in panel (c). Recoupling is so gradual
that none of the curves follows the fluid one exactly, though
for the earliest recoupling case, λ ¼ 4.8 × 10−11 corre-
sponding to zrec ∼ 106, the DR is sufficiently coupled to
undergo acoustic oscillations.
The impact of DR on primary CMB power spectra is

plotted in Fig. 4. Each panel illustrates the changes to the
CMB power spectra between cosmologies with common
background evolution with same total energy density in
radiation, Neff ¼ 3.046þ ΔNeff , with ΔNeff ¼ 0.5, but
differ in the behavior of perturbations of the DR contrib-
uting toΔNeff . The different curves compareΔNeff ¼ 0.5 in
interacting DR, relative to ΔNeff ¼ 0.5 in free-streaming
radiation. As expected, the amplitude of CMB spectra is

enhanced at for all interacting DR, and the oscillatory
features demonstrate that the location of the peaks is shifted
slightly. The enhancement is largest for DR that is interact-
ing for longer, either decoupling at a later time or recoupling
at an earlier time. After matter-radiation equality, the frac-
tional contribution of DR to the energy density drops as
1=a, and whether the DR is interacting or not is increasingly
less relevant. For instance, for recoupling transition at
z ∼ 1000, the effect of the power spectra is very small.
For decoupling at z≳ 106 (Geff ≲ 10−5=MeV2), the power
spectra in this l-range are indistinguishable from the purely
free-streaming case.
In Fig. 4, the primary difference between the decoupling

and instantaneous decoupling scenarios is the amplitude of
the change to the power spectra: since the decoupling model
begins the transition to free-streaming earlier (see Figs. 1
and 2), the effect on CMB spectra is smaller. As noted in
Ref. [66], there is some degeneracy between thewidth of the
decoupling transition and the amplitude of the effect. There
are, however, additional features that are distinct between
the two scenarios. The CMB spectra at multipole l have
peak sensitivity to wave number k ∼ πl=ð2dLSSÞ, where
dLSS is the distance to the surface of last scattering. For
instantaneous decoupling at zdec ¼ 104, the decoupling
transition is visible as a relatively sharp change in the
CMB spectra around ldec ≈ ð2=πÞkdecdLSS ≈ 2200, where
kdec ¼ 2π=ðcsτdecÞ. For the earlier decoupling redshifts, this
feature is at too high of l to be detectable in the foreseeable
future. For the standard decoupling model, the more gradual
transition washes this feature out.
During the radiation-dominated era, perturbations in

radiation dominate the gravitational potential on large
scales. The CDM perturbations are evolving in these
potentials and are therefore also sensitive to the different
behaviors of interacting DR. To understand how DR
impacts CDM, it is helpful to look at the time average
of the DR perturbations, which is a better estimate of the net
source to the gravitational potential driving CDM. In Fig. 5,
we show the time average [hδDRðτÞi≡

R
τ
0 dτ

0δDR=τ] of the
radiation perturbations plotted in Fig. 3. It is clear that,
while the interacting cases have a larger amplitude around
horizon crossing, at later times the free-streaming pertur-
bations are larger and therefore source a larger gravitational
potential. This means that we expect CDM perturbations
entering the horizon during the radiation-dominated era
to be larger in cosmologies with free-streaming DR in
comparison to those with fluid DR. The case where DR
decouples around horizon crossing is special; the time-
average of the DR is larger at horizon crossing, yet does not
decrease subsequently (see Fig. 3) and at late times is
slightly larger than the free-streaming case. We will see that
the CDM perturbations that cross the horizon around
decoupling indeed experience a slight boost.
The effect of DR on the CDM perturbations is illustrated

in Fig. 6. Plotted is the fractional change in the amplitude of
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the Newtonian gauge CDM perturbation, δcdm, when
ΔNeff ¼ 0.5 in DR is made interacting, as opposed to
free-streaming. Each panel shows a range of k values
corresponding to modes that cross the horizon at a variety
of epochs relative to the decoupling/recoupling transitions

and matter radiation equality. On superhorizon scales and
during the radiation-dominated era, the matter perturbation
in the Newtonian gauge is slightly larger in a cosmology
with interacting DR (see, e.g., Ref. [42], and note that this
difference disappears in the synchronous gauge). Interacting

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Fractional changes in the primary CMB power spectra when an additional interacting component of DR is added with
ΔNeff ¼ 0.5 compared to power spectra for a cosmology with the totalNeff entirely composed of free-streaming radiation. Panels (a) and
(b) show the fractional change in CTT

l and CEE
l for the decoupling model and for a fluidlike species that never decouples. Panels (c) and

(d) show the fractional change in CTT
l and CEE

l for the instantaenous decoupling model (dashed lines) along with the fluid case for
comparison. The values of zdec in (c) and (d) are chosen to match the decoupling redshifts for each value of Geff used in (a) and (b).
Panels (e) and (f) show the fractional change in CTT

l and CEE
l for recoupling species and a fluidlike species.
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radiation experiences a larger boost at horizon crossing
(Fig. 3) relative to free-streaming radiation that is trans-
mitted to the CDM. Eventually, however, δcdm modes that
cross the horizon during the radiation-dominated era with
interacting DR experience suppressed growth because,
time-averaged over an oscillation, the source to the gravi-
tational potential is smaller than for free-streaming radiation
(see Fig. 5). Modes that cross the horizon near the
decoupling transition experience a mixture of effects, a
boost in amplitude at horizon crossing while the DR is
interacting, but then a decreased subsequent decay as the
radiation transitions to free-streaming before a full oscil-
lation is complete. This is visible in the k ¼ 0.1=Mpc mode
in panel (a). A similar feature occurs as the Universe
transitions to matter domination. Modes that cross the
horizon during this transition may experience an initial
boost due to interactions, but the subsequent suppression in
amplitude does not occur as the radiation perturbations
cease to dominate the gravitational potential. This is visible

for the k ¼ 0.1=Mpc and k ¼ 0.01=Mpc modes in the
recoupling and fluid plots in panels (b) and (c).
The scale-dependent time evolution in Fig. 6 leads to

scale-dependent features in the matter power spectrum.
Figure 7 illustrates the k-dependent changes to the matter
power spectrum when an additional DR contribution of
ΔNeff ¼ 0.5 is interacting instead of free-streaming. For the
decoupling cases, the matter power spectrum is suppressed
at high k, corresponding modes that entered the horizon
both during radiation domination and while the DR was
interacting. In the cases where decoupling occurs during
the radiation-dominated era, a peak appears around wave
number k ∼ π=ðcsτdecÞ corresponding to the scales that
have just reached their first maximum after horizon cross-
ing. As the Universe transitions from radiation to matter
domination, whether the relativistic species are fluidlike or
free-streaming becomes less relevant to the evolution of the
matter perturbations, and the low-k matter power spectra
agree for all scenarios. The time-dependent change from

(a) (b) (c)

FIG. 6. Fractional change the evolution of dark matter density perturbations of different wavelengths when a component of the
radiation density is in decoupling species (a), recoupling species (b), or fluidlike species (c). The effect on the dark matter density
perturbation depends on whether the modes crossed the horizon (reached kτ ∼ 1) before or after the decoupling or recoupling transition.
For fluidlike radiation, the effect depends on whether the modes crossed the horizon before or after the matter-radiation equality time.

