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Abstract

Phylogenetic studies now routinely require manipulating and summarizing thousands
of data files. For most of these tasks, currently available software requires considera-
ble computing resources and substantial knowledge of command-line applications. We
develop an ultrafast and memory-efficient software, SEGUL, that performs common
phylogenomic dataset manipulations and calculates statistics summarizing essential
data features. Our software is available as standalone command-line interface (CLI)

Handling Editor: Alana Alexander and graphical user interface (GUI) applications, and as a library for Rust, R and Python,
with possible support of other languages. The CLI and library versions run native on
Windows, Linux and macQOS, including Apple ARM Macs. The GUI version extends
support to include mobile iOS, iPadOS and Android operating systems. SEGUL lever-
ages the high performance of the Rust programming language to offer fast execution
times and low memory footprints regardless of dataset size and platform choice. The
inclusion of a GUI minimizes bioinformatics barriers to phylogenomics while SEGUL's
efficiency reduces economic barriers by allowing analysis on inexpensive hardware.
Our support for mobile operating systems further enables teaching phylogenomics

where access to computing power is limited.
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However, other essential processes, such as alignment manipulation

1 | INTRODUCTION

(e.g. filtering, splitting, extracting and concatenating) and summary

The declining cost of DNA sequencing has increased the adoption
of phylogenetic studies using thousands of loci, but this trend has
also brought substantial analytical challenges. The most demanding
parts of typical phylogenomic workflows, such as raw sequence read
cleaning and adapter trimming (e.g. Fastp (Chen et al., 2018)), contig
assembly (e.g. SPAdes (Bankevich et al., 2012)), sequence alignment
(e.g. MAFFT (Katoh et al., 2002)), phylogenetic tree estimation (e.g.
RAXML-NG (Kozlov et al., 2019) and IQ-TREE (Minh et al., 2020;
Nguyen etal., 2015)), and species delimitation (e.g. BPP (Yang, 2015)),
use high-performance programming languages (e.g. C and C++).

statistic calculation (e.g. number of parsimony informative sites, per-
cent missing data, etc), are typically carried out in interpreted lan-
guages, such as Python (e.g. Borowiec, 2016; Faircloth, 2016), R (e.g.
Hutter et al., 2022), or Perl (e.g. Kiick & Longo, 2014). The computa-
tional efficiency of this approach is limited by the requirement of an
interpreter running alongside the application, type inference at run-
time and garbage collection memory management, which together
result in a high memory footprint. One exception to this pattern is
the program goalign (Lemoine & Gascuel, 2021), which uses a com-

piled programming language and eliminates dependencies required
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at runtime. Many of the program functions, however, operate on
only a single file, forcing users to write custom scripts to work on
thousands of genomic files.

With some exceptions (e.g. BPP (Yang, 2015) and FastQC
(Andrews, 2010)), most commonly used phylogenomic programs are
available only as command-line interface (CLI) applications. CLI pro-
grams use computer resources more efficiently than graphical user
interface (GUI) applications, and they are also easier to develop than
comparable GUI software, but they present barriers for scientists
with limited computing knowledge or support. An approach using
a high-performance programming language with a GUI would mini-
mize the computing skills needed to study phylogenomics.

A fast, memory-efficient, reduced-dependency application for
phylogenomic studies would enhance research efficiency and re-
peatability, while also improving accessibility for biologists with lim-
ited computing resources. Furthermore, efficient computing reduces
the carbon footprint of bioinformatics (Grealey et al., 2022). Such
applications often require programmers to use a fast, compiled pro-
gramming language that allows fine control over how data are man-
aged in computer memory. In this context, the two commonly used
programming languages are C and C++. They require programmers
to ensure valid memory access, correct variable type to store data,
and ensure no data races (i.e. multiple cores/threads modify data
concurrently), which make them challenging to use (Perkel, 2020).
These code-correctness issues are difficult to avoid and represent
common problems in phylogenetic software (Darriba et al., 2018).
The recently emergent programming language, Rust, offers a
memory-safe alternative to C/C++ (Koster, 2016; Perkel, 2020). It
comes with efficient development tools (e.g. a package manager and
a simple build system), guarantees valid memory access, does not
require garbage collection, and prevents data races for multithread-
ing applications. As a compiled programming language, Rust has zero
dependency at runtime and can be distributed as a single executable
CLI. Developing phylogenomic tools in Rust promises fast and effi-
cient performance. Reducing dependencies minimizes conflict with
other applications when used as part of analysis pipelines and leads
to improved research reproducibility.

