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1  |  INTRODUC TION

The declining cost of DNA sequencing has increased the adoption 
of phylogenetic studies using thousands of loci, but this trend has 
also brought substantial analytical challenges. The most demanding 
parts of typical phylogenomic workflows, such as raw sequence read 
cleaning and adapter trimming (e.g. Fastp (Chen et al., 2018)), contig 
assembly (e.g. SPAdes (Bankevich et al., 2012)), sequence alignment 
(e.g. MAFFT (Katoh et al., 2002)), phylogenetic tree estimation (e.g. 
RAxML-NG (Kozlov et  al.,  2019) and IQ-TREE (Minh et  al.,  2020; 
Nguyen et al., 2015)), and species delimitation (e.g. BPP (Yang, 2015)), 
use high-performance programming languages (e.g. C and C++). 

However, other essential processes, such as alignment manipulation 
(e.g. filtering, splitting, extracting and concatenating) and summary 
statistic calculation (e.g. number of parsimony informative sites, per-
cent missing data, etc), are typically carried out in interpreted lan-
guages, such as Python (e.g. Borowiec, 2016; Faircloth, 2016), R (e.g. 
Hutter et al., 2022), or Perl (e.g. Kück & Longo, 2014). The computa-
tional efficiency of this approach is limited by the requirement of an 
interpreter running alongside the application, type inference at run-
time and garbage collection memory management, which together 
result in a high memory footprint. One exception to this pattern is 
the program goalign (Lemoine & Gascuel, 2021), which uses a com-
piled programming language and eliminates dependencies required 
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Phylogenetic studies now routinely require manipulating and summarizing thousands 
of data files. For most of these tasks, currently available software requires considera-
ble computing resources and substantial knowledge of command-line applications. We 
develop an ultrafast and memory-efficient software, SEGUL, that performs common 
phylogenomic dataset manipulations and calculates statistics summarizing essential 
data features. Our software is available as standalone command-line interface (CLI) 
and graphical user interface (GUI) applications, and as a library for Rust, R and Python, 
with possible support of other languages. The CLI and library versions run native on 
Windows, Linux and macOS, including Apple ARM Macs. The GUI version extends 
support to include mobile iOS, iPadOS and Android operating systems. SEGUL lever-
ages the high performance of the Rust programming language to offer fast execution 
times and low memory footprints regardless of dataset size and platform choice. The 
inclusion of a GUI minimizes bioinformatics barriers to phylogenomics while SEGUL's 
efficiency reduces economic barriers by allowing analysis on inexpensive hardware. 
Our support for mobile operating systems further enables teaching phylogenomics 
where access to computing power is limited.
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at runtime. Many of the program functions, however, operate on 
only a single file, forcing users to write custom scripts to work on 
thousands of genomic files.

With some exceptions (e.g. BPP (Yang,  2015) and FastQC 
(Andrews, 2010)), most commonly used phylogenomic programs are 
available only as command-line interface (CLI) applications. CLI pro-
grams use computer resources more efficiently than graphical user 
interface (GUI) applications, and they are also easier to develop than 
comparable GUI software, but they present barriers for scientists 
with limited computing knowledge or support. An approach using 
a high-performance programming language with a GUI would mini-
mize the computing skills needed to study phylogenomics.

A fast, memory-efficient, reduced-dependency application for 
phylogenomic studies would enhance research efficiency and re-
peatability, while also improving accessibility for biologists with lim-
ited computing resources. Furthermore, efficient computing reduces 
the carbon footprint of bioinformatics (Grealey et  al., 2022). Such 
applications often require programmers to use a fast, compiled pro-
gramming language that allows fine control over how data are man-
aged in computer memory. In this context, the two commonly used 
programming languages are C and C++. They require programmers 
to ensure valid memory access, correct variable type to store data, 
and ensure no data races (i.e. multiple cores/threads modify data 
concurrently), which make them challenging to use (Perkel, 2020). 
These code-correctness issues are difficult to avoid and represent 
common problems in phylogenetic software (Darriba et  al.,  2018). 
The recently emergent programming language, Rust, offers a 
memory-safe alternative to C/C++ (Köster, 2016; Perkel, 2020). It 
comes with efficient development tools (e.g. a package manager and 
a simple build system), guarantees valid memory access, does not 
require garbage collection, and prevents data races for multithread-
ing applications. As a compiled programming language, Rust has zero 
dependency at runtime and can be distributed as a single executable 
CLI. Developing phylogenomic tools in Rust promises fast and effi-
cient performance. Reducing dependencies minimizes conflict with 
other applications when used as part of analysis pipelines and leads 
to improved research reproducibility.

