
A PROPERTY-GUIDED DIFFUSION MODEL FOR GENERATING MOLECULAR GRAPHS

Changsheng Ma⋆, Taicheng Guo†, Qiang Yang⋆, Xiuying Chen⋆, Xin Gao⋆

Shangsong Liang∗, Nitesh Chawla†, Xiangliang Zhang†

⋆ King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
∗ MBZUAI, UAE † University of Notre Dame, IN, US

ABSTRACT

Inverse molecular generation is an essential task for drug dis-
covery, and generative models offer a very promising avenue,
especially when diffusion models are used. Despite their great
success, existing methods are inherently limited by the lack of
a semantic latent space that can not be navigated and perform
targeted exploration to generate molecules with desired prop-
erties. Here, we present a property-guided diffusion model
for generating desired molecules, which incorporates a so-
phisticated diffusion process capturing intricate interactions
of nodes and edges within molecular graphs and leverages
a time-dependent molecular property classifier to integrate
desired properties into the diffusion sampling process. Fur-
thermore, we extend our model to a multi-property-guided
paradigm. Experimental results underscore the competitive-
ness of our approach in molecular generation, highlighting its
superiority in generating desired molecules without the need
for additional optimization steps.

Index Terms— Molecular Graph Generation, Diffusion
Model, Drug Discovery

1. INTRODUCTION

A fundamental problem in drug discovery and chemistry is to
design novel molecules with desired properties. Direct opti-
mization or exploration of the vast and discrete space of drug-
like molecules, estimated to be on the order of 1060 [1], is
daunting. Recent advances in deep generative models have
led to significant progress in the field, especially after the
introduction of diffusion models [2], which significantly en-
hanced the capacity to capture the underlying data distribu-
tion and generate valid molecules. However, their inability to
generate molecules with specific properties is a fatal limita-
tion. This limitation arises from the standard two-stage pro-
cess in generating desired molecules: encoding the original
dataset into a semantic latent space, followed by conducting
Bayesian optimization within this space to do optimization.
Since the latent space of the diffusion model lacks seman-
tics, interpolation in this latent space along a specific direc-
tion leads to unpredictable changes and fails to produce the
desired molecules, as shown in Fig. 1.

Fig. 1: The latent space of existing generators (upper) pos-
sesses semantics, allowing for Bayesian optimization to find
desired molecules, whereas the diffusion model cannot, be-
cause its latent space (lower) has no semantics.

In this paper, we exploit a classifier to improve the dif-
fusion generator and introduce a property-guided diffusion
model for molecular graph generation. Unlike the previ-
ous two-stage paradigm, our approach leverages the synergy
between a graph diffusion generator and a time-dependent
molecular property classifier. By training the property clas-
sifier with respect to specific molecular property categories,
we harness the gradient information derived from the classi-
fier over time steps to guide the diffusion sampling process
toward the desired property category. This succinct design
comes with two additional advantages, one is to generate the
desired molecule without an additional optimization process,
and the other is that molecules with multi-objective proper-
ties can be generated by simply linearly combining multiple
property classifiers. We validate our method on molecule
generation and desired molecule generation, the results show
that our model can generate the desired molecules well while
maintaining competitive generation performance.

Our contributions are as follows: 1) To the best of our
knowledge, we are the first to propose the property-guided
diffusion model for molecular graph generation, providing an
effective solution to generate desired molecules via diffusion
models. 2) For more practical use, we extend our model
to multi-property-guided molecular generation, enabling the
concurrent satisfaction of multiple properties. 3) Experi-
mental results demonstrate the superior performance of our
method over state-of-the-art baselines.
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Fig. 2: The overview of our model: the solid arrow repre-
sents the forward process, and the dashed arrows depict the
property-guided reverse process.

2. METHODOLOGY

In this section, we start with problem formulation and then
provide the theoretical foundation of the proposed model for
building a graph diffusion model with classifier guidance as
shown in Fig. 2. Subsequently, we delve into the specifics
of the graph diffusion generator and the property guidance
classifier. Lastly, we outline the sampling process.

2.1. Problem Formulation

Let G = (A,X) denote a molecular graph G with adja-
cency tensor A and feature matrix X . To model the dif-
fusion process, we introduce timesteps denoted as T . We
initialize the process with G0 and define a noisy trajectory
as {Gt = (Xt,At)}t∈[0,T ], where [0, T ] denotes a fixed
timestep range. Our aim is to generate novel molecules while
maximizing alignment with a specific property category y.