GUI development is more complicated than CLI development,
especially when targeting multiple platforms. A common cross-
platform approach uses Java (e.g. BEAST (Suchard et al., 2018),
BEAST2 (Bouckaert et al., 2019), FastQC (Andrews, 2010)), but this
strategy is often limited by the language's memory management.
Furthermore, it is challenging to maintain a consistent user inter-
face (Ul) across operating systems (see TaxonDNA documentation,
https://github.com/gaurav/taxondna (commit hash: 50584 ac)).
An alternative approach uses the Shiny package in R (e.g. phruta
(Roman-Palacios, 2023), treehouse (Steenwyk & Rokas, 2019)), but
is less efficient because the application runs in the R environment
and a browser. An emergent cross-platform framework, Flutter,
promises mobile and desktop support with consistent Ul across
platforms. The programming language Dart, required to write
Flutter applications, uses garbage-collected memory management,
and features an excellent foreign-function interface to interact with

higher-performance programming languages. Combining the Flutter
framework and Rust language allows us to develop a cross-platform,
high-performance GUI application for phylogenomics.

We developed the SEGUL (Sequence and Genomic Utilities) appli-
cations for phylogenomic data manipulation and summarization. They
are available as a CLI, GUI and programming language library, with
support for MacOS, Linux, Windows, iOS, iPadOS and Android. The
application is supplemented by adaptive web-based documentation
for easy navigation of SEGUL's various features across a wide range
of devices. We designed SEGUL with beginners in mind, while still
providing advanced features for experienced users. As such, SEGUL
is suitable for both research and teaching. SEGUL's use of the Rust
programming language combined with the Flutter-coded GUI pro-

vides consistent performance across supported operating systems.

2 | IMPLEMENTATION

SEGUL includes a compiled, single executable, command-line appli-
cation with no dependencies. This version supports Windows (native
and Windows Subsystem for Linux), MacOS, and Linux. We provide
a fully static executable for old Linux distributions (i.e. the distri-
butions with GLIBC version lower than the Rust minimum require-
ment, see https://doc.rust-lang.org/nightly/rustc/platform-support.
html) and a dynamically linked executable to GLIBC (https://www.
gnu.org/software/libc/) for more optimized performance in newer
Linux distributions. Users can install the pre-compiled executable
provided in the source code repository or compile the application
from the source code (see the Software Availability section below).
The latter installation method expands SEGUL platform support to
any operating system supported by Rust (https://doc.rust-lang.org/
nightly/rustc/platform-support.html). The compiler also fine-tunes
the resulting executable for the user's computer.

The GUI version is written in Dart using the Flutter framework.
All demanding computations use the same Rust code base as our CLI
and library. The application is available in beta supporting Windows,
MacOS, Linux, iOS, iPadOS and Android. The current version is
available to test using Apple TestFlight for iOS, iPadOS and macOS,
and at the GitHub repository page for other operating systems (see
Software Availability below). We expect to distribute the stable ver-
sion via the official store of each operating system, such as AppStore
for iOS and PlayStore for Android.

SEGUL is also available as a Rust library (called crates in the Rust
programming terminology), allowing developers to access SEGUL
functions through the application programming interface (API). We
assigned the API version number by following semantic versioning
2.0.0 (https://semver.org/). For Rust, the installation process is as
easy as typing ‘cargo add segul’ or by manually adding SEGUL as a
dependency in the Rust cargo.toml file. The versality of the Rust
programming language and the performance of our library will be
attractive for usage in slower programming languages (e.g. Python
and R). For these languages, programmers can bind SEGUL via the
C programming interface. In R and Python, however, Rust support
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is growing due its value for developing high-performance software
without the challenging aspects of C/C++ memory management.
Packages exist to simplify the binding of Rust. In R, programmers can
use the rextendr package; in Python, PyO3 is available. Python or
R code can also interact with the SEGUL CLI using the operating sys-
tem process. While SEGUL CLlI is a single executable with no depen-
dency, for published software, interacting through the SEGUL API
yields a cleaner application design and avoids common dependency
issues, such as improper setup of environment variables. We used a
similar approach to develop the GUI version. We provide more de-
tailed instructions in our application documentation.
Cross-platform quality documentation is essential in modern
application development. We leverage the open-source static-site
generator, Docusaurus (https://docusaurus.io/), to rapidly build a
cross-platform website interface for the application documentation.
The content of the documentation is written in Markdown, while
the rest of the website is written in TypeScript. Our documentation
source code is available inside the ‘website’ folder in the same repos-
itory as our GUI code (https://github.com/hhandika/segui). We use
the front-end cloud platform, Vercel (https://vercel.com/), to host
and automatically deploy the website after modifications in the main

branch of the source code on GitHub.