GUI development is more complicated than CLI development, 
especially when targeting multiple platforms. A common cross-
platform approach uses Java (e.g. BEAST (Suchard et  al.,  2018), 
BEAST2 (Bouckaert et al., 2019), FastQC (Andrews, 2010)), but this 
strategy is often limited by the language's memory management. 
Furthermore, it is challenging to maintain a consistent user inter-
face (UI) across operating systems (see TaxonDNA documentation, 
https://​github.​com/​gaurav/​taxondna (commit hash: 50584 ac)). 
An alternative approach uses the Shiny package in R (e.g. phruta 
(Román-Palacios, 2023), treehouse (Steenwyk & Rokas, 2019)), but 
is less efficient because the application runs in the R environment 
and a browser. An emergent cross-platform framework, Flutter, 
promises mobile and desktop support with consistent UI across 
platforms. The programming language Dart, required to write 
Flutter applications, uses garbage-collected memory management, 
and features an excellent foreign-function interface to interact with 

higher-performance programming languages. Combining the Flutter 
framework and Rust language allows us to develop a cross-platform, 
high-performance GUI application for phylogenomics.

We developed the SEGUL (Sequence and Genomic Utilities) appli-
cations for phylogenomic data manipulation and summarization. They 
are available as a CLI, GUI and programming language library, with 
support for MacOS, Linux, Windows, iOS, iPadOS and Android. The 
application is supplemented by adaptive web-based documentation 
for easy navigation of SEGUL's various features across a wide range 
of devices. We designed SEGUL with beginners in mind, while still 
providing advanced features for experienced users. As such, SEGUL 
is suitable for both research and teaching. SEGUL's use of the Rust 
programming language combined with the Flutter-coded GUI pro-
vides consistent performance across supported operating systems.

2  |  IMPLEMENTATION

SEGUL includes a compiled, single executable, command-line appli-
cation with no dependencies. This version supports Windows (native 
and Windows Subsystem for Linux), MacOS, and Linux. We provide 
a fully static executable for old Linux distributions (i.e. the distri-
butions with GLIBC version lower than the Rust minimum require-
ment, see https://​doc.​rust-​lang.​org/​night​ly/​rustc/​​platf​orm-​suppo​rt.​
html) and a dynamically linked executable to GLIBC (https://​www.​
gnu.​org/​softw​are/​libc/​) for more optimized performance in newer 
Linux distributions. Users can install the pre-compiled executable 
provided in the source code repository or compile the application 
from the source code (see the Software Availability section below). 
The latter installation method expands SEGUL platform support to 
any operating system supported by Rust (https://​doc.​rust-​lang.​org/​
night​ly/​rustc/​​platf​orm-​suppo​rt.​html). The compiler also fine-tunes 
the resulting executable for the user's computer.

The GUI version is written in Dart using the Flutter framework. 
All demanding computations use the same Rust code base as our CLI 
and library. The application is available in beta supporting Windows, 
MacOS, Linux, iOS, iPadOS and Android. The current version is 
available to test using Apple TestFlight for iOS, iPadOS and macOS, 
and at the GitHub repository page for other operating systems (see 
Software Availability below). We expect to distribute the stable ver-
sion via the official store of each operating system, such as AppStore 
for iOS and PlayStore for Android.

SEGUL is also available as a Rust library (called crates in the Rust 
programming terminology), allowing developers to access SEGUL 
functions through the application programming interface (API). We 
assigned the API version number by following semantic versioning 
2.0.0 (https://​semver.​org/​). For Rust, the installation process is as 
easy as typing ‘cargo add segul’ or by manually adding SEGUL as a 
dependency in the Rust cargo.toml file. The versality of the Rust 
programming language and the performance of our library will be 
attractive for usage in slower programming languages (e.g. Python 
and R). For these languages, programmers can bind SEGUL via the 
C programming interface. In R and Python, however, Rust support 
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is growing due its value for developing high-performance software 
without the challenging aspects of C/C++ memory management. 
Packages exist to simplify the binding of Rust. In R, programmers can 
use the rextendr package; in Python, PyO3 is available. Python or  
R code can also interact with the SEGUL CLI using the operating sys-
tem process. While SEGUL CLI is a single executable with no depen-
dency, for published software, interacting through the SEGUL API 
yields a cleaner application design and avoids common dependency 
issues, such as improper setup of environment variables. We used a 
similar approach to develop the GUI version. We provide more de-
tailed instructions in our application documentation.

Cross-platform quality documentation is essential in modern 
application development. We leverage the open-source static-site 
generator, Docusaurus (https://​docus​aurus.​io/​), to rapidly build a 
cross-platform website interface for the application documentation. 
The content of the documentation is written in Markdown, while 
the rest of the website is written in TypeScript. Our documentation 
source code is available inside the ‘website’ folder in the same repos-
itory as our GUI code (https://​github.​com/​hhand​ika/​segui​). We use 
the front-end cloud platform, Vercel (https://​vercel.​com/​), to host 
and automatically deploy the website after modifications in the main 
branch of the source code on GitHub.