(a) (b) (c)

FIG. 5. The time average value of the Newtonian gauge dark radiation energy density, hδDRi, plotted as a function of kτ, with
k ¼ 1=Mpc. The (a) panel compares free-streaming and fluidlike radiation perturbations to decoupling models with values of Geff ¼
0.021=ðMeVÞ2 and 6.1 × 10−4=ðMeVÞ2, corresponding to decoupling at zdec ∼ 104; 105. The (b) panel illustrates perturbations that
decouple instantaneously at zdec ∼ 104; 105. The (c) panel compares free-streaming and fluidlike radiation perturbations to recoupling
models with values of λϕ ¼ 1.5 × 10−11, and 4.8 × 10−11, corresponding to recoupling at zrec ∼ 105; 106.
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radiation to matter domination leads to a scale-dependent
feature near keq that is qualitatively similar to the feature
caused by the decoupling transition even for a fluidlike
species that never decouples. Finally, the change in the
power spectra for the recoupling scenarios shows a mix of
behavior. The highest k modes are identical to the free-
streaming case. As k decreases, they begin following the
fluid curves below krec ∼ π=ðcsτrecÞ but then agree with the
free-streaming case for k ≪ keq. Finally, the duration of
the decoupling/recoupling transition is also important. If
the transition from fluidlike to free-streaming is instanta-
neous, a ringing feature is visible in the matter power
spectrum. This occurs because modes that have entered
the horizon prior to decoupling oscillate, along with the
photon-baryon fluid, and an instantaneous transition will
imprint these oscillatory features on the final matter power
spectrum. For the more gradual decoupling transition, these
features are washed out. The recoupling models we con-
sider have very gradual transitions from free-streaming to
fluidlike and overall a much smaller imprint on the matter
power spectrum. We note that, while we have implem-
ented instantaneous decoupling as a transition of width
Δzdec=zdec ¼ 0.01 [see Eq. (18)], the ringing features seen
in Fig. 7 are nearly unchanged for decoupling transitions as
wide as Δzdec=zdec ¼ 0.1.
The changes to the matter power spectrum in Fig. 7 lead to

similar, but less pronounced changes to the CMB lensing
power spectrum. Figure 8 shows the fractional change to the
CMB lensing spectum when an additional DR contribution
of ΔNeff ¼ 0.5 is interacting instead of free-streaming. For
each scenario, the qualitative features are similar to the
changes to the matter power spectrum, but suppressed in
amplitude and sharp spectral features are washed out, due to
the fact that CMB lensing at a given multipole moment
depends on the matter power spectrum at a range of k.
Nevertheless, the suppression at high l is apparent, as is the
peak in ΔCϕϕ

l near ldec and leq. The instantaneous and

standard decoupling cases, however, do not have distin-
guishable features.

V. MCMC ANALYSIS

In this section, we present constraints on five interacting
DR scenarios we have discussed. For the MCMC analysis,
we use the Metropolis-Hastings algorithm6 [93,94] of the
cosmological sampling package Monte Python3.2

7 [95,96],
connected to an altered version of the Boltzmann Solver
CLASS2.7

8 [80–82]. We impose a Gelman-Rubin conver-
gence criterion of R − 1≲ 0.01 for determining when the
MCMC chains are converged. We use the following dataset
combination:

(i) CMB: Planck 2018 CMB temperature and polariza-
tion auto- and cross-correlation, both high l and low
l [97], and with the full set of nuisance parameters,
as well as Planck 2018 CMB lensing9 [98].

(a) (b) (c)

FIG. 7. Fractional changes in the matter power spectrum at z ¼ 0 when an additional DR contribution of ΔNeff ¼ 0.5 is interacting
instead of free-streaming. The (a) panel shows ΔPmmðkÞ=PmmðkÞ for the decoupling model, the (b) panel shows it for the instantaneous
decoupling model, and the (c) panel shows it for the recoupling model. The values of Geff and λϕ are chosen to give decoupling/
recoupling redshifts of z ∼ 103, 104, 105, 106.

6As we will see in the following, the posterior distribution for
the coupling parameters show local minima and maxima, which
can be difficult for the Metropolis-Hastings to properly sample,
and care should be taken. However, in all our cases, no parts of the
coupling parameter space are ruled out with any notable signifi-
cance, so we know all possible values are allowed and have been
sampled, with chains moving freely through different parts of
parameter space, and we can be confident no modes have been
missed by the sampling algorithm. We note that problems are
known to arise when modes are clearly separated in parameter
space and the MCMC chains are unable or unlikely to jump from
one mode to another, in which case Metropolis-Hastings is not a
suitable algorithm for exploring the posterior space and alter-
natives should be used, such as, e.g., nested sampling algorithms.

7Find the new Monte Python3.5 at https://github.com/brinckmann/
montepython_public.

8Get the most recent CLASS3.2 at https://github.com/lesgourg/
class_public.

9Although the data in our MCMC runs do include the changes
to the CMB lensing spectra shown in Fig. 8, we expect those
features are too small to be resolved with current data and do not
contribute to our constraints.
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(ii) BAO10: The Six-degree Field Galaxy Survey
(6dFGS, z ¼ 0.106) [100], the Sloan Digital Sky
Survey Data Release 7 Main Galaxy Sample (SDSS
DR7 MGS, z ¼ 0.15) [101], and the Baryon Oscil-
lation Spectroscopic Survey Data Release 12 (BOSS
DR12, z ¼ 0.38, 0.51, 0.61) three redshift bin
sample [102] (containing the CMASS and LOWZ
galaxy samples [103]).