3 | FEATURE AND USAGES

SEGUL development focuses on improved efficiency when working
with thousands of alignment files, enabling analysis on computers
with limited capabilities. We achieve this goal by reducing execu-
tion time and RAM usages. SEGUL has a growing list of features for
phylogenomic data manipulation and summary statistic calculation
(Table 1). Although phylogenomic analyses are growing in frequency,
Sanger sequencing remains common in certain circumstances.
Several features of our application, such as alignment concatena-
tion, sequence removal and translation, are applicable to both phy-
logenomic and Sanger datasets.

All versions of SEGUL work on FASTA, NEXUS, and relaxed
PHYLIP for alignment and processed sequence files, NEXUS and
RaXML standards for partitions, FASTA files for contiguous (contig)
sequences, and uncompressed and GNU Gzip compressed FASTQ
files for raw-read sequences. All sequence and alignment files are
supported ininterleaved and sequential format. Except for alignment
splitting, all the features support multiple input files. All application
versions provide detailed log-file output. SEGUL-critical and some
non-critical functions are tested using the unit and integration test
system provided by the Rust and Dart programming languages. We
establish a continuous integration (Cl) system using GitHub Actions
(https://github.com/features/actions). This system is designed to au-
tomatically validate any modifications made to the code. We ensure
that failures in the designed tests are publicly displayed in the source
code repository. Furthermore, our GitHub Actions Cl system facili-
tates the release of CLI applications to all supported operating sys-
tems. Additionally, it enables the distribution of GUI applications for
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TABLE 1 Feature comparison among SEGUL v0.20.0, AMAS
v1.02, and goalign v0.3.5.

Features SEGUL AMAS Goalign
Alignment compression Yes
Alignment concatenation Yes Yes Limited
Alignment consensus Yes
Alignment conversion Multiple files  Multiple files  Single file
Alignment drawing Yes
Alignment filtering Yes
Alignment masking Yes
Alignment shuffling Yes
Alignment splitting Yes Yes Yes
Alignment summary statistics Rich Moderate Limited
Alignment to unaligned Planned Yes

sequence conversion
Alignment transposal Yes
Genomic summary statistics FASTQ reads,

contigs

Duplicate sequence removal  Planned Yes
Multi-sequence alignment Yes
Open reading frame finder Yes
Partition format conversion Yes
Sample distribution mapping  Yes
Sequence ID extraction Yes
Sequence comparison Yes
Sequence extraction Multiple files Single file
Sequence ID renaming Multiple files Single file
Sequence removal Multiple files  Multiple files  Single file
Sequence replication Multiple files  Single file
Sequence translation Multiple files Multiple files  Single file
Sequence trimming Planned Yes

Sequence unique ID parsing Yes

API support Yes Yes Yes
GUI version availability Yes
Mobile support Yes

operating systems that permit installations from external sources,
including Windows, Linux, and Android.

The command-line version features an informative terminal output
with information on the application input, processing stages, and out-
put. We provide default commands that eliminate the need for users to
type them for common scenarios. For example, when the input is DNA
sequences, users do not need to type the ‘~datatype’ command. Since
version 0.19.0, SEGUL automatically detects the input format based
on the file extension, eliminating the need for using ‘~input-format’.
Multiple file outputs will always be written to a directory. The appli-
cations do not automatically overwrite existing files but do provide an
overwrite option for automated phylogenomic pipelines.

The GUI version provides interactive access to SEGUL features,
while offering similar performance to its CLI sibling. We leverage
Flutter cross-platform and adaptive Ul support to adapt Ul elements
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to different screen sizes and platforms. We followed the open-source
Material 3 design system (https://m3.material.io/) that provides
guidelines for creating adaptive, accessible, cross-platform applica-
tions. For example, on a small screen, such as a smartphone, features
are accessed through a bottom navigation bar, whereas on a medium
screen (e.g. tablets and foldable smartphones) and a large screen (e.g.
laptops and desktops) we use a navigation rail and navigation drawer,
respectively. The narrower navigation component (navigation rail)
and the wider version (navigation drawer) are placed vertically on the
left side of the screen to exploit greater screen width. We also imple-
ment Material 3 colour schemes to adapt the application colour pal-
ette in all supported platforms. This integration provided by Flutter
leverages the accessibility features of Material 3 to enhance user ex-
perience and ensure optimal rendering for people with visual impair-
ment. We also provide support for dark mode to reduce eye strain
when running our GUI application in a low-light environment. For
platforms that support dynamic colour rendering, our application co-
lours will adapt to the user's operating system settings. For instance,
on macOS and Windows, the application colour palette will be based
on the operating system accent colour setting. On Android and Linux,
the colour palette will be based on the users' operating system wall-
paper. The dynamic colour is unsupported on iOS and iPadOS. On
macQOS, our application uses the Apple App Sandbox feature (https://
developer.apple.com/documentation/security/app_sandbox) to en-
hance application security and protect user data. The App Sandbox
will eventually also allow us to distribute the application in the Mac
App Store, which simplifies installation and software update. A similar
approach is implemented for iOS, iPadOS, and Android.