3  |  FE ATURE AND USAGES

SEGUL development focuses on improved efficiency when working 
with thousands of alignment files, enabling analysis on computers 
with limited capabilities. We achieve this goal by reducing execu-
tion time and RAM usages. SEGUL has a growing list of features for 
phylogenomic data manipulation and summary statistic calculation 
(Table 1). Although phylogenomic analyses are growing in frequency, 
Sanger sequencing remains common in certain circumstances. 
Several features of our application, such as alignment concatena-
tion, sequence removal and translation, are applicable to both phy-
logenomic and Sanger datasets.

All versions of SEGUL work on FASTA, NEXUS, and relaxed 
PHYLIP for alignment and processed sequence files, NEXUS and 
RaXML standards for partitions, FASTA files for contiguous (contig) 
sequences, and uncompressed and GNU Gzip compressed FASTQ 
files for raw-read sequences. All sequence and alignment files are 
supported in interleaved and sequential format. Except for alignment 
splitting, all the features support multiple input files. All application 
versions provide detailed log-file output. SEGUL-critical and some 
non-critical functions are tested using the unit and integration test 
system provided by the Rust and Dart programming languages. We 
establish a continuous integration (CI) system using GitHub Actions 
(https://​github.​com/​featu​res/​actions). This system is designed to au-
tomatically validate any modifications made to the code. We ensure 
that failures in the designed tests are publicly displayed in the source 
code repository. Furthermore, our GitHub Actions CI system facili-
tates the release of CLI applications to all supported operating sys-
tems. Additionally, it enables the distribution of GUI applications for 

operating systems that permit installations from external sources, 
including Windows, Linux, and Android.

The command-line version features an informative terminal output 
with information on the application input, processing stages, and out-
put. We provide default commands that eliminate the need for users to 
type them for common scenarios. For example, when the input is DNA 
sequences, users do not need to type the ‘–datatype’ command. Since 
version 0.19.0, SEGUL automatically detects the input format based 
on the file extension, eliminating the need for using ‘–input-format’. 
Multiple file outputs will always be written to a directory. The appli-
cations do not automatically overwrite existing files but do provide an 
overwrite option for automated phylogenomic pipelines.

The GUI version provides interactive access to SEGUL features, 
while offering similar performance to its CLI sibling. We leverage 
Flutter cross-platform and adaptive UI support to adapt UI elements 

TA B L E  1 Feature comparison among SEGUL v0.20.0, AMAS 
v1.02, and goalign v0.3.5.

Features SEGUL AMAS Goalign

Alignment compression Yes

Alignment concatenation Yes Yes Limited

Alignment consensus Yes

Alignment conversion Multiple files Multiple files Single file

Alignment drawing Yes

Alignment filtering Yes

Alignment masking Yes

Alignment shuffling Yes

Alignment splitting Yes Yes Yes

Alignment summary statistics Rich Moderate Limited

Alignment to unaligned 
sequence conversion

Planned Yes

Alignment transposal Yes

Genomic summary statistics FASTQ reads, 
contigs

Duplicate sequence removal Planned Yes

Multi-sequence alignment Yes

Open reading frame finder Yes

Partition format conversion Yes

Sample distribution mapping Yes

Sequence ID extraction Yes

Sequence comparison Yes

Sequence extraction Multiple files Single file

Sequence ID renaming Multiple files Single file

Sequence removal Multiple files Multiple files Single file

Sequence replication Multiple files Single file

Sequence translation Multiple files Multiple files Single file

Sequence trimming Planned Yes

Sequence unique ID parsing Yes

API support Yes Yes Yes

GUI version availability Yes

Mobile support Yes
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to different screen sizes and platforms. We followed the open-source 
Material 3 design system (https://​m3.​mater​ial.​io/​) that provides 
guidelines for creating adaptive, accessible, cross-platform applica-
tions. For example, on a small screen, such as a smartphone, features 
are accessed through a bottom navigation bar, whereas on a medium 
screen (e.g. tablets and foldable smartphones) and a large screen (e.g. 
laptops and desktops) we use a navigation rail and navigation drawer, 
respectively. The narrower navigation component (navigation rail) 
and the wider version (navigation drawer) are placed vertically on the 
left side of the screen to exploit greater screen width. We also imple-
ment Material 3 colour schemes to adapt the application colour pal-
ette in all supported platforms. This integration provided by Flutter 
leverages the accessibility features of Material 3 to enhance user ex-
perience and ensure optimal rendering for people with visual impair-
ment. We also provide support for dark mode to reduce eye strain 
when running our GUI application in a low-light environment. For 
platforms that support dynamic colour rendering, our application co-
lours will adapt to the user's operating system settings. For instance, 
on macOS and Windows, the application colour palette will be based 
on the operating system accent colour setting. On Android and Linux, 
the colour palette will be based on the users' operating system wall-
paper. The dynamic colour is unsupported on iOS and iPadOS. On 
macOS, our application uses the Apple App Sandbox feature (https://​
devel​oper.​apple.​com/​docum​entat​ion/​secur​ity/​app_​sandbox) to en-
hance application security and protect user data. The App Sandbox 
will eventually also allow us to distribute the application in the Mac 
App Store, which simplifies installation and software update. A similar 
approach is implemented for iOS, iPadOS, and Android.