2.2. Theoretical Foundation

The forward process of diffusion models defines a Markov
chain in which random noise is progressively added to the
data until the output distribution converges to a known prior
distribution, such as a Gaussian distribution. In the context of
the graph domain, we begin by randomly sampling a graph
G0, and the well-defined forward process unfolds over T
timesteps, resulting in a trajectory of graphs {Gt}t∈[0,T ],
which satisfy the following equation:

q (Gt | G0) =
√
ᾱtG0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, 1), (1)

where αt =
∏t

s=1 αs and αt is a time-dependant differen-
tiable function chosen to ensure q (Gt) ≈ N (Gt;0, I). We
model this diffusion process by Stochastic Differential Equa-
tions (SDEs) and obtain the graph diffusion generator pθ.
Then the reverse noising process follows pθ (Gt−1 | Gt) =
N

(
µθt , σ

2
θt
I
)
, where µθt and σ2

θt
are the mean and variance

under the reverse process at time t.
To generate a graph that satisfies a specific category y,

we train a property guidance classifier pϕ (y | Gt) on noisy

graphs Gt to guide the diffusion sampling process. Expand-
ing on [3], with Z as a normalizing constant, the distribution
post-incorporating the classifier guidance is as follows:

pθ,ϕ (Gt−1 | Gt, y) = Zpθ (Gt−1 | Gt) pϕ (y | Gt−1) . (2)

This distribution can be approximated by a Gaussian distribu-
tion with a shifted mean as:

pθ (Gt−1 | Gt) pϕ (y | Gt−1) = N (µθt + σ2
θt
Ig, σ2

θt
), (3)

where pϕ (y | Gt−1) is the probability of Gt−1 belonging to
class y and g = ∇Gt−1

log pϕ (y | Gt−1).

2.3. Graph Diffusion Generator

Given a graph G0 and its trajectory of noisy random vari-
ables {Gt = (Xt,At)}t∈[0,T ] over a fixed range of timesteps
[0, T ], the forward process can be represented by SDEs as

dGt = ft (Gt) dt+ gt (Gt) dw, (4)

where ft(·) represents the linear drift coefficient and gt(·) de-
notes the diffusion coefficient. Here, w represents the stan-
dard Wiener process. For the sake of simplicity, we choose
gt (Gt) to be a scalar function gt.

The generation process, which corresponds to the reverse
process of Eq. (4), can also be modeled as a diffusion process,
as demonstrated by [4], following the reverse-time SDEs as

dGt =
[
ft (Gt)− g2t∇Gt log pt (Gt)

]
dt̄+ gt dw, (5)

where ∇Gt
log pt (Gt) represents the graph score function,

w denotes a reverse-time standard Wiener process, and dt
represents infinitesimal negative timesteps from T to 0. For
the convenience of computation, we further decompose the
reverse-time SDEs into two components, namely the nodes
component and the adjacency matrix component:

dXt =
[
f1,t (Xt)− g21,t∇Xt log pt (Gt)

]
dt̄+ g1,t dw1,

dAt =
[
f2,t (At)− g22,t∇At log pt (Gt)

]
dt̄+ g2,t dw2,

(6)

where f1,t and f2,t are linear drift coefficients, satisfying
ft(X,A) = (f1,t(X), f2,t(A)). Similarly, g1,t and g2,t are
scalar diffusion coefficients, and w1,w2 denote reverse-time
standard Wiener processes. Consequently, the problem of
graph diffusion now translates into diffusing the nodes and
adjacency matrix while preserving their correlation over time.

Therefore, our graph diffusion generator pθ comprises
two neural networks, namely sγ,t and sδ,t, responsible for es-
timating the two partial score functions ∇Xt log pt (Gt) and
∇At

log pt (Gt), respectively. To achieve this, we minimize
the following objective functions:

min
γ

Et

{
λ1(t)EG0

EGt|G0
∥sγ,t (Gt)−∇Xt log pt (Gt)∥22

}
,

min
δ

Et

{
λ2(t)EG0

EGt|G0

∥∥sδ,t (Gt)−∇At log pt (Gt)
∥∥2
2

}
,

(7)

where λ1(t) and λ2(t) are positive weighting functions.
However, the ground-truth partial scores are not analytically
tractable. Therefore, we employ the denoising score match-
ing method proposed by [5] to estimate the partial scores.
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The idea is to replace pt (Gt) by p0t (Gt | G0), which is the
transition distribution from p0 to pt induced by the forward
diffusion process. Importantly, due to the linearity of the
drift coefficient, this transition distribution can be expressed
as p0t (Gt | G0) = p0t (Xt | X0) p0t (At | A0). Sampling
from these Gaussian distributions is straightforward since the
means and variances are tractable and determined by the coef-
ficients of the forward diffusion process. Thus, the objective
functions can be expressed as follows:

min
γ

Et

{
λ1(t)EG0

EGt|G0
∥sγ,t (Gt)−∇Xt log p0t (Xt |X0)∥22

}
,

min
δ

Et

{
λ2(t)EG0

EGt|G0

∥∥sδ,t (Gt)−∇At log p0t (At | A0)
∥∥2
2

}
.