The SEGUL GUI supports all the features of the CLI version,
while outputting similar log files to enable reproducibility. We also
provide interactive windows to show the file inputs and output. The
input window provides the list of the files, their sizes, the last mod-
ified time, and a delete button to remove the file. For plain-text and
comma-separated value (CSV) output files, such as the output of
summary statistics and sequence ID extraction function, we provide
a built-in viewer to allow users to inspect the file output without
having to leave the application. We also include a share function to
simplify cross-device file sharing using operating system features.
For example, on iOS and MacQOS, users can send files between Apple
devices via AirDrop without leaving SEGUL GUI. The file sharing
function also allows users to transfer output files to other applica-
tions installed in the user operating system. Due to the interactive
nature of GUI application, the default folder feature is unavailable
for the GUI version. On desktop operating systems, the application
uses the operating system directory selection Ul that allows users
to create a new directory. On mobile operating systems, SEGUL GUI
only writes to its designated document directory mandated by the
operating system. We provide a data usage menu in the application
settings to allow users to manage the application data. We anticipate
future developments to provide interactive statistics.

Current documentation is available in English. The site navigation
components and its layout are adaptive to viewing in different screen
sizes. Like our GUI application, our documentation also supports dark

mode. We anticipate translation of the documentation to other lan-

guages, and we welcome public contributions toward this goal.

4 | FEATURE COMPARISON

We compare SEGUL to goalign (Lemoine & Gascuel, 2021) and AMAS
(Borowiec, 2016) because they share similar performance and use
cases. goalign is the most feature-rich (Table 1), however, most of
its functions operate on a single file; two exceptions are alignment
concatenation (multiple files) and sequence alignment (two files).
AMAS and SEGUL, on the other hand, operate on single or multiple
files. SEGUL CLI provides default commands, default output direc-
tory, and safety features to avoid overwriting existing files. The GUI
version keeps the safety feature of the CLI application and provides
an interactive menu to simplify user experience. AMAS will only pro-
vide notice after overwriting existing files and will only output to the
current working directory. goalign does not provide any notice after
overwriting existing files. The AMAS alignment splitting feature will
always write the output files in the same folder as the input files.
All applications provide APlIs, but neither AMAS nor goalign offers
a GUI. Several features (e.g. sample mapping, sequence unique ID
parsing, and partition format conversion) are unique to SEGUL.

While several SEGUL features overlap with AMAS and goalign,
SEGUL provides greater functionality. For instance, SEGUL gener-
ates summary statistics for alignment files, raw read sequences and
contiguous sequence, whereas AMAS and goalign only support align-
ment files. The application's raw summary statistics provide a sim-
ple version of the statistics generated by FastQC (Andrews, 2010).
SEGUL outputs CSV files and is designed to compare many raw read
sequences quickly without an additional application (e.g. multiQC to
summarize FastQC results). For alignment files, SEGUL always checks
that the sequences within each alignment are the same length and by
default checks that sequences contain only valid IUPAC characters.
To speed up processing for most features, users can skip the IUPAC
check using the ‘-datatype ignore’ option, but the sequence length
is always checked. AMAS does not check for [UPAC validity and the
sequence length verification is optional. goalign checks both but does
not generate alignment partitions. Another example, the SEGUL se-
quence removal feature supports regular expression, file and terminal
input, while AMAS supports only terminal input. As noted above, the
goalign sequence removal works on only a single file.

5 | PERFORMANCE COMPARISON
5.1 | Testing methodology

To highlight the performance of SEGUL, we compared features
of the command line version SEGUL v0.20.0 to AMAS v1.02 (see
Borowiec, 2016), the fastest alternative application and the most
comparable with SEGUL (e.g. concatenation with partition out-
put and multiple file input support across most features). Where
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necessary, we test the applications under different settings to pro-
vide fair performance comparisons. For example, we test AMAS
using the ‘-check-align’ command, which SEGUL does by default.
We include goalign v0.3.5 for the alignment concatenation perfor-
mance test. We used six published genomic datasets (four DNA se-
quence datasets and two amino acid sequence datasets (AA)) with
a range of taxon, site and character counts (Table 2). We down-
loaded the datasets either directly from the original sources or using
BenchmarkAlignments scripts (https://github.com/roblanf/Bench
markAlignments).