The SEGUL GUI supports all the features of the CLI version, 
while outputting similar log files to enable reproducibility. We also 
provide interactive windows to show the file inputs and output. The 
input window provides the list of the files, their sizes, the last mod-
ified time, and a delete button to remove the file. For plain-text and 
comma-separated value (CSV) output files, such as the output of 
summary statistics and sequence ID extraction function, we provide 
a built-in viewer to allow users to inspect the file output without 
having to leave the application. We also include a share function to 
simplify cross-device file sharing using operating system features. 
For example, on iOS and MacOS, users can send files between Apple 
devices via AirDrop without leaving SEGUL GUI. The file sharing 
function also allows users to transfer output files to other applica-
tions installed in the user operating system. Due to the interactive 
nature of GUI application, the default folder feature is unavailable 
for the GUI version. On desktop operating systems, the application 
uses the operating system directory selection UI that allows users 
to create a new directory. On mobile operating systems, SEGUL GUI 
only writes to its designated document directory mandated by the 
operating system. We provide a data usage menu in the application 
settings to allow users to manage the application data. We anticipate 
future developments to provide interactive statistics.

Current documentation is available in English. The site navigation 
components and its layout are adaptive to viewing in different screen 
sizes. Like our GUI application, our documentation also supports dark 

mode. We anticipate translation of the documentation to other lan-
guages, and we welcome public contributions toward this goal.

4  |  FE ATURE COMPARISON

We compare SEGUL to goalign (Lemoine & Gascuel, 2021) and AMAS 
(Borowiec, 2016) because they share similar performance and use 
cases. goalign is the most feature-rich (Table 1), however, most of 
its functions operate on a single file; two exceptions are alignment 
concatenation (multiple files) and sequence alignment (two files). 
AMAS and SEGUL, on the other hand, operate on single or multiple 
files. SEGUL CLI provides default commands, default output direc-
tory, and safety features to avoid overwriting existing files. The GUI 
version keeps the safety feature of the CLI application and provides 
an interactive menu to simplify user experience. AMAS will only pro-
vide notice after overwriting existing files and will only output to the 
current working directory. goalign does not provide any notice after 
overwriting existing files. The AMAS alignment splitting feature will 
always write the output files in the same folder as the input files. 
All applications provide APIs, but neither AMAS nor goalign offers 
a GUI. Several features (e.g. sample mapping, sequence unique ID 
parsing, and partition format conversion) are unique to SEGUL.

While several SEGUL features overlap with AMAS and goalign, 
SEGUL provides greater functionality. For instance, SEGUL gener-
ates summary statistics for alignment files, raw read sequences and 
contiguous sequence, whereas AMAS and goalign only support align-
ment files. The application's raw summary statistics provide a sim-
ple version of the statistics generated by FastQC (Andrews, 2010). 
SEGUL outputs CSV files and is designed to compare many raw read 
sequences quickly without an additional application (e.g. multiQC to 
summarize FastQC results). For alignment files, SEGUL always checks 
that the sequences within each alignment are the same length and by 
default checks that sequences contain only valid IUPAC characters. 
To speed up processing for most features, users can skip the IUPAC 
check using the ‘–datatype ignore’ option, but the sequence length 
is always checked. AMAS does not check for IUPAC validity and the 
sequence length verification is optional. goalign checks both but does 
not generate alignment partitions. Another example, the SEGUL se-
quence removal feature supports regular expression, file and terminal 
input, while AMAS supports only terminal input. As noted above, the 
goalign sequence removal works on only a single file.

5  |  PERFORMANCE COMPARISON

5.1  |  Testing methodology

To highlight the performance of SEGUL, we compared features 
of the command line version SEGUL v0.20.0 to AMAS v1.02 (see 
Borowiec,  2016), the fastest alternative application and the most 
comparable with SEGUL (e.g. concatenation with partition out-
put and multiple file input support across most features). Where 
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necessary, we test the applications under different settings to pro-
vide fair performance comparisons. For example, we test AMAS 
using the ‘–check-align’ command, which SEGUL does by default. 
We include goalign v0.3.5 for the alignment concatenation perfor-
mance test. We used six published genomic datasets (four DNA se-
quence datasets and two amino acid sequence datasets (AA)) with 
a range of taxon, site and character counts (Table  2). We down-
loaded the datasets either directly from the original sources or using 
BenchmarkAlignments scripts (https://​github.​com/​robla​nf/​Bench​
markA​lignm​ents).