We make the following notable modeling choices (unless
otherwise specified): three degenerate massive free-
steaming neutrinos, as a good approximation to either the
normal or inverted hierarchy [104], with a varying neutrino
mass sum and a prior

P
mν > 0 eV. The neutrinos con-

tribute 3.046 to Neff . The helium fraction is inferred from
big bang nucleosynthesis, and we make other standard
ΛCDM assumptions, such as spatial flatness and a cosmo-
logical constant. All CMB power spectra (including lensing
reconstruction) are modeled using linear theory, since we do
not have an accurate nonlinear prescription for the interact-
ing DR models and all publicly available nonlinear methods
assume free-streaming DR. In any case, differences due to
nonlinear modeling are expected to be smaller than the error
bars for Planck on all scales, but this point needs to be
carefully considered for future data. While we have seen in

Sec. IV that DR can also impact the amplitude and shape
of the high-k matter power spectrum, we do not include
any datasets that probe this directly. We expect that
the current bounds on ΔNeff from CMB will be stronger
than those available from, e.g., current Lyman-α forest
data [105,106], but these signatures would be interesting
to explore in the future.
The main results are shown in Table I and Fig. 9. In

Table I, we showmean values and 68% CL intervals (unless
otherwise noted) for each parameter. We also show the best-
fit values forΔNeff and the interaction parameters as well as
the minimum effective chi-squared and the chi-squared
contribution from each likelihood.
In Fig. 9, we show posterior distributions (1-σ and 2-σ

intervals as dark and light shaded contours, respectively)
for our decoupling (top left, in green), instantaneous
decoupling (top right, in purple), and recoupling (bottom,
in yellow) cases, compared to free-streaming (in red) and
fluid (in blue) reference cases in each subplot. For the most
interesting parameters for these models, we opted to show
the angular scale of the CMB, θs; the amount of DR beyond
standard neutrinos, ΔNeff ; and the Hubble parameter today,
H0, in addition to the relevant interaction parameters: Geff

in units of ðMeVÞ−2 and an estimate of zdec for decoupling
[see Eq. (20) and surrounding text], zdec for instantaneous
decoupling (as a model parameter, in this case), and λϕ and
an estimate for zdec for recoupling [see Eq. (20)]. For the set
of full triangle plots, see Appendix C. In the bottom right
panel of each subplot, we highlight interesting points in
parameter space with arrows, e.g., transition points and
peaks in the one-dimensional (1D) marginalized posterior
distribution, discussed in the following.
For decoupling (Fig. 9, top left, green):
(i) Looking at the ΔNeff vs θs panel (first column,

2nd from the top), we see that the posterior for
the decoupling case neatly extends across the free-
streaming to the fluid case. This comes from no

(a) (b) (c)

FIG. 8. Fractional changes in the CMB lensing power spectrum when an additional DR contribution of ΔNeff ¼ 0.5 is interacting
instead of free-streaming. The (a) panel shows ΔCϕϕ

l =Cϕϕ
l ðkÞ for the decoupling model, the (b) panel shows that for the instantaneous

decoupling model, and the (c) panel shows that for the recoupling model. The values of Geff and λϕ are chosen to give decoupling/
recoupling redshifts of z ∼ 103, 104, 105, 106, the same values used for instantaneous decoupling in the (b) panel.

10It is, in principle, possible that constraints using BAO data
could be biased for models of self-interacting dark radiation,
as these models introduce a phase shift in the acoustic peaks.
However, Ref. [99] studied this problem for a number of
extensions to the ΛCDM model, including a fraction dark matter
interacting with neutrinos, a model with a similar phase-shifting
property. Therefore, for current BAO data combined with other
probes, such as CMB in our case, models of self-interacting dark
radiation are not likely to exhibit a bias in constraints derived
using standard BAO likelihoods. For future data, this conclusion
may be different, and it may be necessary to include BAO data,
or full shape power spectrum information, in the analysis in a
consistent way, or at least check that it is not a problem in a way
similarly as in Ref. [99].
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strong preference by the datasets being considered
for either model, so an MCMC exploration is
allowed to freely vary across the full param-
eter space.

(ii) This is further illustrated by the 1D posterior panel for
log10ðGeffÞ (bottom right), where the posterior is flat
toward smaller log10ðGeffÞ (larger zdec) values—with
the free-streaming regime to the far left of the plot
and smaller values asymptoting to the free-steaming
case—through intermediate decoupling redshifts, un-
til there is a small (but not statistically significant)
preference for a late decoupling beginning right
around recombination, i.e., around the leftmost
arrow at log10ðGeffÞ ≈ −0.15 [corresponding to
log10ðzdecÞ ≈ 3.05] and peaking at log10ðGeffÞ ≈
0.85 [corresponding to log10ðzdecÞ ≈ 2.5]. We cut
the posterior exploration a bit after this point, since
large values of log10ðGeffÞ (small zdec) asymptote to
the fluid case. This is because when decoupling
happens sufficiently far after recombination we are
no longer sensitive to the decoupling behavior with
the current datasets and the posterior would remain
flat except for MCMC noise. Indeed, because of the

notable decoupling width, we can understand why
the posterior of the decoupling case is not flat beyond
recombination (as opposed to the instantaneous
decoupling case) but instead peaks after recombi-
nation.

(iii) Considering log10ðGeffÞ vs θs (bottom row, first
panel) and log10ðGeffÞ vs ΔNeff (bottom row, second
panel), we see a change in the preferred values for θs
when the interaction strength gets larger [larger
log10ðGeffÞ, smaller zdec] and that ΔNeff bounds
are somewhat relaxed toward larger log10ðGeffÞ
values. This can be understood from the fact that
interacting DR does not cause a phase shift of the
acoustic peaks like free-streaming DR or that DR
with intermediate decoupling redshifts causes a
reduced phase-shift. This feature brings the model
into slightly better agreement with the data, allowing
for a larger contribution of the species, and causes
the preferred value for θs to shift toward larger
values.

(iv) Finally, there is no notable impact on the Hubble
parameter (bottom row, third panel), beyond a slight
widening of the posterior for a late decoupling

TABLE I. Statistical information for all models. χ2eff ¼ −2 lnL is the minimum effective chi square, and Δχ2eff is with regard to the
corresponding free-streaming case. All credibility intervals are 68% CL centered around the mean unless otherwise noted. The
clustering parameter S8 is defined as S8 ¼ σ8ðΩm=0.3Þ0.5.