We tested each platform using all the alignment datasets, with
each combination replicated five times. For sequence removal tests,
we used the SEGUL ID extraction feature to get the list of sequence
IDs in each dataset. We removed the first three taxa in alphabeti-
cal order. For the alignment splitting test, we concatenated all the
alignments using SEGUL CLI and used the resulting files and their
partitions to conduct the splitting test. All the datasets were held
in the internal storage of the computer. We conducted the test
using FASTA, NEXUS and PHYLIP input files supported by all tested
applications.

We ran the test on a custom-built PC running Linux. We auto-
mated the testing process using SHELL scripts optimized for FISH
SHELL (https://fishshell.com/). To compare the performance of the
applications, we use GNU Time (https://www.gnu.org/software/
time/). We recorded execution time, memory, and CPU core usages.
SEGUL detects available CPU cores and uses them according to
the current workload. AMAS and goalign, on the other hand, have
settings for the core counts. We set AMAS and goalign to use all
available cores in comparisons with SEGUL. Like SEGUL, the actual
number of cores being used by AMAS and goalign would depend
on workload, and to some extent, on the multithreading algorithm
implemented by the programming language.

To compare the performance and to test the scalability of the GUI

version relative to the CLI version of SEGUL, we conducted limited

RESOURCES

tests for the SEGUL GUI v1.0.0-betaé on a Linux PC, an iPad, and a
budget Android smartphone (Table 3). We used Oliveros et al. (2019)
and Shen et al. (2018) datasets for GUI performance tests. These
two datasets have the highest number of characters for DNA and
amino acid sequences, respectively, among our six test datasets. For
the tests on the desktop Linux, we also include raw read summary
statistics of a whole genome sequence (WGS) of Peromyscus eremicus
(NCBI SRA #SRR26062012, Table 2) provided by Baylor College of
Medicine on NCBI Sequence Read Archive (SRA). We downloaded
the genome file using SRA toolkit. We used fastq-dump application
in SRA toolkit with ‘-split-files’ command to extract the downloaded
SRA file into two uncompressed FASTQ reads. The resulting files
were each 338 gigabytes (GB) in size. Due to limited storage space
in the testing computer, we stored the files in an external solid-state
drive (SSD) (Table 3).

We used GNU Time to measure the RAM usage on Linux and
collected the execution time provided by the application in the log
file that measured only the time of executing the assigned task. The
log file is available to access in the setting menu of the application.
Our test with the CLI version showed the GNU Time measurements
were identical to the internal measurement provided in the SEGUL
log file. On smartphones and tablets, tracking accurate and compa-
rable hardware usages with desktop applications is complex. Thus,
we measured only the execution time provided directly by the appli-
cation. We replicated each combination of tested feature and data-
set five times. On the Android device, simultaneously inputting over
two thousand files crashed the application. We split the datasets
into multiple folders with a maximum of 1500 files each. The strat-
egy allowed us to use ‘select all’ features in the input file screen and
took advantage of the SEGUL ‘add more files’ feature to input all the
files in the dataset. The data were kept in the internal storage of the
device. The same strategy did not work for the iPadOS testing de-
vice when the data were in internal storage. It lost access to the data

after reaching over ~3000 files, which caused issues for inputting

TABLE 2 Dataset sources, data type, taxon count, locus count, character count (missing characters + nucleotides), site count, file size and

data source.

Datasets Datatype Taxoncount Locuscount Character count Site count  File size Dataset URL

Chan et al. (2020) DNA 50 13,181 239,310,808 6,180,393 247MB https://doi.org/10.5061/dryad.8cz8w
9gn7

Esselstyn et al. (2021) DNA 102 4040 358,099,656 5,398,947 356MB https://doi.org/10.5281/zenodo.
6459213

Jarvis et al. (2014) DNA 49 3679 453,333,006 9,251,694  438MB http://gigadb.org/dataset/101041#

NCBI SRA DNA 1 WGS 243,874,896,842* - 2x338 GB https://www.ncbi.nlm.nih.gov/sra/

#SRR26062012 SRR26062012

Oliveros et al. (2019) DNA 221 4060 522,529,858 2,464,926 523MB https://doi.org/10.5061/dryad.
2vdOlgr

Shen et al. (2018) Amino acid 343 2408 398,842,115 1,162,805 421MB https://doi.org/10.6084/m9.figshare.
5854692

Wau et al. (2018) Amino acid 90 5162 257,060,172 3,050,198 250MB https://doi.org/10.6084/m9.figshare.
6031190.v2

Note: The asterisk (*) denotes a total base count for two reads. The file size is estimated based on NEXUS input alignments, except for NCBI SRA
#SRR26062012, which are two uncompressed FASTQ reads of a whole genome sequence (WGS).
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TABLE 3 Device specifications for each testing platform.