(8)

To capture the dependency between Xt and At and im-
prove the estimation of the partial score functions, we employ
different neural network architectures. For the score-based
model sγ,t, which estimates ∇Xt

log pt (Gt), we utilize mul-
tiple layers of Graph Convolutional Network (GCN) [6]. For
the score-based model sδ,t, which is responsible for estimat-
ing ∇At

log pt (Gt), it is crucial to consider the structural de-
pendencies between nodes due to the significant impact of
bonds on the chemical structure of a molecule. Thus, we
leverage graph multi-head attention [7] to capture node in-
teractions based on their structural dependencies. Addition-
ally, we utilize the two-order adjacency matrix to model long-
range dependencies within the molecule, further enhancing
the ability of the model to capture the intricate relationship
between nodes in the molecular graph.

Furthermore, we incorporate the time information into the
two score-based models sγ,t and sδ,t, by scaling the output of
the models with the standard deviation of the transition distri-
bution at time t. This scaling allows the models to adjust their
predictions based on the uncertainty of the diffusion process
at each timestep. By considering the time-dependent scaling,
we can better align the estimated partial score functions with
the properties of the underlying graph at different stages of
the diffusion process.

2.4. Propertiy Guidance Classifier

Considering that molecular properties are global features, we
leverage GCN [6] along with the gated recurrent unit from [8]
to develop our classifier pϕ. Importantly, the models utilized
for the reverse process and guidance in Equation (3) are time-
dependent, operating on noisy input graphs. Therefore, the
property guidance classifier pϕ must consider the timestep t
as an additional input and undergo training on noisy graphs
from various timesteps. The objective function is the entropy
loss between the predicted property category and the desired
property category as Lpϕ

= CrossEntropy (pϕ (Gt) , y) .
By integrating the gradient ∇Gt log pϕ (Gt, y) into the

sampling process, we can ensure the generated molecules ex-
hibit the desired characteristics or meet certain criteria defined
by the classifier. Moreover, for generating desired molecules

Algorithm 1 Property-Guided Diffusion Sampling
Input: Given a diffusion model pθ , classifier pϕ, and property category y,
gradient scales for X and A: ρX , ρA
Output: Generated nodes feature X0, adjacency matrix A0

1: XT ,AT ← sample fromN (0, I)
2: for t = T to 1 do
3: µXt ,ΣXt , µAt ,ΣAt ← pθt
4: Xt−1 ← sample from

N
(
µXt + ρXΣXt∇Xt log pϕt (Gt, y) ,ΣXt

)
5: At−1 ← sample from

N
(
µAt + ρAΣAt∇At log pϕt (Gt, y) ,ΣAt

)
6: end for
7: return X0, A0

with multiple properties, our model can seamlessly extend
to multi-property guidance by integrating a weighted sum of
each classifier as pϕ (y | Gt) =

∑
i ρipϕi

(yi | Gt), where ρi
is the weighting factor and pϕi

(yi | Gt) denotes the classifier
for each property.

2.5. Graph Sampling Process

To generate graphs, we simulate reverse-time SDE trajecto-
ries as in Equation (6) while incorporating property classifier
guidance at each timestep. We adopt the Predictor-Corrector
Sampler [5], as this strategy enables effective exploration of
high-density distribution regions while avoiding low-density
ones. The predictor relies on the reverse diffusion SDE solver
(the SDE employed in our approach is VE SDE [5]), and the
corrector employs annealed Langevin dynamics [9]. Once we
have obtained the graph diffusion model pθ and the classifier
model pϕ, we utilize the gradients ∇Xt

log pϕ (Gt, y) and
∇At

log pϕ (Gt, y) to guide the diffusion sampling process
towards the property category y. The overall sampling pro-
cess is summarized in Algorithm 1.