Free-streaming Fluid Decoupling Instantaneous decoupling Recoupling

ωb 0.02250' 0.00015 0.02254' 0.00017 0.02250' 0.00016 0.02252' 0.00016 0.02252' 0.00017
ωcdm 0.1214' 0.0017 0.1219' 0.0019 0.1215' 0.0018 0.1217' 0.0018 0.1216' 0.0018
100 × θs 1.04167' 0.00036 1.04204' 0.00031 1.04185' 0.00036 1.04195' 0.00033 1.04188' 0.00035
lnð1010AsÞ 3.051' 0.016 3.046' 0.015 3.049' 0.015 3.047' 0.015 3.049' 0.015
ns 0.9697' 0.0050 0.9674' 0.0040 0.9685' 0.0046 0.9676' 0.0043 0.9691' 0.0049
zreio 7.85' 0.76 7.91' 0.75 7.86' 0.76 7.89' 0.75 7.89' 0.75
log10ðGeffÞ ( ( ( ( ( ( unbounded ( ( ( ( ( (
log10ðzdecÞ ( ( ( ( ( ( ( ( ( unbounded ( ( (
log10ðλϕÞ ( ( ( ( ( ( ( ( ( ( ( ( unbounded
ΔNeff < 0.304 (95% CL) < 0.324 (95% CL) < 0.311 (95% CL) < 0.314 (95% CL) < 0.320 (95% CL)P

mν < 0.120 (95% CL) < 0.125 (95% CL) < 0.122 (95% CL) < 0.127 (95% CL) < 0.123 (95% CL)
H0 ½ðkm=sÞ

Mpc & 68.5' 0.7 68.7' 0.8 68.6' 0.8 68.6' 0.8 68.6' 0.8

S8 0.831' 0.012 0.828' 0.011 0.829' 0.012 0.829' 0.012 0.829' 0.012

Best fit

ΔNeff 0.050 0.012 0.0046 0.0087 0.069
log10ðGeffÞ ( ( ( ( ( ( −1.62 ( ( ( ( ( (
log10ðzdecÞ ( ( ( ( ( ( ( ( ( 2.61 ( ( (
log10ðλϕÞ ( ( ( ( ( ( ( ( ( ( ( ( −10.1
P18 highTTTEEE 2347.1 2346.5 2345.9 2345.3 2347.3
P18 lowTT 23.3 23.6 23.6 23.8 23.1
P18 lowEE 395.9 395.9 396.8 398.4 396.2
P18 lensing 8.9 8.8 8.7 8.7 8.9
P18 total 2775.3 2774.9 2775.1 2776.2 2775.4
BAO 5.2 5.5 5.2 5.2 5.4
χ2eff 2780.4 2780.4 2780.2 2781.4 2780.8
Δχ2eff ( ( ( 0.0 −0.2 þ1.0 þ0.4
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FIG. 9. MCMC-derived posterior distributions for select parameters, with 1-σ and 2-σ intervals as dark and light shaded contours,
respectively. All: Planck 2018 primary CMB anisotropies and lensing plus BAO. Free-streaming ΔNeff in red and an always self-
interacting fluid ΔNeff in blue. For comparison, we show theH0 measurement from Ref. [107] as gray bounds (note only the edge of the
1- and 2-σ range is visible). Top left: Decoupling ΔNeff in green. Arrows on the bottom right subpanel indicate the transition point at
log10ðGeffÞ ≈ −0.15 [corresponding to log10ðzdecÞ ≈ 3.05] and the peak at log10ðGeffÞ ≈ 0.85 [corresponding to log10ðzdecÞ ≈ 2.5]. Top
right: instantaneous decoupling ΔNeff in purple. Arrows on the bottom right subpanel indicate the first transition point at log10ðzdecÞ ≈
2.8 and the second transition point at log10ðzdecÞ ≈ 3.55, while the peak is at log10ðzdecÞ ≈ 3.15. Bottom: recoupling ΔNeff in yellow.
Arrows on the bottom right subpanel indicate the transition point at log10ðλϕÞ ≈ −11.4 [corresponding to log10ðzdecÞ ≈ 3.7] and the peak
at log10ðλϕÞ ≈ −11.0 [corresponding to log10ðzdecÞ ≈ 4.6].
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towards the fluid asymptote, far from enough to be
relevant in terms of resolving tensions.

For instantaneous decoupling11 (Fig. 9, top right,
purple):

(i) Considering the ΔNeff vs θs panel (first column,
second from the top), we see the posterior for
instantaneous decoupling mostly tracks that of the
fluid comparison case. This can be easily understood
from the 1D posterior panel for log10ðzdecÞ (bottom
right), where we see a preference for low decoupling
redshift values, asymptoting to the fluid case once
we get beyond recombination. This preference
dominates the other marginalized posterior distribu-
tions. Two transition points are indicated with
arrows, one at log10ðzdecÞ ≈ 3.55, from where the
preference starts to increase for lower decoupling
redshifts, and one at log10ðzdecÞ ≈ 2.8, where we are
fully beyond recombination and have reached the
fluid case asymptote and the posterior flattens to
just MCMC noise. There appears to be a peak (albeit
not statistically significant) at log10ðzdecÞ ≈ 3.15, so
the data seem to prefer a decoupling just before
recombination.

(ii) Considering log10ðzdecÞ vs ΔNeff (bottom row,
second panel), we see the ΔNeff bound is signifi-
cantly relaxed for late decoupling times (small zdec)
from near recombination onward, leading to larger
uncertainty for the Hubble parameter (bottom row,
third panel). Note that, since the 1D marginalized
posterior distributions for ΔNeff and H0 include the
high decoupling redshift part, the relaxed bounds are
less apparent there.

For recoupling (Fig. 9, bottom, yellow):
(i) Looking at the ΔNeff vs θs panel (first column,

second from the top), we see the recoupling case
nearly spans the posterior space of the free-streaming
and fluid comparison cases, like the decoupling case.
The reason is the same as before, because we have a
mostly unconstrained parameter space, with a neat
transition between the two asymptotes. Indeed, con-
sidering the 1D posterior panel for log10ðλϕÞ (bottom
right), we see a mostly flat posterior, with a small

increase in probability starting from log10ðλϕÞ ≈
−11.4 [corresponding to log10ðzrecÞ ≈ 3.7], indicated
by an arrow, toward larger values of the coupling
strength, corresponding to an earlier recoupling.
Interestingly, there appears to be a small peak (not
statistically significant) at intermediate recoupling
redshifts, around log10ðλϕÞ ≈ −11.0 [corresponding
to log10ðzdecÞ ≈ 4.6], indicated by a second arrow,
but we clearly need more sensitive datasets to
constrain this model.