Linux
Model Custom-built PC
Processor AMD Ryzen 5900x
Core/threads 12/24
Ram size 64 GB
Storage Western Digital Black SN770 1TB
GPU EVGA GeForce RTX 2060 Super 8 GB XC Ultra

Crucial X10 Pro 2TB
openSUSE Tumbleweed x86_64
6.6.11-1-default

External storage
Operating System

Kernel version

the Oliveros et al. (2019) dataset (4060 files). However, we were able
to input the files simultaneously after we moved them to an external
SSD. For consistency, we stored all the data for the iPadOS tests in
the external SSD (Table 3).

To see how SEGUL CLI performance compared to the other
applications, we calculated means and standard deviations of CPU
time and RAM usages across replicate runs for each dataset and
input formats for each tested feature (Figure 1). We calculated the
CPU time by incorporating both the execution time and CPU thread
usage. A single thread usage corresponds to 100 percent CPU usage.

Therefore, the CPU time was computed using the following formula:

CPU usage (%)

CPU time (CPU seconds) = Execution time (seconds) x 100

Because CPU usages were not available for GUI application, we
used execution time to compare SEGUL CLI and GUI performance.
We used R v4.2.3 with dplyr v1.1.2 and ggplot2 v3.4.2 packages to
generate summary statistics and visualize the results, respectively.
All scripts and raw data are available at (https://github.com/hhand
ika/segul-bench).

5.2 | Testingresults

On average, SEGUL CLI used less CPU time than AMAS across all
tested datasets, features, and settings (Figure 1). The starkest dif-
ference is for summary statistic calculations. SEGUL used 0.08 of
CPU time (15.3 vs. 190.69 CPU seconds) that AMAS used, despite
producing more statistics (Figure 1, Table S1). AMAS noticeably used
more CPU time when using the ‘-check-align’ setting. For example,
on average across all datasets and input formats, AMAS ‘-check-
align’ used 40.5 times (135.05 vs. 3.33 CPU seconds) more CPU time
than SEGUL for alignment concatenation. Even without the ‘~check-
align’ setting, AMAS used three times (10.03 vs. 3.33 CPU seconds)
more CPU time (Figure 1, Table S1). When using ‘-datatype ignore’,
SEGUL CLI used less CPU time than AMAS across all tested datasets
and input formats (Figure 1). It was 0.2 of CPU time (1.92 vs. 10.03
CPU seconds) for the alignment concatenation compared to the CPU
time that AMAS used at default settings and 0.01 of CPU time (1.92

Android

Xiaomi Redmi Note 12
Qualcomm Snapdragon 685

Xiaomi HyperQOS 1.0.1.0 with Android 14
5.15.94 -

iPadOS

iPad Mini (6th generation)
Apple A15 Bionic

8/8 2P +4E cores

8GB 4GB

128 GB 64 GB

Adreno 610 Apple GPU (5-core)

Crucial X10 Pro 2TB
iPadOS 17.2

vs. 135.05 CPU seconds) compared to AMAS using the ‘-check-align’
setting (Figure 1, Table S1). SEGUL CLI used 0.6 (3.33 vs. 6.05 CPU
seconds) and 0.3 (1.92 vs. 6.05 CPU seconds) of CPU time that goal-
ign used for alignment concatenation at the default and with ‘-~data-
type ignore’ settings, respectively (Figure 1, Table S1).

Across all tests, SEGUL CLI used less RAM than AMAS. The stark-
est contrast is when converting alignments to different formats and
removing sequences (Figure 1). On average across tested datasets
and input formats, SEGUL used 0.05 of the RAM space that AMAS
used for the two analyses (24.47 vs. 485.96 MB for alignment con-
version and 24.65 vs. 502.14MB for sequence removal) (Figure 1,
Table S1). However, for the alignment splitting tests when the input
files are in NEXUS format, the RAM space that SEGUL used was
comparable to AMAS (Figure 1). Compared to goalign when concat-
enating alignment, SEGUL used 0.18 (489.87 MB), while AMAS used
0.64 (1700.87 MB) of the RAM space that goalign used (2661.39 MB)
(Figure 1, Table S1). Using the ‘-datatype ignore’ setting in SEGUL
CLI did not have considerable effect on the RAM usage (Figure 1).