We tested each platform using all the alignment datasets, with 
each combination replicated five times. For sequence removal tests, 
we used the SEGUL ID extraction feature to get the list of sequence 
IDs in each dataset. We removed the first three taxa in alphabeti-
cal order. For the alignment splitting test, we concatenated all the 
alignments using SEGUL CLI and used the resulting files and their 
partitions to conduct the splitting test. All the datasets were held 
in the internal storage of the computer. We conducted the test 
using FASTA, NEXUS and PHYLIP input files supported by all tested 
applications.

We ran the test on a custom-built PC running Linux. We auto-
mated the testing process using SHELL scripts optimized for FISH 
SHELL (https://​fishs​hell.​com/​). To compare the performance of the 
applications, we use GNU Time (https://​www.​gnu.​org/​softw​are/​
time/​). We recorded execution time, memory, and CPU core usages. 
SEGUL detects available CPU cores and uses them according to 
the current workload. AMAS and goalign, on the other hand, have 
settings for the core counts. We set AMAS and goalign to use all 
available cores in comparisons with SEGUL. Like SEGUL, the actual 
number of cores being used by AMAS and goalign would depend 
on workload, and to some extent, on the multithreading algorithm 
implemented by the programming language.

To compare the performance and to test the scalability of the GUI 
version relative to the CLI version of SEGUL, we conducted limited 

tests for the SEGUL GUI v1.0.0-beta6 on a Linux PC, an iPad, and a 
budget Android smartphone (Table 3). We used Oliveros et al. (2019) 
and Shen et  al.  (2018) datasets for GUI performance tests. These 
two datasets have the highest number of characters for DNA and 
amino acid sequences, respectively, among our six test datasets. For 
the tests on the desktop Linux, we also include raw read summary 
statistics of a whole genome sequence (WGS) of Peromyscus eremicus 
(NCBI SRA #SRR26062012, Table 2) provided by Baylor College of 
Medicine on NCBI Sequence Read Archive (SRA). We downloaded 
the genome file using SRA toolkit. We used fastq-dump application 
in SRA toolkit with ‘–split-files’ command to extract the downloaded 
SRA file into two uncompressed FASTQ reads. The resulting files 
were each 338 gigabytes (GB) in size. Due to limited storage space 
in the testing computer, we stored the files in an external solid-state 
drive (SSD) (Table 3).

We used GNU Time to measure the RAM usage on Linux and 
collected the execution time provided by the application in the log 
file that measured only the time of executing the assigned task. The 
log file is available to access in the setting menu of the application. 
Our test with the CLI version showed the GNU Time measurements 
were identical to the internal measurement provided in the SEGUL 
log file. On smartphones and tablets, tracking accurate and compa-
rable hardware usages with desktop applications is complex. Thus, 
we measured only the execution time provided directly by the appli-
cation. We replicated each combination of tested feature and data-
set five times. On the Android device, simultaneously inputting over 
two thousand files crashed the application. We split the datasets 
into multiple folders with a maximum of 1500 files each. The strat-
egy allowed us to use ‘select all’ features in the input file screen and 
took advantage of the SEGUL ‘add more files’ feature to input all the 
files in the dataset. The data were kept in the internal storage of the 
device. The same strategy did not work for the iPadOS testing de-
vice when the data were in internal storage. It lost access to the data 
after reaching over ~3000 files, which caused issues for inputting 

TA B L E  2 Dataset sources, data type, taxon count, locus count, character count (missing characters + nucleotides), site count, file size and 
data source.

Datasets Datatype Taxon count Locus count Character count Site count File size Dataset URL

Chan et al. (2020) DNA 50 13,181 239,310,808 6,180,393 247 MB https://​doi.​org/​10.​5061/​dryad.​8cz8w​
9gn7

Esselstyn et al. (2021) DNA 102 4040 358,099,656 5,398,947 356 MB https://​doi.​org/​10.​5281/​zenodo.​
6459213

Jarvis et al. (2014) DNA 49 3679 453,333,006 9,251,694 438 MB http://​gigadb.​org/​datas​et/​101041#

NCBI SRA 
#SRR26062012

DNA 1 WGS 243,874,896,842* - 2 × 338 GB https://​www.​ncbi.​nlm.​nih.​gov/​sra/​
SRR26​062012

Oliveros et al. (2019) DNA 221 4060 522,529,858 2,464,926 523 MB https://​doi.​org/​10.​5061/​dryad.​
2vd01gr

Shen et al. (2018) Amino acid 343 2408 398,842,115 1,162,805 421 MB https://​doi.​org/​10.​6084/​m9.​figsh​are.​
5854692

Wu et al. (2018) Amino acid 90 5162 257,060,172 3,050,198 250 MB https://​doi.​org/​10.​6084/​m9.​figsh​are.​
60311​90.​v2

Note: The asterisk (*) denotes a total base count for two reads. The file size is estimated based on NEXUS input alignments, except for NCBI SRA 
#SRR26062012, which are two uncompressed FASTQ reads of a whole genome sequence (WGS).
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the Oliveros et al. (2019) dataset (4060 files). However, we were able 
to input the files simultaneously after we moved them to an external 
SSD. For consistency, we stored all the data for the iPadOS tests in 
the external SSD (Table 3).