(ii) Considering the other bottom row panels, we see a
similar shift in θs (first panel) as we did for the
decoupling case. This is not surprising, larger values
of the coupling parameters in both examples, cor-
responding to earlier recoupling or later decoupling,
asymptote to the fluid case, whereas the late recou-
pling, or early decoupling, models asymptote to the
free-streaming case. In the second of the bottom
panels, we see the bound on ΔNeff is relaxed for
models recoupling early or at intermediate redshifts,
while late recoupling bounds are similar to the free-
streaming bounds. Finally, for the Hubble parameter
(third panel), we see a slight relaxation of the
confidence interval compared to the free-streaming
asymptote, but not enough to play a role in resolving
cosmological tensions.

It is worth remembering that our choice for how to
implement the neutrino mass sum,

P
mν, impacts the

bounds on ΔNeff , as there is a direct correlation between
neutrino mass sum and allowed values of ΔNeff . In many
works, the neutrinomass sum is taken to be fixed (a common
choice is around the minimal allowed value for a normal
hierarchy neutrino configuration with two low mass neu-
trinos and one more massive neutrino,

P
mν ¼ 0.06 eV),

but the absolute scale of the neutrinomass sum is not known;
only the mass-squared differences between states are known.
To reflect this uncertainty, we allow the neutrino mass sum
to vary in our main analysis, which impacts bounds onΔNeff
compared to fixing the neutrino mass sum, as shown in
Tables II (fixed neutrino mass sum) and III (varying neutrino
mass sum).
For the fixed neutrino mass sum comparison in Table II,

we limit the scope to only the free-streaming and
fluid reference cases, as they can be considered the
boundary cases for self-interacting dark radiation. In this
case, we consider

P
mν ¼ ½0; 0.06; 0.11& eV to cover

massless neutrinos, minimum normal hierarchy mass in

TABLE II. Bounds on the effective number of extra relativistic species, ΔNeff , for different choices of a fixed
neutrino mass sum

P
mν.

P
mν prior 0 eV 0.06 eV (deg) 0.06 eV (2 massless) 0.11 eV

Free-streaming ΔNeff (95% CL) < 0.285 < 0.314 < 0.314 < 0.334
Fluid ΔNeff (95% CL) < 0.298 < 0.325 < 0.336 < 0.363

11The MCMC results in this section parametrize instantaneous
decoupling as a transition of widthΔzdec ¼ 0.01zdec, as discussed
in Sec. II. We have, however, checked that our parameter
constraints are virtually unchanged for a decoupling width of
Δzdec ¼ 0.1zdec.
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two configurations (degenerate masses, denoted “deg,”
and a normal hierarchy approximation with two massless
and one massive neutrino, denoted “2 massless”), and
minimum inverted hierarchy mass (only degenerate
masses).
In Table III, we allow the neutrino mass sum to vary,

with two common choices: one remaining agnostic about
the mass of cosmological neutrinos freely varying the
neutrino mass sum

P
mν > 0 (acknowledging that new

physics could allow for different
P

mν in cosmology
compared to that from terrestrial measurements; see,
e.g., Refs. [108–116]) and the other imposing a minimal
allowed neutrino mass sum roughly corresponding to the
minimal mass sum allowed in a normal hierarchy configu-
ration with

P
mν > 0.06 eV. In both cases, we consider

degenerate massive neutrinos, as the difference compared
to more realistic configurations is very small [104].
We find differences of order 10% in the bounds on ΔNeff

for common choices used in the literature for how to
treat neutrino masses, a difference that increases for less
common choices. For simplicity, throughout the paper, we
assumed the standard neutrinos behave as expected with a
contribution toNeff of 3.046, but somewhat different results
might be obtained if this assumption is relaxed and all of
Neff is varied.
As a side note, if a very large neutrino mass sum were to

be detected from cosmology, ΔNeff bounds would dra-
matically change. This has been hinted at by some recent
analyses; e.g., an analysis that factors out the Planck
lensing anomaly12 found

P
mν ¼ 0.51þ0.21

−0.24 eV at 68% CL
from a combination of BOSS and Planck [118] (see also
the ACT DR4þWMAP results [119], as well as
Ref. [120], for similarly large neutrino mass sum bounds
from cosmology when avoiding the Planck lensing
anomaly). As a rudimentary check, fixing

P
mν ¼ 0.5,

we find a free-streaming ΔNeff < 0.738 and a fluid
ΔNeff < 0.727 at 95% CL, wildly different from conven-
tional results. Of course, a proper analysis with the full
lensing-anomaly treated likelihoods and varying neutrino
mass sum should be conducted, but if a large neutrino
mass were to be a reality, all Neff bounds would change
accordingly.

VI. DISCUSSION AND CONCLUSIONS

Dark radiation commonly arises in BSM scenarios
and may contribute a detectable level of radiation density
in the Universe in addition to photons and neutrinos. This
contribution is typically parametrized with ΔNeff and can
be constrained by cosmological data. Yet, the signatures of
DR can vary depending on whether the nature of DR and
the parameter ΔNeff, which solely characterizes the energy
density, is insufficient to capture the full range of scenarios.
More generally, DR will have perturbations, along with
the SM particles, and their energy density, pressure, and
anisotropic stress evolve differently depending on whether
the DR is interacting with itself or another constituent. In
general, interaction rates evolve differently from the
Hubble parameter, and dark radiation can decouple or
recouple from interactions during cosmic history. In this
paper, we explore the cosmological signatures of and
constraints on DR with interactions that modify the time
dependence of the sound speed and anisotropic stress of
DR and thereby leave distinct signatures in cosmological
observables.
We classify DR into five interaction types: free-

streaming, fluidlike, decoupling, instantaneous decoupling,
and recoupling. Free-streaming and fluidlike DR are the
usual scenarios in which radiation is either noninteracting
or interacting for the whole observable cosmic history. The
free-streaming case is part of standard cosmological analy-
ses (e.g., Ref. [6]) and the fluidlike case have been studied
by, e.g., Refs. [48,51]. Decoupling DR is the case where its
self-interaction is through a heavy mediator, so that
interactions cease and radiation transitions from fluidlike
to free-streaming, as with SM neutrinos. In this case, the
decoupling transition happens smoothly as Γ=H ∝ T3. In
contrast, instantaneous decoupling occurs suddenly due to
the presence of a heavier or bound state that exponentially
suppresses the scattering rate, similar to SM hydrogen
recombination. Recoupling DR arises in scenarios with a
light mediator or a renormalizable self-interaction term
such as ϕ4 theory. In this case, the DR is initially free-
streaming, but interactions change the behavior of DR to
behave more like a fluid (for decoupling and recoupling
types of models, see, e.g., Refs. [47,50,60,71]). These
scenarios are described in Sec. II. We implemented the DR
scenarios above in the Boltzmann equations, using the
relaxation time approximation to include the collision terms
in the Boltzmann hierarchy. The interaction terms include