On average, SEGUL CLI was faster and more memory efficient
than the GUI version (Figure 2). On identical hardware running on
Linux, both versions had nearly equal execution times for three of
the six tested features across the three tested datasets (Figure 2b).
SEGUL CLI was 1.4 times (4.19 vs. 3.03s, on average) faster for align-
ment concatenation and splitting using the Oliveros et al. (2019)
dataset and 1.3 (2.51 vs. 3.565) and 1.2 times (4.07 vs. 4.9 s) faster, re-
spectively, using the Shen et al. (2018) dataset (Figure 2b). The highest
RAM usage difference was 20.8 times more on the GUI (187.85MB)
than the CLI version (9.04MB) when summarizing WGS reads
(Figure 2a). Compared to the mobile version, the desktop GUI version
was faster than the mobile version. The starkest difference was when
summarizing alignments. On average between both tested datasets,
the desktop version was 5.3 (1.34 vs. 7.11s) and 10.3 times (1.34 vs.
13.77s) faster than on iPadOS and Android, respectively (Figure 2b).

6 | DISCUSSION

The field of phylogenomics relies on a broad range of efficient
software for many operations in a typical workflow (e.g. raw read
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assembly, tree inference), but some aspects of standard pipelines
are neglected. We developed SEGUL to fill a need for software that
can manipulate genomic files and calculate summary statistics in a
manner suitable for computational experts and novices alike. SEGUL
offers consistently fast operations, low memory demands, and ef-
ficient CPU use across all supported features. While the GUI version
was slower and less memory efficient than the CLI version, it was
still faster and less memory demanding than AMAS for most sce-
narios in default settings across most of tested datasets, except for
the alignment splitting. Similarly, except for alignment splitting, RAM
usage by either the CLI or GUI version was kept under 1 GB regard-
less of dataset size and tested feature. SEGUL's high performance

and memory efficiency would enable processing large datasets with

Alignment Concatenation (FASTA)

Alignment Concatenation (NEXUS)
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low-end computers. Computational efficiency will only increase in
importance with routine adoption of whole genome sequencing for
phylogenetics.

The choice of the Rust programming language enabled us to
develop a high-performance, memory-efficient application, but
algorithm implementation also plays a crucial role. For instance,
summarizing two 338-GB files of WGS reads used significantly less
RAM space compared to summarizing alignments with a total file
size of <1 GB (Table S1). Our summarization algorithms for sequence
reads are highly optimized for handling large file sizes. The files are
parsed and processed by line, with each line immediately dropped
from memory. We used stream statistics to further optimize RAM

usages. For instance, we update the mean of read counts after each

Alignment Concatenation (PHYLIP)
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FIGURE 1 SEGUL (open symbols), AMAS (filled symbols), and goalign (line symbols) mean CPU time and RAM usage on all tested datasets
across three supported input formats. We used logarithmic scale for the x-axis to simplify visualization. All analyses were completed on
Linux. SEGUL (-datatype ignore) is not available for summary statistics. We only tested goalign for alignment concatenation. Mean execution
time and CPU usages for all tested applications and datasets are available in Table S2.
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line of sequences to avoid storing many read sizes in RAM. For align-
ment concatenation, we use multiple cores only for getting unique
IDs. The concatenation algorithm itself is single threaded. This al-
lowed us to sort the loci alphanumerically, while reducing memory
allocation. Concatenation with the ‘-datatype ignore’ setting that
eliminates expensive IUPAC character checks, was faster than the
multithreaded AMAS, which does not check sequence lengths or
IUPAC character validity. SEGUL always checks that each sequence
in an alignment is the same length. We achieved memory efficiency
for other features by carefully managing allocations. To our surprise,
while using the compiled Go programming language, goalign used
more RAM than AMAS with its interpreted Python programming
language. The same as Python, Go uses garbage collected memory
management. Compared to AMAS, goalign does more file checking,
such as IUPAC character and alignment length checks. The check-
ing may be inefficient, requiring significant memory allocation, and
the data may be kept in the RAM longer than necessary. Another
surprising result is that goalign was also slower when using the mul-
ticore setting (Figure 1). We suspect that the algorithm may be single

FIGURE 2 SEGUL CLI versus GUI
comparison; (a) execution time and
memory usage across five replicate runs
on Linux for WGS read summary statistic
(NCBI SRA # SRR26062012, Table 2); (b)
Apps mean execution time comparison across
tested platforms and datasets. Error bars

EGUL CLI
W SEGuLC indicate +1 standard deviation.