3. EXPERIMENT

3.1. Experimental Setup

Dataset. We experiment on QM9 [10], utilizing plogP [11]
and QED [12] as guidance properties. The datasets are di-
vided into four categories based on property value quartiles.
Baselines. We compare our model with several SOTA mod-
els: GraphAF [13], GraphDF [14] and MoFlow [15] are flow-
based models. GraphEBM [16] is an energy-based model.
EDP-GNN [17] and GDSS [18] are diffusion-based models.
Evaluation Metrics. Validity is the percentage of chemi-
cally valid molecules, Uniqueness is the percentage of unique
molecules, and Novelty is the percentage of novel molecules
with reference to the training set. V.U.N is the production of
these three metrics. Validity w/o Correction (VwoC) is the
percentage of valid molecules without post-hoc chemical va-
lency correction. Fréchet ChemNet Distance (FCD) [19] is
to evaluate the distance between the training and generated
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Table 1: Generation performance on QM9. Results are the means and standard deviations of three independent runs.
Method % VwoC ↑ NSPDK ↓ FCD ↓ % Validity ↑ % Uniqueness ↑ % Novelty ↑ % V.U.N ↑
GraphAF 67 0.020± 0.003 5.268± 0.403 100.00 94.51 88.83 83.95
GraphDF 82.67 0.063± 0.001 10.816± 0.020 100.00 97.62 98.10 95.77
MoFlow 91.36± 1.23 0.017± 0.003 4.467± 0.595 100.00± 0.00 98.65± 0.57 94.72± 0.77 93.44± 0.44

EDP-GNN 47.52± 3.60 0.005± 0.001 2.680± 0.221 100.00± 0.00 99.25± 0.05 86.58± 1.85 85.93± 0.09
GraphEBM 8.22± 2.24 0.030± 0.004 6.143± 0.411 100.00± 0.00 97.90± 0.14 97.01± 0.17 94.97± 0.02

GDSS 95.72± 1.94 0.003± 0.000 2.900± 0.282 100.00± 0.00 98.46± 0.61 86.27± 2.29 84.94± 1.40
Ours 96.98± 1.23 0.002± 0.000 2.204± 0.065 100.00± 0.00 98.52± 0.15 97.23± 1.05 95.79± 0.16

Fig. 3: Property-Guided performance. (a): The proportion of molecules in each category relative to all molecules generated
under the guidance of different classifiers. (b): The uniqueness and novelty value of generated molecules within each individual
class under the guidance of different classifiers. (c): Top 3 molecules with QED values out of 10,000 randomly generated
molecules by different models: ① Without guidance, ② QED-guided, ③ QED & Ring-guided.

graph sets. Neighborhood subgraph pairwise distance ker-
nel (NSPDK) [20] calculates the mean maximum discrepancy
between the generated and test molecules.
Implementation Details. For the property classifier pϕ, we
utilize a GCN with 2 layers, with hidden dimensions set to 16.
The scaling factors ρX and ρA are set to 0.6 and 0.0, respec-
tively. For the diffusion model pθ, sγ comprises a GCN with 2
layers and a hidden dimension of 16. sδ employs an attention-
based architecture with 4 attention heads, initial, hidden, and
final channel sizes of 2, 8, and 4, respectively. The number of
GCN layers is 3 with a hidden dimension of 16. The SDEs
process follows [18]. During training, we use the Adam op-
timizer with a learning rate of 5 × 10−3 and weight decay of
1 × 10−4. The batch size is 1024. We perform 300 training
epochs for pθ and 50 epochs for pϕ.

3.2. Results and Discussion

Generation Performance. All metrics are assessed on
10,000 randomly generated molecules, with our model out-
performing baselines in almost all metrics. The highest
VwoC value highlights the ability of our model to grasp the
chemical valency rule, while the top NSPDK and FCD values
indicate its capability to capture the underlying distribution.
Furthermore, the best V.U.N value shows our model can gen-
erate more valid, unique, and novel molecules.
Property-Guided Performance. As the property category is
defined through quartile divisions of the property value of the
original dataset, we perform the sampling process guided by
each property classifier and conduct inter-class evaluation and

intra-class evaluation. Fig. 3(a) shows that different property
classifiers can guide the generation of a greater number of
molecules within their respective categories, providing sat-
isfactory results in inter-class evaluation. Fig. 3(b) shows
molecules generated under corresponding property guidance
within each class exhibit improved uniqueness and novelty,
demonstrating high quality in intra-class evaluation. Overall,
the property-guided performance of our model is verified.
Multi-Property-Guided Performance. To align more closely
with drug design scenarios, we extend our model to handle
larger molecules and multiple properties. We introduce Ring-
guided diffusion alongside the QED-guided diffusion, setting
the guidance for the ring number to three. This choice is
motivated by the empirical observation that molecules with
high QED values typically exhibit a characteristic of three
rings. In Fig. 3(c), ② exhibits better QED values compared
to ①, and ③ outperforms both, highlighting the effectiveness
of our model in multi-property-guided scenarios.

4. CONCLUSION

In this paper, we present a novel property-guided diffu-
sion model for molecular graph generation, where a time-
dependent classifier is integrated to guide the diffusion
sampling process toward desired property categories. This
addresses the limitation of conventional diffusion models,
which lack a semantic latent space for targeted molecular op-
timization. Experimental results demonstrate the superiority
of our model in generating molecules with desired properties.
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