TABLE III. Bounds on the effective number of extra relativistic species, ΔNeff , for different choices of a varying
neutrino mass sum

P
mν. In both cases, the neutrino mass is implemented as three degenerate states with

mνi ¼
P

mν=3.
P

mν prior Free-streaming Fluid Decoupling Instantaneous decoupling Recoupling

> 0 eV ΔNeff (95% CL) < 0.304 < 0.324 < 0.311 < 0.314 < 0.320
> 0.06 eV ΔNeff (95% CL) < 0.325 < 0.339 < 0.340 < 0.346 < 0.338

12See, e.g., Refs. [6,117] for discussions on the Planck lensing
anomaly.
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the thermal averaged interaction rate and the relaxation
time coefficient, which are carefully calculated in this work
for different interaction benchmarks. Since the relaxation
time coefficients depend on multipole l, the time at which
moments in the Boltzmann hiearchy transition between
fluidlike and free-streaming also depends on l. We define
decoupling and recoupling with respect to the l ¼ 2
moment in the Boltzmann hierarchy, related to the aniso-
tropic stress, and provide a precise relation between
parameters in the DR Lagrangian and the decoupling or
recoupling redshift. Our approach is described in Sec. III,
and the details of calculations are given in Appendix A.
We have shown that the DR scenarios lead to distinct

signatures on CMB and matter power spectra. These
signatures, along with a detailed discussion of the physical
mechanisms, are presented in Sec. IV. A summary of how
different DR scenarios change primary CMB power spectra
is in Fig. 4, the matter power spectra in Fig. 7, and CMB
lensing in Fig. 8. Of particular interest is the sensitivity of
the matter power spectrum to the duration of the decoupling
transition, visible by comparing panels (a) and (b) in Fig. 7.
We anticipate that for currently allowed values of ΔNeff the
signature in the matter power spectrum is too small to be
detected. Yet, it would be interesting to explore whether
these features can be exploited to detect or constrain DR
with future large-scale structure datasets. We leave this to
future work.
We derive MCMC constraints from Planck 2018 CMB

data and BAO data on these DR scenarios, using the
cosmological sampling package Monte Python interfaced with
a modified version of the Boltzmann solver CLASS, in
which the Boltzmann hierarchy with the relaxation time
approximation is implemented for each of our interacting
DR cases. The one- and two-dimensional marginalized
posterior distributions for each of our cases are shown for
select parameters in Fig. 9 and for the full cosmological
parameter space in Appendix C. In Table I, we show
bounds for each of our cosmological parameters along with
information on the best-fitting model. We find no sta-
tistically significant bounds on the coupling constants of
DR, although we find a slight preference for a late transition
redshift for instantaneous decoupling DR at around recom-
bination, and for the fluidlike limit of all the cases. The data
exhibit interesting features at some specific times/redshifts
in the early Universe, but more constraining data are
required to derive statistically significant bounds. The
constraints on ΔNeff differ marginally for the different
cases, but only at the order of about 5%–10%. We note that
the models of interacting DR considered here do not help
resolve the H0 and σ8 tensions, as Planck CMB bounds on
ΔNeff do not allow for a significant deviation from the
standard prediction, a situation that is unchanged by the
presence of interactions, and therefore the models under
consideration are unable to alleviate these cosmological
tensions. Finally, in Tables II and III, we consider how our

prior choice for the neutrino mass sum affects bounds on
ΔNeff for our DR cases, finding a difference of order 10%,
comparable to or larger than the differences due to
interactions, highlighting the importance of being clear
on prior assumptions when reporting results.
Although current data are only able to provide hints

toward preferred couplings of interacting DR, without
placing statistically significant bounds, future experiments
and surveys will be able to detect the small scale signatures
of interacting DR discussed in Sec. IV. Upcoming CMB
experiment Simons Observatory [121], the future CMB-S4
experiment [122], and possibly CMB-HD [123] will delve
into increasingly smaller scales of the CMB anisotropies,
potentially bringing signatures of interacting radiation
within reach (compare to signatures of interactions seen
in primary CMB in Fig. 4, increasing significantly toward
smaller scales, as well as CMB lensing in Fig. 8). These
future datasets will simultaneously aid in detecting novel
signatures of interactions and constraining Neff to much
better precision, with nearly an order of magnitude
improvement expected by CMB-S4 over current con-
straints. Concurrently, data from current and near-term
galaxy surveys such as DESI [124], Euclid [125], the
Roman Telescope [126], and the Rubin Observatory [127]
will dramatically improve our measurements of the linear-
theory matter power spectrum. The signatures of interacting
radiation shown in Fig. 7 present an interesting target
worthy of further exploration. In the longer term, gravita-
tional waves present a clean and complementary probe of
the DR interaction history [128]. In summary, the prospects
of confirming or ruling out non-standard interactions in the
neutrino and DR sector are excellent.
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APPENDIX A: DETAILS OF THE COLLISION TERMS IN BOLTZMANN EQUATIONS

In this appendix, we present more details of the collision terms C½f& in the Boltzmann equation (12) in Sec. III. As shown
in Ref. [78], for the case of 2 ↔ 2 scattering process, where we label the momenta of initial (final) particles being
q; lðq0; l0Þ, the collision term C½f& that is first order in Ψ is defined as

C½f&2↔2ðk;q; τÞ ¼
g3

2qð2πÞ5

Z
d3l
2l

Z
d3q0

2q0

Z
d3l0

2l0
δ4ðqþ l − q0 − l0Þ

× hjMj2i½f̄eqðq0Þf̄eqðl0Þ½Ψðk;q0; τÞ þ Ψðk; l0; τÞ& − f̄eqðqÞf̄eqðlÞ½Ψðk;q; τÞ þ Ψðk; l; τÞ&&; ðA1Þ

where g is the degree of freedom of the particle.
To get Eq. (A1) and analytic expressions for the collision terms after integration, we made several approximations. First,

we assume all kinds of DR in our analysis have nearly thermal distributions: f̄ðq; τÞ ¼ f̄eqðqÞ. Second, we assume f̄eqðqÞ
has a Maxwell-Boltzmann distribution instead of a Bose-Einstein or Fermi-Dirac distribution. Third, we neglect Pauli
blocking or Bose enhancement of final state particles. The validity of the first assumption is discussed in Sec. III [see
discussion below Eq. (10)]. The last two assumptions are appropriate for all cases we study because we consider
nondegenerate initial and final states.
Now, we are ready to calculate the C½f& for the different DR scenarios listed in Sec. II. Our ultimate goal is to obtain the

relevant Γ and αl in Eq. (14).