To see how SEGUL CLI performance compared to the other 
applications, we calculated means and standard deviations of CPU 
time and RAM usages across replicate runs for each dataset and 
input formats for each tested feature (Figure 1). We calculated the 
CPU time by incorporating both the execution time and CPU thread 
usage. A single thread usage corresponds to 100 percent CPU usage. 
Therefore, the CPU time was computed using the following formula:

Because CPU usages were not available for GUI application, we 
used execution time to compare SEGUL CLI and GUI performance. 
We used R v4.2.3 with dplyr v1.1.2 and ggplot2 v3.4.2 packages to 
generate summary statistics and visualize the results, respectively. 
All scripts and raw data are available at (https://​github.​com/​hhand​
ika/​segul​-​bench​).

5.2  |  Testing results

On average, SEGUL CLI used less CPU time than AMAS across all 
tested datasets, features, and settings (Figure 1). The starkest dif-
ference is for summary statistic calculations. SEGUL used 0.08 of 
CPU time (15.3 vs. 190.69 CPU seconds) that AMAS used, despite 
producing more statistics (Figure 1, Table S1). AMAS noticeably used 
more CPU time when using the ‘–check-align’ setting. For example, 
on average across all datasets and input formats, AMAS ‘–check-
align’ used 40.5 times (135.05 vs. 3.33 CPU seconds) more CPU time 
than SEGUL for alignment concatenation. Even without the ‘–check-
align’ setting, AMAS used three times (10.03 vs. 3.33 CPU seconds) 
more CPU time (Figure 1, Table S1). When using ‘–datatype ignore’, 
SEGUL CLI used less CPU time than AMAS across all tested datasets 
and input formats (Figure 1). It was 0.2 of CPU time (1.92 vs. 10.03 
CPU seconds) for the alignment concatenation compared to the CPU 
time that AMAS used at default settings and 0.01 of CPU time (1.92 

vs. 135.05 CPU seconds) compared to AMAS using the ‘–check-align’ 
setting (Figure 1, Table S1). SEGUL CLI used 0.6 (3.33 vs. 6.05 CPU 
seconds) and 0.3 (1.92 vs. 6.05 CPU seconds) of CPU time that goal-
ign used for alignment concatenation at the default and with ‘–data-
type ignore’ settings, respectively (Figure 1, Table S1).

Across all tests, SEGUL CLI used less RAM than AMAS. The stark-
est contrast is when converting alignments to different formats and 
removing sequences (Figure 1). On average across tested datasets 
and input formats, SEGUL used 0.05 of the RAM space that AMAS 
used for the two analyses (24.47 vs. 485.96 MB for alignment con-
version and 24.65 vs. 502.14 MB for sequence removal) (Figure 1, 
Table S1). However, for the alignment splitting tests when the input 
files are in NEXUS format, the RAM space that SEGUL used was 
comparable to AMAS (Figure 1). Compared to goalign when concat-
enating alignment, SEGUL used 0.18 (489.87 MB), while AMAS used 
0.64 (1700.87 MB) of the RAM space that goalign used (2661.39 MB) 
(Figure 1, Table S1). Using the ‘–datatype ignore’ setting in SEGUL 
CLI did not have considerable effect on the RAM usage (Figure 1).

On average, SEGUL CLI was faster and more memory efficient 
than the GUI version (Figure  2). On identical hardware running on 
Linux, both versions had nearly equal execution times for three of 
the six tested features across the three tested datasets (Figure 2b). 
SEGUL CLI was 1.4 times (4.19 vs. 3.03 s, on average) faster for align-
ment concatenation and splitting using the Oliveros et  al.  (2019) 
dataset and 1.3 (2.51 vs. 3.56 s) and 1.2 times (4.07 vs. 4.9 s) faster, re-
spectively, using the Shen et al. (2018) dataset (Figure 2b). The highest 
RAM usage difference was 20.8 times more on the GUI (187.85 MB) 
than the CLI version (9.04 MB) when summarizing WGS reads 
(Figure 2a). Compared to the mobile version, the desktop GUI version 
was faster than the mobile version. The starkest difference was when 
summarizing alignments. On average between both tested datasets, 
the desktop version was 5.3 (1.34 vs. 7.11 s) and 10.3 times (1.34 vs. 
13.77 s) faster than on iPadOS and Android, respectively (Figure 2b).