¢ SEGUL GUI

Apps

B secul ciLinux)
I secuL Gul (Android)
|| SEGUL GUI (iPadOs)
I secuL Gul (Linux)

threaded as shown with only 3.59 percent increase in CPU usage
when using the multi-core setting (Table S1). The 3.59 percent in-
crease may be used by the go multithreading algorithm (called gor-
outine) only for task scheduling between threads (Gao et al., 2023;
Scionti & Mazumdar, 2017). Rust, on the other hand, uses a non-
garbage-collected memory model (Perkel, 2020), which guarantees
that when a variable is out of scope it will be dropped from RAM. We
used the Rayon Rust library (https://docs.rs/rayon/latest/rayon/)
to implement a high-performance multithreading algorithm that
adjusts core usage based on data workload during execution. Our
application lacked efficiency only when splitting alignments, espe-
cially when the input files were in a NEXUS format. NEXUS is more
complex than PHYLIP and FASTA, which complicates file parsing
(Maddison et al., 1997). In the case of alignment splitting, the parsed
concatenated alignments were kept in memory as HashMap data
structure for nearly the entire processing stage. It generated a new
HashMap for each newly split alighment. We are actively working
on optimizing the alignment splitting algorithm to improve memory
efficiency.
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There is an increasing trend of relaying to containerized applica-
tions (i.e. using Docker and Singularity) to solve dependency issues,
but this fix makes it harder for computing novices to study phylog-
enomics. We take a different approach by minimizing dependencies
to simplify installation and operation. For further convenience, we
developed a GUI that retains efficiency and reproducibility. SEGUL
support for mobile devices enables a new way to perform phylog-
enomic data manipulation and summary statistics. Both the tested
mobile devices could execute large alighment datasets and were
much faster than the other tested applications in some scenarios.
For instance, SEGUL GUI execution time for removing sequences
on the Android smartphone was 32.5 times faster than AMAS
‘~check-align’, while AMAS was running on the much more capable
desktop computer (Table S1). Our application facilitates teaching
phylogenomics to students who use mobile devices (e.g. tablets) as
their primary computers. Many authors publish their alignments (e.g.
Jarvis et al., 2014; Oliveros et al., 2019, https://github.com/roblanf/
BenchmarkAlignments) and phylogenetic tree estimation can be
conducted on the web (DeSalle et al., 2020). Our application allows
the entire process from alignment inspection and concatenation to
phylogenetic tree estimation to be conducted from a mobile device.

Mobile devices are becoming more powerful, with some tablets,
such as Apple's iPad Pro and iPad Air, using the same processors
as their laptop and desktop counterparts. The only limitation is that
mobile operating systems, including Android since SDK 30 (https://
developer.android.com/about/versions/11/privacy/storage), forbid
applications to access the file directly (using raw path) for security
reason. File input in the SEGUL mobile version needs to be cached
to a temporary location that the application can access. Depending
on the operating system and the hardware capability, this process
makes it slow to nearly impossible for inputting large numbers of
files. For instance, we could input the Shen et al. (2018) data (2408
files), but not the Oliveros et al. (2019) (4060 files) on the iPad Mini
when the file is stored internally. The Xiaomi smartphone allowed
input of the Oliveros et al. (2019) data if the files were divided and
loaded in two batches. We plan to provide a feature to allow input
of a compressed file to overcome this limitation. SEGUL, aided by
the Flate2 Rust library (https://docs.rs/flate2/latest/flate2/), comes
with a cross-platform GNU Gzip parsing library for compressed se-
quence reads. Implementing similar support for compressed align-
ment files on SEGUL and other phylogenomic applications would
not only benefit the mobile application but would also improve
efficiency in analysing and storing phylogenomic datasets. Greater
usage of compressed files would reduce energy costs and ecological
footprints of running phylogenomic analyses (Grealey et al., 2022;
Kothiyal et al., 2009).

We achieve a cross-platform, high-performance application by
writing our GUI code in Flutter and handling expensive computa-
tion in Rust. Our implementation of this approach in the neglected
aspects of typical phylogenomic workflows provides proof of con-
cept in the development and scaling of high-performance applica-
tions with GUI interaction on desktop and mobile operating systems.
Extension of our approach to other aspects of phylogenomic

RESOURCES

workflows would pave the way for more user-friendly software to
study phylogenomics and enable teaching students with limited ac-

cess to computational power.

7 | CONCLUSIONS

SEGUL is an ultrafast, memory-efficient tool to manipulate and gen-
erate summary statistics for phylogenomic datasets. It is consist-
ently fast with low memory usages regardless of dataset, operating
system, and CPU architecture, while providing extra features, such
as a log file, a more informative terminal output, GUI application, and
a broad array of summary statistics. SEGUL supports devices from
smartphones, tablets, laptops and desktops, to high-performance
computers. SEGUL's efficient use of computing resources, cross-
platform support, and inclusion of a log file offers greater repeat-
ability and accessibility than alternative applications.
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github.com/hhandika/segul and https://github.com/hhandika/segui
for the GUI version and the application documentation. We provide
extensive documentation on installing and using all versions of the
application. The documentation can be found at https://www.segul.
app/. We recommend checking https://github.com/hhandika/segul
for the most up to date documentation link. APl documentation is
available at https://docs.rs/segul/latest/segul/.
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