1. Decoupling

We first consider Majorana fermions as decoupling DR, which has self-interactions mediated by a heavy mediator (see
discussion in Sec. II). In this case, we can get hjMj2i ¼ 1

16G
2
effðs2 þ t2 þ u2Þ, whereGeff is the effective Fermi constant [see

Eq. (4)] and s, t, u are Mandelstam varibles. Then, Boltzmann hierarchy for Ψ can be written as [78,79]

_Ψ0ðqÞ ¼ −kΨ1ðqÞ þ
1

6

∂ ln f̄
∂ ln q

_h −
10

3

NT4
D;0G

2
eff

a4ð2πÞ3
qΨ0ðqÞ

þ NG2
eff

2a4ð2πÞ3

Z
dq0

!
Km

0 ðq; q0Þ −
10

9
q2q02e−q=TD;0

$
q0f̄ðq0Þ
qf̄ðqÞ

Ψ0ðq0Þ ðA2Þ

_Ψ1ðqÞ ¼ −
2

3
kΨ2ðqÞ þ

1

3
kΨ0ðqÞ −

10

3

NT4
D;0G

2
eff

a4ð2πÞ3
qΨ1ðqÞ

þ NG2
eff

2a4ð2πÞ3

Z
dq0

!
Km

1 ðq; q0Þ −
5

9
q2q02e−q=TD;0

$
q0f̄ðq0Þ
qf̄ðqÞ

Ψ1ðq0Þ ðA3Þ

_Ψ2ðqÞ ¼ −
3

5
kΨ3ðqÞ þ

2

5
kΨ1ðqÞ −

∂ ln f̄
∂ ln q

"
2

5
_ηþ 1

15
_h
#
−
10

3

NT4
D;0G

2
eff

a4ð2πÞ3
qΨ2ðqÞ

þ NG2
eff

2a4ð2πÞ3

Z
dq0

!
Km

2 ðq; q0Þ −
1

9
q2q02e−q=TD;0

$
q0f̄ðq0Þ
qf̄ðqÞ

Ψ2ðq0Þ ðA4Þ

_Ψl>2ðqÞ ¼ −
k

2lþ 1
½lΨl−1ðqÞ − ðlþ 1ÞΨlþ1ðqÞ& −

10

3

NT4
D;0G

2
eff

a4ð2πÞ3
qΨlðqÞ

þ NG2
eff

2a4ð2πÞ3

Z
dq0Km

l ðq; q0Þ
q0f̄ðq0Þ
qf̄ðqÞ

Ψlðq0Þ: ðA5Þ

Here, TD;0 is the temperature of the DR today. The quantity f̄ denotes the averaged phase space distribution, and Ψl is the
Legendre decomposition of Ψ,

Ψðk;q; τÞ ¼
X∞

l¼0

ð−iÞlð2lþ 1ÞΨlðk; q; τÞPlðcos ϵÞ; ðA6Þ
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where cos ϵ ¼ k · q=ðkqÞ and Plðcos ϵÞ is a Legendre
polynomial of order l. The function Km

l ðq; q0Þ is defined as

Km
l ðq; q0Þ ¼

Z
1

−1
d cos θKmðq; q0; cos θÞPlðcos θÞ; ðA7Þ

where

Kmðq; q0; cos θÞ ¼
T4
D;0

16P5
e−ðQ−þPÞ=2ðQ2

− − P2Þ2

× ½P2ð3P2 − 2P − 4Þ
þQ2

þðP2 þ 6Pþ 12Þ&; ðA8Þ

with P ¼ jq − q0j=TD;0 and Q' ¼ ðq' q0Þ=TD;0. As men-
tioned above, to get the Boltzmann equations, we assume
that the background density follows a Maxwell-Boltzmann
instead of Bose-Einstein/Fermi-Dirac distribution,

f̄ðq; τÞ ≈ f̄eqðqÞ ¼ Ne−q=TD;0 ; ðA9Þ

where the normalization factor N is chosen to match
the energy density from Maxwell-Boltzmann and
Bose-Einstein/Fermi-Dirac distribution:

R
dqq3f̄eqðqÞ ¼R

dqq3fBE=FDðqÞ. Therefore, we will get N ¼ π4=90 for
bosons and N ¼ 7π4=720 for fermions. Fl is defined by

Fðk;cosϵ;ηÞ¼
R
q3dqf̄ðqÞΨR
q3dqf̄ðqÞ

¼
X∞

l¼0

ð−1Þlð2lþ1ÞFlðk;ηÞPlðcosϵÞ: ðA10Þ

To get the Boltzmann hierarchy for Fl, we further use
the relaxation time approximation. This can be achieved by
making the following approximation [79]:

Ψlðk; q; τÞ ≈ −
1

4

d ln f̄
d ln q

Flðk; τÞ: ðA11Þ

We then integrate the Boltzmann hierarchy for Ψl in
Eqs. (A2)–(A5) to get the Boltzmann hierarchy for Fl
shown in Eq. (14). With the definition of hΓi in Eq. (16), we
can find the coefficients αl. We get α0 ¼ α1 ¼ 0, which is
consistent with energy and momentum conservation. For
higher order αl, we get α2 ¼ 1.39, α3 ¼ 1.48, α4 ¼ 1.57,
and α5 ¼ 1.62.