6  |  DISCUSSION

The field of phylogenomics relies on a broad range of efficient 
software for many operations in a typical workflow (e.g. raw read 

CPU time (CPU seconds) = Execution time (seconds) ×
CPU usage (%)

100

TA B L E  3 Device specifications for each testing platform.

Linux Android iPadOS

Model Custom-built PC Xiaomi Redmi Note 12 iPad Mini (6th generation)

Processor AMD Ryzen 5900× Qualcomm Snapdragon 685 Apple A15 Bionic

Core/threads 12/24 8/8 2P + 4E cores

Ram size 64 GB 8 GB 4 GB

Storage Western Digital Black SN770 1 TB 128 GB 64 GB

GPU EVGA GeForce RTX 2060 Super 8 GB XC Ultra Adreno 610 Apple GPU (5-core)

External storage Crucial X10 Pro 2 TB – Crucial X10 Pro 2 TB

Operating System openSUSE Tumbleweed ×86_64 Xiaomi HyperOS 1.0.1.0 with Android 14 iPadOS 17.2

Kernel version 6.6.11-1-default 5.15.94 –
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assembly, tree inference), but some aspects of standard pipelines 
are neglected. We developed SEGUL to fill a need for software that 
can manipulate genomic files and calculate summary statistics in a 
manner suitable for computational experts and novices alike. SEGUL 
offers consistently fast operations, low memory demands, and ef-
ficient CPU use across all supported features. While the GUI version 
was slower and less memory efficient than the CLI version, it was 
still faster and less memory demanding than AMAS for most sce-
narios in default settings across most of tested datasets, except for 
the alignment splitting. Similarly, except for alignment splitting, RAM 
usage by either the CLI or GUI version was kept under 1 GB regard-
less of dataset size and tested feature. SEGUL's high performance 
and memory efficiency would enable processing large datasets with 

low-end computers. Computational efficiency will only increase in 
importance with routine adoption of whole genome sequencing for 
phylogenetics.

The choice of the Rust programming language enabled us to 
develop a high-performance, memory-efficient application, but 
algorithm implementation also plays a crucial role. For instance, 
summarizing two 338-GB files of WGS reads used significantly less 
RAM space compared to summarizing alignments with a total file 
size of <1 GB (Table S1). Our summarization algorithms for sequence 
reads are highly optimized for handling large file sizes. The files are 
parsed and processed by line, with each line immediately dropped 
from memory. We used stream statistics to further optimize RAM 
usages. For instance, we update the mean of read counts after each 

F I G U R E  1 SEGUL (open symbols), AMAS (filled symbols), and goalign (line symbols) mean CPU time and RAM usage on all tested datasets 
across three supported input formats. We used logarithmic scale for the x-axis to simplify visualization. All analyses were completed on 
Linux. SEGUL (–datatype ignore) is not available for summary statistics. We only tested goalign for alignment concatenation. Mean execution 
time and CPU usages for all tested applications and datasets are available in Table S2.
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Alignment Summary (FASTA) Alignment Summary (NEXUS) Alignment Summary (PHYLIP)
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Alignment Conversion (FASTA) Alignment Conversion (NEXUS) Alignment Conversion (PHYLIP)
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line of sequences to avoid storing many read sizes in RAM. For align-
ment concatenation, we use multiple cores only for getting unique 
IDs. The concatenation algorithm itself is single threaded. This al-
lowed us to sort the loci alphanumerically, while reducing memory 
allocation. Concatenation with the ‘–datatype ignore’ setting that 
eliminates expensive IUPAC character checks, was faster than the 
multithreaded AMAS, which does not check sequence lengths or 
IUPAC character validity. SEGUL always checks that each sequence 
in an alignment is the same length. We achieved memory efficiency 
for other features by carefully managing allocations. To our surprise, 
while using the compiled Go programming language, goalign used 
more RAM than AMAS with its interpreted Python programming 
language. The same as Python, Go uses garbage collected memory 
management. Compared to AMAS, goalign does more file checking, 
such as IUPAC character and alignment length checks. The check-
ing may be inefficient, requiring significant memory allocation, and 
the data may be kept in the RAM longer than necessary. Another 
surprising result is that goalign was also slower when using the mul-
ticore setting (Figure 1). We suspect that the algorithm may be single 

threaded as shown with only 3.59 percent increase in CPU usage 
when using the multi-core setting (Table S1). The 3.59 percent in-
crease may be used by the go multithreading algorithm (called gor-
outine) only for task scheduling between threads (Gao et al., 2023; 
Scionti & Mazumdar,  2017). Rust, on the other hand, uses a non-
garbage-collected memory model (Perkel, 2020), which guarantees 
that when a variable is out of scope it will be dropped from RAM. We 
used the Rayon Rust library (https://​docs.​rs/​rayon/​​latest/​rayon/​​ ) 
to implement a high-performance multithreading algorithm that 
adjusts core usage based on data workload during execution. Our 
application lacked efficiency only when splitting alignments, espe-
cially when the input files were in a NEXUS format. NEXUS is more 
complex than PHYLIP and FASTA, which complicates file parsing 
(Maddison et al., 1997). In the case of alignment splitting, the parsed 
concatenated alignments were kept in memory as HashMap data 
structure for nearly the entire processing stage. It generated a new 
HashMap for each newly split alignment. We are actively working 
on optimizing the alignment splitting algorithm to improve memory 
efficiency.