2. Recoupling

For the recoupling case, we consider scalar DR with a ϕ4

interaction (see Sec. II). In this case, the averaged matrix
element can be calculated as hjMj2i ¼ 1

2 λ
2
ϕ, and the

Boltzmann equations for Ψ read

_Ψ0ðqÞ ¼−kΨ1ðqÞþ
1

6

∂ ln f̄
∂ lnq

_h−
Nλ2φT2

D;0

128π3q
Ψ0ðqÞ

þ
Nλ2φ
128π3

Z
dq0½K0

0ðq;q0Þ− e−q=TD;0 &q
0f̄ðq0Þ
qf̄ðqÞ

Ψ0ðq0Þ

ðA12Þ

_Ψ1ðqÞ ¼ −
2

3
kΨ2ðqÞ þ

1

3
kΨ0ðqÞ −

Nλ2φT2
D;0

128π3q
Ψ1ðqÞ

þ
Nλ2φ
128π3

Z
dq0K0

1ðq; q0Þ
q0f̄ðq0Þ
qf̄ðqÞ

Ψ1ðq0Þ ðA13Þ

_Ψ2ðqÞ ¼ −
3

5
kΨ3ðqÞ þ

2

5
kΨ1ðqÞ −

∂ ln f̄
∂ ln q

"
2

5
_ηþ 1

15
_h
#

−
Nλ2φT2

D;0

128π3q
Ψ2ðqÞ þ

Nλ2φ
128π3

Z
dq0K0

2ðq; q0Þ

×
q0f̄ðq0Þ
qf̄ðqÞ

Ψ2ðq0Þ ðA14Þ

_Ψl>2ðqÞ ¼ −
k

2lþ 1
½lΨl−1ðqÞ − ðlþ 1ÞΨlþ1ðqÞ&

−
Nλ2φT2

D;0

128π3q
ΨlðqÞ þ

Nλ2φ
128π3

Z
dq0K0

lðq; q0Þ
q0f̄ðq0Þ
qf̄ðqÞ

Ψlðq0Þ; ðA15Þ

where

K0ðq; q0; cos θÞ ¼ e−ðQ−þPÞ=2

P
: ðA16Þ

To get the Boltzmann hierarchy for Fl in Eq. (14), we
integrate Eqs. (A12)–(A15) with the approximation in
Eq. (A11). Based on the definition of hΓi in Eq. (19),
we can get the αl coefficients for the recoupling case:
α2 ¼ 0.188, α3 ¼ 0.294, α4 ¼ 0.356, and α5 ¼ 0.395.
Again, α0;1 ¼ 0 due to energy and momentum conserva-
tion. Note that α2 for the recoupling case is much smaller
than unity. This means naively setting αl ¼ 1 will generate
a relatively large deviation in the estimation of zrec as
shown in Eq. (20).

APPENDIX B: A MODEL FOR SELF-
INTERACTING SCALAR DARK RADIATION

Here, we present a model for dark radiation that consists
self-interacting light scalars. We consider axionlike par-
ticles (ALPs) in the dark sector, denoted as ϕ, which are
Goldstone bosons from a global dark U(1) symmetry
breaking. Below the spontaneously breaking scale f, we
demand the leading coupling between ϕ and other fields be
ϕ
f GDG̃D, where GD is the field strength of a dark SU(N)
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gauge field. This coupling can be rewritten as a total
derivative. Therefore, the ALP mass is protected by a shift
symmetry at perturbative level and can be naturally light.
After the dark SU(N) field confines, ϕ acquires a potential
nonperturbatively as

Lϕ ⊃ Λ4 cos
"
ϕ
f

#

≈ Λ4 −
Λ4

2f2
ϕ2 þ Λ4

24f4
ϕ4

≈ Λ4 −
m2

ϕ

2
ϕ2 þ

m2
ϕ

24f2
ϕ4; ðB1Þ

where Λ characterizes the energy scale of the confinement.
In the second and third lines of the above equation, we
neglect terms from the expansion that contain ϕn; ðn > 4Þ,

because their effects will be suppressed by fn−4. The third
line of Eq. (B1) shows the ALP model predicts a naturally
light scalar field with mϕ ≡ Λ2=f and a λϕ

24ϕ
4 interaction

with λϕ ≡m2
ϕ=f

2.
To check whether the ALP model can be a model for

the recoupling dark radiation, we need to demand (i) ϕ is a
thermal relic (similar to SM neutrinos) during the cosmic
history relevant for CMB measurements and (ii) it has the
correct self-interaction strength for recoupling near recom-
bination. Since we are interested in the case of low f and Λ
(see below), ϕ and SU(N) gauge fields are in thermal
equilibrium for TD > Λ. The first condition can be
achieved when TD drops below Λ, where a confinement
phase transition occurs in dark SU(N) theory. Since ϕ
is the only light particle after the phase transition, all
SU(N) gauge degrees of freedom will eventually convert

FIG. 10. Full cosmological parameter space for the free-streaming, fluid, and decoupling cases.
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into ϕ. This conversion is fast, given the low f and Λ we
consider, so it is plausible to treat ϕ as a thermal relic
when TD ≲ Λ. Moreover, Λ needs to be high enough that ϕ
remains as a thermal relic during the history relevant for
CMB measurements. This translates to a constraint of
Λ≳Oð100Þ eV, where Oð100Þ eV roughly corresponds
to the highest temperature scale that current CMB data
can probe.
For the second condition, we need the coupling strength

of the order of λϕ ∼ 10−12 to achieve recoupling around
z ∼ 103 (see discussion in Sec. II). Given thatmϕ and f are
correlated for fixed λϕ (λϕ ≡m2

ϕ=f
2), an arbitrary small

mϕ leads to too small f and Λ, violating the first condition.
Assuming the temperature of the dark sector is roughly
the temperature of SM neutrino bath (TD ∼ Tν), we need
mϕ ≲ 0.1 eV to ensure ϕ remains as radiation before

recombination. Saturating mϕ ∼ 0.1 eV, we can infer that
f ∼ 0.1 MeV and Λ ∼ 100 eV. Therefore, the ALP model
satisfies both conditions, and we use it as a benchmark
model for recoupling dark radiation.

APPENDIX C: FULL MCMC RESULTS

Figures 10–12 show the full cosmological parameter
space of the results in Fig. 9 top left, top right, and bottom,
respectively. At the edge of the parameter space of the
clustering parameter S8 ¼ σ8ðΩm=0.3Þ0.5, we show a gal-
axy survey bound from KiDS-1000 [130] for comparison
(in purple, note only the edge of the 1-σ and 2-σ range is
visible). We also show a bound on H0 from Ref. [107] in
gray at the edge of the H0 parameter space (note only the
edge of the 1-σ and 2-σ range is visible).

FIG. 11. Full cosmological parameter space for the free-streaming, fluid, and instantaneous decoupling cases.
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