F I G U R E  2 SEGUL CLI versus GUI 
comparison; (a) execution time and 
memory usage across five replicate runs 
on Linux for WGS read summary statistic 
(NCBI SRA # SRR26062012, Table 2); (b) 
mean execution time comparison across 
tested platforms and datasets. Error bars 
indicate ±1 standard deviation.
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There is an increasing trend of relaying to containerized applica-
tions (i.e. using Docker and Singularity) to solve dependency issues, 
but this fix makes it harder for computing novices to study phylog-
enomics. We take a different approach by minimizing dependencies 
to simplify installation and operation. For further convenience, we 
developed a GUI that retains efficiency and reproducibility. SEGUL 
support for mobile devices enables a new way to perform phylog-
enomic data manipulation and summary statistics. Both the tested 
mobile devices could execute large alignment datasets and were 
much faster than the other tested applications in some scenarios. 
For instance, SEGUL GUI execution time for removing sequences 
on the Android smartphone was 32.5 times faster than AMAS  
‘–check-align’, while AMAS was running on the much more capable 
desktop computer (Table  S1). Our application facilitates teaching 
phylogenomics to students who use mobile devices (e.g. tablets) as 
their primary computers. Many authors publish their alignments (e.g. 
Jarvis et al., 2014; Oliveros et al., 2019, https://​github.​com/​robla​nf/​
Bench​markA​lignm​ents) and phylogenetic tree estimation can be 
conducted on the web (DeSalle et al., 2020). Our application allows 
the entire process from alignment inspection and concatenation to 
phylogenetic tree estimation to be conducted from a mobile device.

Mobile devices are becoming more powerful, with some tablets, 
such as Apple's iPad Pro and iPad Air, using the same processors 
as their laptop and desktop counterparts. The only limitation is that 
mobile operating systems, including Android since SDK 30 (https://​
devel​oper.​andro​id.​com/​about/​​versi​ons/​11/​priva​cy/​storage), forbid 
applications to access the file directly (using raw path) for security 
reason. File input in the SEGUL mobile version needs to be cached 
to a temporary location that the application can access. Depending 
on the operating system and the hardware capability, this process 
makes it slow to nearly impossible for inputting large numbers of 
files. For instance, we could input the Shen et al. (2018) data (2408 
files), but not the Oliveros et al. (2019) (4060 files) on the iPad Mini 
when the file is stored internally. The Xiaomi smartphone allowed 
input of the Oliveros et al. (2019) data if the files were divided and 
loaded in two batches. We plan to provide a feature to allow input 
of a compressed file to overcome this limitation. SEGUL, aided by 
the Flate2 Rust library (https://​docs.​rs/​flate2/​latest/​flate2/​), comes 
with a cross-platform GNU Gzip parsing library for compressed se-
quence reads. Implementing similar support for compressed align-
ment files on SEGUL and other phylogenomic applications would 
not only benefit the mobile application but would also improve 
efficiency in analysing and storing phylogenomic datasets. Greater 
usage of compressed files would reduce energy costs and ecological 
footprints of running phylogenomic analyses (Grealey et al., 2022; 
Kothiyal et al., 2009).

We achieve a cross-platform, high-performance application by 
writing our GUI code in Flutter and handling expensive computa-
tion in Rust. Our implementation of this approach in the neglected 
aspects of typical phylogenomic workflows provides proof of con-
cept in the development and scaling of high-performance applica-
tions with GUI interaction on desktop and mobile operating systems. 
Extension of our approach to other aspects of phylogenomic 

workflows would pave the way for more user-friendly software to 
study phylogenomics and enable teaching students with limited ac-
cess to computational power.

7  |  CONCLUSIONS

SEGUL is an ultrafast, memory-efficient tool to manipulate and gen-
erate summary statistics for phylogenomic datasets. It is consist-
ently fast with low memory usages regardless of dataset, operating 
system, and CPU architecture, while providing extra features, such 
as a log file, a more informative terminal output, GUI application, and 
a broad array of summary statistics. SEGUL supports devices from 
smartphones, tablets, laptops and desktops, to high-performance 
computers. SEGUL's efficient use of computing resources, cross-
platform support, and inclusion of a log file offers greater repeat-
ability and accessibility than alternative applications.
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